TPTP Problem File: ITP280^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ITP280^3 : TPTP v9.0.0. Released v8.1.0.
% Domain : Interactive Theorem Proving
% Problem : Sledgehammer problem VEBT_Space 00398_018442
% Version : [Des22] axioms.
% English :
% Refs : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
% : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source : [Des22]
% Names : 0076_VEBT_Space_00398_018442 [Des22]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.60 v8.2.0, 0.77 v8.1.0
% Syntax : Number of formulae : 11117 (6321 unt; 860 typ; 0 def)
% Number of atoms : 25845 (11910 equ; 0 cnn)
% Maximal formula atoms : 71 ( 2 avg)
% Number of connectives : 99808 (2428 ~; 483 |;1427 &;87236 @)
% ( 0 <=>;8234 =>; 0 <=; 0 <~>)
% Maximal formula depth : 39 ( 5 avg)
% Number of types : 60 ( 59 usr)
% Number of type conns : 2776 (2776 >; 0 *; 0 +; 0 <<)
% Number of symbols : 804 ( 801 usr; 57 con; 0-8 aty)
% Number of variables : 22270 (1711 ^;20086 !; 473 ?;22270 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% from the van Emde Boas Trees session in the Archive of Formal
% proofs -
% www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
% 2022-02-18 17:11:08.768
%------------------------------------------------------------------------------
% Could-be-implicit typings (59)
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
set_Pr8693737435421807431at_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc859450856879609959at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J_J,type,
set_fi4554929511873752355omplex: $tType ).
thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J_J,type,
set_fi7789364187291644575l_real: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
filter6041513312241820739omplex: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
set_Pr5085853215250843933omplex: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc8923325533196201883nteger: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
filter2146258269922977983l_real: $tType ).
thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
option4927543243414619207at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
set_Pr6218003697084177305l_real: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
produc9072475918466114483BT_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
set_Pr1261947904930325089at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
set_Pr958786334691620121nt_int: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
produc4411394909380815293omplex: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
produc6271795597528267376eger_o: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
produc2422161461964618553l_real: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
product_prod_num_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
product_prod_nat_num: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
product_prod_nat_nat: $tType ).
thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
product_prod_int_int: $tType ).
thf(ty_n_t__List__Olist_It__List__Olist_It__Real__Oreal_J_J,type,
list_list_real: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Real__Oreal_J_J,type,
set_list_real: $tType ).
thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
list_list_nat: $tType ).
thf(ty_n_t__List__Olist_It__List__Olist_It__Int__Oint_J_J,type,
list_list_int: $tType ).
thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
list_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
set_list_nat: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
set_list_int: $tType ).
thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
list_set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
set_VEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
set_set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
set_Code_integer: $tType ).
thf(ty_n_t__List__Olist_It__List__Olist_I_Eo_J_J,type,
list_list_o: $tType ).
thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
list_complex: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
set_list_o: $tType ).
thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
set_complex: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
filter_real: $tType ).
thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
option_num: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
filter_nat: $tType ).
thf(ty_n_t__Filter__Ofilter_It__Int__Oint_J,type,
filter_int: $tType ).
thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
set_char: $tType ).
thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
list_real: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
list_int: $tType ).
thf(ty_n_t__VEBT____Definitions__OVEBT,type,
vEBT_VEBT: $tType ).
thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
set_rat: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Code____Numeral__Ointeger,type,
code_integer: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__List__Olist_I_Eo_J,type,
list_o: $tType ).
thf(ty_n_t__Complex__Ocomplex,type,
complex: $tType ).
thf(ty_n_t__Set__Oset_I_Eo_J,type,
set_o: $tType ).
thf(ty_n_t__String__Ochar,type,
char: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Rat__Orat,type,
rat: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (801)
thf(sy_c_Archimedean__Field_Oceiling_001t__Rat__Orat,type,
archim2889992004027027881ng_rat: rat > int ).
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
archim7802044766580827645g_real: real > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
archim3151403230148437115or_rat: rat > int ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
archim6058952711729229775r_real: real > int ).
thf(sy_c_Archimedean__Field_Ofrac_001t__Rat__Orat,type,
archimedean_frac_rat: rat > rat ).
thf(sy_c_Archimedean__Field_Ofrac_001t__Real__Oreal,type,
archim2898591450579166408c_real: real > real ).
thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
archim7778729529865785530nd_rat: rat > int ).
thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
archim8280529875227126926d_real: real > int ).
thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J,type,
bNF_re1962705104956426057at_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > nat > rat ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
bNF_re895249473297799549at_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > nat > rat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_Eo_001_Eo,type,
bNF_re728719798268516973at_o_o: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( $o > $o > $o ) > ( ( nat > rat ) > $o ) > ( ( nat > rat ) > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_It__Real__Oreal_Mt__Real__Oreal_J,type,
bNF_re4695409256820837752l_real: ( ( nat > rat ) > real > $o ) > ( ( ( nat > rat ) > nat > rat ) > ( real > real ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > ( real > real > real ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_Eo_J_001_062_It__Real__Oreal_M_Eo_J,type,
bNF_re4521903465945308077real_o: ( ( nat > rat ) > real > $o ) > ( ( ( nat > rat ) > $o ) > ( real > $o ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > $o ) > ( real > real > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
bNF_re3023117138289059399t_real: ( ( nat > rat ) > real > $o ) > ( ( nat > rat ) > real > $o ) > ( ( nat > rat ) > nat > rat ) > ( real > real ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_Eo_001_Eo,type,
bNF_re4297313714947099218al_o_o: ( ( nat > rat ) > real > $o ) > ( $o > $o > $o ) > ( ( nat > rat ) > $o ) > ( real > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
bNF_re3403563459893282935_int_o: ( int > int > $o ) > ( ( int > $o ) > ( int > $o ) > $o ) > ( int > int > $o ) > ( int > int > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
bNF_re711492959462206631nt_int: ( int > int > $o ) > ( ( int > int ) > ( int > int ) > $o ) > ( int > int > int ) > ( int > int > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
bNF_re157797125943740599nt_int: ( int > int > $o ) > ( ( int > product_prod_int_int ) > ( int > product_prod_int_int ) > $o ) > ( int > int > product_prod_int_int ) > ( int > int > product_prod_int_int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Int__Oint_Mt__Rat__Orat_J,type,
bNF_re3461391660133120880nt_rat: ( int > int > $o ) > ( ( int > product_prod_int_int ) > ( int > rat ) > $o ) > ( int > int > product_prod_int_int ) > ( int > int > rat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_Eo_001_Eo,type,
bNF_re5089333283451836215nt_o_o: ( int > int > $o ) > ( $o > $o > $o ) > ( int > $o ) > ( int > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
bNF_re4712519889275205905nt_int: ( int > int > $o ) > ( int > int > $o ) > ( int > int ) > ( int > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
bNF_re6250860962936578807nt_int: ( int > int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > ( int > product_prod_int_int ) > ( int > product_prod_int_int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
bNF_re2214769303045360666nt_rat: ( int > int > $o ) > ( product_prod_int_int > rat > $o ) > ( int > product_prod_int_int ) > ( int > rat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
bNF_re4785983289428654063nt_int: ( nat > nat > $o ) > ( ( int > int ) > ( int > int ) > $o ) > ( nat > int > int ) > ( nat > int > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Nat__Onat_M_Eo_J_001_062_It__Nat__Onat_M_Eo_J,type,
bNF_re578469030762574527_nat_o: ( nat > nat > $o ) > ( ( nat > $o ) > ( nat > $o ) > $o ) > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
bNF_re1345281282404953727at_nat: ( nat > nat > $o ) > ( ( nat > nat ) > ( nat > nat ) > $o ) > ( nat > nat > nat ) > ( nat > nat > nat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_Eo_001_Eo,type,
bNF_re4705727531993890431at_o_o: ( nat > nat > $o ) > ( $o > $o > $o ) > ( nat > $o ) > ( nat > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint_001t__Int__Oint,type,
bNF_re6650684261131312217nt_int: ( nat > nat > $o ) > ( int > int > $o ) > ( nat > int ) > ( nat > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
bNF_re5653821019739307937at_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > ( nat > nat ) > ( nat > nat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
bNF_re6830278522597306478at_int: ( nat > nat > $o ) > ( product_prod_nat_nat > int > $o ) > ( nat > product_prod_nat_nat ) > ( nat > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001_062_It__Num__Onum_Mt__Int__Oint_J_001_062_It__Num__Onum_Mt__Int__Oint_J,type,
bNF_re8402795839162346335um_int: ( num > num > $o ) > ( ( num > int ) > ( num > int ) > $o ) > ( num > num > int ) > ( num > num > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001t__Int__Oint_001t__Int__Oint,type,
bNF_re1822329894187522285nt_int: ( num > num > $o ) > ( int > int > $o ) > ( num > int ) > ( num > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
bNF_re5228765855967844073nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > ( ( product_prod_int_int > product_prod_int_int ) > ( product_prod_int_int > product_prod_int_int ) > $o ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_Eo_001_Eo,type,
bNF_re8699439704749558557nt_o_o: ( product_prod_int_int > product_prod_int_int > $o ) > ( $o > $o > $o ) > ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
bNF_re7145576690424134365nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int ) > ( product_prod_int_int > product_prod_int_int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Rat__Orat_Mt__Rat__Orat_J,type,
bNF_re7627151682743391978at_rat: ( product_prod_int_int > rat > $o ) > ( ( product_prod_int_int > product_prod_int_int ) > ( rat > rat ) > $o ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > ( rat > rat > rat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001_Eo_001_Eo,type,
bNF_re1494630372529172596at_o_o: ( product_prod_int_int > rat > $o ) > ( $o > $o > $o ) > ( product_prod_int_int > $o ) > ( rat > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
bNF_re8279943556446156061nt_rat: ( product_prod_int_int > rat > $o ) > ( product_prod_int_int > rat > $o ) > ( product_prod_int_int > product_prod_int_int ) > ( rat > rat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
bNF_re717283939379294677_int_o: ( product_prod_nat_nat > int > $o ) > ( ( product_prod_nat_nat > $o ) > ( int > $o ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( int > int > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
bNF_re7408651293131936558nt_int: ( product_prod_nat_nat > int > $o ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > ( int > int ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > ( int > int > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_Eo_001_Eo,type,
bNF_re6644619430987730960nt_o_o: ( product_prod_nat_nat > int > $o ) > ( $o > $o > $o ) > ( product_prod_nat_nat > $o ) > ( int > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001t__Nat__Onat_001t__Nat__Onat,type,
bNF_re4555766996558763186at_nat: ( product_prod_nat_nat > int > $o ) > ( nat > nat > $o ) > ( product_prod_nat_nat > nat ) > ( int > nat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
bNF_re7400052026677387805at_int: ( product_prod_nat_nat > int > $o ) > ( product_prod_nat_nat > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat ) > ( int > int ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
bNF_re4202695980764964119_nat_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
bNF_re3099431351363272937at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
bNF_re3666534408544137501at_o_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( $o > $o > $o ) > ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
bNF_re8246922863344978751at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( nat > nat > $o ) > ( product_prod_nat_nat > nat ) > ( product_prod_nat_nat > nat ) > $o ).
thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
bNF_re2241393799969408733at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat ) > $o ).
thf(sy_c_Binomial_Obinomial,type,
binomial: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
gbinomial_complex: complex > nat > complex ).
thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
gbinomial_int: int > nat > int ).
thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
gbinomial_nat: nat > nat > nat ).
thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
gbinomial_rat: rat > nat > rat ).
thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
gbinomial_real: real > nat > real ).
thf(sy_c_Bit__Operations_Oand__int__rel,type,
bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Bit__Operations_Oand__not__num,type,
bit_and_not_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Oand__not__num__rel,type,
bit_and_not_num_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Oconcat__bit,type,
bit_concat_bit: nat > int > int > int ).
thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
bit_or_not_num_neg: num > num > num ).
thf(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
bit_or3848514188828904588eg_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Code____Numeral__Ointeger,type,
bit_ri7632146776885996613nteger: code_integer > code_integer ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
bit_ri7919022796975470100ot_int: int > int ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
bit_ri631733984087533419it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Code____Numeral__Ointeger,type,
bit_se3949692690581998587nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
bit_se725231765392027082nd_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
bit_se727722235901077358nd_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Code____Numeral__Ointeger,type,
bit_se3928097537394005634nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
bit_se8568078237143864401it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
bit_se8570568707652914677it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
bit_se1345352211410354436nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
bit_se2159334234014336723it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
bit_se2161824704523386999it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Code____Numeral__Ointeger,type,
bit_se2119862282449309892nteger: nat > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
bit_se2000444600071755411sk_int: nat > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
bit_se2002935070580805687sk_nat: nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Code____Numeral__Ointeger,type,
bit_se1080825931792720795nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
bit_se1409905431419307370or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
bit_se1412395901928357646or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Code____Numeral__Ointeger,type,
bit_se7788150548672797655nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
bit_se545348938243370406it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
bit_se547839408752420682it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
bit_se2793503036327961859nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
bit_se7879613467334960850it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
bit_se7882103937844011126it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Code____Numeral__Ointeger,type,
bit_se1745604003318907178nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
bit_se2923211474154528505it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
bit_se2925701944663578781it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
bit_se8260200283734997820nteger: nat > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
bit_se4203085406695923979it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
bit_se4205575877204974255it_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Code____Numeral__Ointeger,type,
bit_se3222712562003087583nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
bit_se6526347334894502574or_int: int > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
bit_se6528837805403552850or_nat: nat > nat > nat ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Code____Numeral__Ointeger,type,
bit_se9216721137139052372nteger: code_integer > nat > $o ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
bit_se1146084159140164899it_int: int > nat > $o ).
thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
bit_se1148574629649215175it_nat: nat > nat > $o ).
thf(sy_c_Bit__Operations_Otake__bit__num,type,
bit_take_bit_num: nat > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num,type,
bit_un1837492267222099188nd_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num__rel,type,
bit_un5425074673868309765um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num,type,
bit_un6178654185764691216or_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num__rel,type,
bit_un3595099601533988841um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num,type,
bit_un7362597486090784418nd_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num__rel,type,
bit_un4731106466462545111um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num,type,
bit_un2480387367778600638or_num: num > num > option_num ).
thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num__rel,type,
bit_un2901131394128224187um_rel: product_prod_num_num > product_prod_num_num > $o ).
thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra__sym__diff_001t__Code____Numeral__Ointeger,type,
boolea2445317508997433345nteger: ( code_integer > code_integer > code_integer ) > ( code_integer > code_integer > code_integer ) > ( code_integer > code_integer ) > code_integer > code_integer > ( code_integer > code_integer > code_integer ) > $o ).
thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra__sym__diff_001t__Int__Oint,type,
boolea8527374999097803216ff_int: ( int > int > int ) > ( int > int > int ) > ( int > int ) > int > int > ( int > int > int ) > $o ).
thf(sy_c_Code__Numeral_Obit__cut__integer,type,
code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).
thf(sy_c_Code__Numeral_Odivmod__abs,type,
code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Code__Numeral_Odivmod__integer,type,
code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
code_int_of_integer: code_integer > int ).
thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
code_integer_of_int: int > code_integer ).
thf(sy_c_Code__Numeral_Ointeger__of__num,type,
code_integer_of_num: num > code_integer ).
thf(sy_c_Code__Numeral_Onat__of__integer,type,
code_nat_of_integer: code_integer > nat ).
thf(sy_c_Code__Numeral_Onum__of__integer,type,
code_num_of_integer: code_integer > num ).
thf(sy_c_Code__Target__Int_Onegative,type,
code_Target_negative: num > int ).
thf(sy_c_Code__Target__Int_Opositive,type,
code_Target_positive: num > int ).
thf(sy_c_Code__Target__Nat_Oint__of__nat,type,
code_T6385005292777649522of_nat: nat > int ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
comple8358262395181532106omplex: set_fi4554929511873752355omplex > filter6041513312241820739omplex ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
comple2936214249959783750l_real: set_fi7789364187291644575l_real > filter2146258269922977983l_real ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Real__Oreal,type,
comple4887499456419720421f_real: set_real > real ).
thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
comple7806235888213564991et_nat: set_set_nat > set_nat ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Int__Oint,type,
complete_Sup_Sup_int: set_int > int ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
complete_Sup_Sup_nat: set_nat > nat ).
thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
comple1385675409528146559p_real: set_real > real ).
thf(sy_c_Complex_OArg,type,
arg: complex > real ).
thf(sy_c_Complex_Ocis,type,
cis: real > complex ).
thf(sy_c_Complex_Ocnj,type,
cnj: complex > complex ).
thf(sy_c_Complex_Ocomplex_OComplex,type,
complex2: real > real > complex ).
thf(sy_c_Complex_Ocomplex_OIm,type,
im: complex > real ).
thf(sy_c_Complex_Ocomplex_ORe,type,
re: complex > real ).
thf(sy_c_Complex_Ocsqrt,type,
csqrt: complex > complex ).
thf(sy_c_Complex_Oimaginary__unit,type,
imaginary_unit: complex ).
thf(sy_c_Complex_Orcis,type,
rcis: real > real > complex ).
thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).
thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).
thf(sy_c_Divides_Oadjust__div,type,
adjust_div: product_prod_int_int > int ).
thf(sy_c_Divides_Oadjust__mod,type,
adjust_mod: int > int > int ).
thf(sy_c_Divides_Odivmod__nat,type,
divmod_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Divides_Oeucl__rel__int,type,
eucl_rel_int: int > int > product_prod_int_int > $o ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
unique5052692396658037445od_int: num > num > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
comm_s8582702949713902594nteger: code_integer > nat > code_integer ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
comm_s2602460028002588243omplex: complex > nat > complex ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
comm_s4660882817536571857er_int: int > nat > int ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
comm_s4663373288045622133er_nat: nat > nat > nat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
comm_s4028243227959126397er_rat: rat > nat > rat ).
thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
comm_s7457072308508201937r_real: real > nat > real ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Ointeger,type,
semiri3624122377584611663nteger: nat > code_integer ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
semiri5044797733671781792omplex: nat > complex ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
semiri1406184849735516958ct_int: nat > int ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
semiri1408675320244567234ct_nat: nat > nat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
semiri773545260158071498ct_rat: nat > rat ).
thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
semiri2265585572941072030t_real: nat > real ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
invers8013647133539491842omplex: complex > complex ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
inverse_inverse_rat: rat > rat ).
