TPTP Problem File: KLE090-10.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : KLE090-10 : TPTP v7.5.0. Released v7.3.0.
% Domain   : Puzzles
% Problem  : Antidomain elements are antitone
% Version  : Especial.
% English  :

% Refs     : [CS18]  Claessen & Smallbone (2018), Efficient Encodings of Fi
%          : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source   : [Sma18]
% Names    :

% Status   : Unsatisfiable
% Rating   : 0.30 v7.5.0, 0.29 v7.4.0, 0.26 v7.3.0
% Syntax   : Number of clauses     :   25 (   0 non-Horn;  25 unit;   2 RR)
%            Number of atoms       :   25 (  25 equality)
%            Maximal clause size   :    1 (   1 average)
%            Number of predicates  :    1 (   0 propositional; 2-2 arity)
%            Number of functors    :   14 (   5 constant; 0-4 arity)
%            Number of variables   :   40 (   4 singleton)
%            Maximal term depth    :    6 (   2 average)
% SPC      : CNF_UNS_RFO_PEQ_UEQ

% Comments : Converted from KLE090+1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
    ( ifeq2(A,A,B,C) = B )).

cnf(ifeq_axiom_001,axiom,
    ( ifeq(A,A,B,C) = B )).

cnf(additive_commutativity,axiom,
    ( addition(A,B) = addition(B,A) )).

cnf(additive_associativity,axiom,
    ( addition(A,addition(B,C)) = addition(addition(A,B),C) )).

cnf(additive_identity,axiom,
    ( addition(A,zero) = A )).

cnf(additive_idempotence,axiom,
    ( addition(A,A) = A )).

cnf(multiplicative_associativity,axiom,
    ( multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C) )).

cnf(multiplicative_right_identity,axiom,
    ( multiplication(A,one) = A )).

cnf(multiplicative_left_identity,axiom,
    ( multiplication(one,A) = A )).

cnf(right_distributivity,axiom,
    ( multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)) )).

cnf(left_distributivity,axiom,
    ( multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)) )).

cnf(right_annihilation,axiom,
    ( multiplication(A,zero) = zero )).

cnf(left_annihilation,axiom,
    ( multiplication(zero,A) = zero )).

cnf(order_1,axiom,
    ( ifeq(leq(A,B),true,addition(A,B),B) = B )).

cnf(order,axiom,
    ( ifeq2(addition(A,B),B,leq(A,B),true) = true )).

cnf(domain1,axiom,
    ( multiplication(antidomain(X0),X0) = zero )).

cnf(domain2,axiom,
    ( addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1))))) = antidomain(multiplication(X0,antidomain(antidomain(X1)))) )).

cnf(domain3,axiom,
    ( addition(antidomain(antidomain(X0)),antidomain(X0)) = one )).

cnf(domain4,axiom,
    ( domain(X0) = antidomain(antidomain(X0)) )).

cnf(codomain1,axiom,
    ( multiplication(X0,coantidomain(X0)) = zero )).

cnf(codomain2,axiom,
    ( addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1))) = coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)) )).

cnf(codomain3,axiom,
    ( addition(coantidomain(coantidomain(X0)),coantidomain(X0)) = one )).

cnf(codomain4,axiom,
    ( codomain(X0) = coantidomain(coantidomain(X0)) )).

cnf(goals,negated_conjecture,
    ( addition(sK2_goals_X0,sK1_goals_X1) = sK1_goals_X1 )).

cnf(goals_1,negated_conjecture,
    ( addition(antidomain(sK1_goals_X1),antidomain(sK2_goals_X0)) != antidomain(sK2_goals_X0) )).

%------------------------------------------------------------------------------