TPTP Problem File: KLE169-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE169-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Exponential automata
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.73 v9.0.0, 0.64 v8.2.0, 0.67 v8.1.0, 0.75 v7.5.0
% Syntax : Number of clauses : 22 ( 22 unt; 0 nHn; 2 RR)
% Number of literals : 22 ( 22 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 6 con; 0-4 aty)
% Number of variables : 41 ( 5 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from KLE169+1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq3(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_002,axiom,
ifeq(A,A,B,C) = B ).
cnf(additive_commutativity,axiom,
addition(A,B) = addition(B,A) ).
cnf(additive_associativity,axiom,
addition(A,addition(B,C)) = addition(addition(A,B),C) ).
cnf(additive_identity,axiom,
addition(A,zero) = A ).
cnf(additive_idempotence,axiom,
addition(A,A) = A ).
cnf(multiplicative_associativity,axiom,
multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C) ).
cnf(multiplicative_right_identity,axiom,
multiplication(A,one) = A ).
cnf(multiplicative_left_identity,axiom,
multiplication(one,A) = A ).
cnf(right_distributivity,axiom,
multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)) ).
cnf(left_distributivity,axiom,
multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)) ).
cnf(right_annihilation,axiom,
multiplication(A,zero) = zero ).
cnf(left_annihilation,axiom,
multiplication(zero,A) = zero ).
cnf(order_1,axiom,
ifeq2(leq(A,B),true,addition(A,B),B) = B ).
cnf(order,axiom,
ifeq3(addition(A,B),B,leq(A,B),true) = true ).
cnf(star_unfold_right,axiom,
leq(addition(one,multiplication(A,star(A))),star(A)) = true ).
cnf(star_unfold_left,axiom,
leq(addition(one,multiplication(star(A),A)),star(A)) = true ).
cnf(star_induction_left,axiom,
ifeq(leq(addition(multiplication(A,B),C),B),true,leq(multiplication(star(A),C),B),true) = true ).
cnf(star_induction_right,axiom,
ifeq(leq(addition(multiplication(A,B),C),A),true,leq(multiplication(C,star(B)),A),true) = true ).
cnf(an,axiom,
sigma = addition(a,b) ).
cnf(a,negated_conjecture,
leq(multiplication(a,multiplication(b,a)),multiplication(star(sigma),multiplication(a,multiplication(sigma,a)))) != true ).
%------------------------------------------------------------------------------