TPTP Problem File: LAT284+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT284+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Representation Theorem for Boolean Algebras T12
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Wal93] Walijewski (1993), Representation Theorem for Boolean
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t12_lopclset [Urb08]
% Status : Theorem
% Rating : 0.85 v9.0.0, 0.83 v8.2.0, 0.86 v8.1.0, 0.69 v7.5.0, 0.84 v7.4.0, 0.80 v7.3.0, 0.76 v7.1.0, 0.83 v7.0.0, 0.80 v6.4.0, 0.81 v6.3.0, 0.83 v6.2.0, 0.88 v6.1.0, 0.93 v6.0.0, 0.91 v5.5.0, 0.93 v5.3.0, 0.96 v5.2.0, 0.90 v5.0.0, 0.96 v4.1.0, 1.00 v3.4.0
% Syntax : Number of formulae : 140 ( 27 unt; 0 def)
% Number of atoms : 524 ( 28 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 448 ( 64 ~; 1 |; 252 &)
% ( 5 <=>; 126 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 44 ( 42 usr; 1 prp; 0-3 aty)
% Number of functors : 22 ( 22 usr; 1 con; 0-6 aty)
% Number of variables : 252 ( 229 !; 23 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t12_lopclset,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(k6_lopclset(A)))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(k6_lopclset(A)))
=> k4_lattices(k6_lopclset(A),B,C) = k3_xboole_0(B,C) ) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(fc10_membered,axiom,
! [A] :
( v1_int_1(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A))
& v4_membered(k1_tarski(A)) ) ) ).
fof(fc11_membered,axiom,
! [A] :
( v4_ordinal2(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A))
& v4_membered(k1_tarski(A))
& v5_membered(k1_tarski(A)) ) ) ).
fof(fc12_membered,axiom,
! [A,B] :
( ( v1_xcmplx_0(A)
& v1_xcmplx_0(B) )
=> v1_membered(k2_tarski(A,B)) ) ).
fof(fc13_membered,axiom,
! [A,B] :
( ( v1_xreal_0(A)
& v1_xreal_0(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B)) ) ) ).
fof(fc14_membered,axiom,
! [A,B] :
( ( v1_rat_1(A)
& v1_rat_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B)) ) ) ).
fof(fc15_membered,axiom,
! [A,B] :
( ( v1_int_1(A)
& v1_int_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B)) ) ) ).
fof(fc16_membered,axiom,
! [A,B] :
( ( v4_ordinal2(A)
& v4_ordinal2(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B))
& v5_membered(k2_tarski(A,B)) ) ) ).
fof(fc1_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_tarski(A))
& v1_finset_1(k1_tarski(A)) ) ).
fof(fc2_finset_1,axiom,
! [A,B] :
( ~ v1_xboole_0(k2_tarski(A,B))
& v1_finset_1(k2_tarski(A,B)) ) ).
fof(fc7_membered,axiom,
! [A] :
( v1_xcmplx_0(A)
=> v1_membered(k1_tarski(A)) ) ).
fof(fc8_membered,axiom,
! [A] :
( v1_xreal_0(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A)) ) ) ).
fof(fc9_membered,axiom,
! [A] :
( v1_rat_1(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A)) ) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(existence_l2_lattices,axiom,
? [A] : l2_lattices(A) ).
fof(dt_k1_binop_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_l2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_u2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> ( v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_partfun1(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,A,B) ) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) )
=> ( ~ v3_struct_0(A)
& v10_lattices(A) ) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(fc10_finset_1,axiom,
! [A,B] :
( v1_finset_1(B)
=> v1_finset_1(k3_xboole_0(A,B)) ) ).
fof(fc11_finset_1,axiom,
! [A,B] :
( v1_finset_1(A)
=> v1_finset_1(k3_xboole_0(A,B)) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc27_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(k3_xboole_0(A,B)) ) ).
fof(fc28_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(k3_xboole_0(B,A)) ) ).
fof(fc29_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc30_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc31_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B))
& v3_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc32_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A))
& v3_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc33_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B))
& v3_membered(k3_xboole_0(A,B))
& v4_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc34_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A))
& v3_membered(k3_xboole_0(B,A))
& v4_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc35_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B))
& v3_membered(k3_xboole_0(A,B))
& v4_membered(k3_xboole_0(A,B))
& v5_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc36_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A))
& v3_membered(k3_xboole_0(B,A))
& v4_membered(k3_xboole_0(B,A))
& v5_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_2,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,A,B) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc2_partfun1,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc6_pre_topc,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v4_pre_topc(B,A) ) ) ).