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
inverse_inverse_real: real > real ).
thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
at_bot_real: filter_real ).
thf(sy_c_Filter_Oat__top_001t__Int__Oint,type,
at_top_int: filter_int ).
thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
at_top_nat: filter_nat ).
thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
at_top_real: filter_real ).
thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
eventually_nat: ( nat > $o ) > filter_nat > $o ).
thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
eventually_real: ( real > $o ) > filter_real > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Int__Oint,type,
filterlim_nat_int: ( nat > int ) > filter_int > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).
thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).
thf(sy_c_Filter_Ofiltermap_001t__Real__Oreal_001t__Real__Oreal,type,
filtermap_real_real: ( real > real ) > filter_real > filter_real ).
thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
princi3496590319149328850omplex: set_Pr5085853215250843933omplex > filter6041513312241820739omplex ).
thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
princi6114159922880469582l_real: set_Pr6218003697084177305l_real > filter2146258269922977983l_real ).
thf(sy_c_Finite__Set_Ocard_001_Eo,type,
finite_card_o: set_o > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
finite_card_complex: set_complex > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
finite_card_int: set_int > nat ).
thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Nat__Onat_J,type,
finite_card_list_nat: set_list_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
finite_card_nat: set_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
finite_card_set_nat: set_set_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
finite_card_char: set_char > nat ).
thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
finite3207457112153483333omplex: set_complex > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
finite_finite_int: set_int > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
finite_finite_nat: set_nat > $o ).
thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Int__Oint_001t__Nat__Onat,type,
bij_betw_int_nat: ( int > nat ) > set_int > set_nat > $o ).
thf(sy_c_Fun_Obij__betw_001t__List__Olist_It__Nat__Onat_J_001t__Nat__Onat,type,
bij_be8532844293280997160at_nat: ( list_nat > nat ) > set_list_nat > set_nat > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Int__Oint,type,
bij_betw_nat_int: ( nat > int ) > set_nat > set_int > $o ).
thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).
thf(sy_c_Fun_Obij__betw_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
bij_be5333170631980326235at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > set_nat > $o ).
thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).
thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
comp_nat_nat_nat: ( nat > nat ) > ( nat > nat ) > nat > nat ).
thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Real__Oreal_001t__Nat__Onat,type,
comp_nat_real_nat: ( nat > real ) > ( nat > nat ) > nat > real ).
thf(sy_c_Fun_Oid_001_Eo,type,
id_o: $o > $o ).
thf(sy_c_Fun_Oid_001t__Nat__Onat,type,
id_nat: nat > nat ).
thf(sy_c_Fun_Oinj__on_001t__Int__Oint_001t__Nat__Onat,type,
inj_on_int_nat: ( int > nat ) > set_int > $o ).
thf(sy_c_Fun_Oinj__on_001t__List__Olist_It__Nat__Onat_J_001t__Nat__Onat,type,
inj_on_list_nat_nat: ( list_nat > nat ) > set_list_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Int__Oint,type,
inj_on_nat_int: ( nat > int ) > set_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Nat__Onat,type,
inj_on_nat_nat: ( nat > nat ) > set_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__String__Ochar,type,
inj_on_nat_char: ( nat > char ) > set_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
inj_on2178005380612969504at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_Fun_Oinj__on_001t__Real__Oreal_001t__Real__Oreal,type,
inj_on_real_real: ( real > real ) > set_real > $o ).
thf(sy_c_Fun_Oinj__on_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
inj_on_set_nat_nat: ( set_nat > nat ) > set_set_nat > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
map_fu434086159418415080_int_o: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > $o ) > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > int > int > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
map_fu4960017516451851995nt_int: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > int > int > int ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
map_fu4826362097070443709at_o_o: ( int > product_prod_nat_nat ) > ( $o > $o ) > ( product_prod_nat_nat > $o ) > int > $o ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
map_fu2345160673673942751at_nat: ( int > product_prod_nat_nat ) > ( nat > nat ) > ( product_prod_nat_nat > nat ) > int > nat ).
thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).
thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Rat__Orat_Mt__Rat__Orat_J,type,
map_fu4333342158222067775at_rat: ( rat > product_prod_int_int ) > ( ( product_prod_int_int > product_prod_int_int ) > rat > rat ) > ( product_prod_int_int > product_prod_int_int > product_prod_int_int ) > rat > rat > rat ).
thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_Eo_001_Eo,type,
map_fu898904425404107465nt_o_o: ( rat > product_prod_int_int ) > ( $o > $o ) > ( product_prod_int_int > $o ) > rat > $o ).
thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
map_fu5673905371560938248nt_rat: ( rat > product_prod_int_int ) > ( product_prod_int_int > rat ) > ( product_prod_int_int > product_prod_int_int ) > rat > rat ).
thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_It__Real__Oreal_Mt__Real__Oreal_J,type,
map_fu1532550112467129777l_real: ( real > nat > rat ) > ( ( ( nat > rat ) > nat > rat ) > real > real ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > real > real > real ).
thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
map_fu7146612038024189824t_real: ( real > nat > rat ) > ( ( nat > rat ) > real ) > ( ( nat > rat ) > nat > rat ) > real > real ).
thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_Eo_001_Eo,type,
map_fu1856342031159181835at_o_o: ( real > nat > rat ) > ( $o > $o ) > ( ( nat > rat ) > $o ) > real > $o ).
thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).
thf(sy_c_Fun__Def_Ois__measure_001t__Int__Oint,type,
fun_is_measure_int: ( int > nat ) > $o ).
thf(sy_c_Fun__Def_Opair__leq,type,
fun_pair_leq: set_Pr8693737435421807431at_nat ).
thf(sy_c_Fun__Def_Opair__less,type,
fun_pair_less: set_Pr8693737435421807431at_nat ).
thf(sy_c_GCD_OGcd__class_OGcd_001t__Int__Oint,type,
gcd_Gcd_int: set_int > int ).
thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
gcd_Gcd_nat: set_nat > nat ).
thf(sy_c_GCD_Obezw,type,
bezw: nat > nat > product_prod_int_int ).
thf(sy_c_GCD_Obezw__rel,type,
bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Code____Numeral__Ointeger,type,
gcd_gcd_Code_integer: code_integer > code_integer > code_integer ).
thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
gcd_gcd_int: int > int > int ).
thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
gcd_gcd_nat: nat > nat > nat ).
thf(sy_c_GCD_Ogcd__nat__rel,type,
gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
abs_abs_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
abs_abs_complex: complex > complex ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
abs_abs_rat: rat > rat ).
thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
abs_abs_real: real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
minus_minus_complex: complex > complex > complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
minus_minus_rat: rat > rat > rat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
minus_811609699411566653omplex: set_complex > set_complex > set_complex ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
minus_minus_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
minus_minus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
minus_minus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
one_one_Code_integer: code_integer ).
thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
one_one_complex: complex ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
one_one_rat: rat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
plus_plus_complex: complex > complex > complex ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
plus_plus_rat: rat > rat > rat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
sgn_sgn_Code_integer: code_integer > code_integer ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
sgn_sgn_complex: complex > complex ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
sgn_sgn_int: int > int ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
sgn_sgn_rat: rat > rat ).
thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
sgn_sgn_real: real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
times_3573771949741848930nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
times_times_complex: complex > complex > complex ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
times_times_rat: rat > rat > rat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
uminus1351360451143612070nteger: code_integer > code_integer ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
uminus1482373934393186551omplex: complex > complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
uminus_uminus_rat: rat > rat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
uminus8566677241136511917omplex: set_complex > set_complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Int__Oint_J,type,
uminus1532241313380277803et_int: set_int > set_int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
uminus5710092332889474511et_nat: set_nat > set_nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
uminus612125837232591019t_real: set_real > set_real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
uminus613421341184616069et_nat: set_set_nat > set_set_nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
zero_z3403309356797280102nteger: code_integer ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
zero_zero_complex: complex ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
zero_zero_rat: rat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
groups4538972089207619220nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
groups1705073143266064639nt_int: ( int > int ) > set_int > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
groups705719431365010083at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Code____Numeral__Ointeger,type,
groups3417619833198082522nteger: ( $o > code_integer ) > code_integer > list_o > code_integer ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).
thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Nat__Onat,type,
groups9119017779487936845_o_nat: ( $o > nat ) > nat > list_o > nat ).
thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
groups4561878855575611511st_nat: list_nat > nat ).
thf(sy_c_HOL_OThe_001t__Int__Oint,type,
the_int: ( int > $o ) > int ).
thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
the_Pr4378521158711661632nt_int: ( product_prod_int_int > $o ) > product_prod_int_int ).
thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
the_real: ( real > $o ) > real ).
thf(sy_c_If_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
if_int_int: $o > ( int > int ) > ( int > int ) > int > int ).
thf(sy_c_If_001_062_It__Nat__Onat_M_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
if_nat5617392847756311170nteger: $o > ( nat > code_integer > code_integer ) > ( nat > code_integer > code_integer ) > nat > code_integer > code_integer ).
thf(sy_c_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J,type,
if_nat_int_int: $o > ( nat > int > int ) > ( nat > int > int ) > nat > int > int ).
thf(sy_c_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
if_nat_nat_nat: $o > ( nat > nat > nat ) > ( nat > nat > nat ) > nat > nat > nat ).
thf(sy_c_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
if_nat_rat: $o > ( nat > rat ) > ( nat > rat ) > nat > rat ).
thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
if_Code_integer: $o > code_integer > code_integer > code_integer ).
thf(sy_c_If_001t__Complex__Ocomplex,type,
if_complex: $o > complex > complex > complex ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
if_list_int: $o > list_int > list_int > list_int ).
thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
if_list_nat: $o > list_nat > list_nat > list_nat ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Num__Onum,type,
if_num: $o > num > num > num ).
thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
if_option_num: $o > option_num > option_num > option_num ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).
thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_If_001t__Rat__Orat,type,
if_rat: $o > rat > rat > rat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_Infinite__Set_Owellorder__class_Oenumerate_001t__Nat__Onat,type,
infini8530281810654367211te_nat: set_nat > nat > nat ).
thf(sy_c_Int_OAbs__Integ,type,
abs_Integ: product_prod_nat_nat > int ).
thf(sy_c_Int_ORep__Integ,type,
rep_Integ: int > product_prod_nat_nat ).
thf(sy_c_Int_Oint__ge__less__than,type,
int_ge_less_than: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Oint__ge__less__than2,type,
int_ge_less_than2: int > set_Pr958786334691620121nt_int ).
thf(sy_c_Int_Ointrel,type,
intrel: product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Int_Opcr__int,type,
pcr_int: product_prod_nat_nat > int > $o ).
thf(sy_c_Int_Opower__int_001t__Real__Oreal,type,
power_int_real: real > int > real ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Code____Numeral__Ointeger,type,
ring_11222124179247155820nteger: set_Code_integer ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Complex__Ocomplex,type,
ring_1_Ints_complex: set_complex ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Int__Oint,type,
ring_1_Ints_int: set_int ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Rat__Orat,type,
ring_1_Ints_rat: set_rat ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
ring_1_Ints_real: set_real ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
ring_18347121197199848620nteger: int > code_integer ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
ring_17405671764205052669omplex: int > complex ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
ring_1_of_int_int: int > int ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
ring_1_of_int_rat: int > rat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Extended____Nat__Oenat,type,
inf_in1870772243966228564d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Int__Oint,type,
inf_inf_int: int > int > int ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
inf_inf_nat: nat > nat > nat ).
thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Extended____Nat__Oenat,type,
sup_su3973961784419623482d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Int__Oint,type,
sup_sup_int: int > int > int ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
sup_sup_nat: nat > nat > nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
sup_sup_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
sup_su6327502436637775413at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
lattic8263393255366662781ax_int: set_int > int ).
thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
lattic8265883725875713057ax_nat: set_nat > nat ).
thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
bfun_nat_real: ( nat > real ) > filter_nat > $o ).
thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
at_infinity_real: filter_real ).
thf(sy_c_List_Oappend_001t__Int__Oint,type,
append_int: list_int > list_int > list_int ).
thf(sy_c_List_Oappend_001t__Nat__Onat,type,
append_nat: list_nat > list_nat > list_nat ).
thf(sy_c_List_Oconcat_001_Eo,type,
concat_o: list_list_o > list_o ).
thf(sy_c_List_Oconcat_001t__Int__Oint,type,
concat_int: list_list_int > list_int ).
thf(sy_c_List_Oconcat_001t__Nat__Onat,type,
concat_nat: list_list_nat > list_nat ).
thf(sy_c_List_Oconcat_001t__Real__Oreal,type,
concat_real: list_list_real > list_real ).
thf(sy_c_List_Ofoldr_001t__Nat__Onat_001t__Nat__Onat,type,
foldr_nat_nat: ( nat > nat > nat ) > list_nat > nat > nat ).
thf(sy_c_List_Ofoldr_001t__Real__Oreal_001t__Real__Oreal,type,
foldr_real_real: ( real > real > real ) > list_real > real > real ).
thf(sy_c_List_Olast_001t__Nat__Onat,type,
last_nat: list_nat > nat ).
thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
linord2614967742042102400et_nat: set_nat > list_nat ).
thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
cons_int: int > list_int > list_int ).
thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
cons_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
nil_int: list_int ).
thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
nil_nat: list_nat ).
thf(sy_c_List_Olist_Omap_001t__Complex__Ocomplex_001t__Real__Oreal,type,
map_complex_real: ( complex > real ) > list_complex > list_real ).
thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Real__Oreal,type,
map_int_real: ( int > real ) > list_int > list_real ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
map_nat_nat: ( nat > nat ) > list_nat > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Real__Oreal,type,
map_nat_real: ( nat > real ) > list_nat > list_real ).
thf(sy_c_List_Olist_Omap_001t__Real__Oreal_001t__Real__Oreal,type,
map_real_real: ( real > real ) > list_real > list_real ).
thf(sy_c_List_Olist_Omap_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
map_set_nat_real: ( set_nat > real ) > list_set_nat > list_real ).
thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
map_VEBT_VEBT_nat: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > list_nat ).
thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
map_VEBT_VEBT_real: ( vEBT_VEBT > real ) > list_VEBT_VEBT > list_real ).
thf(sy_c_List_Olist_Oset_001_Eo,type,
set_o2: list_o > set_o ).
thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
set_complex2: list_complex > set_complex ).
thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
set_int2: list_int > set_int ).
thf(sy_c_List_Olist_Oset_001t__List__Olist_I_Eo_J,type,
set_list_o2: list_list_o > set_list_o ).
thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Int__Oint_J,type,
set_list_int2: list_list_int > set_list_int ).
thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Nat__Onat_J,type,
set_list_nat2: list_list_nat > set_list_nat ).
thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Real__Oreal_J,type,
set_list_real2: list_list_real > set_list_real ).
thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
set_nat2: list_nat > set_nat ).
thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
set_real2: list_real > set_real ).
thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
set_set_nat2: list_set_nat > set_set_nat ).
thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).
thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).
thf(sy_c_List_Olist_Otl_001t__Nat__Onat,type,
tl_nat: list_nat > list_nat ).
thf(sy_c_List_Onth_001_Eo,type,
nth_o: list_o > nat > $o ).
thf(sy_c_List_Onth_001t__Complex__Ocomplex,type,
nth_complex: list_complex > nat > complex ).
thf(sy_c_List_Onth_001t__Int__Oint,type,
nth_int: list_int > nat > int ).
thf(sy_c_List_Onth_001t__Nat__Onat,type,
nth_nat: list_nat > nat > nat ).
thf(sy_c_List_Onth_001t__Real__Oreal,type,
nth_real: list_real > nat > real ).
thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
nth_set_nat: list_set_nat > nat > set_nat ).
thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).
thf(sy_c_List_Oreplicate_001t__Complex__Ocomplex,type,
replicate_complex: nat > complex > list_complex ).
thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
replicate_int: nat > int > list_int ).
thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
replicate_nat: nat > nat > list_nat ).
thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
replicate_real: nat > real > list_real ).
thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
replicate_set_nat: nat > set_nat > list_set_nat ).
thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).
thf(sy_c_List_Osorted__wrt_001t__Int__Oint,type,
sorted_wrt_int: ( int > int > $o ) > list_int > $o ).
thf(sy_c_List_Osorted__wrt_001t__Nat__Onat,type,
sorted_wrt_nat: ( nat > nat > $o ) > list_nat > $o ).
thf(sy_c_List_Osubseqs_001_Eo,type,
subseqs_o: list_o > list_list_o ).
thf(sy_c_List_Osubseqs_001t__Int__Oint,type,
subseqs_int: list_int > list_list_int ).
thf(sy_c_List_Osubseqs_001t__Nat__Onat,type,
subseqs_nat: list_nat > list_list_nat ).
thf(sy_c_List_Osubseqs_001t__Real__Oreal,type,
subseqs_real: list_real > list_list_real ).
thf(sy_c_List_Otake_001t__Nat__Onat,type,
take_nat: nat > list_nat > list_nat ).
thf(sy_c_List_Oupt,type,
upt: nat > nat > list_nat ).
thf(sy_c_List_Oupto,type,
upto: int > int > list_int ).
thf(sy_c_List_Oupto__aux,type,
upto_aux: int > int > list_int > list_int ).
thf(sy_c_List_Oupto__rel,type,
upto_rel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
compow_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
case_nat_o: $o > ( nat > $o ) > nat > $o ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
case_nat_nat: nat > ( nat > nat ) > nat > nat ).
thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).
thf(sy_c_Nat_Onat_Opred,type,
pred: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_ONats_001t__Complex__Ocomplex,type,
semiri3842193898606819883omplex: set_complex ).
thf(sy_c_Nat_Osemiring__1__class_ONats_001t__Int__Oint,type,
semiring_1_Nats_int: set_int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
semiri4939895301339042750nteger: nat > code_integer ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
semiri8010041392384452111omplex: nat > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
semiri4216267220026989637d_enat: nat > extended_enat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
semiri681578069525770553at_rat: nat > rat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
size_size_list_o: list_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
size_s3451745648224563538omplex: list_complex > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
size_size_list_int: list_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_I_Eo_J_J,type,
size_s2710708370519433104list_o: list_list_o > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Int__Oint_J_J,type,
size_s533118279054570080st_int: list_list_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
size_s3023201423986296836st_nat: list_list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Real__Oreal_J_J,type,
size_s6660260683639930848t_real: list_list_real > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
size_size_list_nat: list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
size_size_list_real: list_real > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
size_s3254054031482475050et_nat: list_set_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
size_size_num: num > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
size_size_char: char > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
size_size_VEBT_VEBT: vEBT_VEBT > nat ).
thf(sy_c_Nat__Bijection_Oint__decode,type,
nat_int_decode: nat > int ).
