TPTP Problem File: KRS048+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS048+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: t7.1
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : consistent_description-logic-Manifest628 [Bec03]
% Status : Satisfiable
% Rating : 0.17 v9.0.0, 0.20 v8.2.0, 0.00 v7.5.0, 0.33 v7.3.0, 0.00 v7.1.0, 0.50 v7.0.0, 0.00 v6.4.0, 0.20 v6.2.0, 0.17 v6.1.0, 0.40 v6.0.0, 0.25 v5.5.0, 0.00 v5.3.0, 0.33 v5.2.0, 0.00 v5.0.0, 0.33 v4.0.1, 0.25 v3.7.0, 0.33 v3.5.0, 0.00 v3.2.0, 0.33 v3.1.0
% Syntax : Number of formulae : 45 ( 1 unt; 0 def)
% Number of atoms : 126 ( 28 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 86 ( 5 ~; 0 |; 35 &)
% ( 14 <=>; 32 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 21 ( 20 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 101 ( 93 !; 8 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cSatisfiable_substitution_1,axiom,
! [A,B] :
( ( A = B
& cSatisfiable(A) )
=> cSatisfiable(B) ) ).
fof(ca_Ax4_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Ax4(A) )
=> ca_Ax4(B) ) ).
fof(ca_Cx2_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx2(A) )
=> ca_Cx2(B) ) ).
fof(ca_Cx2xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx2xcomp(A) )
=> ca_Cx2xcomp(B) ) ).
fof(ca_Cx3_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx3(A) )
=> ca_Cx3(B) ) ).
fof(ca_Cx3xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Cx3xcomp(A) )
=> ca_Cx3xcomp(B) ) ).
fof(ca_Vx5_substitution_1,axiom,
! [A,B] :
( ( A = B
& ca_Vx5(A) )
=> ca_Vx5(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(cp1_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp1(A) )
=> cp1(B) ) ).
fof(cp1xcomp_substitution_1,axiom,
! [A,B] :
( ( A = B
& cp1xcomp(A) )
=> cp1xcomp(B) ) ).
fof(ra_Px1_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(A,C) )
=> ra_Px1(B,C) ) ).
fof(ra_Px1_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px1(C,A) )
=> ra_Px1(C,B) ) ).
fof(ra_Px2_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px2(A,C) )
=> ra_Px2(B,C) ) ).
fof(ra_Px2_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px2(C,A) )
=> ra_Px2(C,B) ) ).
fof(ra_Px3_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& ra_Px3(A,C) )
=> ra_Px3(B,C) ) ).
fof(ra_Px3_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& ra_Px3(C,A) )
=> ra_Px3(C,B) ) ).
fof(rf_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rf(A,C) )
=> rf(B,C) ) ).
fof(rf_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rf(C,A) )
=> rf(C,B) ) ).
fof(rinvF_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvF(A,C) )
=> rinvF(B,C) ) ).
fof(rinvF_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvF(C,A) )
=> rinvF(C,B) ) ).
fof(rinvR_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rinvR(A,C) )
=> rinvR(B,C) ) ).
fof(rinvR_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rinvR(C,A) )
=> rinvR(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cSatisfiable
fof(axiom_2,axiom,
! [X] :
( cSatisfiable(X)
<=> ( cp1(X)
& ? [Y] :
( rr(X,Y)
& ca_Vx5(Y) ) ) ) ).
%----Equality cp1
fof(axiom_3,axiom,
! [X] :
( cp1(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cp1xcomp
fof(axiom_4,axiom,
! [X] :
( cp1xcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality ca_Ax4
fof(axiom_5,axiom,
! [X] :
( ca_Ax4(X)
<=> ( cp1(X)
& ! [Y] :
( rinvR(X,Y)
=> ca_Cx2(Y) ) ) ) ).
%----Equality ca_Cx2
fof(axiom_6,axiom,
! [X] :
( ca_Cx2(X)
<=> ~ ? [Y] : ra_Px2(X,Y) ) ).
%----Equality ca_Cx2xcomp
fof(axiom_7,axiom,
! [X] :
( ca_Cx2xcomp(X)
<=> ( cp1(X)
& ca_Cx3(X) ) ) ).
%----Equality ca_Cx2xcomp
fof(axiom_8,axiom,
! [X] :
( ca_Cx2xcomp(X)
<=> ? [Y0] : ra_Px2(X,Y0) ) ).
%----Equality ca_Cx3
fof(axiom_9,axiom,
! [X] :
( ca_Cx3(X)
<=> ~ ? [Y] : ra_Px3(X,Y) ) ).
%----Equality ca_Cx3xcomp
fof(axiom_10,axiom,
! [X] :
( ca_Cx3xcomp(X)
<=> ? [Y0] : ra_Px3(X,Y0) ) ).
%----Equality ca_Cx3xcomp
fof(axiom_11,axiom,
! [X] :
( ca_Cx3xcomp(X)
<=> ! [Y] :
( rr(X,Y)
=> cp1(Y) ) ) ).
%----Equality ca_Vx5
fof(axiom_12,axiom,
! [X] :
( ca_Vx5(X)
<=> ? [Y] :
( rr(X,Y)
& ca_Ax4(Y) ) ) ).
%----Super cowlThing
fof(axiom_13,axiom,
! [X] :
( cowlThing(X)
=> ! [Y0,Y1] :
( ( rf(X,Y0)
& rf(X,Y1) )
=> Y0 = Y1 ) ) ).
%----Inverse: rinvF
fof(axiom_14,axiom,
! [X,Y] :
( rinvF(X,Y)
<=> rf(Y,X) ) ).
%----Inverse: rinvR
fof(axiom_15,axiom,
! [X,Y] :
( rinvR(X,Y)
<=> rr(Y,X) ) ).
%----Transitive: rr
fof(axiom_16,axiom,
! [X,Y,Z] :
( ( rr(X,Y)
& rr(Y,Z) )
=> rr(X,Z) ) ).
%----i2003_11_14_17_16_32989
fof(axiom_17,axiom,
cSatisfiable(i2003_11_14_17_16_32989) ).
%------------------------------------------------------------------------------