TPTP Problem File: KLE127+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KLE127+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Kleene Algebra (Modal with Divergence)
% Problem : Loop refinement theorem
% Version : [Hoe08] axioms.
% English : If x quasicommutes over y, then all infinite behaviours of x+y
% can be separated into infinite behaviours of x and a infinite
% behaviour of y after finitely many x steps.
% Refs : [Str08] Struth (2008), Modal Tools for Separation and Refineme
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v8.2.0, 0.33 v8.1.0, 0.97 v7.1.0, 1.00 v7.0.0, 0.97 v6.4.0, 1.00 v4.0.0
% Syntax : Number of formulae : 29 ( 26 unt; 0 def)
% Number of atoms : 32 ( 31 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 16 ( 16 usr; 2 con; 0-2 aty)
% Number of variables : 49 ( 49 !; 0 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments : Equational encoding
%------------------------------------------------------------------------------
%---Include axioms for modal Kleene algebra with divergence
include('Axioms/KLE001+0.ax').
%---Include axioms for Boolean domain/codomain
include('Axioms/KLE001+4.ax').
%---Include axioms for diamond and boxes
include('Axioms/KLE001+6.ax').
%---Include axioms for divergence
include('Axioms/KLE001+7.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] :
( addition(multiplication(X0,X1),multiplication(X1,star(addition(X1,X0)))) = multiplication(X1,star(addition(X1,X0)))
=> divergence(addition(X1,X0)) = addition(divergence(X1),forward_diamond(star(X1),divergence(X0))) ) ).
%------------------------------------------------------------------------------