thf(sy_c_Nat__Bijection_Oint__encode,type,
nat_int_encode: int > nat ).
thf(sy_c_Nat__Bijection_Olist__encode,type,
nat_list_encode: list_nat > nat ).
thf(sy_c_Nat__Bijection_Olist__encode__rel,type,
nat_list_encode_rel: list_nat > list_nat > $o ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).
thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Nat__Bijection_Oprod__encode,type,
nat_prod_encode: product_prod_nat_nat > nat ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > set_nat ).
thf(sy_c_Nat__Bijection_Oset__encode,type,
nat_set_encode: set_nat > nat ).
thf(sy_c_Nat__Bijection_Otriangle,type,
nat_triangle: nat > nat ).
thf(sy_c_NthRoot_Oroot,type,
root: nat > real > real ).
thf(sy_c_NthRoot_Osqrt,type,
sqrt: real > real ).
thf(sy_c_Num_OBitM,type,
bitM: num > num ).
thf(sy_c_Num_Oinc,type,
inc: num > num ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
neg_nu8804712462038260780nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
neg_nu7009210354673126013omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
neg_numeral_dbl_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
neg_nu7757733837767384882nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
neg_nu6511756317524482435omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
neg_nu3811975205180677377ec_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
neg_nu3179335615603231917ec_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
neg_nu6075765906172075777c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
neg_nu5831290666863070958nteger: code_integer > code_integer ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
neg_nu8557863876264182079omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
neg_nu5219082963157363817nc_rat: rat > rat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
neg_numeral_sub_int: num > num > int ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).
thf(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
thf(sy_c_Num_Onum__of__nat,type,
num_of_nat: nat > num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
numera6620942414471956472nteger: num > code_integer ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
numera6690914467698888265omplex: num > complex ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
numeral_numeral_rat: num > rat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
thf(sy_c_Num_Osqr,type,
sqr: num > num ).
thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
none_num: option_num ).
thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
none_P5556105721700978146at_nat: option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
some_num: num > option_num ).
thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).
thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
case_option_int_num: int > ( num > int ) > option_num > int ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
case_option_num_num: num > ( num > num ) > option_num > num ).
thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).
thf(sy_c_Option_Ooption_Omap__option_001t__Num__Onum_001t__Num__Onum,type,
map_option_num_num: ( num > num ) > option_num > option_num ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
bot_bo4199563552545308370d_enat: extended_enat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
bot_bot_nat: nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_Eo_J,type,
bot_bot_set_o: set_o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
bot_bot_set_int: set_int ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
bot_bot_set_nat: set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
bot_bot_set_real: set_real ).
thf(sy_c_Orderings_Oord__class_OLeast_001t__Nat__Onat,type,
ord_Least_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oord__class_OLeast_001t__Real__Oreal,type,
ord_Least_real: ( real > $o ) > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
ord_le6747313008572928689nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
ord_less_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_less_set_complex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
ord_le3102999989581377725nteger: code_integer > code_integer > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Real__Oreal_J,type,
ord_le4104064031414453916r_real: filter_real > filter_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
ord_less_eq_rat: rat > rat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
ord_le211207098394363844omplex: set_complex > set_complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
ord_le6045566169113846134st_nat: set_list_nat > set_list_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
ord_max_Code_integer: code_integer > code_integer > code_integer ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
ord_max_int: int > int > int ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
ord_max_nat: nat > nat > nat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
ord_max_num: num > num > num ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
ord_max_rat: rat > rat > rat ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
ord_max_real: real > real > real ).
thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Int__Oint_J,type,
ord_max_set_int: set_int > set_int > set_int ).
thf(sy_c_Orderings_Oord__class_Omin_001t__Extended____Nat__Oenat,type,
ord_mi8085742599997312461d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Orderings_Oord__class_Omin_001t__Int__Oint,type,
ord_min_int: int > int > int ).
thf(sy_c_Orderings_Oord__class_Omin_001t__Nat__Onat,type,
ord_min_nat: nat > nat > nat ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
order_Greatest_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
order_mono_nat_nat: ( nat > nat ) > $o ).
thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Real__Oreal,type,
order_mono_nat_real: ( nat > real ) > $o ).
thf(sy_c_Orderings_Oorder__class_Omono_001t__Real__Oreal_001t__Real__Oreal,type,
order_mono_real_real: ( real > real ) > $o ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Nat__Onat_001t__Nat__Onat,type,
order_5726023648592871131at_nat: ( nat > nat ) > $o ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Real__Oreal_001t__Real__Oreal,type,
order_7092887310737990675l_real: ( real > real ) > $o ).
thf(sy_c_Orderings_Oordering__top_001t__Nat__Onat,type,
ordering_top_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > nat > $o ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
top_top_set_o: set_o ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
top_top_set_int: set_int ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
top_top_set_list_nat: set_list_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
top_top_set_nat: set_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
top_to4669805908274784177at_nat: set_Pr1261947904930325089at_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
top_top_set_real: set_real ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
top_top_set_char: set_char ).
thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
power_8256067586552552935nteger: code_integer > nat > code_integer ).
thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
power_power_complex: complex > nat > complex ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
power_power_rat: rat > nat > rat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).
thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
product_Pair_int_int: int > int > product_prod_int_int ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
product_Pair_nat_num: nat > num > product_prod_nat_num ).
thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
product_Pair_num_num: num > num > product_prod_num_num ).
thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc6161850002892822231at_nat: product_prod_nat_nat > product_prod_nat_nat > produc859450856879609959at_nat ).
thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).
thf(sy_c_Product__Type_OSigma_001t__Nat__Onat_001t__Nat__Onat,type,
produc457027306803732586at_nat: set_nat > ( nat > set_nat ) > set_Pr1261947904930325089at_nat ).
thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Complex__Ocomplex_001t__Complex__Ocomplex_001_Eo,type,
produc6771430404735790350plex_o: ( complex > complex > $o ) > produc4411394909380815293omplex > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).
thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Real__Oreal_001t__Real__Oreal_001_Eo,type,
produc5414030515140494994real_o: ( real > real > $o ) > produc2422161461964618553l_real > $o ).
thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
product_fst_int_int: product_prod_int_int > int ).
thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
product_fst_nat_nat: product_prod_nat_nat > nat ).
thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
product_snd_int_int: product_prod_int_int > int ).
thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
product_snd_nat_nat: product_prod_nat_nat > nat ).
thf(sy_c_Rat_OAbs__Rat,type,
abs_Rat: product_prod_int_int > rat ).
thf(sy_c_Rat_OFract,type,
fract: int > int > rat ).
thf(sy_c_Rat_OFrct,type,
frct: product_prod_int_int > rat ).
thf(sy_c_Rat_ORep__Rat,type,
rep_Rat: rat > product_prod_int_int ).
thf(sy_c_Rat_Ofield__char__0__class_ORats_001t__Real__Oreal,type,
field_5140801741446780682s_real: set_real ).
thf(sy_c_Rat_Ofield__char__0__class_Oof__rat_001t__Real__Oreal,type,
field_7254667332652039916t_real: rat > real ).
thf(sy_c_Rat_Onormalize,type,
normalize: product_prod_int_int > product_prod_int_int ).
thf(sy_c_Rat_Opcr__rat,type,
pcr_rat: product_prod_int_int > rat > $o ).
thf(sy_c_Rat_Opositive,type,
positive: rat > $o ).
thf(sy_c_Rat_Oquotient__of,type,
quotient_of: rat > product_prod_int_int ).
thf(sy_c_Rat_Oratrel,type,
ratrel: product_prod_int_int > product_prod_int_int > $o ).
thf(sy_c_Real_OReal,type,
real2: ( nat > rat ) > real ).
thf(sy_c_Real_Ocauchy,type,
cauchy: ( nat > rat ) > $o ).
thf(sy_c_Real_Ocr__real,type,
cr_real: ( nat > rat ) > real > $o ).
thf(sy_c_Real_Opcr__real,type,
pcr_real: ( nat > rat ) > real > $o ).
thf(sy_c_Real_Opositive,type,
positive2: real > $o ).
thf(sy_c_Real_Orealrel,type,
realrel: ( nat > rat ) > ( nat > rat ) > $o ).
thf(sy_c_Real_Orep__real,type,
rep_real: real > nat > rat ).
thf(sy_c_Real_Ovanishes,type,
vanishes: ( nat > rat ) > $o ).
thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
real_V2521375963428798218omplex: set_complex ).
thf(sy_c_Real__Vector__Spaces_OReals_001t__Real__Oreal,type,
real_V470468836141973256s_real: set_real ).
thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
real_V5970128139526366754l_real: ( real > real ) > $o ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
real_V3694042436643373181omplex: complex > complex > real ).
thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
real_V975177566351809787t_real: real > real > real ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
real_V1022390504157884413omplex: complex > real ).
thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
real_V7735802525324610683m_real: real > real ).
thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
real_V4546457046886955230omplex: real > complex ).
thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Real__Oreal,type,
real_V1803761363581548252l_real: real > real ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
real_V2046097035970521341omplex: real > complex > complex ).
thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
real_V1485227260804924795R_real: real > real > real ).
thf(sy_c_Rings_Oalgebraic__semidom__class_Ocoprime_001t__Int__Oint,type,
algebr932160517623751201me_int: int > int > $o ).
thf(sy_c_Rings_Oalgebraic__semidom__class_Ocoprime_001t__Nat__Onat,type,
algebr934650988132801477me_nat: nat > nat > $o ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
divide6298287555418463151nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
divide1717551699836669952omplex: complex > complex > complex ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
divide_divide_rat: rat > rat > rat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
dvd_dvd_Code_integer: code_integer > code_integer > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
dvd_dvd_complex: complex > complex > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
dvd_dvd_rat: rat > rat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
dvd_dvd_real: real > real > $o ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
modulo364778990260209775nteger: code_integer > code_integer > code_integer ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
modulo_modulo_int: int > int > int ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
modulo_modulo_nat: nat > nat > nat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
zero_n356916108424825756nteger: $o > code_integer ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
zero_n1201886186963655149omplex: $o > complex ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
zero_n2684676970156552555ol_int: $o > int ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
zero_n2687167440665602831ol_nat: $o > nat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
zero_n2052037380579107095ol_rat: $o > rat ).
thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
zero_n3304061248610475627l_real: $o > real ).
thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
suminf_real: ( nat > real ) > real ).
thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
summable_real: ( nat > real ) > $o ).
thf(sy_c_Series_Osums_001t__Real__Oreal,type,
sums_real: ( nat > real ) > real > $o ).
thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
collect_complex: ( complex > $o ) > set_complex ).
thf(sy_c_Set_OCollect_001t__Int__Oint,type,
collect_int: ( int > $o ) > set_int ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
collect_list_nat: ( list_nat > $o ) > set_list_nat ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
collec8663557070575231912omplex: ( produc4411394909380815293omplex > $o ) > set_Pr5085853215250843933omplex ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
collec3392354462482085612at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat ).
thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
collec3799799289383736868l_real: ( produc2422161461964618553l_real > $o ) > set_Pr6218003697084177305l_real ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
collect_set_nat: ( set_nat > $o ) > set_set_nat ).
thf(sy_c_Set_OPow_001t__Nat__Onat,type,
pow_nat: set_nat > set_set_nat ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
image_int_int: ( int > int ) > set_int > set_int ).
thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
image_int_nat: ( int > nat ) > set_int > set_nat ).
thf(sy_c_Set_Oimage_001t__List__Olist_It__Nat__Onat_J_001t__Nat__Onat,type,
image_list_nat_nat: ( list_nat > nat ) > set_list_nat > set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
image_nat_int: ( nat > int ) > set_nat > set_int ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
image_nat_nat: ( nat > nat ) > set_nat > set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Real__Oreal,type,
image_nat_real: ( nat > real ) > set_nat > set_real ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
image_nat_char: ( nat > char ) > set_nat > set_char ).
thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
image_2486076414777270412at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > set_nat ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
image_5971271580939081552omplex: ( real > filter6041513312241820739omplex ) > set_real > set_fi4554929511873752355omplex ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
image_2178119161166701260l_real: ( real > filter2146258269922977983l_real ) > set_real > set_fi7789364187291644575l_real ).
thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
image_real_real: ( real > real ) > set_real > set_real ).
thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
image_char_nat: ( char > nat ) > set_char > set_nat ).
thf(sy_c_Set_Oinsert_001_Eo,type,
insert_o: $o > set_o > set_o ).
thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
insert_int: int > set_int > set_int ).
thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
insert_nat: nat > set_nat > set_nat ).
thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
insert_real: real > set_real > set_real ).
thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Nat__Onat,type,
vimage_nat_nat: ( nat > nat ) > set_nat > set_nat ).
thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
set_or1266510415728281911st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
set_or1269000886237332187st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
set_or1222579329274155063t_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
set_or4662586982721622107an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
set_or4665077453230672383an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
set_ord_atLeast_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
set_ord_atLeast_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
set_ord_atMost_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
set_ord_atMost_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
set_or6656581121297822940st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
set_or6659071591806873216st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
set_or5832277885323065728an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
set_or5834768355832116004an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
set_or1633881224788618240n_real: real > real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
set_or1210151606488870762an_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
set_or5849166863359141190n_real: real > set_real ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
set_ord_lessThan_int: int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
set_ord_lessThan_nat: nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
set_or5984915006950818249n_real: real > set_real ).
thf(sy_c_String_Oascii__of,type,
ascii_of: char > char ).
thf(sy_c_String_Ochar_OChar,type,
char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).
thf(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
comm_s629917340098488124ar_nat: char > nat ).
thf(sy_c_String_Ointeger__of__char,type,
integer_of_char: char > code_integer ).
thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
unique3096191561947761185of_nat: nat > char ).
thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).
thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
topolo6980174941875973593q_real: ( nat > real ) > $o ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
topolo2177554685111907308n_real: real > set_real > filter_real ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Oconvergent_001t__Real__Oreal,type,
topolo7531315842566124627t_real: ( nat > real ) > $o ).
thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
topolo2815343760600316023s_real: real > filter_real ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Complex__Ocomplex,type,
topolo6517432010174082258omplex: ( nat > complex ) > $o ).
thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
topolo4055970368930404560y_real: ( nat > real ) > $o ).
thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Complex__Ocomplex,type,
topolo896644834953643431omplex: filter6041513312241820739omplex ).
thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Real__Oreal,type,
topolo1511823702728130853y_real: filter2146258269922977983l_real ).
thf(sy_c_Transcendental_Oarccos,type,
arccos: real > real ).
thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
arcosh_real: real > real ).
thf(sy_c_Transcendental_Oarcsin,type,
arcsin: real > real ).
thf(sy_c_Transcendental_Oarctan,type,
arctan: real > real ).
thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
arsinh_real: real > real ).
thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
artanh_real: real > real ).
thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
cos_complex: complex > complex ).
thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
cos_real: real > real ).
thf(sy_c_Transcendental_Ocos__coeff,type,
cos_coeff: nat > real ).
thf(sy_c_Transcendental_Ocosh_001t__Complex__Ocomplex,type,
cosh_complex: complex > complex ).
thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
cosh_real: real > real ).
thf(sy_c_Transcendental_Ocot_001t__Complex__Ocomplex,type,
cot_complex: complex > complex ).
thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
cot_real: real > real ).
thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
exp_complex: complex > complex ).
thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
exp_real: real > real ).
thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
ln_ln_real: real > real ).
thf(sy_c_Transcendental_Olog,type,
log: real > real > real ).
thf(sy_c_Transcendental_Opi,type,
pi: real ).
thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
powr_real: real > real > real ).
thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
sin_complex: complex > complex ).
thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
sin_real: real > real ).
thf(sy_c_Transcendental_Osin__coeff,type,
sin_coeff: nat > real ).
thf(sy_c_Transcendental_Osinh_001t__Complex__Ocomplex,type,
sinh_complex: complex > complex ).
thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
sinh_real: real > real ).
thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
tan_complex: complex > complex ).
thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
tan_real: real > real ).
thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
tanh_complex: complex > complex ).
thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
tanh_real: real > real ).
thf(sy_c_Transfer_Obi__total_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
bi_tot896582865486249351at_int: ( product_prod_nat_nat > int > $o ) > $o ).
thf(sy_c_Transitive__Closure_Ortrancl_001t__Nat__Onat,type,
transi2905341329935302413cl_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).
thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
vEBT_Leaf: $o > $o > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
vEBT_size_VEBT: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
vEBT_VEBT_high: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
vEBT_VEBT_low: nat > nat > nat ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).
thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
vEBT_invar_vebt: vEBT_VEBT > nat > $o ).
thf(sy_c_VEBT__Definitions_Oset__vebt,type,
vEBT_set_vebt: vEBT_VEBT > set_nat ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
vEBT_vebt_buildup: nat > vEBT_VEBT ).
thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
vEBT_v4011308405150292612up_rel: nat > nat > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d,type,
vEBT_V8646137997579335489_i_l_d: nat > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p,type,
vEBT_V8346862874174094_d_u_p: nat > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p__rel,type,
vEBT_V1247956027447740395_p_rel: nat > nat > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d__rel,type,
vEBT_V5144397997797733112_d_rel: nat > nat > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ocnt,type,
vEBT_VEBT_cnt: vEBT_VEBT > real ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ocnt__rel,type,
vEBT_VEBT_cnt_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace,type,
vEBT_VEBT_space: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace_H,type,
vEBT_VEBT_space2: vEBT_VEBT > nat ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace_H__rel,type,
vEBT_VEBT_space_rel: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_VEBT__Space_OVEBT__internal_Ospace__rel,type,
vEBT_VEBT_space_rel2: vEBT_VEBT > vEBT_VEBT > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__Nat__Onat_J,type,
accp_list_nat: ( list_nat > list_nat > $o ) > list_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
accp_nat: ( nat > nat > $o ) > nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
accp_P3113834385874906142um_num: ( product_prod_num_num > product_prod_num_num > $o ) > product_prod_num_num > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).
thf(sy_c_Wellfounded_Oaccp_001t__VEBT____Definitions__OVEBT,type,
accp_VEBT_VEBT: ( vEBT_VEBT > vEBT_VEBT > $o ) > vEBT_VEBT > $o ).
thf(sy_c_Wellfounded_Opred__nat,type,
pred_nat: set_Pr1261947904930325089at_nat ).
thf(sy_c_fChoice_001t__Real__Oreal,type,
fChoice_real: ( real > $o ) > real ).
thf(sy_c_member_001_Eo,type,
member_o: $o > set_o > $o ).
thf(sy_c_member_001t__Code____Numeral__Ointeger,type,
member_Code_integer: code_integer > set_Code_integer > $o ).
thf(sy_c_member_001t__Complex__Ocomplex,type,
member_complex: complex > set_complex > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__List__Olist_I_Eo_J,type,
member_list_o: list_o > set_list_o > $o ).
thf(sy_c_member_001t__List__Olist_It__Int__Oint_J,type,
member_list_int: list_int > set_list_int > $o ).
thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
member_list_nat: list_nat > set_list_nat > $o ).
thf(sy_c_member_001t__List__Olist_It__Real__Oreal_J,type,
member_list_real: list_real > set_list_real > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_member_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
member8206827879206165904at_nat: produc859450856879609959at_nat > set_Pr8693737435421807431at_nat > $o ).
thf(sy_c_member_001t__Rat__Orat,type,
member_rat: rat > set_rat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
member_set_nat: set_nat > set_set_nat > $o ).
thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).
thf(sy_v_va____,type,
va: nat ).
