TPTP Problem File: LAT294+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT294+2 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Ideals T04
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban96] Bancerek (1996), Ideals
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t4_filter_2 [Urb08]
% Status : Theorem
% Rating : 0.88 v9.0.0, 0.89 v8.2.0, 0.94 v7.5.0, 0.91 v7.4.0, 0.90 v7.3.0, 0.97 v7.1.0, 0.91 v7.0.0, 0.93 v6.4.0, 0.92 v6.3.0, 0.88 v6.2.0, 0.96 v6.1.0, 1.00 v5.0.0, 0.96 v4.0.1, 1.00 v3.4.0
% Syntax : Number of formulae : 2919 ( 945 unt; 0 def)
% Number of atoms : 12182 (2128 equ)
% Maximal formula atoms : 49 ( 4 avg)
% Number of connectives : 10903 (1640 ~; 142 |;4724 &)
% ( 467 <=>;3930 =>; 0 <=; 0 <~>)
% Maximal formula depth : 27 ( 6 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 181 ( 179 usr; 1 prp; 0-4 aty)
% Number of functors : 442 ( 442 usr; 143 con; 0-9 aty)
% Number of variables : 6894 (6568 !; 326 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Bushy version: includes all articles that contribute axioms to the
% Normal version.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
include('Axioms/SET007/SET007+0.ax').
include('Axioms/SET007/SET007+1.ax').
include('Axioms/SET007/SET007+2.ax').
include('Axioms/SET007/SET007+3.ax').
include('Axioms/SET007/SET007+4.ax').
include('Axioms/SET007/SET007+5.ax').
include('Axioms/SET007/SET007+6.ax').
include('Axioms/SET007/SET007+7.ax').
include('Axioms/SET007/SET007+9.ax').
include('Axioms/SET007/SET007+10.ax').
include('Axioms/SET007/SET007+11.ax').
include('Axioms/SET007/SET007+13.ax').
include('Axioms/SET007/SET007+14.ax').
include('Axioms/SET007/SET007+16.ax').
include('Axioms/SET007/SET007+17.ax').
include('Axioms/SET007/SET007+18.ax').
include('Axioms/SET007/SET007+20.ax').
include('Axioms/SET007/SET007+22.ax').
include('Axioms/SET007/SET007+23.ax').
include('Axioms/SET007/SET007+26.ax').
include('Axioms/SET007/SET007+32.ax').
include('Axioms/SET007/SET007+35.ax').
include('Axioms/SET007/SET007+117.ax').
include('Axioms/SET007/SET007+200.ax').
include('Axioms/SET007/SET007+205.ax').
include('Axioms/SET007/SET007+242.ax').
include('Axioms/SET007/SET007+253.ax').
include('Axioms/SET007/SET007+297.ax').
include('Axioms/SET007/SET007+375.ax').
%------------------------------------------------------------------------------
fof(dt_m1_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_filter_2(B,A)
=> ( ~ v1_xboole_0(B)
& m2_lattice4(B,A) ) ) ) ).
fof(existence_m1_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ? [B] : m1_filter_2(B,A) ) ).
fof(redefinition_m1_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_filter_2(B,A)
<=> m1_filter_0(B,A) ) ) ).
fof(dt_m2_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m2_filter_2(B,A)
=> ( ~ v1_xboole_0(B)
& m2_lattice4(B,A) ) ) ) ).
fof(existence_m2_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ? [B] : m2_filter_2(B,A) ) ).
fof(symmetry_r1_filter_2,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> ( r1_filter_2(A,B,C)
=> r1_filter_2(A,C,B) ) ) ).
fof(reflexivity_r1_filter_2,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> r1_filter_2(A,B,B) ) ).
fof(redefinition_r1_filter_2,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> ( r1_filter_2(A,B,C)
<=> B = C ) ) ).
fof(dt_k1_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> m1_filter_2(k1_filter_2(A),A) ) ).
fof(redefinition_k1_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> k1_filter_2(A) = k1_filter_0(A) ) ).
