TPTP Problem File: LAT258+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT258+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Lattice Theory
% Problem : A duality result on distributivity in lattices
% Version : Especial.
% English :
% Refs : [Bez05] Bezem (2005), Email to Geoff Sutcliffe
% Source : [Bez05]
% Names : latt [Bez05]
% Status : Theorem
% Rating : 0.93 v9.0.0, 0.94 v8.2.0, 0.80 v8.1.0, 0.79 v7.5.0, 0.81 v7.3.0, 0.86 v7.2.0, 0.83 v7.1.0, 0.75 v7.0.0, 0.86 v6.4.0, 0.79 v6.3.0, 0.62 v6.2.0, 0.73 v6.1.0, 0.92 v6.0.0, 0.75 v5.5.0, 0.92 v5.4.0, 0.87 v5.3.0, 0.91 v5.2.0, 0.79 v5.0.0, 0.90 v4.1.0, 0.89 v4.0.0, 0.90 v3.7.0, 0.33 v3.5.0, 0.75 v3.4.0, 0.83 v3.3.0, 1.00 v3.2.0
% Syntax : Number of formulae : 18 ( 4 unt; 0 def)
% Number of atoms : 48 ( 0 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 30 ( 0 ~; 0 |; 18 &)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 1 prp; 0-3 aty)
% Number of functors : 8 ( 8 usr; 8 con; 0-0 aty)
% Number of variables : 49 ( 48 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(join_assumption,axiom,
( join(x,y,t)
& join(x,z,u) ) ).
fof(meet_assumption,axiom,
meet(t,u,v) ).
fof(meet_join_assumption,axiom,
( meet(y,z,w)
& join(x,w,p) ) ).
fof(goal_ax,axiom,
( less_than(v,p)
=> goal ) ).
fof(less_than_reflexive,axiom,
! [A] : less_than(A,A) ).
fof(less_than_transitive,axiom,
! [A,B,C] :
( ( less_than(A,B)
& less_than(B,C) )
=> less_than(A,C) ) ).
fof(lower_bound_meet,axiom,
! [A,B,C] :
( meet(A,B,C)
=> ( less_than(C,A)
& less_than(C,B) ) ) ).
fof(greatest_lower_bound_meet,axiom,
! [A,B,C,D] :
( ( meet(A,B,C)
& less_than(D,A)
& less_than(D,B) )
=> less_than(D,C) ) ).
fof(upper_bound_join,axiom,
! [A,B,C] :
( join(A,B,C)
=> ( less_than(A,C)
& less_than(B,C) ) ) ).
fof(least_upper_bound_join,axiom,
! [A,B,C,D] :
( ( join(A,B,C)
& less_than(A,D)
& less_than(B,D) )
=> less_than(C,D) ) ).
fof(less_than_meet_join,axiom,
! [A,B] :
( less_than(A,B)
=> ( meet(A,B,A)
& join(A,B,B) ) ) ).
fof(commutitivity_meet,axiom,
! [A,B,C] :
( meet(A,B,C)
=> meet(B,A,C) ) ).
fof(commutitivity_join,axiom,
! [A,B,C] :
( join(A,B,C)
=> join(B,A,C) ) ).
fof(associativity_meet,axiom,
! [A,B,C,D,E,F] :
( ( meet(A,B,D)
& meet(D,C,E)
& meet(B,C,F) )
=> meet(A,F,E) ) ).
fof(associativity_join,axiom,
! [A,B,C,D,E,F] :
( ( join(A,B,D)
& join(D,C,E)
& join(B,C,F) )
=> join(A,F,E) ) ).
fof(lo_le_distr,axiom,
! [A,B,C,D,E,F,G,H] :
( ( join(B,C,H)
& meet(A,H,D)
& meet(A,B,E)
& meet(A,C,F)
& join(E,F,G) )
=> less_than(D,G) ) ).
fof(do_lattice,axiom,
! [A,B] :
? [C] : meet(A,B,C) ).
fof(goal_to_be_proved,conjecture,
goal ).
%------------------------------------------------------------------------------