## TPTP Problem File: KLE044+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : KLE044+1 : TPTP v7.5.0. Released v4.0.0.
% Domain   : Kleene Algebra
% Problem  : Star simplification
% Version  : [Hoe08] axioms.
% English  : Identity can be eliminated from the star of a sum.

% Refs     : [Koz94] Kozen (1994), A Completeness Theorem for Kleene Algebr
%          : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source   : [Hoe08]
% Names    :

% Status   : Theorem
% Rating   : 0.58 v7.5.0, 0.66 v7.4.0, 0.47 v7.3.0, 0.48 v7.2.0, 0.52 v7.1.0, 0.48 v7.0.0, 0.57 v6.4.0, 0.58 v6.3.0, 0.54 v6.2.0, 0.60 v6.1.0, 0.77 v6.0.0, 0.70 v5.5.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.81 v5.2.0, 0.70 v5.1.0, 0.71 v4.1.0, 0.70 v4.0.0
% Syntax   : Number of formulae    :   17 (  14 unit)
%            Number of atoms       :   20 (  13 equality)
%            Maximal formula depth :    5 (   3 average)
%            Number of connectives :    3 (   0   ~;   0   |;   0   &)
%                                         (   1 <=>;   2  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of predicates  :    2 (   0 propositional; 2-2 arity)
%            Number of functors    :    5 (   2 constant; 0-2 arity)
%            Number of variables   :   31 (   0 sgn;  31   !;   0   ?)
%            Maximal term depth    :    4 (   2 average)
% SPC      : FOF_THM_RFO_SEQ

%------------------------------------------------------------------------------
%---Include axioms for Kleene algebra
include('Axioms/KLE002+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,(
! [X0] : star(addition(one,X0)) = star(X0) )).

%------------------------------------------------------------------------------
```