TPTP Problem File: KLE128+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : KLE128+1 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Kleene Algebra (Modal with Divergence)
% Problem  : Comparison of two different notions of termination
% Version  : [Hoe08] axioms.
% English  :

% Refs     : [DMS06] Desharnais et al. (2006), Kleene Algebra with Domain
%          : [Str08] Struth (2008), Modal Tools for Separation and Refineme
%          : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source   : [Hoe08]
% Names    :

% Status   : Theorem
% Rating   : 0.44 v7.5.0, 0.50 v7.4.0, 0.33 v7.3.0, 0.48 v7.1.0, 0.39 v7.0.0, 0.40 v6.4.0, 0.46 v6.2.0, 0.52 v6.1.0, 0.67 v6.0.0, 0.70 v5.5.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.81 v5.2.0, 0.70 v5.1.0, 0.71 v4.1.0, 0.70 v4.0.1, 0.74 v4.0.0
% Syntax   : Number of formulae    :   29 (  26 unit)
%            Number of atoms       :   33 (  32 equality)
%            Maximal formula depth :    5 (   3 average)
%            Number of connectives :    4 (   0   ~;   0   |;   0   &)
%                                         (   1 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of predicates  :    2 (   0 propositional; 2-2 arity)
%            Number of functors    :   16 (   2 constant; 0-2 arity)
%            Number of variables   :   49 (   0 sgn;  49   !;   0   ?)
%            Maximal term depth    :    6 (   3 average)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for modal Kleene algebra with divergence
include('Axioms/KLE001+0.ax').
%---Include axioms for Boolean domain/codomain
include('Axioms/KLE001+4.ax').
%---Include axioms for diamond and boxes
include('Axioms/KLE001+6.ax').
%---Include axioms for divergence
include('Axioms/KLE001+7.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,(
    ! [X0] :
      ( divergence(X0) = zero
     => ! [X1] :
          ( addition(domain(X1),forward_diamond(X0,domain(X1))) = forward_diamond(X0,domain(X1))
         => domain(X1) = zero ) ) )).

%------------------------------------------------------------------------------