TPTP Problem File: KRS272^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS272^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Knowledge Representation
% Problem : Generation of abstract instructions: enter a number in a(#box
% Version : [Ben12] axioms.
% English :
% Refs : [Sto00] Stone (2000), Towards a Computational Account of Knowl
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-APM003+1 [Ben12]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.60 v8.2.0, 0.77 v8.1.0, 0.82 v7.5.0, 0.29 v7.4.0, 0.67 v7.3.0, 0.78 v7.2.0, 0.75 v7.1.0, 0.88 v7.0.0, 0.86 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 0.86 v5.5.0
% Syntax : Number of formulae : 86 ( 35 unt; 44 typ; 32 def)
% Number of atoms : 154 ( 36 equ; 0 cnn)
% Maximal formula atoms : 18 ( 3 avg)
% Number of connectives : 217 ( 5 ~; 5 |; 9 &; 188 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 198 ( 198 >; 0 *; 0 +; 0 <<)
% Number of symbols : 52 ( 50 usr; 10 con; 0-4 aty)
% Number of variables : 104 ( 61 ^; 36 !; 7 ?; 104 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(string_type,type,
string: mu > $i > $o ).
thf(in_type,type,
in: mu > mu > mu > $i > $o ).
thf(do_type,type,
do: mu > mu > mu > $i > $o ).
thf(number_type,type,
number: mu > mu > $i > $o ).
thf(entry_box_type,type,
entry_box: mu > $i > $o ).
thf(userid_type,type,
userid: mu > mu > $i > $o ).
thf(one_type,type,
one: mu ).
thf(existence_of_one_ax,axiom,
! [V: $i] : ( exists_in_world @ one @ V ) ).
thf(u_type,type,
u: mu ).
thf(existence_of_u_ax,axiom,
! [V: $i] : ( exists_in_world @ u @ V ) ).
thf(ax1,axiom,
( mvalid
@ ( mbox_s4
@ ( mexists_ind
@ ^ [I: mu] : ( mbox_s4 @ ( mand @ ( userid @ u @ I ) @ ( string @ I ) ) ) ) ) ) ).
thf(ax2,axiom,
( mvalid
@ ( mexists_ind
@ ^ [B: mu] : ( mbox_s4 @ ( mand @ ( entry_box @ B ) @ ( number @ B @ one ) ) ) ) ) ).
thf(ax3,axiom,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [S: mu] :
( mforall_ind
@ ^ [I: mu] :
( mforall_ind
@ ^ [B: mu] :
( mimplies @ ( mand @ ( string @ I ) @ ( entry_box @ B ) )
@ ( mexists_ind
@ ^ [A: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [S2: mu] : ( mimplies @ ( do @ S @ A @ S2 ) @ ( in @ I @ B @ S2 ) ) ) ) ) ) ) ) ) ) ) ).
thf(con,conjecture,
( mvalid
@ ( mbox_s4
@ ( mexists_ind
@ ^ [I: mu] :
( mexists_ind
@ ^ [B: mu] :
( mexists_ind
@ ^ [A: mu] :
( mexists_ind
@ ^ [S: mu] :
( mand @ ( mbox_s4 @ ( mand @ ( userid @ u @ I ) @ ( mand @ ( entry_box @ B ) @ ( number @ B @ one ) ) ) )
@ ( mbox_s4
@ ( mforall_ind
@ ^ [S2: mu] : ( mimplies @ ( do @ S @ A @ S2 ) @ ( in @ I @ B @ S2 ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------