TPTP Problem File: LAT183-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT183-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Equation H7 is Huntington by distributivity
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.77 v8.2.0, 0.79 v8.1.0, 0.90 v7.5.0, 0.92 v7.4.0, 0.96 v7.3.0
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 1 RR)
% Number of literals : 14 ( 14 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 5 con; 0-4 aty)
% Number of variables : 26 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LAT183-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(idempotence_of_meet,axiom,
meet(X,X) = X ).
cnf(idempotence_of_join,axiom,
join(X,X) = X ).
cnf(absorption1,axiom,
meet(X,join(X,Y)) = X ).
cnf(absorption2,axiom,
join(X,meet(X,Y)) = X ).
cnf(commutativity_of_meet,axiom,
meet(X,Y) = meet(Y,X) ).
cnf(commutativity_of_join,axiom,
join(X,Y) = join(Y,X) ).
cnf(associativity_of_meet,axiom,
meet(meet(X,Y),Z) = meet(X,meet(Y,Z)) ).
cnf(associativity_of_join,axiom,
join(join(X,Y),Z) = join(X,join(Y,Z)) ).
cnf(complement_join,axiom,
join(X,complement(X)) = one ).
cnf(complement_meet,axiom,
meet(X,complement(X)) = zero ).
cnf(meet_join_complement,axiom,
ifeq(join(X,Y),one,ifeq(meet(X,Y),zero,complement(X),Y),Y) = Y ).
cnf(equation_H7,axiom,
meet(X,join(Y,meet(X,Z))) = meet(X,join(Y,meet(X,join(meet(X,Y),meet(Z,join(X,Y)))))) ).
cnf(prove_distributivity,negated_conjecture,
meet(a,join(b,c)) != join(meet(a,b),meet(a,c)) ).
%------------------------------------------------------------------------------