## TPTP Problem File: KLE147-10.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : KLE147-10 : TPTP v7.5.0. Released v7.5.0.
% Domain   : Puzzles
% Problem  : Sliding of strong iteration
% Version  : Especial.
% English  :

% Refs     : [CS18]  Claessen & Smallbone (2018), Efficient Encodings of Fi
%          : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source   : [Sma18]
% Names    :

% Status   : Unsatisfiable
% Rating   : 0.65 v7.5.0
% Syntax   : Number of clauses     :   23 (   0 non-Horn;  23 unit;   1 RR)
%            Number of atoms       :   23 (  23 equality)
%            Maximal clause size   :    1 (   1 average)
%            Number of predicates  :    1 (   0 propositional; 2-2 arity)
%            Number of functors    :   16 (   7 constant; 0-4 arity)
%            Number of variables   :   45 (   4 singleton)
%            Maximal term depth    :    7 (   2 average)
% SPC      : CNF_UNS_RFO_PEQ_UEQ

% Comments : Converted from KLE147+2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
( ifeq3(A,A,B,C) = B )).

cnf(ifeq_axiom_001,axiom,
( ifeq2(A,A,B,C) = B )).

cnf(ifeq_axiom_002,axiom,
( ifeq(A,A,B,C) = B )).

cnf(idempotence,axiom,

cnf(multiplicative_associativity,axiom,
( multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C) )).

cnf(multiplicative_right_identity,axiom,
( multiplication(A,one) = A )).

cnf(multiplicative_left_identity,axiom,
( multiplication(one,A) = A )).

cnf(distributivity1,axiom,

cnf(distributivity2,axiom,

cnf(left_annihilation,axiom,
( multiplication(zero,A) = zero )).

cnf(star_unfold1,axiom,

cnf(star_unfold2,axiom,

cnf(star_induction1,axiom,

cnf(star_induction2,axiom,

cnf(infty_unfold1,axiom,

cnf(infty_coinduction,axiom,

cnf(isolation,axiom,