fof(rc7_pre_topc,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v4_pre_topc(B,A) ) ) ).
fof(rc9_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_boole,axiom,
! [A] : k3_xboole_0(A,k1_xboole_0) = k1_xboole_0 ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(d1_binop_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B,C] : k1_binop_1(A,B,C) = k1_funct_1(A,k4_tarski(B,C)) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(abstractness_v3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( v3_lattices(A)
=> A = g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) ) ) ).
fof(existence_l1_lattices,axiom,
? [A] : l1_lattices(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l3_lattices,axiom,
? [A] : l3_lattices(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(redefinition_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> k2_binop_1(A,B,C,D,E,F) = k1_binop_1(D,E,F) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(dt_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> m1_subset_1(k2_binop_1(A,B,C,D,E,F),C) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_l1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( l1_lattices(A)
& l2_lattices(A) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> ( v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_finsub_1,axiom,
! [A] :
( v4_finsub_1(A)
=> ( v1_finsub_1(A)
& v3_finsub_1(A) ) ) ).
fof(cc1_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) ) ) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc2_finsub_1,axiom,
! [A] :
( ( v1_finsub_1(A)
& v3_finsub_1(A) )
=> v4_finsub_1(A) ) ).
fof(cc5_funct_2,axiom,
! [A,B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(cc6_funct_2,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc3_lattices,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( ~ v3_struct_0(g3_lattices(A,B,C))
& v3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(rc3_lattices,axiom,
? [A] :
( l3_lattices(A)
& v3_lattices(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc6_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(fraenkel_a_1_0_lopclset,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& l1_pre_topc(B) )
=> ( r2_hidden(A,a_1_0_lopclset(B))
<=> ? [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
& A = C
& v3_pre_topc(C,B)
& v4_pre_topc(C,B) ) ) ) ).
fof(free_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D,E,F] :
( g3_lattices(A,B,C) = g3_lattices(D,E,F)
=> ( A = D
& B = E
& C = F ) ) ) ).
fof(commutativity_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k3_lopclset(A,B,C) = k3_lopclset(A,C,B) ) ).
fof(idempotence_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k3_lopclset(A,B,B) = B ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,B) = k3_xboole_0(B,A) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,A) = A ).
fof(commutativity_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k4_lattices(A,B,C) = k4_lattices(A,C,B) ) ).
fof(existence_l1_pre_topc,axiom,
? [A] : l1_pre_topc(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ? [C] : m2_subset_1(C,A,B) ) ).
fof(redefinition_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k3_lopclset(A,B,C) = k3_xboole_0(B,C) ) ).
fof(redefinition_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k4_lattices(A,B,C) = k2_lattices(A,B,C) ) ).
fof(redefinition_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,A,B)
<=> m1_subset_1(C,B) ) ) ).
fof(dt_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( v3_lattices(g3_lattices(A,B,C))
& l3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(dt_k1_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_pre_topc(A) )
=> m1_subset_1(k1_lopclset(A),k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A)))) ) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k2_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> m2_subset_1(k3_lopclset(A,B,C),k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A)) ) ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k4_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k4_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( v1_funct_1(k4_lopclset(A))
& v1_funct_2(k4_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A))
& m2_relset_1(k4_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A)) ) ) ).
fof(dt_k5_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( v1_funct_1(k5_lopclset(A))
& v1_funct_2(k5_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A))
& m2_relset_1(k5_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A)) ) ) ).
fof(dt_k6_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( ~ v3_struct_0(k6_lopclset(A))
& v10_lattices(k6_lopclset(A))
& l3_lattices(k6_lopclset(A)) ) ) ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( l1_pre_topc(A)
=> l1_struct_0(A) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,A,B)
=> m1_subset_1(C,A) ) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(fc1_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_zfmisc_1(A))
& v1_finsub_1(k1_zfmisc_1(A))
& v3_finsub_1(k1_zfmisc_1(A))
& v4_finsub_1(k1_zfmisc_1(A)) ) ).
fof(fc1_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ~ v1_xboole_0(k1_lopclset(A)) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(d1_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_pre_topc(A) )
=> k1_lopclset(A) = a_1_0_lopclset(A) ) ).
fof(d2_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> k2_lattices(A,B,C) = k2_binop_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),u1_lattices(A),B,C) ) ) ) ).
fof(d4_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> k6_lopclset(A) = g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A)) ) ).
fof(t6_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A))))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A))))
=> ! [D] :
( m2_subset_1(D,k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A))
=> ! [E] :
( m2_subset_1(E,k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A))
=> ( ( B = D
& C = E )
=> k2_lattices(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A)),B,C) = k3_lopclset(A,D,E) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------