TPTP Problem File: KRS003_10.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : KRS003_10 : TPTP v9.0.0. Released v8.2.0.
% Domain : Knowledge Representation
% Problem : Paramasivam problem T-Box 1c
% Version : KRS003_1 with the conjecture removed
% English : e and f exist.
% Refs : [PP95] Paramasivam & Plaisted (1995), Automated Deduction Tec
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v8.2.0
% Syntax : Number of formulae : 29 ( 0 unt; 15 typ; 0 def)
% Number of atoms : 32 ( 0 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 19 ( 1 ~; 3 |; 4 &)
% ( 0 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 14 ( 12 >; 2 *; 0 +; 0 <<)
% Number of predicates : 8 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-1 aty)
% Number of variables : 18 ( 18 !; 0 ?; 18 :)
% SPC : TF0_SAT_NEQ_NAR
% Comments :
%--------------------------------------------------------------------------
tff(unreal_type,type,
unreal: $tType ).
tff(real_type,type,
real: $tType ).
tff(u1r1_type,type,
u1r1: unreal > real ).
tff(u1r2_type,type,
u1r2: unreal > real ).
tff(u3r1_type,type,
u3r1: unreal > real ).
tff(u3r2_type,type,
u3r2: unreal > real ).
tff(exist_type,type,
exist: unreal ).
tff(f_type,type,
f: unreal > $o ).
tff(d_type,type,
d: unreal > $o ).
tff(e_type,type,
e: unreal > $o ).
tff(s1most_type,type,
s1most: unreal > $o ).
tff(s_type,type,
s: ( unreal * real ) > $o ).
tff(c_type,type,
c: unreal > $o ).
tff(equalish_type,type,
equalish: ( real * real ) > $o ).
tff(s2least_type,type,
s2least: unreal > $o ).
tff(clause_3,axiom,
! [X1: unreal] :
( c(X1)
=> s2least(X1) ) ).
tff(clause_4,axiom,
! [X1: unreal] :
( s2least(X1)
=> c(X1) ) ).
tff(clause_5,axiom,
! [X1: unreal] :
~ ( s2least(X1)
& equalish(u1r2(X1),u1r1(X1)) ) ).
tff(clause_6,axiom,
! [X1: unreal] :
( s2least(X1)
=> s(X1,u1r1(X1)) ) ).
tff(clause_7,axiom,
! [X1: unreal] :
( s2least(X1)
=> s(X1,u1r2(X1)) ) ).
tff(clause_8,axiom,
! [X2: real,X3: real,X1: unreal] :
( ( s(X1,X3)
& s(X1,X2) )
=> ( s2least(X1)
| equalish(X3,X2) ) ) ).
tff(clause_9,axiom,
! [X1: unreal] :
( d(X1)
=> s1most(X1) ) ).
tff(clause_10,axiom,
! [X1: unreal] :
( s1most(X1)
=> d(X1) ) ).
tff(clause_11,axiom,
! [X2: real,X3: real,X1: unreal] :
( ( s1most(X1)
& s(X1,X3)
& s(X1,X2) )
=> equalish(X3,X2) ) ).
tff(clause_12,axiom,
! [X1: unreal] :
( equalish(u3r2(X1),u3r1(X1))
=> s1most(X1) ) ).
tff(clause_13,axiom,
! [X1: unreal] :
( s1most(X1)
| s(X1,u3r1(X1)) ) ).
tff(clause_14,axiom,
! [X1: unreal] :
( s1most(X1)
| s(X1,u3r2(X1)) ) ).
tff(clause_15,axiom,
! [X1: unreal] :
( e(X1)
=> c(X1) ) ).
tff(clause_16,axiom,
! [X1: unreal] :
( f(X1)
=> d(X1) ) ).
% tff(clause_1__clause_2,conjecture,
% ( ~ e(exist)
% | ~ f(exist) ) ).
%--------------------------------------------------------------------------