TPTP Problem File: LAT150-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT150-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Lattice Theory
% Problem : Huntington equation H39 implies H40
% Version : [McC05] (equality) axioms : Especial.
% English :
% Refs : [McC05] McCune (2005), Email to Geoff Sutcliffe
% Source : [McC05]
% Names :
% Status : Unsatisfiable
% Rating : 0.77 v8.2.0, 0.79 v8.1.0, 0.90 v7.5.0, 0.79 v7.4.0, 0.87 v7.3.0, 0.84 v7.2.0, 0.89 v7.1.0, 0.83 v7.0.0, 0.84 v6.4.0, 0.89 v6.3.0, 0.88 v6.2.0, 0.79 v6.1.0, 0.88 v6.0.0, 0.86 v5.5.0, 0.89 v5.4.0, 0.93 v5.3.0, 0.92 v5.2.0, 0.93 v4.1.0, 0.91 v4.0.1, 0.93 v4.0.0, 0.92 v3.7.0, 0.78 v3.4.0, 0.75 v3.3.0, 0.86 v3.1.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 20 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
%----Include Lattice theory (equality) axioms
include('Axioms/LAT001-0.ax').
%------------------------------------------------------------------------------
cnf(equation_H39,axiom,
meet(X,join(Y,meet(Z,join(X,U)))) = meet(X,join(Y,meet(Z,join(U,meet(X,Z))))) ).
cnf(prove_H40,negated_conjecture,
meet(a,join(b,meet(c,join(a,d)))) != meet(a,join(b,meet(c,join(d,meet(c,join(a,b)))))) ).
%------------------------------------------------------------------------------