TPTP Problem File: LAT010-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT010-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory
% Problem : McKenzie's basis for the variety generated by N5.
% Version : [MP96] (equality) axioms : Especial.
% English : McKenzie's basis for the variety generated by N5.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : LT-6 [MP96]
% Status : Unsatisfiable
% Rating : 0.18 v9.0.0, 0.14 v8.2.0, 0.25 v8.1.0, 0.30 v7.5.0, 0.21 v7.4.0, 0.26 v7.3.0, 0.16 v7.1.0, 0.06 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.25 v6.0.0, 0.43 v5.5.0, 0.42 v5.4.0, 0.27 v5.3.0, 0.17 v5.2.0, 0.21 v5.1.0, 0.20 v5.0.0, 0.14 v4.1.0, 0.09 v4.0.1, 0.14 v4.0.0, 0.15 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.07 v3.2.0, 0.00 v2.5.0, 0.25 v2.4.0, 0.00 v2.2.1
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 1 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 27 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
%----Hypotheses:
cnf(n5_1,hypothesis,
meet(X,join(Y,meet(Z,join(X,U)))) = join(meet(X,join(Y,meet(X,Z))),meet(X,join(meet(X,Y),meet(Z,U)))) ).
cnf(n5_2,hypothesis,
join(X,meet(Y,join(Z,meet(X,U)))) = meet(join(X,meet(Y,join(X,Z))),join(X,meet(join(X,Y),join(Z,U)))) ).
cnf(nr_3,hypothesis,
meet(join(X,meet(Y,Z)),join(Z,meet(X,Y))) = join(meet(Z,join(X,meet(Y,Z))),meet(X,join(Y,Z))) ).
%----Denial of the conclusion:
cnf(prove_this,negated_conjecture,
meet(a,meet(join(b,c),join(b,d))) != meet(meet(a,meet(join(b,c),join(b,d))),join(meet(a,join(b,meet(c,d))),join(meet(a,c),meet(a,d)))) ).
%--------------------------------------------------------------------------