TPTP Problem File: LAT038-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT038-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Lattice Theory
% Problem : Simplification rule in a distributive lattice
% Version : [McC88] (equality) axioms.
% English : In a distributive lattice, the following simplification rule
% holds:
% forall a, b, c, d:
% if f(a v b, d) = f(c v b, d) and
% f(a, d) & f(b, d) = f(c, d) & f(b, d)
% then f(a,d) = f(c,d).
% Refs : [DeN00] DeNivelle (2000), Email to G. Sutcliffe
% [McC88] McCune (1988), Challenge Equality Problems in Lattice
% Source : [DeN00]
% Names : lattice-hemi-simplif [DeN00]
% Status : Unsatisfiable
% Rating : 0.23 v8.2.0, 0.25 v8.1.0, 0.30 v7.5.0, 0.29 v7.4.0, 0.35 v7.3.0, 0.32 v7.1.0, 0.28 v7.0.0, 0.37 v6.4.0, 0.32 v6.3.0, 0.29 v6.2.0, 0.36 v6.1.0, 0.44 v6.0.0, 0.52 v5.5.0, 0.47 v5.4.0, 0.40 v5.3.0, 0.50 v5.1.0, 0.53 v5.0.0, 0.57 v4.1.0, 0.27 v4.0.1, 0.43 v4.0.0, 0.38 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.43 v3.1.0, 0.44 v2.7.0, 0.36 v2.6.0, 0.17 v2.5.0, 0.25 v2.4.0
% Syntax : Number of clauses : 17 ( 17 unt; 0 nHn; 3 RR)
% Number of literals : 17 ( 17 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 30 ( 4 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include lattice theory axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
cnf(dist_join,hypothesis,
join(X,meet(Y,Z)) = meet(join(X,Y),join(X,Z)) ).
cnf(dist_meet,hypothesis,
meet(X,join(Y,Z)) = join(meet(X,Y),meet(X,Z)) ).
cnf(f_on_left_join,axiom,
f(join(U,V),W) = join(f(U,W),f(V,W)) ).
cnf(f_on_left_bottom,axiom,
f(n0,W) = n0 ).
cnf(f_on_right_join,axiom,
f(W,join(U,V)) = join(f(W,U),f(W,V)) ).
cnf(f_on_right_bottom,axiom,
f(W,n0) = n0 ).
cnf(lhs1,hypothesis,
f(join(aa,bb),dd) = f(join(cc,bb),dd) ).
cnf(lhs2,hypothesis,
meet(f(aa,dd),f(bb,dd)) = meet(f(cc,dd),f(bb,dd)) ).
cnf(rhs,negated_conjecture,
f(aa,dd) != f(cc,dd) ).
%--------------------------------------------------------------------------