TPTP Problem File: LAT006-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT006-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory (Distributive lattices)
% Problem : Sholander's basis for distributive lattices, part 2 (of 6).
% Version : [MP96] (equality) axioms.
% English : This is part of the proof that Sholanders 2-basis for
% distributive lattices is correct. Here we prove associativity
% of meet.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : LT-3-b [MP96]
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.17 v8.1.0, 0.20 v7.5.0, 0.21 v7.4.0, 0.26 v7.1.0, 0.17 v7.0.0, 0.16 v6.4.0, 0.21 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.31 v6.0.0, 0.43 v5.5.0, 0.53 v5.4.0, 0.40 v5.3.0, 0.42 v5.2.0, 0.43 v5.1.0, 0.33 v5.0.0, 0.21 v4.1.0, 0.09 v4.0.1, 0.14 v4.0.0, 0.23 v3.7.0, 0.00 v3.3.0, 0.21 v3.2.0, 0.14 v3.1.0, 0.22 v2.7.0, 0.00 v2.2.1
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 5 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Sholander's 2-basis for distributive lattices:
cnf(absorption,axiom,
meet(X,join(X,Y)) = X ).
cnf(distribution,axiom,
meet(X,join(Y,Z)) = join(meet(Z,X),meet(Y,X)) ).
%----Denial of the conclusion:
cnf(prove_associativity_of_meet,negated_conjecture,
meet(meet(a,b),c) != meet(a,meet(b,c)) ).
%--------------------------------------------------------------------------