TPTP Problem File: KRS276^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS276^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Knowledge Representation
% Problem : Database querying
% Version : [Ben12] axioms.
% English :
% Refs : [Rei92] Reiter (1992), What Should a Database Know?
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-APM009+1 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0
% Syntax : Number of formulae : 87 ( 39 unt; 43 typ; 32 def)
% Number of atoms : 126 ( 36 equ; 0 cnn)
% Maximal formula atoms : 10 ( 2 avg)
% Number of connectives : 180 ( 5 ~; 5 |; 9 &; 151 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 183 ( 183 >; 0 *; 0 +; 0 <<)
% Number of symbols : 49 ( 47 usr; 12 con; 0-3 aty)
% Number of variables : 98 ( 51 ^; 40 !; 7 ?; 98 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(teach_type,type,
teach: mu > mu > $i > $o ).
thf(sue_type,type,
sue: mu ).
thf(existence_of_sue_ax,axiom,
! [V: $i] : ( exists_in_world @ sue @ V ) ).
thf(psych_type,type,
psych: mu ).
thf(existence_of_psych_ax,axiom,
! [V: $i] : ( exists_in_world @ psych @ V ) ).
thf(mary_type,type,
mary: mu ).
thf(existence_of_mary_ax,axiom,
! [V: $i] : ( exists_in_world @ mary @ V ) ).
thf(math_type,type,
math: mu ).
thf(existence_of_math_ax,axiom,
! [V: $i] : ( exists_in_world @ math @ V ) ).
thf(john_type,type,
john: mu ).
thf(existence_of_john_ax,axiom,
! [V: $i] : ( exists_in_world @ john @ V ) ).
thf(cs_type,type,
cs: mu ).
thf(existence_of_cs_ax,axiom,
! [V: $i] : ( exists_in_world @ cs @ V ) ).
thf(db,axiom,
( mvalid
@ ( mbox_s4
@ ( mand @ ( teach @ john @ math )
@ ( mand
@ ( mexists_ind
@ ^ [X: mu] : ( teach @ X @ cs ) )
@ ( mand @ ( teach @ mary @ psych ) @ ( teach @ sue @ psych ) ) ) ) ) ) ).
thf(query,conjecture,
( mvalid
@ ( mbox_s4
@ ( mexists_ind
@ ^ [X: mu] : ( teach @ X @ cs ) ) ) ) ).
%------------------------------------------------------------------------------