% Relevant facts (10216)
thf(fact_0_False,axiom,
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) ) ).
% False
thf(fact_1__C3_OIH_C_I3_J,axiom,
! [X: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) )
=> ( ( X
= ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ X ) ) ) @ ( times_times_real @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ ( suc @ X ) ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).
% "3.IH"(3)
thf(fact_2__C3_OIH_C_I4_J,axiom,
! [X: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) )
=> ( ( X
= ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_V8646137997579335489_i_l_d @ X ) ) @ ( times_times_real @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ X ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).
% "3.IH"(4)
thf(fact_3__C3_OIH_C_I1_J,axiom,
! [X: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ va ) ) )
=> ( ( X
= ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_V8646137997579335489_i_l_d @ X ) ) @ ( times_times_real @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ X ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).
% "3.IH"(1)
thf(fact_4_space__cnt,axiom,
! [T: vEBT_VEBT] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_VEBT_space2 @ T ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_cnt @ T ) ) ) ).
% space_cnt
thf(fact_5_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_6_divide__le__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_7_divide__le__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_8_le__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_9_le__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_10_of__nat__numeral,axiom,
! [N: num] :
( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N ) )
= ( numera6690914467698888265omplex @ N ) ) ).
% of_nat_numeral
thf(fact_11_of__nat__numeral,axiom,
! [N: num] :
( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% of_nat_numeral
thf(fact_12_of__nat__numeral,axiom,
! [N: num] :
( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_rat @ N ) ) ).
% of_nat_numeral
thf(fact_13_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ N ) ) ).
% of_nat_numeral
thf(fact_14_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% of_nat_numeral
thf(fact_15_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one ) ).
% semiring_norm(86)
thf(fact_16_semiring__norm_I84_J,axiom,
! [N: num] :
( one
!= ( bit1 @ N ) ) ).
% semiring_norm(84)
thf(fact_17_semiring__norm_I89_J,axiom,
! [M: num,N: num] :
( ( bit1 @ M )
!= ( bit0 @ N ) ) ).
% semiring_norm(89)
thf(fact_18_semiring__norm_I88_J,axiom,
! [M: num,N: num] :
( ( bit0 @ M )
!= ( bit1 @ N ) ) ).
% semiring_norm(88)
thf(fact_19_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( times_times_nat @ M @ N ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).
% of_nat_mult
thf(fact_20_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_21_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% of_nat_mult
thf(fact_22_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_23_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_24_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_25_numeral__Bit1__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit1_div_2
thf(fact_26_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_27_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_28_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_29_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_30_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera6690914467698888265omplex @ M )
= ( numera6690914467698888265omplex @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_31_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_32_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_rat @ M )
= ( numeral_numeral_rat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_33_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_34_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_35_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_36_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_37_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_38_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_39_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_40_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_41_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_42_nat_Oinject,axiom,
! [X2: nat,Y2: nat] :
( ( ( suc @ X2 )
= ( suc @ Y2 ) )
= ( X2 = Y2 ) ) ).
% nat.inject
thf(fact_43_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= ( semiri8010041392384452111omplex @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_44_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_45_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri681578069525770553at_rat @ M )
= ( semiri681578069525770553at_rat @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_46_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= ( semiri1316708129612266289at_nat @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_47_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_48_semiring__norm_I73_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(73)
thf(fact_49_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( ( bit1 @ M )
= ( bit1 @ N ) )
= ( M = N ) ) ).
% semiring_norm(90)
thf(fact_50_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_51_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_52_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_53_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_54_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_55_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_56_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
= ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_57_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_58_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_59_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_60_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_61_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_62_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_63_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_64_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_65_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_66_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_67_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_68_semiring__norm_I14_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).
% semiring_norm(14)
thf(fact_69_semiring__norm_I15_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).
% semiring_norm(15)
thf(fact_70_semiring__norm_I72_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(72)
thf(fact_71_semiring__norm_I70_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).
% semiring_norm(70)
thf(fact_72_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_73_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_74_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_75_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_76_mem__Collect__eq,axiom,
! [A: complex,P: complex > $o] :
( ( member_complex @ A @ ( collect_complex @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_77_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_78_mem__Collect__eq,axiom,
! [A: list_nat,P: list_nat > $o] :
( ( member_list_nat @ A @ ( collect_list_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_79_mem__Collect__eq,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_80_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_81_mem__Collect__eq,axiom,
! [A: int,P: int > $o] :
( ( member_int @ A @ ( collect_int @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_82_Collect__mem__eq,axiom,
! [A2: set_complex] :
( ( collect_complex
@ ^ [X3: complex] : ( member_complex @ X3 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_83_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X3: real] : ( member_real @ X3 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_84_Collect__mem__eq,axiom,
! [A2: set_list_nat] :
( ( collect_list_nat
@ ^ [X3: list_nat] : ( member_list_nat @ X3 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_85_Collect__mem__eq,axiom,
! [A2: set_set_nat] :
( ( collect_set_nat
@ ^ [X3: set_nat] : ( member_set_nat @ X3 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_86_Collect__mem__eq,axiom,
! [A2: set_nat] :
( ( collect_nat
@ ^ [X3: nat] : ( member_nat @ X3 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_87_Collect__mem__eq,axiom,
! [A2: set_int] :
( ( collect_int
@ ^ [X3: int] : ( member_int @ X3 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_88_Collect__cong,axiom,
! [P: real > $o,Q: real > $o] :
( ! [X4: real] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_real @ P )
= ( collect_real @ Q ) ) ) ).
% Collect_cong
thf(fact_89_Collect__cong,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ! [X4: list_nat] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_list_nat @ P )
= ( collect_list_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_90_Collect__cong,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X4: set_nat] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_set_nat @ P )
= ( collect_set_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_91_Collect__cong,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X4: nat] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_nat @ P )
= ( collect_nat @ Q ) ) ) ).
% Collect_cong
thf(fact_92_Collect__cong,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ( P @ X4 )
= ( Q @ X4 ) )
=> ( ( collect_int @ P )
= ( collect_int @ Q ) ) ) ).
% Collect_cong
thf(fact_93_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_94_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_95_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_96_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_97_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_98_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_99_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_100_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_101_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_102_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ? [X4: nat] :
( ( P @ X4 )
& ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X4 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_103_div__times__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).
% div_times_less_eq_dividend
thf(fact_104_times__div__less__eq__dividend,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_105_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq_num @ X @ one )
= ( X = one ) ) ).
% le_num_One_iff
thf(fact_106_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_107_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X4: nat] : ( R @ X4 @ X4 )
=> ( ! [X4: nat,Y: nat,Z2: nat] :
( ( R @ X4 @ Y )
=> ( ( R @ Y @ Z2 )
=> ( R @ X4 @ Z2 ) ) )
=> ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_108_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_109_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_110_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_111_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_112_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_113_Suc__le__D,axiom,
! [N: nat,M3: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M3 )
=> ? [M4: nat] :
( M3
= ( suc @ M4 ) ) ) ).
% Suc_le_D
thf(fact_114_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_115_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_116_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_117_div__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q2 ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) ).
% div_mult2_eq
thf(fact_118_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_119_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_120_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_121_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_122_of__nat__dvd__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% of_nat_dvd_iff
thf(fact_123_div__mult2__numeral__eq,axiom,
! [A: nat,K: num,L: num] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_124_div__mult2__numeral__eq,axiom,
! [A: int,K: num,L: num] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_125_Suc__div__le__mono,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).
% Suc_div_le_mono
thf(fact_126_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_127_Suc__inject,axiom,
! [X: nat,Y4: nat] :
( ( ( suc @ X )
= ( suc @ Y4 ) )
=> ( X = Y4 ) ) ).
% Suc_inject
thf(fact_128_lift__Suc__antimono__le,axiom,
! [F: nat > set_int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_set_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_set_int @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_129_lift__Suc__antimono__le,axiom,
! [F: nat > rat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_rat @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_130_lift__Suc__antimono__le,axiom,
! [F: nat > num,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_131_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_132_lift__Suc__antimono__le,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_133_lift__Suc__antimono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_134_lift__Suc__mono__le,axiom,
! [F: nat > set_int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_set_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_set_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_135_lift__Suc__mono__le,axiom,
! [F: nat > rat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_rat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_136_lift__Suc__mono__le,axiom,
! [F: nat > num,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_num @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_137_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_138_lift__Suc__mono__le,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_139_lift__Suc__mono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_140_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).
% of_nat_mono
thf(fact_141_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_142_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_143_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_144_mult__of__nat__commute,axiom,
! [X: nat,Y4: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ X ) @ Y4 )
= ( times_times_complex @ Y4 @ ( semiri8010041392384452111omplex @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_145_mult__of__nat__commute,axiom,
! [X: nat,Y4: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y4 )
= ( times_times_real @ Y4 @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_146_mult__of__nat__commute,axiom,
! [X: nat,Y4: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ X ) @ Y4 )
= ( times_times_rat @ Y4 @ ( semiri681578069525770553at_rat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_147_mult__of__nat__commute,axiom,
! [X: nat,Y4: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y4 )
= ( times_times_nat @ Y4 @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_148_mult__of__nat__commute,axiom,
! [X: nat,Y4: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y4 )
= ( times_times_int @ Y4 @ ( semiri1314217659103216013at_int @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_149_mult__numeral__1__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_150_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_151_mult__numeral__1__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_152_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_153_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_154_mult__numeral__1,axiom,
! [A: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_155_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_156_mult__numeral__1,axiom,
! [A: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_157_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_158_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_159_divide__numeral__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_160_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_161_divide__numeral__1,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_162_num_Oexhaust,axiom,
! [Y4: num] :
( ( Y4 != one )
=> ( ! [X22: num] :
( Y4
!= ( bit0 @ X22 ) )
=> ~ ! [X32: num] :
( Y4
!= ( bit1 @ X32 ) ) ) ) ).
% num.exhaust
thf(fact_163_div__mult2__eq_H,axiom,
! [A: nat,M: nat,N: nat] :
( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% div_mult2_eq'
thf(fact_164_div__mult2__eq_H,axiom,
! [A: int,M: nat,N: nat] :
( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% div_mult2_eq'
thf(fact_165_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_166_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_167_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_168_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_169_eval__nat__numeral_I3_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).
% eval_nat_numeral(3)
thf(fact_170_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_171_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_172_even__of__nat,axiom,
! [N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_of_nat
thf(fact_173_even__Suc__div__two,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_Suc_div_two
thf(fact_174_odd__Suc__div__two,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% odd_Suc_div_two
thf(fact_175_numeral__le__real__of__nat__iff,axiom,
! [N: num,M: nat] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_176_even__Suc__Suc__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_Suc_Suc_iff
thf(fact_177_even__Suc,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% even_Suc
thf(fact_178_even__mult__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_179_even__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_180_even__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_181_dvd__mult__div__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_182_dvd__mult__div__cancel,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_183_dvd__mult__div__cancel,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_184_dvd__div__mult__self,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_185_dvd__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_186_dvd__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% dvd_div_mult_self
thf(fact_187_even__two__times__div__two,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_188_even__two__times__div__two,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_189_even__two__times__div__two,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= A ) ) ).
% even_two_times_div_two
thf(fact_190_div2__even__ext__nat,axiom,
! [X: nat,Y4: nat] :
( ( ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y4 ) )
=> ( X = Y4 ) ) ) ).
% div2_even_ext_nat
thf(fact_191_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_192_div__dvd__div,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ A @ C )
=> ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ B @ A ) @ ( divide6298287555418463151nteger @ C @ A ) )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_193_div__dvd__div,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_194_div__dvd__div,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_195_dvd__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_trans
thf(fact_196_dvd__trans,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ C )
=> ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_trans
thf(fact_197_dvd__trans,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ B @ C )
=> ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_trans
thf(fact_198_dvd__refl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% dvd_refl
thf(fact_199_dvd__refl,axiom,
! [A: int] : ( dvd_dvd_int @ A @ A ) ).
% dvd_refl
thf(fact_200_dvd__refl,axiom,
! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ A ) ).
% dvd_refl
thf(fact_201_complete__real,axiom,
! [S: set_real] :
( ? [X5: real] : ( member_real @ X5 @ S )
=> ( ? [Z3: real] :
! [X4: real] :
( ( member_real @ X4 @ S )
=> ( ord_less_eq_real @ X4 @ Z3 ) )
=> ? [Y: real] :
( ! [X5: real] :
( ( member_real @ X5 @ S )
=> ( ord_less_eq_real @ X5 @ Y ) )
& ! [Z3: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S )
=> ( ord_less_eq_real @ X4 @ Z3 ) )
=> ( ord_less_eq_real @ Y @ Z3 ) ) ) ) ) ).
% complete_real
thf(fact_202_dvdE,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ~ ! [K2: code_integer] :
( A
!= ( times_3573771949741848930nteger @ B @ K2 ) ) ) ).
% dvdE
thf(fact_203_dvdE,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ~ ! [K2: real] :
( A
!= ( times_times_real @ B @ K2 ) ) ) ).
% dvdE
thf(fact_204_dvdE,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ~ ! [K2: rat] :
( A
!= ( times_times_rat @ B @ K2 ) ) ) ).
% dvdE
thf(fact_205_dvdE,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ~ ! [K2: nat] :
( A
!= ( times_times_nat @ B @ K2 ) ) ) ).
% dvdE
thf(fact_206_dvdE,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ~ ! [K2: int] :
( A
!= ( times_times_int @ B @ K2 ) ) ) ).
% dvdE
thf(fact_207_dvdI,axiom,
! [A: code_integer,B: code_integer,K: code_integer] :
( ( A
= ( times_3573771949741848930nteger @ B @ K ) )
=> ( dvd_dvd_Code_integer @ B @ A ) ) ).
% dvdI
thf(fact_208_dvdI,axiom,
! [A: real,B: real,K: real] :
( ( A
= ( times_times_real @ B @ K ) )
=> ( dvd_dvd_real @ B @ A ) ) ).
% dvdI
thf(fact_209_dvdI,axiom,
! [A: rat,B: rat,K: rat] :
( ( A
= ( times_times_rat @ B @ K ) )
=> ( dvd_dvd_rat @ B @ A ) ) ).
% dvdI
thf(fact_210_dvdI,axiom,
! [A: nat,B: nat,K: nat] :
( ( A
= ( times_times_nat @ B @ K ) )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% dvdI
thf(fact_211_dvdI,axiom,
! [A: int,B: int,K: int] :
( ( A
= ( times_times_int @ B @ K ) )
=> ( dvd_dvd_int @ B @ A ) ) ).
% dvdI
thf(fact_212_dvd__def,axiom,
( dvd_dvd_Code_integer
= ( ^ [B2: code_integer,A3: code_integer] :
? [K3: code_integer] :
( A3
= ( times_3573771949741848930nteger @ B2 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_213_dvd__def,axiom,
( dvd_dvd_real
= ( ^ [B2: real,A3: real] :
? [K3: real] :
( A3
= ( times_times_real @ B2 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_214_dvd__def,axiom,
( dvd_dvd_rat
= ( ^ [B2: rat,A3: rat] :
? [K3: rat] :
( A3
= ( times_times_rat @ B2 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_215_dvd__def,axiom,
( dvd_dvd_nat
= ( ^ [B2: nat,A3: nat] :
? [K3: nat] :
( A3
= ( times_times_nat @ B2 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_216_dvd__def,axiom,
( dvd_dvd_int
= ( ^ [B2: int,A3: int] :
? [K3: int] :
( A3
= ( times_times_int @ B2 @ K3 ) ) ) ) ).
% dvd_def
thf(fact_217_dvd__mult,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ C )
=> ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).
% dvd_mult
thf(fact_218_dvd__mult,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult
thf(fact_219_dvd__mult,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_220_dvd__mult,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_221_dvd__mult,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult
thf(fact_222_dvd__mult2,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_223_dvd__mult2,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_224_dvd__mult2,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_225_dvd__mult2,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_226_dvd__mult2,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_227_dvd__mult__left,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
=> ( dvd_dvd_Code_integer @ A @ C ) ) ).
% dvd_mult_left
thf(fact_228_dvd__mult__left,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ A @ C ) ) ).
% dvd_mult_left
thf(fact_229_dvd__mult__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_230_dvd__mult__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ).
% dvd_mult_left
thf(fact_231_dvd__mult__left,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ A @ C ) ) ).
% dvd_mult_left
thf(fact_232_dvd__triv__left,axiom,
! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ A @ B ) ) ).
% dvd_triv_left
thf(fact_233_dvd__triv__left,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).
% dvd_triv_left
thf(fact_234_dvd__triv__left,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_235_dvd__triv__left,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).
% dvd_triv_left
thf(fact_236_dvd__triv__left,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).
% dvd_triv_left
thf(fact_237_mult__dvd__mono,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ C @ D )
=> ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_238_mult__dvd__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ C @ D )
=> ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_239_mult__dvd__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ C @ D )
=> ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_240_mult__dvd__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_241_mult__dvd__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_242_dvd__mult__right,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
=> ( dvd_dvd_Code_integer @ B @ C ) ) ).
% dvd_mult_right
thf(fact_243_dvd__mult__right,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
=> ( dvd_dvd_real @ B @ C ) ) ).
% dvd_mult_right
thf(fact_244_dvd__mult__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
=> ( dvd_dvd_rat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_245_dvd__mult__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
=> ( dvd_dvd_nat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_246_dvd__mult__right,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
=> ( dvd_dvd_int @ B @ C ) ) ).
% dvd_mult_right
thf(fact_247_dvd__triv__right,axiom,
! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ A ) ) ).
% dvd_triv_right
thf(fact_248_dvd__triv__right,axiom,
! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).
% dvd_triv_right
thf(fact_249_dvd__triv__right,axiom,
! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_250_dvd__triv__right,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).
