TPTP Problem File: LAT005-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT005-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : SAM's lemma
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.36 v9.0.0, 0.41 v8.2.0, 0.50 v8.1.0, 0.60 v7.5.0
% Syntax : Number of clauses : 22 ( 22 unt; 0 nHn; 3 RR)
% Number of literals : 22 ( 22 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 7 con; 0-4 aty)
% Number of variables : 38 ( 7 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LAT005-3 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq3(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_002,axiom,
ifeq(A,A,B,C) = B ).
cnf(idempotence_of_meet,axiom,
meet(X,X) = X ).
cnf(idempotence_of_join,axiom,
join(X,X) = X ).
cnf(absorption1,axiom,
meet(X,join(X,Y)) = X ).
cnf(absorption2,axiom,
join(X,meet(X,Y)) = X ).
cnf(commutativity_of_meet,axiom,
meet(X,Y) = meet(Y,X) ).
cnf(commutativity_of_join,axiom,
join(X,Y) = join(Y,X) ).
cnf(associativity_of_meet,axiom,
meet(meet(X,Y),Z) = meet(X,meet(Y,Z)) ).
cnf(associativity_of_join,axiom,
join(join(X,Y),Z) = join(X,join(Y,Z)) ).
cnf(x_meet_0,axiom,
meet(X,n0) = n0 ).
cnf(x_join_0,axiom,
join(X,n0) = X ).
cnf(x_meet_1,axiom,
meet(X,n1) = X ).
cnf(x_join_1,axiom,
join(X,n1) = n1 ).
cnf(modular,axiom,
ifeq3(meet(X,Z),X,meet(Z,join(X,Y)),join(X,meet(Y,Z))) = join(X,meet(Y,Z)) ).
cnf(complement_meet,axiom,
ifeq(complement(X,Y),true,meet(X,Y),n0) = n0 ).
cnf(complement_join,axiom,
ifeq(complement(X,Y),true,join(X,Y),n1) = n1 ).
cnf(meet_join_complement,axiom,
ifeq2(join(X,Y),n1,ifeq2(meet(X,Y),n0,complement(X,Y),true),true) = true ).
cnf(complement_of_a_join_b,hypothesis,
complement(r1,join(a,b)) = true ).
cnf(complement_of_a_meet_b,hypothesis,
complement(r2,meet(a,b)) = true ).
cnf(prove_lemma,negated_conjecture,
r1 != meet(join(r1,meet(r2,b)),join(r1,meet(r2,a))) ).
%------------------------------------------------------------------------------