TPTP Problem File: LAT078-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT078-1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Lattice Theory (Ortholattices)
% Problem : Given single axiom MOL-27B2, prove associativity
% Version : [MRV03] (equality) axioms.
% English : Given a single axiom candidate MOL-27B2 for modular ortholattices
% (MOL) in terms of the Sheffer Stroke, prove a Sheffer stroke form
% of associativity.
% Refs : [MRV03] McCune et al. (2003), Sheffer Stroke Bases for Ortholatt
% Source : [MRV03]
% Names : MOL-27B2-associativity [MRV03]
% Status : Unsatisfiable
% Rating : 0.91 v8.2.0, 0.96 v8.1.0, 0.95 v7.5.0, 0.96 v7.4.0, 1.00 v7.3.0, 0.95 v7.1.0, 0.94 v7.0.0, 0.95 v6.4.0, 1.00 v2.6.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 4 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Single axiom MOL-27B2
cnf(mol_27B2,axiom,
f(f(f(f(B,A),f(A,C)),D),f(A,f(f(f(B,f(B,f(f(C,C),A))),A),C))) = A ).
%----Denial of Sheffer stroke associativity
cnf(associativity,negated_conjecture,
f(a,f(f(b,c),f(b,c))) != f(c,f(f(b,a),f(b,a))) ).
%--------------------------------------------------------------------------