% dvd_triv_right
thf(fact_251_dvd__triv__right,axiom,
! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).
% dvd_triv_right
thf(fact_252_dvd__div__eq__iff,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( ( divide6298287555418463151nteger @ A @ C )
= ( divide6298287555418463151nteger @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_253_dvd__div__eq__iff,axiom,
! [C: complex,A: complex,B: complex] :
( ( dvd_dvd_complex @ C @ A )
=> ( ( dvd_dvd_complex @ C @ B )
=> ( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_254_dvd__div__eq__iff,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_255_dvd__div__eq__iff,axiom,
! [C: rat,A: rat,B: rat] :
( ( dvd_dvd_rat @ C @ A )
=> ( ( dvd_dvd_rat @ C @ B )
=> ( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_256_dvd__div__eq__iff,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_257_dvd__div__eq__iff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
= ( A = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_258_dvd__div__eq__cancel,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( divide6298287555418463151nteger @ A @ C )
= ( divide6298287555418463151nteger @ B @ C ) )
=> ( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_259_dvd__div__eq__cancel,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
=> ( ( dvd_dvd_complex @ C @ A )
=> ( ( dvd_dvd_complex @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_260_dvd__div__eq__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
=> ( ( dvd_dvd_real @ C @ A )
=> ( ( dvd_dvd_real @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_261_dvd__div__eq__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
=> ( ( dvd_dvd_rat @ C @ A )
=> ( ( dvd_dvd_rat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_262_dvd__div__eq__cancel,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( divide_divide_nat @ A @ C )
= ( divide_divide_nat @ B @ C ) )
=> ( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_263_dvd__div__eq__cancel,axiom,
! [A: int,C: int,B: int] :
( ( ( divide_divide_int @ A @ C )
= ( divide_divide_int @ B @ C ) )
=> ( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( A = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_264_div__div__div__same,axiom,
! [D: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ D @ B )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ D ) @ ( divide6298287555418463151nteger @ B @ D ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_265_div__div__div__same,axiom,
! [D: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ D @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_266_div__div__div__same,axiom,
! [D: int,B: int,A: int] :
( ( dvd_dvd_int @ D @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_div_div_same
thf(fact_267_dvd__div__mult,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ C ) @ A )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_268_dvd__div__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
= ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_269_dvd__div__mult,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
= ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_270_div__mult__swap,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_271_div__mult__swap,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_272_div__mult__swap,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_273_div__div__eq__right,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_274_div__div__eq__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_275_div__div__eq__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_276_dvd__div__mult2__eq,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ C ) @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_277_dvd__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_278_dvd__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_279_dvd__mult__imp__div,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B )
=> ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_280_dvd__mult__imp__div,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
=> ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_281_dvd__mult__imp__div,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
=> ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_282_div__mult__div__if__dvd,axiom,
! [B: code_integer,A: code_integer,D: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( dvd_dvd_Code_integer @ D @ C )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ ( divide6298287555418463151nteger @ C @ D ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_283_div__mult__div__if__dvd,axiom,
! [B: nat,A: nat,D: nat,C: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ D @ C )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_284_div__mult__div__if__dvd,axiom,
! [B: int,A: int,D: int,C: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ D @ C )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_285_real__of__nat__div4,axiom,
! [N: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% real_of_nat_div4
thf(fact_286_real__of__nat__div,axiom,
! [D: nat,N: nat] :
( ( dvd_dvd_nat @ D @ N )
=> ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ D ) )
= ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).
% real_of_nat_div
thf(fact_287_even__numeral,axiom,
! [N: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_288_even__numeral,axiom,
! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_289_even__numeral,axiom,
! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_290_evenE,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: code_integer] :
( A
!= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B3 ) ) ) ).
% evenE
thf(fact_291_evenE,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: nat] :
( A
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) ) ) ).
% evenE
thf(fact_292_evenE,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: int] :
( A
!= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) ) ) ).
% evenE
thf(fact_293_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_294_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_295_odd__numeral,axiom,
! [N: num] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ).
% odd_numeral
thf(fact_296_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] :
( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_double_not_eq_double
thf(fact_297_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% double_not_eq_Suc_double
thf(fact_298_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_299_bit__eq__rec,axiom,
( ( ^ [Y5: code_integer,Z4: code_integer] : ( Y5 = Z4 ) )
= ( ^ [A3: code_integer,B2: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B2 ) )
& ( ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ B2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_300_bit__eq__rec,axiom,
( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
= ( ^ [A3: nat,B2: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
& ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_301_bit__eq__rec,axiom,
( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
= ( ^ [A3: int,B2: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
& ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_302_times__divide__eq__left,axiom,
! [B: complex,C: complex,A: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
= ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_303_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_304_times__divide__eq__left,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_305_divide__divide__eq__left,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_306_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_307_divide__divide__eq__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_308_divide__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_309_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_310_divide__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_311_times__divide__eq__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_312_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_313_times__divide__eq__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_314_buildup__nothing__in__leaf,axiom,
! [N: nat,X: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X ) ).
% buildup_nothing_in_leaf
thf(fact_315_triangle__def,axiom,
( nat_triangle
= ( ^ [N4: nat] : ( divide_divide_nat @ ( times_times_nat @ N4 @ ( suc @ N4 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% triangle_def
thf(fact_316_set__decode__Suc,axiom,
! [N: nat,X: nat] :
( ( member_nat @ ( suc @ N ) @ ( nat_set_decode @ X ) )
= ( member_nat @ N @ ( nat_set_decode @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% set_decode_Suc
thf(fact_317_int__dvd__int__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% int_dvd_int_iff
thf(fact_318_real__divide__square__eq,axiom,
! [R2: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ R2 ) )
= ( divide_divide_real @ A @ R2 ) ) ).
% real_divide_square_eq
thf(fact_319_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiri1314217659103216013at_int @ M )
= ( numeral_numeral_int @ V ) )
= ( M
= ( numeral_numeral_nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_320_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_321_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_322_subset__decode__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% subset_decode_imp_le
thf(fact_323_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_324_zdiv__int,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
= ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% zdiv_int
thf(fact_325_divide__divide__eq__left_H,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
= ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_326_divide__divide__eq__left_H,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_327_divide__divide__eq__left_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
= ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_328_divide__divide__times__eq,axiom,
! [X: complex,Y4: complex,Z: complex,W: complex] :
( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X @ Y4 ) @ ( divide1717551699836669952omplex @ Z @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X @ W ) @ ( times_times_complex @ Y4 @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_329_divide__divide__times__eq,axiom,
! [X: real,Y4: real,Z: real,W: real] :
( ( divide_divide_real @ ( divide_divide_real @ X @ Y4 ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y4 @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_330_divide__divide__times__eq,axiom,
! [X: rat,Y4: rat,Z: rat,W: rat] :
( ( divide_divide_rat @ ( divide_divide_rat @ X @ Y4 ) @ ( divide_divide_rat @ Z @ W ) )
= ( divide_divide_rat @ ( times_times_rat @ X @ W ) @ ( times_times_rat @ Y4 @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_331_times__divide__times__eq,axiom,
! [X: complex,Y4: complex,Z: complex,W: complex] :
( ( times_times_complex @ ( divide1717551699836669952omplex @ X @ Y4 ) @ ( divide1717551699836669952omplex @ Z @ W ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ Y4 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_332_times__divide__times__eq,axiom,
! [X: real,Y4: real,Z: real,W: real] :
( ( times_times_real @ ( divide_divide_real @ X @ Y4 ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y4 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_333_times__divide__times__eq,axiom,
! [X: rat,Y4: rat,Z: rat,W: rat] :
( ( times_times_rat @ ( divide_divide_rat @ X @ Y4 ) @ ( divide_divide_rat @ Z @ W ) )
= ( divide_divide_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ Y4 @ W ) ) ) ).
% times_divide_times_eq
thf(fact_334_int__ops_I3_J,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% int_ops(3)
thf(fact_335_verit__eq__simplify_I9_J,axiom,
! [X33: num,Y32: num] :
( ( ( bit1 @ X33 )
= ( bit1 @ Y32 ) )
= ( X33 = Y32 ) ) ).
% verit_eq_simplify(9)
thf(fact_336_verit__eq__simplify_I8_J,axiom,
! [X2: num,Y2: num] :
( ( ( bit0 @ X2 )
= ( bit0 @ Y2 ) )
= ( X2 = Y2 ) ) ).
% verit_eq_simplify(8)
thf(fact_337_dual__order_Orefl,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).
% dual_order.refl
thf(fact_338_dual__order_Orefl,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% dual_order.refl
thf(fact_339_dual__order_Orefl,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% dual_order.refl
thf(fact_340_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_341_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_342_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_343_order__refl,axiom,
! [X: set_int] : ( ord_less_eq_set_int @ X @ X ) ).
% order_refl
thf(fact_344_order__refl,axiom,
! [X: rat] : ( ord_less_eq_rat @ X @ X ) ).
% order_refl
thf(fact_345_order__refl,axiom,
! [X: num] : ( ord_less_eq_num @ X @ X ) ).
% order_refl
thf(fact_346_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_347_order__refl,axiom,
! [X: int] : ( ord_less_eq_int @ X @ X ) ).
% order_refl
thf(fact_348_order__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% order_refl
thf(fact_349_cnt__non__neg,axiom,
! [T: vEBT_VEBT] : ( ord_less_eq_real @ zero_zero_real @ ( vEBT_VEBT_cnt @ T ) ) ).
% cnt_non_neg
thf(fact_350_buildup__nothing__in__min__max,axiom,
! [N: nat,X: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N ) @ X ) ).
% buildup_nothing_in_min_max
thf(fact_351_set__decode__0,axiom,
! [X: nat] :
( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) ) ).
% set_decode_0
thf(fact_352_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_353_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_354_verit__eq__simplify_I12_J,axiom,
! [X33: num] :
( one
!= ( bit1 @ X33 ) ) ).
% verit_eq_simplify(12)
thf(fact_355_verit__eq__simplify_I14_J,axiom,
! [X2: num,X33: num] :
( ( bit0 @ X2 )
!= ( bit1 @ X33 ) ) ).
% verit_eq_simplify(14)
thf(fact_356_mult__zero__left,axiom,
! [A: complex] :
( ( times_times_complex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% mult_zero_left
thf(fact_357_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_358_mult__zero__left,axiom,
! [A: rat] :
( ( times_times_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% mult_zero_left
thf(fact_359_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_360_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_361_mult__zero__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% mult_zero_right
thf(fact_362_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_363_mult__zero__right,axiom,
! [A: rat] :
( ( times_times_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% mult_zero_right
thf(fact_364_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_365_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_366_mult__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% mult_eq_0_iff
thf(fact_367_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_368_mult__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% mult_eq_0_iff
thf(fact_369_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_370_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_371_mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_372_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_373_mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_374_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_375_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_376_mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_377_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_378_mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_379_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_380_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_381_div__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% div_0
thf(fact_382_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_383_div__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ zero_zero_rat @ A )
= zero_zero_rat ) ).
% div_0
thf(fact_384_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_385_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_386_div__by__0,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% div_by_0
thf(fact_387_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_388_div__by__0,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% div_by_0
thf(fact_389_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_390_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_391_divide__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divide_eq_0_iff
thf(fact_392_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_393_divide__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_eq_0_iff
thf(fact_394_divide__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ C @ A )
= ( divide1717551699836669952omplex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_395_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_396_divide__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( divide_divide_rat @ C @ A )
= ( divide_divide_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_397_divide__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ C )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_398_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_399_divide__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ( divide_divide_rat @ A @ C )
= ( divide_divide_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_400_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_401_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_402_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_403_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_404_division__ring__divide__zero,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% division_ring_divide_zero
thf(fact_405_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_406_division__ring__divide__zero,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ zero_zero_rat )
= zero_zero_rat ) ).
% division_ring_divide_zero
thf(fact_407_dvd__0__left__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
= ( A = zero_z3403309356797280102nteger ) ) ).
% dvd_0_left_iff
thf(fact_408_dvd__0__left__iff,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
= ( A = zero_zero_complex ) ) ).
% dvd_0_left_iff
thf(fact_409_dvd__0__left__iff,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
= ( A = zero_zero_real ) ) ).
% dvd_0_left_iff
thf(fact_410_dvd__0__left__iff,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
= ( A = zero_zero_rat ) ) ).
% dvd_0_left_iff
thf(fact_411_dvd__0__left__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% dvd_0_left_iff
thf(fact_412_dvd__0__left__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
= ( A = zero_zero_int ) ) ).
% dvd_0_left_iff
thf(fact_413_dvd__0__right,axiom,
! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ zero_z3403309356797280102nteger ) ).
% dvd_0_right
thf(fact_414_dvd__0__right,axiom,
! [A: complex] : ( dvd_dvd_complex @ A @ zero_zero_complex ) ).
% dvd_0_right
thf(fact_415_dvd__0__right,axiom,
! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).
% dvd_0_right
thf(fact_416_dvd__0__right,axiom,
! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).
% dvd_0_right
thf(fact_417_dvd__0__right,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% dvd_0_right
thf(fact_418_dvd__0__right,axiom,
! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).
% dvd_0_right
thf(fact_419_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_420_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_421_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_422_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_423_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_424_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_425_triangle__0,axiom,
( ( nat_triangle @ zero_zero_nat )
= zero_zero_nat ) ).
% triangle_0
thf(fact_426_nonzero__mult__div__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_427_nonzero__mult__div__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_428_nonzero__mult__div__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_429_nonzero__mult__div__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_430_nonzero__mult__div__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_431_nonzero__mult__div__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_432_nonzero__mult__div__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_433_nonzero__mult__div__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_434_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_435_nonzero__mult__div__cancel__right,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
= A ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_436_div__mult__mult1,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_437_div__mult__mult1,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_438_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_439_div__mult__mult2,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_440_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_441_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_442_mult__divide__mult__cancel__left__if,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( C = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= zero_zero_complex ) )
& ( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_443_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_444_mult__divide__mult__cancel__left__if,axiom,
! [C: rat,A: rat,B: rat] :
( ( ( C = zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= zero_zero_rat ) )
& ( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_445_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_446_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_447_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_448_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_449_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_450_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_451_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_452_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_453_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_454_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_455_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_456_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_457_dvd__mult__cancel__left,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
= ( ( C = zero_z3403309356797280102nteger )
| ( dvd_dvd_Code_integer @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_458_dvd__mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_459_dvd__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_460_dvd__mult__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_461_dvd__mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_462_dvd__mult__cancel__right,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
= ( ( C = zero_z3403309356797280102nteger )
| ( dvd_dvd_Code_integer @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_463_dvd__mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( dvd_dvd_complex @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_464_dvd__mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_465_dvd__mult__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_466_dvd__mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_467_dvd__times__left__cancel__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_468_dvd__times__left__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_469_dvd__times__left__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_left_cancel_iff
thf(fact_470_dvd__times__right__cancel__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_471_dvd__times__right__cancel__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_472_dvd__times__right__cancel__iff,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% dvd_times_right_cancel_iff
thf(fact_473_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= zero_zero_complex )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_474_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_475_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri681578069525770553at_rat @ M )
= zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_476_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_477_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_478_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_479_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_480_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_481_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_482_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_483_of__nat__0,axiom,
( ( semiri8010041392384452111omplex @ zero_zero_nat )
= zero_zero_complex ) ).
% of_nat_0
thf(fact_484_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_485_of__nat__0,axiom,
( ( semiri681578069525770553at_rat @ zero_zero_nat )
= zero_zero_rat ) ).
% of_nat_0
thf(fact_486_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_487_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_488_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_489_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_490_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).
% dvd_1_left
thf(fact_491_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( M
= ( suc @ zero_zero_nat ) ) ) ).
% dvd_1_iff_1
thf(fact_492_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
= M ) ).
% div_by_Suc_0
thf(fact_493_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_494_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_495_divide__eq__eq__numeral1_I1_J,axiom,
! [B: complex,W: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
= A )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_496_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_497_divide__eq__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
= A )
= ( ( ( ( numeral_numeral_rat @ W )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
& ( ( ( numeral_numeral_rat @ W )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_498_eq__divide__eq__numeral1_I1_J,axiom,
! [A: complex,B: complex,W: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( ( ( numera6690914467698888265omplex @ W )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
= B ) )
& ( ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_499_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_500_eq__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( A
= ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ( numeral_numeral_rat @ W )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
= B ) )
& ( ( ( numeral_numeral_rat @ W )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_501_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_502_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_503_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_504_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_505_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_506_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_507_le__numeral__extra_I3_J,axiom,
ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).
% le_numeral_extra(3)
thf(fact_508_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_509_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_510_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_511_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_complex
!= ( numera6690914467698888265omplex @ N ) ) ).
% zero_neq_numeral
thf(fact_512_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_513_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_rat
!= ( numeral_numeral_rat @ N ) ) ).
% zero_neq_numeral
thf(fact_514_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_515_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_516_mult__not__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
!= zero_zero_complex )
=> ( ( A != zero_zero_complex )
& ( B != zero_zero_complex ) ) ) ).
% mult_not_zero
thf(fact_517_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_518_mult__not__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
!= zero_zero_rat )
=> ( ( A != zero_zero_rat )
& ( B != zero_zero_rat ) ) ) ).
% mult_not_zero
thf(fact_519_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_520_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_521_divisors__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
=> ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divisors_zero
thf(fact_522_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_523_divisors__zero,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= zero_zero_rat )
=> ( ( A = zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divisors_zero
thf(fact_524_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_525_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_526_no__zero__divisors,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( times_times_complex @ A @ B )
!= zero_zero_complex ) ) ) ).
% no_zero_divisors
thf(fact_527_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_528_no__zero__divisors,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( times_times_rat @ A @ B )
!= zero_zero_rat ) ) ) ).
% no_zero_divisors
thf(fact_529_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_530_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_531_mult__left__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_532_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_533_mult__left__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ C @ A )
= ( times_times_rat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_534_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_535_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_536_mult__right__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_537_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_538_mult__right__cancel,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= ( times_times_rat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_539_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_540_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_541_dvd__0__left,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
=> ( A = zero_z3403309356797280102nteger ) ) ).
% dvd_0_left
thf(fact_542_dvd__0__left,axiom,
! [A: complex] :
( ( dvd_dvd_complex @ zero_zero_complex @ A )
=> ( A = zero_zero_complex ) ) ).
% dvd_0_left
thf(fact_543_dvd__0__left,axiom,
! [A: real] :
( ( dvd_dvd_real @ zero_zero_real @ A )
=> ( A = zero_zero_real ) ) ).