fof(dt_k2_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> m1_filter_2(k2_filter_2(A,B),A) ) ).
fof(redefinition_k2_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> k2_filter_2(A,B) = k2_filter_0(A,B) ) ).
fof(dt_k3_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> m1_filter_2(k3_filter_2(A,B),A) ) ).
fof(redefinition_k3_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> k3_filter_2(A,B) = k3_filter_0(A,B) ) ).
fof(dt_k4_filter_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v11_lattices(A)
& l3_lattices(A)
& m1_filter_0(B,A)
& m1_filter_0(C,A) )
=> m1_filter_2(k4_filter_2(A,B,C),A) ) ).
fof(redefinition_k4_filter_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v11_lattices(A)
& l3_lattices(A)
& m1_filter_0(B,A)
& m1_filter_0(C,A) )
=> k4_filter_2(A,B,C) = k5_filter_0(A,B,C) ) ).
fof(dt_k5_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> m1_subset_1(k5_filter_2(A,B),u1_struct_0(k1_lattice2(A))) ) ).
fof(dt_k6_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(k1_lattice2(A))) )
=> m1_subset_1(k6_filter_2(A,B),u1_struct_0(A)) ) ).
fof(dt_k7_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> m1_subset_1(k7_filter_2(A,B),k1_zfmisc_1(u1_struct_0(k1_lattice2(A)))) ) ).
fof(dt_k8_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(k1_lattice2(A)))) )
=> m1_subset_1(k8_filter_2(A,B),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(dt_k9_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_lattice4(B,A) )
=> m2_lattice4(k9_filter_2(A,B),k1_lattice2(A)) ) ).
fof(redefinition_k9_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_lattice4(B,A) )
=> k9_filter_2(A,B) = k7_filter_2(A,B) ) ).
fof(dt_k10_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> ( ~ v1_xboole_0(k10_filter_2(A,B))
& m2_lattice4(k10_filter_2(A,B),k1_lattice2(A)) ) ) ).
fof(redefinition_k10_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> k10_filter_2(A,B) = k7_filter_2(A,B) ) ).
fof(dt_k11_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_lattice4(B,k1_lattice2(A)) )
=> m2_lattice4(k11_filter_2(A,B),A) ) ).
fof(redefinition_k11_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_lattice4(B,k1_lattice2(A)) )
=> k11_filter_2(A,B) = k8_filter_2(A,B) ) ).
fof(dt_k12_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m2_lattice4(B,k1_lattice2(A)) )
=> ( ~ v1_xboole_0(k12_filter_2(A,B))
& m2_lattice4(k12_filter_2(A,B),A) ) ) ).
fof(redefinition_k12_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m2_lattice4(B,k1_lattice2(A)) )
=> k12_filter_2(A,B) = k8_filter_2(A,B) ) ).
fof(dt_k13_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_filter_0(B,A) )
=> m2_filter_2(k13_filter_2(A,B),k1_lattice2(A)) ) ).
fof(redefinition_k13_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_filter_0(B,A) )
=> k13_filter_2(A,B) = k7_filter_2(A,B) ) ).
fof(dt_k14_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_filter_0(B,k1_lattice2(A)) )
=> m2_filter_2(k14_filter_2(A,B),A) ) ).
fof(redefinition_k14_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_filter_0(B,k1_lattice2(A)) )
=> k14_filter_2(A,B) = k8_filter_2(A,B) ) ).
fof(dt_k15_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_filter_2(B,A) )
=> m1_filter_2(k15_filter_2(A,B),k1_lattice2(A)) ) ).
fof(redefinition_k15_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_filter_2(B,A) )
=> k15_filter_2(A,B) = k7_filter_2(A,B) ) ).
fof(dt_k16_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_filter_2(B,k1_lattice2(A)) )
=> m1_filter_2(k16_filter_2(A,B),A) ) ).
fof(redefinition_k16_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_filter_2(B,k1_lattice2(A)) )
=> k16_filter_2(A,B) = k8_filter_2(A,B) ) ).