% dvd_0_left
thf(fact_544_dvd__0__left,axiom,
! [A: rat] :
( ( dvd_dvd_rat @ zero_zero_rat @ A )
=> ( A = zero_zero_rat ) ) ).
% dvd_0_left
thf(fact_545_dvd__0__left,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% dvd_0_left
thf(fact_546_dvd__0__left,axiom,
! [A: int] :
( ( dvd_dvd_int @ zero_zero_int @ A )
=> ( A = zero_zero_int ) ) ).
% dvd_0_left
thf(fact_547_dvd__field__iff,axiom,
( dvd_dvd_complex
= ( ^ [A3: complex,B2: complex] :
( ( A3 = zero_zero_complex )
=> ( B2 = zero_zero_complex ) ) ) ) ).
% dvd_field_iff
thf(fact_548_dvd__field__iff,axiom,
( dvd_dvd_real
= ( ^ [A3: real,B2: real] :
( ( A3 = zero_zero_real )
=> ( B2 = zero_zero_real ) ) ) ) ).
% dvd_field_iff
thf(fact_549_dvd__field__iff,axiom,
( dvd_dvd_rat
= ( ^ [A3: rat,B2: rat] :
( ( A3 = zero_zero_rat )
=> ( B2 = zero_zero_rat ) ) ) ) ).
% dvd_field_iff
thf(fact_550_list__decode_Ocases,axiom,
! [X: nat] :
( ( X != zero_zero_nat )
=> ~ ! [N2: nat] :
( X
!= ( suc @ N2 ) ) ) ).
% list_decode.cases
thf(fact_551_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Ocases,axiom,
! [X: nat] :
( ( X != zero_zero_nat )
=> ( ( X
!= ( suc @ zero_zero_nat ) )
=> ~ ! [Va: nat] :
( X
!= ( suc @ ( suc @ Va ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.cases
thf(fact_552_nat_Odistinct_I1_J,axiom,
! [X2: nat] :
( zero_zero_nat
!= ( suc @ X2 ) ) ).
% nat.distinct(1)
thf(fact_553_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_554_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_555_nat_OdiscI,axiom,
! [Nat: nat,X2: nat] :
( ( Nat
= ( suc @ X2 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_556_old_Onat_Oexhaust,axiom,
! [Y4: nat] :
( ( Y4 != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y4
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_557_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_558_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
=> ( ! [Y: nat] : ( P @ zero_zero_nat @ ( suc @ Y ) )
=> ( ! [X4: nat,Y: nat] :
( ( P @ X4 @ Y )
=> ( P @ ( suc @ X4 ) @ ( suc @ Y ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_559_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_560_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_561_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_562_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_563_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M4: nat] :
( N
= ( suc @ M4 ) ) ) ).
% not0_implies_Suc
thf(fact_564_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_565_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_566_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_567_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_568_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_569_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_570_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).
% zero_le_numeral
thf(fact_571_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_le_numeral
thf(fact_572_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_le_numeral
thf(fact_573_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_le_numeral
thf(fact_574_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).
% not_numeral_le_zero
thf(fact_575_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_le_zero
thf(fact_576_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_le_zero
thf(fact_577_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_le_zero
thf(fact_578_mult__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_579_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_580_mult__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_581_mult__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_582_mult__mono_H,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_583_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_584_mult__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_585_mult__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_586_zero__le__square,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).
% zero_le_square
thf(fact_587_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_588_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_589_split__mult__pos__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_590_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_591_split__mult__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_592_mult__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_593_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_594_mult__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_595_mult__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_596_mult__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_597_mult__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_598_mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_599_mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_600_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_601_mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_602_mult__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_603_mult__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_604_mult__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_605_mult__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_606_mult__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_607_mult__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_608_mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_609_mult__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_610_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_611_mult__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_612_split__mult__neg__le,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).
% split_mult_neg_le
thf(fact_613_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_614_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_615_split__mult__neg__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).
% split_mult_neg_le
thf(fact_616_mult__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_617_mult__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_618_mult__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_619_mult__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_620_mult__nonneg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_621_mult__nonneg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_622_mult__nonneg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos
thf(fact_623_mult__nonneg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos
thf(fact_624_mult__nonpos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_625_mult__nonpos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_626_mult__nonpos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonpos_nonneg
thf(fact_627_mult__nonpos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonpos_nonneg
thf(fact_628_mult__nonneg__nonpos2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_629_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_630_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_631_mult__nonneg__nonpos2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_632_zero__le__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_mult_iff
thf(fact_633_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_634_zero__le__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_mult_iff
thf(fact_635_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_636_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_637_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_638_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_639_divide__le__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_640_divide__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_641_divide__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_642_divide__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_643_zero__le__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_eq_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_le_divide_iff
thf(fact_644_zero__le__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_divide_iff
thf(fact_645_divide__nonneg__nonneg,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_646_divide__nonneg__nonneg,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_647_divide__nonneg__nonpos,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ Y4 @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y4 ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_nonpos
thf(fact_648_divide__nonneg__nonpos,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y4 @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y4 ) @ zero_zero_real ) ) ) ).
% divide_nonneg_nonpos
thf(fact_649_divide__nonpos__nonneg,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y4 ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_nonneg
thf(fact_650_divide__nonpos__nonneg,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y4 ) @ zero_zero_real ) ) ) ).
% divide_nonpos_nonneg
thf(fact_651_divide__nonpos__nonpos,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y4 @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_652_divide__nonpos__nonpos,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y4 @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_653_divide__right__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_654_divide__right__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_655_frac__eq__eq,axiom,
! [Y4: complex,Z: complex,X: complex,W: complex] :
( ( Y4 != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ X @ Y4 )
= ( divide1717551699836669952omplex @ W @ Z ) )
= ( ( times_times_complex @ X @ Z )
= ( times_times_complex @ W @ Y4 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_656_frac__eq__eq,axiom,
! [Y4: real,Z: real,X: real,W: real] :
( ( Y4 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ( divide_divide_real @ X @ Y4 )
= ( divide_divide_real @ W @ Z ) )
= ( ( times_times_real @ X @ Z )
= ( times_times_real @ W @ Y4 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_657_frac__eq__eq,axiom,
! [Y4: rat,Z: rat,X: rat,W: rat] :
( ( Y4 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( ( divide_divide_rat @ X @ Y4 )
= ( divide_divide_rat @ W @ Z ) )
= ( ( times_times_rat @ X @ Z )
= ( times_times_rat @ W @ Y4 ) ) ) ) ) ).
% frac_eq_eq
thf(fact_658_divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq
thf(fact_659_divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( divide_divide_real @ B @ C )
= A )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_660_divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( divide_divide_rat @ B @ C )
= A )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq
thf(fact_661_eq__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq
thf(fact_662_eq__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_663_eq__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq
thf(fact_664_divide__eq__imp,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( B
= ( times_times_complex @ A @ C ) )
=> ( ( divide1717551699836669952omplex @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_665_divide__eq__imp,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_666_divide__eq__imp,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( B
= ( times_times_rat @ A @ C ) )
=> ( ( divide_divide_rat @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_667_eq__divide__imp,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= B )
=> ( A
= ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_668_eq__divide__imp,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= B )
=> ( A
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_669_eq__divide__imp,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( ( times_times_rat @ A @ C )
= B )
=> ( A
= ( divide_divide_rat @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_670_nonzero__divide__eq__eq,axiom,
! [C: complex,B: complex,A: complex] :
( ( C != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ B @ C )
= A )
= ( B
= ( times_times_complex @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_671_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A )
= ( B
= ( times_times_real @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_672_nonzero__divide__eq__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( C != zero_zero_rat )
=> ( ( ( divide_divide_rat @ B @ C )
= A )
= ( B
= ( times_times_rat @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_673_nonzero__eq__divide__eq,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( A
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( times_times_complex @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_674_nonzero__eq__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_675_nonzero__eq__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( C != zero_zero_rat )
=> ( ( A
= ( divide_divide_rat @ B @ C ) )
= ( ( times_times_rat @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_676_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_677_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_678_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_679_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_680_dvd__div__eq__0__iff,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( ( divide6298287555418463151nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_681_dvd__div__eq__0__iff,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_682_dvd__div__eq__0__iff,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( A = zero_zero_real ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_683_dvd__div__eq__0__iff,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( ( divide_divide_rat @ A @ B )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_684_dvd__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_685_dvd__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_686_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ N ) )
!= zero_zero_complex ) ).
% of_nat_neq_0
thf(fact_687_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_688_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ N ) )
!= zero_zero_rat ) ).
% of_nat_neq_0
thf(fact_689_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_690_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_691_verit__comp__simplify1_I2_J,axiom,
! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_692_verit__comp__simplify1_I2_J,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_693_verit__comp__simplify1_I2_J,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_694_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_695_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_696_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_697_nle__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_eq_rat @ A @ B ) )
= ( ( ord_less_eq_rat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_698_nle__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_eq_num @ A @ B ) )
= ( ( ord_less_eq_num @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_699_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_700_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_701_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_702_le__cases3,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( ( ord_less_eq_rat @ X @ Y4 )
=> ~ ( ord_less_eq_rat @ Y4 @ Z ) )
=> ( ( ( ord_less_eq_rat @ Y4 @ X )
=> ~ ( ord_less_eq_rat @ X @ Z ) )
=> ( ( ( ord_less_eq_rat @ X @ Z )
=> ~ ( ord_less_eq_rat @ Z @ Y4 ) )
=> ( ( ( ord_less_eq_rat @ Z @ Y4 )
=> ~ ( ord_less_eq_rat @ Y4 @ X ) )
=> ( ( ( ord_less_eq_rat @ Y4 @ Z )
=> ~ ( ord_less_eq_rat @ Z @ X ) )
=> ~ ( ( ord_less_eq_rat @ Z @ X )
=> ~ ( ord_less_eq_rat @ X @ Y4 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_703_le__cases3,axiom,
! [X: num,Y4: num,Z: num] :
( ( ( ord_less_eq_num @ X @ Y4 )
=> ~ ( ord_less_eq_num @ Y4 @ Z ) )
=> ( ( ( ord_less_eq_num @ Y4 @ X )
=> ~ ( ord_less_eq_num @ X @ Z ) )
=> ( ( ( ord_less_eq_num @ X @ Z )
=> ~ ( ord_less_eq_num @ Z @ Y4 ) )
=> ( ( ( ord_less_eq_num @ Z @ Y4 )
=> ~ ( ord_less_eq_num @ Y4 @ X ) )
=> ( ( ( ord_less_eq_num @ Y4 @ Z )
=> ~ ( ord_less_eq_num @ Z @ X ) )
=> ~ ( ( ord_less_eq_num @ Z @ X )
=> ~ ( ord_less_eq_num @ X @ Y4 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_704_le__cases3,axiom,
! [X: nat,Y4: nat,Z: nat] :
( ( ( ord_less_eq_nat @ X @ Y4 )
=> ~ ( ord_less_eq_nat @ Y4 @ Z ) )
=> ( ( ( ord_less_eq_nat @ Y4 @ X )
=> ~ ( ord_less_eq_nat @ X @ Z ) )
=> ( ( ( ord_less_eq_nat @ X @ Z )
=> ~ ( ord_less_eq_nat @ Z @ Y4 ) )
=> ( ( ( ord_less_eq_nat @ Z @ Y4 )
=> ~ ( ord_less_eq_nat @ Y4 @ X ) )
=> ( ( ( ord_less_eq_nat @ Y4 @ Z )
=> ~ ( ord_less_eq_nat @ Z @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z @ X )
=> ~ ( ord_less_eq_nat @ X @ Y4 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_705_le__cases3,axiom,
! [X: int,Y4: int,Z: int] :
( ( ( ord_less_eq_int @ X @ Y4 )
=> ~ ( ord_less_eq_int @ Y4 @ Z ) )
=> ( ( ( ord_less_eq_int @ Y4 @ X )
=> ~ ( ord_less_eq_int @ X @ Z ) )
=> ( ( ( ord_less_eq_int @ X @ Z )
=> ~ ( ord_less_eq_int @ Z @ Y4 ) )
=> ( ( ( ord_less_eq_int @ Z @ Y4 )
=> ~ ( ord_less_eq_int @ Y4 @ X ) )
=> ( ( ( ord_less_eq_int @ Y4 @ Z )
=> ~ ( ord_less_eq_int @ Z @ X ) )
=> ~ ( ( ord_less_eq_int @ Z @ X )
=> ~ ( ord_less_eq_int @ X @ Y4 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_706_le__cases3,axiom,
! [X: real,Y4: real,Z: real] :
( ( ( ord_less_eq_real @ X @ Y4 )
=> ~ ( ord_less_eq_real @ Y4 @ Z ) )
=> ( ( ( ord_less_eq_real @ Y4 @ X )
=> ~ ( ord_less_eq_real @ X @ Z ) )
=> ( ( ( ord_less_eq_real @ X @ Z )
=> ~ ( ord_less_eq_real @ Z @ Y4 ) )
=> ( ( ( ord_less_eq_real @ Z @ Y4 )
=> ~ ( ord_less_eq_real @ Y4 @ X ) )
=> ( ( ( ord_less_eq_real @ Y4 @ Z )
=> ~ ( ord_less_eq_real @ Z @ X ) )
=> ~ ( ( ord_less_eq_real @ Z @ X )
=> ~ ( ord_less_eq_real @ X @ Y4 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_707_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: set_int,Z4: set_int] : ( Y5 = Z4 ) )
= ( ^ [X3: set_int,Y6: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y6 )
& ( ord_less_eq_set_int @ Y6 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_708_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: rat,Z4: rat] : ( Y5 = Z4 ) )
= ( ^ [X3: rat,Y6: rat] :
( ( ord_less_eq_rat @ X3 @ Y6 )
& ( ord_less_eq_rat @ Y6 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_709_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: num,Z4: num] : ( Y5 = Z4 ) )
= ( ^ [X3: num,Y6: num] :
( ( ord_less_eq_num @ X3 @ Y6 )
& ( ord_less_eq_num @ Y6 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_710_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
= ( ^ [X3: nat,Y6: nat] :
( ( ord_less_eq_nat @ X3 @ Y6 )
& ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_711_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
= ( ^ [X3: int,Y6: int] :
( ( ord_less_eq_int @ X3 @ Y6 )
& ( ord_less_eq_int @ Y6 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_712_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) )
= ( ^ [X3: real,Y6: real] :
( ( ord_less_eq_real @ X3 @ Y6 )
& ( ord_less_eq_real @ Y6 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_713_ord__eq__le__trans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( A = B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_714_ord__eq__le__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( A = B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_715_ord__eq__le__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_716_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_717_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_718_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_719_ord__le__eq__trans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_720_ord__le__eq__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_721_ord__le__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_722_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_723_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_724_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_725_order__antisym,axiom,
! [X: set_int,Y4: set_int] :
( ( ord_less_eq_set_int @ X @ Y4 )
=> ( ( ord_less_eq_set_int @ Y4 @ X )
=> ( X = Y4 ) ) ) ).
% order_antisym
thf(fact_726_order__antisym,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ord_less_eq_rat @ Y4 @ X )
=> ( X = Y4 ) ) ) ).
% order_antisym
thf(fact_727_order__antisym,axiom,
! [X: num,Y4: num] :
( ( ord_less_eq_num @ X @ Y4 )
=> ( ( ord_less_eq_num @ Y4 @ X )
=> ( X = Y4 ) ) ) ).
% order_antisym
thf(fact_728_order__antisym,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
=> ( ( ord_less_eq_nat @ Y4 @ X )
=> ( X = Y4 ) ) ) ).
% order_antisym
thf(fact_729_order__antisym,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
=> ( ( ord_less_eq_int @ Y4 @ X )
=> ( X = Y4 ) ) ) ).
% order_antisym
thf(fact_730_order__antisym,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ X )
=> ( X = Y4 ) ) ) ).
% order_antisym
thf(fact_731_order_Otrans,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_eq_set_int @ A @ C ) ) ) ).
% order.trans
thf(fact_732_order_Otrans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ A @ C ) ) ) ).
% order.trans
thf(fact_733_order_Otrans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% order.trans
thf(fact_734_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_735_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_736_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_737_order__trans,axiom,
! [X: set_int,Y4: set_int,Z: set_int] :
( ( ord_less_eq_set_int @ X @ Y4 )
=> ( ( ord_less_eq_set_int @ Y4 @ Z )
=> ( ord_less_eq_set_int @ X @ Z ) ) ) ).
% order_trans
thf(fact_738_order__trans,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ord_less_eq_rat @ Y4 @ Z )
=> ( ord_less_eq_rat @ X @ Z ) ) ) ).
% order_trans
thf(fact_739_order__trans,axiom,
! [X: num,Y4: num,Z: num] :
( ( ord_less_eq_num @ X @ Y4 )
=> ( ( ord_less_eq_num @ Y4 @ Z )
=> ( ord_less_eq_num @ X @ Z ) ) ) ).
% order_trans
thf(fact_740_order__trans,axiom,
! [X: nat,Y4: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
=> ( ( ord_less_eq_nat @ Y4 @ Z )
=> ( ord_less_eq_nat @ X @ Z ) ) ) ).
% order_trans
thf(fact_741_order__trans,axiom,
! [X: int,Y4: int,Z: int] :
( ( ord_less_eq_int @ X @ Y4 )
=> ( ( ord_less_eq_int @ Y4 @ Z )
=> ( ord_less_eq_int @ X @ Z ) ) ) ).
% order_trans
thf(fact_742_order__trans,axiom,
! [X: real,Y4: real,Z: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ Z )
=> ( ord_less_eq_real @ X @ Z ) ) ) ).
% order_trans
thf(fact_743_linorder__wlog,axiom,
! [P: rat > rat > $o,A: rat,B: rat] :
( ! [A4: rat,B3: rat] :
( ( ord_less_eq_rat @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: rat,B3: rat] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_744_linorder__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A4: num,B3: num] :
( ( ord_less_eq_num @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: num,B3: num] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_745_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: nat,B3: nat] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_746_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B3: int] :
( ( ord_less_eq_int @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: int,B3: int] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_747_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B3: real] :
( ( ord_less_eq_real @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: real,B3: real] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_748_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: set_int,Z4: set_int] : ( Y5 = Z4 ) )
= ( ^ [A3: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ B2 @ A3 )
& ( ord_less_eq_set_int @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_749_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: rat,Z4: rat] : ( Y5 = Z4 ) )
= ( ^ [A3: rat,B2: rat] :
( ( ord_less_eq_rat @ B2 @ A3 )
& ( ord_less_eq_rat @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_750_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: num,Z4: num] : ( Y5 = Z4 ) )
= ( ^ [A3: num,B2: num] :
( ( ord_less_eq_num @ B2 @ A3 )
& ( ord_less_eq_num @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_751_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
= ( ^ [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ B2 @ A3 )
& ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_752_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
= ( ^ [A3: int,B2: int] :
( ( ord_less_eq_int @ B2 @ A3 )
& ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_753_dual__order_Oeq__iff,axiom,
( ( ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) )
= ( ^ [A3: real,B2: real] :
( ( ord_less_eq_real @ B2 @ A3 )
& ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_754_dual__order_Oantisym,axiom,
! [B: set_int,A: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_755_dual__order_Oantisym,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_756_dual__order_Oantisym,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_757_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_758_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_759_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_760_dual__order_Otrans,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ C @ B )
=> ( ord_less_eq_set_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_761_dual__order_Otrans,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_762_dual__order_Otrans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_763_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_764_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_765_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_766_antisym,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_767_antisym,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_768_antisym,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_769_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_770_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_771_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_772_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: set_int,Z4: set_int] : ( Y5 = Z4 ) )
= ( ^ [A3: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A3 @ B2 )
& ( ord_less_eq_set_int @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_773_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: rat,Z4: rat] : ( Y5 = Z4 ) )
= ( ^ [A3: rat,B2: rat] :
( ( ord_less_eq_rat @ A3 @ B2 )
& ( ord_less_eq_rat @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_774_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: num,Z4: num] : ( Y5 = Z4 ) )
= ( ^ [A3: num,B2: num] :
( ( ord_less_eq_num @ A3 @ B2 )
& ( ord_less_eq_num @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_775_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
= ( ^ [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ A3 @ B2 )
& ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_776_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
= ( ^ [A3: int,B2: int] :
( ( ord_less_eq_int @ A3 @ B2 )
& ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_777_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) )
= ( ^ [A3: real,B2: real] :
( ( ord_less_eq_real @ A3 @ B2 )
& ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_778_order__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_779_order__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_780_order__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_eq_nat @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_781_order__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_eq_int @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_782_order__subst1,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_eq_real @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_783_order__subst1,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_784_order__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_785_order__subst1,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_eq_nat @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_786_order__subst1,axiom,
! [A: num,F: int > num,B: int,C: int] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_eq_int @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_787_order__subst1,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_eq_real @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_788_order__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_789_order__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_790_order__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_791_order__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_792_order__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_793_order__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_794_order__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_795_order__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_796_order__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_797_order__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_798_order__eq__refl,axiom,
! [X: set_int,Y4: set_int] :
( ( X = Y4 )
=> ( ord_less_eq_set_int @ X @ Y4 ) ) ).
% order_eq_refl
thf(fact_799_order__eq__refl,axiom,
! [X: rat,Y4: rat] :
( ( X = Y4 )
=> ( ord_less_eq_rat @ X @ Y4 ) ) ).
% order_eq_refl
thf(fact_800_order__eq__refl,axiom,
! [X: num,Y4: num] :
( ( X = Y4 )
=> ( ord_less_eq_num @ X @ Y4 ) ) ).
% order_eq_refl
thf(fact_801_order__eq__refl,axiom,
! [X: nat,Y4: nat] :
( ( X = Y4 )
=> ( ord_less_eq_nat @ X @ Y4 ) ) ).
% order_eq_refl
thf(fact_802_order__eq__refl,axiom,
! [X: int,Y4: int] :
( ( X = Y4 )
=> ( ord_less_eq_int @ X @ Y4 ) ) ).
% order_eq_refl
thf(fact_803_order__eq__refl,axiom,
! [X: real,Y4: real] :
( ( X = Y4 )
=> ( ord_less_eq_real @ X @ Y4 ) ) ).
% order_eq_refl
thf(fact_804_verit__la__disequality,axiom,
! [A: rat,B: rat] :
( ( A = B )
| ~ ( ord_less_eq_rat @ A @ B )
| ~ ( ord_less_eq_rat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_805_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_806_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_807_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_808_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_809_linorder__linear,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
| ( ord_less_eq_rat @ Y4 @ X ) ) ).
% linorder_linear
thf(fact_810_linorder__linear,axiom,
! [X: num,Y4: num] :
( ( ord_less_eq_num @ X @ Y4 )
| ( ord_less_eq_num @ Y4 @ X ) ) ).
% linorder_linear
thf(fact_811_linorder__linear,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
| ( ord_less_eq_nat @ Y4 @ X ) ) ).
% linorder_linear
thf(fact_812_linorder__linear,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
| ( ord_less_eq_int @ Y4 @ X ) ) ).
% linorder_linear
thf(fact_813_linorder__linear,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
| ( ord_less_eq_real @ Y4 @ X ) ) ).
% linorder_linear
thf(fact_814_ord__eq__le__subst,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_815_ord__eq__le__subst,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_816_ord__eq__le__subst,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_817_ord__eq__le__subst,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_818_ord__eq__le__subst,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_819_ord__eq__le__subst,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_820_ord__eq__le__subst,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_821_ord__eq__le__subst,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_822_ord__eq__le__subst,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_823_ord__eq__le__subst,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_824_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_825_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_826_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_827_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_828_ord__le__eq__subst,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_829_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_830_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_831_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_832_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_833_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_834_linorder__le__cases,axiom,
! [X: rat,Y4: rat] :
( ~ ( ord_less_eq_rat @ X @ Y4 )
=> ( ord_less_eq_rat @ Y4 @ X ) ) ).
% linorder_le_cases
thf(fact_835_linorder__le__cases,axiom,
! [X: num,Y4: num] :
( ~ ( ord_less_eq_num @ X @ Y4 )
=> ( ord_less_eq_num @ Y4 @ X ) ) ).
% linorder_le_cases
thf(fact_836_linorder__le__cases,axiom,
! [X: nat,Y4: nat] :
( ~ ( ord_less_eq_nat @ X @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ X ) ) ).
% linorder_le_cases
thf(fact_837_linorder__le__cases,axiom,
! [X: int,Y4: int] :
( ~ ( ord_less_eq_int @ X @ Y4 )
=> ( ord_less_eq_int @ Y4 @ X ) ) ).
% linorder_le_cases
thf(fact_838_linorder__le__cases,axiom,
! [X: real,Y4: real] :
( ~ ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ Y4 @ X ) ) ).
% linorder_le_cases
thf(fact_839_order__antisym__conv,axiom,
! [Y4: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y4 @ X )
=> ( ( ord_less_eq_set_int @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% order_antisym_conv
thf(fact_840_order__antisym__conv,axiom,
! [Y4: rat,X: rat] :
( ( ord_less_eq_rat @ Y4 @ X )
=> ( ( ord_less_eq_rat @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% order_antisym_conv
thf(fact_841_order__antisym__conv,axiom,
! [Y4: num,X: num] :
( ( ord_less_eq_num @ Y4 @ X )
=> ( ( ord_less_eq_num @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% order_antisym_conv
thf(fact_842_order__antisym__conv,axiom,
! [Y4: nat,X: nat] :
( ( ord_less_eq_nat @ Y4 @ X )
=> ( ( ord_less_eq_nat @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% order_antisym_conv
thf(fact_843_order__antisym__conv,axiom,
! [Y4: int,X: int] :
( ( ord_less_eq_int @ Y4 @ X )
=> ( ( ord_less_eq_int @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% order_antisym_conv
thf(fact_844_order__antisym__conv,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ Y4 @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% order_antisym_conv
thf(fact_845_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_846_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_847_divide__eq__eq__numeral_I1_J,axiom,
! [B: complex,C: complex,W: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( numera6690914467698888265omplex @ W ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_848_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_849_divide__eq__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ( divide_divide_rat @ B @ C )
= ( numeral_numeral_rat @ W ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_850_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: complex,C: complex] :
( ( ( numera6690914467698888265omplex @ W )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( numera6690914467698888265omplex @ W )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_851_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_852_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ( numeral_numeral_rat @ W )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( numeral_numeral_rat @ W )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_853_dvd__div__eq__mult,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( ( divide6298287555418463151nteger @ B @ A )
= C )
= ( B
= ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_854_dvd__div__eq__mult,axiom,
! [A: nat,B: nat,C: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( ( divide_divide_nat @ B @ A )
= C )
= ( B
= ( times_times_nat @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_855_dvd__div__eq__mult,axiom,
! [A: int,B: int,C: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( ( divide_divide_int @ B @ A )
= C )
= ( B
= ( times_times_int @ C @ A ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_856_div__dvd__iff__mult,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( B != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_857_div__dvd__iff__mult,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_858_div__dvd__iff__mult,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_859_dvd__div__iff__mult,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( C != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_860_dvd__div__iff__mult,axiom,
! [C: nat,B: nat,A: nat] :
( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_861_dvd__div__iff__mult,axiom,
! [C: int,B: int,A: int] :
( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
= ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_862_dvd__div__div__eq__mult,axiom,
! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( C != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ C @ D )
=> ( ( ( divide6298287555418463151nteger @ B @ A )
= ( divide6298287555418463151nteger @ D @ C ) )
= ( ( times_3573771949741848930nteger @ B @ C )
= ( times_3573771949741848930nteger @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_863_dvd__div__div__eq__mult,axiom,
! [A: nat,C: nat,B: nat,D: nat] :
( ( A != zero_zero_nat )
=> ( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ D @ C ) )
= ( ( times_times_nat @ B @ C )
= ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_864_dvd__div__div__eq__mult,axiom,
! [A: int,C: int,B: int,D: int] :
( ( A != zero_zero_int )
=> ( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ D @ C ) )
= ( ( times_times_int @ B @ C )
= ( times_times_int @ A @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_865_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_866_nat__int__comparison_I1_J,axiom,
( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
= ( ^ [A3: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_867_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_868_even__zero,axiom,
dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).
% even_zero
thf(fact_869_even__zero,axiom,
dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).
% even_zero
thf(fact_870_even__zero,axiom,
dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).
% even_zero
thf(fact_871_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_872_numeral__3__eq__3,axiom,
( ( numeral_numeral_nat @ ( bit1 @ one ) )
= ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).
% numeral_3_eq_3
thf(fact_873_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Osimps_I1_J,axiom,
( ( vEBT_V8646137997579335489_i_l_d @ zero_zero_nat )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.simps(1)
thf(fact_874_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Osimps_I2_J,axiom,
( ( vEBT_V8646137997579335489_i_l_d @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.simps(2)
thf(fact_875_verit__eq__simplify_I10_J,axiom,
! [X2: num] :
( one
!= ( bit0 @ X2 ) ) ).
% verit_eq_simplify(10)
thf(fact_876_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_877_unset__bit__0,axiom,
! [A: int] :
( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_878_unset__bit__0,axiom,
! [A: nat] :
( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_879_unset__bit__0,axiom,
! [A: code_integer] :
( ( bit_se8260200283734997820nteger @ zero_zero_nat @ A )
= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_880_even__set__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_881_even__set__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_882_even__set__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( M != zero_zero_nat ) ) ) ).
% even_set_bit_iff
thf(fact_883_even__flip__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_884_even__flip__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_885_even__flip__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
!= ( M = zero_zero_nat ) ) ) ).
% even_flip_bit_iff
thf(fact_886_even__unset__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_887_even__unset__bit__iff,axiom,
! [M: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_888_even__unset__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_889_subset__antisym,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( ord_less_eq_set_int @ B4 @ A2 )
=> ( A2 = B4 ) ) ) ).
% subset_antisym
thf(fact_890_subsetI,axiom,
! [A2: set_complex,B4: set_complex] :
( ! [X4: complex] :
( ( member_complex @ X4 @ A2 )
=> ( member_complex @ X4 @ B4 ) )
=> ( ord_le211207098394363844omplex @ A2 @ B4 ) ) ).
% subsetI
thf(fact_891_subsetI,axiom,
! [A2: set_real,B4: set_real] :
( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( member_real @ X4 @ B4 ) )
=> ( ord_less_eq_set_real @ A2 @ B4 ) ) ).
% subsetI
thf(fact_892_subsetI,axiom,
! [A2: set_set_nat,B4: set_set_nat] :
( ! [X4: set_nat] :
( ( member_set_nat @ X4 @ A2 )
=> ( member_set_nat @ X4 @ B4 ) )
=> ( ord_le6893508408891458716et_nat @ A2 @ B4 ) ) ).
% subsetI
thf(fact_893_subsetI,axiom,
! [A2: set_nat,B4: set_nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ A2 )
=> ( member_nat @ X4 @ B4 ) )
=> ( ord_less_eq_set_nat @ A2 @ B4 ) ) ).
% subsetI
thf(fact_894_subsetI,axiom,
! [A2: set_int,B4: set_int] :
( ! [X4: int] :
( ( member_int @ X4 @ A2 )
=> ( member_int @ X4 @ B4 ) )
=> ( ord_less_eq_set_int @ A2 @ B4 ) ) ).
% subsetI
thf(fact_895_odd__Suc__minus__one,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% odd_Suc_minus_one
thf(fact_896_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Osimps_I2_J,axiom,
( ( vEBT_V8346862874174094_d_u_p @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.simps(2)
thf(fact_897_unset__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% unset_bit_nonnegative_int_iff
thf(fact_898_set__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% set_bit_nonnegative_int_iff
thf(fact_899_flip__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% flip_bit_nonnegative_int_iff
thf(fact_900_diff__self,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% diff_self
thf(fact_901_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_902_diff__self,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% diff_self
thf(fact_903_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_904_diff__0__right,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_0_right
thf(fact_905_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_906_diff__0__right,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_0_right
thf(fact_907_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_908_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_909_diff__zero,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ zero_zero_complex )
= A ) ).
% diff_zero
thf(fact_910_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_911_diff__zero,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ zero_zero_rat )
= A ) ).
% diff_zero
thf(fact_912_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_913_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_914_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: complex] :
( ( minus_minus_complex @ A @ A )
= zero_zero_complex ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_915_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_916_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: rat] :
( ( minus_minus_rat @ A @ A )
= zero_zero_rat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_917_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_918_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_919_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_920_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_921_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_922_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_923_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_924_diff__ge__0__iff__ge,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_925_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_926_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_927_right__diff__distrib__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_928_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_929_right__diff__distrib__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_930_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_931_left__diff__distrib__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_932_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_933_left__diff__distrib__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_934_left__diff__distrib__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_935_div__diff,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
= ( minus_8373710615458151222nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_936_div__diff,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_937_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_938_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_939_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_940_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_941_diff__eq__diff__eq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_942_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_943_diff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_944_diff__right__commute,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_945_diff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_946_diff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_947_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_948_diff__eq__diff__less__eq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( ord_less_eq_rat @ A @ B )
= ( ord_less_eq_rat @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_949_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_950_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_951_diff__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_952_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_953_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_954_diff__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_955_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_956_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_957_diff__mono,axiom,
! [A: rat,B: rat,D: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ D @ C )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_958_diff__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_959_diff__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_960_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: complex,Z4: complex] : ( Y5 = Z4 ) )
= ( ^ [A3: complex,B2: complex] :
( ( minus_minus_complex @ A3 @ B2 )
= zero_zero_complex ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_961_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) )
= ( ^ [A3: real,B2: real] :
( ( minus_minus_real @ A3 @ B2 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_962_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: rat,Z4: rat] : ( Y5 = Z4 ) )
= ( ^ [A3: rat,B2: rat] :
( ( minus_minus_rat @ A3 @ B2 )
= zero_zero_rat ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_963_eq__iff__diff__eq__0,axiom,
( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
= ( ^ [A3: int,B2: int] :
( ( minus_minus_int @ A3 @ B2 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_964_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri8010041392384452111omplex @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ) ).
% of_nat_diff
thf(fact_965_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% of_nat_diff
thf(fact_966_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_967_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_968_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% of_nat_diff
thf(fact_969_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_970_right__diff__distrib_H,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_971_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_972_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_973_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_974_left__diff__distrib_H,axiom,
! [B: rat,C: rat,A: rat] :
( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
= ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_975_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_976_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_977_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_978_right__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_979_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_980_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_981_left__diff__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_982_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_983_diff__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
= ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_984_diff__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_985_diff__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_986_dvd__diff__commute,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ C @ B ) )
= ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ B @ C ) ) ) ).
% dvd_diff_commute
thf(fact_987_dvd__diff__commute,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
= ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).
% dvd_diff_commute
thf(fact_988_dvd__diff,axiom,
! [X: code_integer,Y4: code_integer,Z: code_integer] :
( ( dvd_dvd_Code_integer @ X @ Y4 )
=> ( ( dvd_dvd_Code_integer @ X @ Z )
=> ( dvd_dvd_Code_integer @ X @ ( minus_8373710615458151222nteger @ Y4 @ Z ) ) ) ) ).
% dvd_diff
thf(fact_989_dvd__diff,axiom,
! [X: real,Y4: real,Z: real] :
( ( dvd_dvd_real @ X @ Y4 )
=> ( ( dvd_dvd_real @ X @ Z )
=> ( dvd_dvd_real @ X @ ( minus_minus_real @ Y4 @ Z ) ) ) ) ).
% dvd_diff
thf(fact_990_dvd__diff,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( dvd_dvd_rat @ X @ Y4 )
=> ( ( dvd_dvd_rat @ X @ Z )
=> ( dvd_dvd_rat @ X @ ( minus_minus_rat @ Y4 @ Z ) ) ) ) ).
% dvd_diff
thf(fact_991_dvd__diff,axiom,
! [X: int,Y4: int,Z: int] :
( ( dvd_dvd_int @ X @ Y4 )
=> ( ( dvd_dvd_int @ X @ Z )
=> ( dvd_dvd_int @ X @ ( minus_minus_int @ Y4 @ Z ) ) ) ) ).
% dvd_diff
thf(fact_992_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_993_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_994_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_995_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_996_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_997_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_998_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_999_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_1000_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_1001_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_1002_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_1003_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_1004_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% dvd_diff_nat
thf(fact_1005_le__iff__diff__le__0,axiom,
( ord_less_eq_rat
= ( ^ [A3: rat,B2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A3 @ B2 ) @ zero_zero_rat ) ) ) ).
% le_iff_diff_le_0
thf(fact_1006_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_1007_le__iff__diff__le__0,axiom,
( ord_less_eq_real
= ( ^ [A3: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).
% le_iff_diff_le_0
thf(fact_1008_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_1009_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_1010_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_1011_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% ile0_eq
thf(fact_1012_i0__lb,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).
% i0_lb
thf(fact_1013_unset__bit__less__eq,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ K ) ).
% unset_bit_less_eq
thf(fact_1014_set__bit__greater__eq,axiom,
! [K: int,N: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N @ K ) ) ).