fof(dt_k17_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> m2_filter_2(k17_filter_2(A),A) ) ).
fof(dt_k18_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> m2_filter_2(k18_filter_2(A,B),A) ) ).
fof(dt_k19_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> m2_filter_2(k19_filter_2(A,B),A) ) ).
fof(dt_k20_filter_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A))) )
=> m1_subset_1(k20_filter_2(A,B,C),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(dt_k21_filter_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v11_lattices(A)
& l3_lattices(A)
& m2_filter_2(B,A)
& m2_filter_2(C,A) )
=> m2_filter_2(k21_filter_2(A,B,C),A) ) ).
fof(redefinition_k21_filter_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v11_lattices(A)
& l3_lattices(A)
& m2_filter_2(B,A)
& m2_filter_2(C,A) )
=> k21_filter_2(A,B,C) = k20_filter_2(A,B,C) ) ).
fof(dt_k22_filter_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> ( ~ v1_xboole_0(k22_filter_2(A,B,C))
& m2_lattice4(k22_filter_2(A,B,C),A) ) ) ).
fof(dt_k23_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> m2_nat_lat(k23_filter_2(A,B),A) ) ).
fof(dt_k24_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_nat_lat(B,A) )
=> ( v3_lattices(k24_filter_2(A,B))
& m2_nat_lat(k24_filter_2(A,B),k1_lattice2(A)) ) ) ).
fof(redefinition_k24_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m2_nat_lat(B,A) )
=> k24_filter_2(A,B) = k1_lattice2(B) ) ).
fof(t1_filter_2,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(B,B),B)
& m2_relset_1(D,k2_zfmisc_1(B,B),B) )
=> ( D = k1_realset1(C,B)
=> ( ( v1_binop_1(C,A)
=> v1_binop_1(D,B) )
& ( v3_binop_1(C,A)
=> v3_binop_1(D,B) )
& ( v2_binop_1(C,A)
=> v2_binop_1(D,B) ) ) ) ) ) ) ) ).
fof(t2_filter_2,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(B,B),B)
& m2_relset_1(D,k2_zfmisc_1(B,B),B) )
=> ! [E] :
( m1_subset_1(E,A)
=> ! [F] :
( m2_subset_1(F,A,B)
=> ( ( D = k1_realset1(C,B)
& F = E )
=> ( ( r1_binop_1(A,E,C)
=> r1_binop_1(B,F,D) )
& ( r2_binop_1(A,E,C)
=> r2_binop_1(B,F,D) )
& ( r3_binop_1(A,E,C)
=> r3_binop_1(B,F,D) ) ) ) ) ) ) ) ) ) ).
fof(t3_filter_2,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,A),A)
& m2_relset_1(D,k2_zfmisc_1(A,A),A) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,k2_zfmisc_1(B,B),B)
& m2_relset_1(E,k2_zfmisc_1(B,B),B) )
=> ! [F] :
( ( v1_funct_1(F)
& v1_funct_2(F,k2_zfmisc_1(B,B),B)
& m2_relset_1(F,k2_zfmisc_1(B,B),B) )
=> ( ( E = k1_realset1(C,B)
& F = k1_realset1(D,B) )
=> ( ( r4_binop_1(A,C,D)
=> r4_binop_1(B,E,F) )
& ( r5_binop_1(A,C,D)
=> r5_binop_1(B,E,F) ) ) ) ) ) ) ) ) ) ).
fof(t4_filter_2,conjecture,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,A),A)
& m2_relset_1(D,k2_zfmisc_1(A,A),A) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,k2_zfmisc_1(B,B),B)
& m2_relset_1(E,k2_zfmisc_1(B,B),B) )
=> ! [F] :
( ( v1_funct_1(F)
& v1_funct_2(F,k2_zfmisc_1(B,B),B)
& m2_relset_1(F,k2_zfmisc_1(B,B),B) )
=> ( ( E = k1_realset1(C,B)
& F = k1_realset1(D,B)
& r6_binop_1(A,C,D) )
=> r6_binop_1(B,E,F) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------