% set_bit_greater_eq
thf(fact_1015_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_1016_dvd__diffD,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ M ) ) ) ) ).
% dvd_diffD
thf(fact_1017_dvd__diffD1,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ M )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ N ) ) ) ) ).
% dvd_diffD1
thf(fact_1018_less__eq__dvd__minus,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( dvd_dvd_nat @ M @ N )
= ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_1019_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_1020_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_1021_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_1022_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( dvd_dvd_int @ M @ N )
=> ( ( dvd_dvd_int @ N @ M )
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_1023_zdvd__mult__cancel,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
=> ( ( K != zero_zero_int )
=> ( dvd_dvd_int @ M @ N ) ) ) ).
% zdvd_mult_cancel
thf(fact_1024_divide__diff__eq__iff,axiom,
! [Z: complex,X: complex,Y4: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Z ) @ Y4 )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ X @ ( times_times_complex @ Y4 @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_1025_divide__diff__eq__iff,axiom,
! [Z: real,X: real,Y4: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Z ) @ Y4 )
= ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y4 @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_1026_divide__diff__eq__iff,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Z ) @ Y4 )
= ( divide_divide_rat @ ( minus_minus_rat @ X @ ( times_times_rat @ Y4 @ Z ) ) @ Z ) ) ) ).
% divide_diff_eq_iff
thf(fact_1027_diff__divide__eq__iff,axiom,
! [Z: complex,X: complex,Y4: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ X @ ( divide1717551699836669952omplex @ Y4 @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z ) @ Y4 ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_1028_diff__divide__eq__iff,axiom,
! [Z: real,X: real,Y4: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ X @ ( divide_divide_real @ Y4 @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ Y4 ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_1029_diff__divide__eq__iff,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ X @ ( divide_divide_rat @ Y4 @ Z ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ Y4 ) @ Z ) ) ) ).
% diff_divide_eq_iff
thf(fact_1030_diff__frac__eq,axiom,
! [Y4: complex,Z: complex,X: complex,W: complex] :
( ( Y4 != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Y4 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ W @ Y4 ) ) @ ( times_times_complex @ Y4 @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_1031_diff__frac__eq,axiom,
! [Y4: real,Z: real,X: real,W: real] :
( ( Y4 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Y4 ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y4 ) ) @ ( times_times_real @ Y4 @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_1032_diff__frac__eq,axiom,
! [Y4: rat,Z: rat,X: rat,W: rat] :
( ( Y4 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Y4 ) @ ( divide_divide_rat @ W @ Z ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y4 ) ) @ ( times_times_rat @ Y4 @ Z ) ) ) ) ) ).
% diff_frac_eq
thf(fact_1033_add__divide__eq__if__simps_I4_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_1034_add__divide__eq__if__simps_I4_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_1035_add__divide__eq__if__simps_I4_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_1036_zero__reorient,axiom,
! [X: complex] :
( ( zero_zero_complex = X )
= ( X = zero_zero_complex ) ) ).
% zero_reorient
thf(fact_1037_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_1038_zero__reorient,axiom,
! [X: rat] :
( ( zero_zero_rat = X )
= ( X = zero_zero_rat ) ) ).
% zero_reorient
thf(fact_1039_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_1040_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_1041_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1042_mult_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1043_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1044_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_1045_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_1046_mult_Ocommute,axiom,
( times_times_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_1047_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_1048_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_1049_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1050_mult_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1051_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1052_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_1053_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1054_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
= ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1055_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1056_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1057_in__mono,axiom,
! [A2: set_complex,B4: set_complex,X: complex] :
( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ( member_complex @ X @ A2 )
=> ( member_complex @ X @ B4 ) ) ) ).
% in_mono
thf(fact_1058_in__mono,axiom,
! [A2: set_real,B4: set_real,X: real] :
( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ( member_real @ X @ A2 )
=> ( member_real @ X @ B4 ) ) ) ).
% in_mono
thf(fact_1059_in__mono,axiom,
! [A2: set_set_nat,B4: set_set_nat,X: set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ B4 )
=> ( ( member_set_nat @ X @ A2 )
=> ( member_set_nat @ X @ B4 ) ) ) ).
% in_mono
thf(fact_1060_in__mono,axiom,
! [A2: set_nat,B4: set_nat,X: nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( member_nat @ X @ A2 )
=> ( member_nat @ X @ B4 ) ) ) ).
% in_mono
thf(fact_1061_in__mono,axiom,
! [A2: set_int,B4: set_int,X: int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( member_int @ X @ A2 )
=> ( member_int @ X @ B4 ) ) ) ).
% in_mono
thf(fact_1062_subsetD,axiom,
! [A2: set_complex,B4: set_complex,C: complex] :
( ( ord_le211207098394363844omplex @ A2 @ B4 )
=> ( ( member_complex @ C @ A2 )
=> ( member_complex @ C @ B4 ) ) ) ).
% subsetD
thf(fact_1063_subsetD,axiom,
! [A2: set_real,B4: set_real,C: real] :
( ( ord_less_eq_set_real @ A2 @ B4 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B4 ) ) ) ).
% subsetD
thf(fact_1064_subsetD,axiom,
! [A2: set_set_nat,B4: set_set_nat,C: set_nat] :
( ( ord_le6893508408891458716et_nat @ A2 @ B4 )
=> ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B4 ) ) ) ).
% subsetD
thf(fact_1065_subsetD,axiom,
! [A2: set_nat,B4: set_nat,C: nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B4 ) ) ) ).
% subsetD
thf(fact_1066_subsetD,axiom,
! [A2: set_int,B4: set_int,C: int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B4 ) ) ) ).
% subsetD
thf(fact_1067_equalityE,axiom,
! [A2: set_int,B4: set_int] :
( ( A2 = B4 )
=> ~ ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ~ ( ord_less_eq_set_int @ B4 @ A2 ) ) ) ).
% equalityE
thf(fact_1068_subset__eq,axiom,
( ord_le211207098394363844omplex
= ( ^ [A5: set_complex,B5: set_complex] :
! [X3: complex] :
( ( member_complex @ X3 @ A5 )
=> ( member_complex @ X3 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1069_subset__eq,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B5: set_real] :
! [X3: real] :
( ( member_real @ X3 @ A5 )
=> ( member_real @ X3 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1070_subset__eq,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
! [X3: set_nat] :
( ( member_set_nat @ X3 @ A5 )
=> ( member_set_nat @ X3 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1071_subset__eq,axiom,
( ord_less_eq_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
! [X3: nat] :
( ( member_nat @ X3 @ A5 )
=> ( member_nat @ X3 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1072_subset__eq,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
! [X3: int] :
( ( member_int @ X3 @ A5 )
=> ( member_int @ X3 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_1073_equalityD1,axiom,
! [A2: set_int,B4: set_int] :
( ( A2 = B4 )
=> ( ord_less_eq_set_int @ A2 @ B4 ) ) ).
% equalityD1
thf(fact_1074_equalityD2,axiom,
! [A2: set_int,B4: set_int] :
( ( A2 = B4 )
=> ( ord_less_eq_set_int @ B4 @ A2 ) ) ).
% equalityD2
thf(fact_1075_subset__iff,axiom,
( ord_le211207098394363844omplex
= ( ^ [A5: set_complex,B5: set_complex] :
! [T2: complex] :
( ( member_complex @ T2 @ A5 )
=> ( member_complex @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1076_subset__iff,axiom,
( ord_less_eq_set_real
= ( ^ [A5: set_real,B5: set_real] :
! [T2: real] :
( ( member_real @ T2 @ A5 )
=> ( member_real @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1077_subset__iff,axiom,
( ord_le6893508408891458716et_nat
= ( ^ [A5: set_set_nat,B5: set_set_nat] :
! [T2: set_nat] :
( ( member_set_nat @ T2 @ A5 )
=> ( member_set_nat @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1078_subset__iff,axiom,
( ord_less_eq_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
! [T2: nat] :
( ( member_nat @ T2 @ A5 )
=> ( member_nat @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1079_subset__iff,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
! [T2: int] :
( ( member_int @ T2 @ A5 )
=> ( member_int @ T2 @ B5 ) ) ) ) ).
% subset_iff
thf(fact_1080_subset__refl,axiom,
! [A2: set_int] : ( ord_less_eq_set_int @ A2 @ A2 ) ).
% subset_refl
thf(fact_1081_Collect__mono,axiom,
! [P: real > $o,Q: real > $o] :
( ! [X4: real] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_less_eq_set_real @ ( collect_real @ P ) @ ( collect_real @ Q ) ) ) ).
% Collect_mono
thf(fact_1082_Collect__mono,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ! [X4: list_nat] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_le6045566169113846134st_nat @ ( collect_list_nat @ P ) @ ( collect_list_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_1083_Collect__mono,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ! [X4: set_nat] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_1084_Collect__mono,axiom,
! [P: nat > $o,Q: nat > $o] :
( ! [X4: nat] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).
% Collect_mono
thf(fact_1085_Collect__mono,axiom,
! [P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ( P @ X4 )
=> ( Q @ X4 ) )
=> ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) ) ) ).
% Collect_mono
thf(fact_1086_subset__trans,axiom,
! [A2: set_int,B4: set_int,C2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( ord_less_eq_set_int @ B4 @ C2 )
=> ( ord_less_eq_set_int @ A2 @ C2 ) ) ) ).
% subset_trans
thf(fact_1087_set__eq__subset,axiom,
( ( ^ [Y5: set_int,Z4: set_int] : ( Y5 = Z4 ) )
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).
% set_eq_subset
thf(fact_1088_Collect__mono__iff,axiom,
! [P: real > $o,Q: real > $o] :
( ( ord_less_eq_set_real @ ( collect_real @ P ) @ ( collect_real @ Q ) )
= ( ! [X3: real] :
( ( P @ X3 )
=> ( Q @ X3 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1089_Collect__mono__iff,axiom,
! [P: list_nat > $o,Q: list_nat > $o] :
( ( ord_le6045566169113846134st_nat @ ( collect_list_nat @ P ) @ ( collect_list_nat @ Q ) )
= ( ! [X3: list_nat] :
( ( P @ X3 )
=> ( Q @ X3 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1090_Collect__mono__iff,axiom,
! [P: set_nat > $o,Q: set_nat > $o] :
( ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) )
= ( ! [X3: set_nat] :
( ( P @ X3 )
=> ( Q @ X3 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1091_Collect__mono__iff,axiom,
! [P: nat > $o,Q: nat > $o] :
( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
= ( ! [X3: nat] :
( ( P @ X3 )
=> ( Q @ X3 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1092_Collect__mono__iff,axiom,
! [P: int > $o,Q: int > $o] :
( ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) )
= ( ! [X3: int] :
( ( P @ X3 )
=> ( Q @ X3 ) ) ) ) ).
% Collect_mono_iff
thf(fact_1093_zdiv__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% zdiv_zmult2_eq
thf(fact_1094_frac__le__eq,axiom,
! [Y4: rat,Z: rat,X: rat,W: rat] :
( ( Y4 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y4 ) @ ( divide_divide_rat @ W @ Z ) )
= ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y4 ) ) @ ( times_times_rat @ Y4 @ Z ) ) @ zero_zero_rat ) ) ) ) ).
% frac_le_eq
thf(fact_1095_frac__le__eq,axiom,
! [Y4: real,Z: real,X: real,W: real] :
( ( Y4 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ X @ Y4 ) @ ( divide_divide_real @ W @ Z ) )
= ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y4 ) ) @ ( times_times_real @ Y4 @ Z ) ) @ zero_zero_real ) ) ) ) ).
% frac_le_eq
thf(fact_1096_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Osimps_I1_J,axiom,
( ( vEBT_V8346862874174094_d_u_p @ zero_zero_nat )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.simps(1)
thf(fact_1097_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_1098_bezout1__nat,axiom,
! [A: nat,B: nat] :
? [D2: nat,X4: nat,Y: nat] :
( ( dvd_dvd_nat @ D2 @ A )
& ( dvd_dvd_nat @ D2 @ B )
& ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y ) )
= D2 )
| ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y ) )
= D2 ) ) ) ).
% bezout1_nat
thf(fact_1099_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_1100_buildup__build__time,axiom,
! [N: nat] : ( ord_less_nat @ ( vEBT_V8346862874174094_d_u_p @ N ) @ ( vEBT_V8646137997579335489_i_l_d @ N ) ) ).
% buildup_build_time
thf(fact_1101_zdvd__mono,axiom,
! [K: int,M: int,T: int] :
( ( K != zero_zero_int )
=> ( ( dvd_dvd_int @ M @ T )
= ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).
% zdvd_mono
thf(fact_1102_zero__le__power__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_1103_zero__le__power__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_1104_zero__le__power__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq_numeral
thf(fact_1105_gcd__nat_Oextremum,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% gcd_nat.extremum
thf(fact_1106_gcd__nat_Oextremum__strict,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
& ( zero_zero_nat != A ) ) ).
% gcd_nat.extremum_strict
thf(fact_1107_gcd__nat_Oextremum__unique,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_unique
thf(fact_1108_gcd__nat_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ( dvd_dvd_nat @ A @ zero_zero_nat )
& ( A != zero_zero_nat ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_1109_gcd__nat_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_1110_idiff__0,axiom,
! [N: extended_enat] :
( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
= zero_z5237406670263579293d_enat ) ).
% idiff_0
thf(fact_1111_idiff__0__right,axiom,
! [N: extended_enat] :
( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
= N ) ).
% idiff_0_right
thf(fact_1112_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_1113_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1114_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1115_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1116_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_1117_mult_Oright__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.right_neutral
thf(fact_1118_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_1119_mult_Oright__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.right_neutral
thf(fact_1120_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_1121_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_1122_mult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% mult_1
thf(fact_1123_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_1124_mult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% mult_1
thf(fact_1125_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_1126_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_1127_div__by__1,axiom,
! [A: complex] :
( ( divide1717551699836669952omplex @ A @ one_one_complex )
= A ) ).
% div_by_1
thf(fact_1128_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_1129_div__by__1,axiom,
! [A: rat] :
( ( divide_divide_rat @ A @ one_one_rat )
= A ) ).
% div_by_1
thf(fact_1130_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_1131_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_1132_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_1133_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_1134_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_1135_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_1136_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_1137_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_1138_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_1139_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_1140_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_1141_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_1142_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_1143_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1144_diff__gt__0__iff__gt,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
= ( ord_less_rat @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1145_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_1146_mult__cancel__left1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_left1
thf(fact_1147_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_1148_mult__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ C @ B ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_left1
thf(fact_1149_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_1150_mult__cancel__left2,axiom,
! [C: complex,A: complex] :
( ( ( times_times_complex @ C @ A )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_left2
thf(fact_1151_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_1152_mult__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ( times_times_rat @ C @ A )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_left2
thf(fact_1153_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_1154_mult__cancel__right1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_right1
thf(fact_1155_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_1156_mult__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( C
= ( times_times_rat @ B @ C ) )
= ( ( C = zero_zero_rat )
| ( B = one_one_rat ) ) ) ).
% mult_cancel_right1
thf(fact_1157_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_1158_mult__cancel__right2,axiom,
! [A: complex,C: complex] :
( ( ( times_times_complex @ A @ C )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_right2
thf(fact_1159_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_1160_mult__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ( times_times_rat @ A @ C )
= C )
= ( ( C = zero_zero_rat )
| ( A = one_one_rat ) ) ) ).
% mult_cancel_right2
thf(fact_1161_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_1162_diff__numeral__special_I9_J,axiom,
( ( minus_minus_complex @ one_one_complex @ one_one_complex )
= zero_zero_complex ) ).
% diff_numeral_special(9)
thf(fact_1163_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_1164_diff__numeral__special_I9_J,axiom,
( ( minus_minus_rat @ one_one_rat @ one_one_rat )
= zero_zero_rat ) ).
% diff_numeral_special(9)
thf(fact_1165_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_1166_div__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% div_self
thf(fact_1167_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_1168_div__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% div_self
thf(fact_1169_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_1170_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_1171_divide__eq__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_1172_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_1173_divide__eq__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_1174_one__eq__divide__iff,axiom,
! [A: complex,B: complex] :
( ( one_one_complex
= ( divide1717551699836669952omplex @ A @ B ) )
= ( ( B != zero_zero_complex )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_1175_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_1176_one__eq__divide__iff,axiom,
! [A: rat,B: rat] :
( ( one_one_rat
= ( divide_divide_rat @ A @ B ) )
= ( ( B != zero_zero_rat )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_1177_divide__self,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ).
% divide_self
thf(fact_1178_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_1179_divide__self,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ).
% divide_self
thf(fact_1180_divide__self__if,axiom,
! [A: complex] :
( ( ( A = zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= zero_zero_complex ) )
& ( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ A )
= one_one_complex ) ) ) ).
% divide_self_if
thf(fact_1181_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_1182_divide__self__if,axiom,
! [A: rat] :
( ( ( A = zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= zero_zero_rat ) )
& ( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ A )
= one_one_rat ) ) ) ).
% divide_self_if
thf(fact_1183_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_1184_divide__eq__eq__1,axiom,
! [B: rat,A: rat] :
( ( ( divide_divide_rat @ B @ A )
= one_one_rat )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_1185_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_1186_eq__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( one_one_rat
= ( divide_divide_rat @ B @ A ) )
= ( ( A != zero_zero_rat )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_1187_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_1188_one__divide__eq__0__iff,axiom,
! [A: rat] :
( ( ( divide_divide_rat @ one_one_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% one_divide_eq_0_iff
thf(fact_1189_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_1190_zero__eq__1__divide__iff,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( divide_divide_rat @ one_one_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% zero_eq_1_divide_iff
thf(fact_1191_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera6690914467698888265omplex @ N )
= one_one_complex )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_1192_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_1193_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_rat @ N )
= one_one_rat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_1194_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_1195_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_1196_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_complex
= ( numera6690914467698888265omplex @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_1197_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_1198_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_rat
= ( numeral_numeral_rat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_1199_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_1200_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_1201_unit__prod,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).
% unit_prod
thf(fact_1202_unit__prod,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_prod
thf(fact_1203_unit__prod,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_prod
thf(fact_1204_unit__div,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).
% unit_div
thf(fact_1205_unit__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% unit_div
thf(fact_1206_unit__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% unit_div
thf(fact_1207_unit__div__1__unit,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) @ one_one_Code_integer ) ) ).
% unit_div_1_unit
thf(fact_1208_unit__div__1__unit,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).
% unit_div_1_unit
thf(fact_1209_unit__div__1__unit,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).
% unit_div_1_unit
thf(fact_1210_unit__div__1__div__1,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_1211_unit__div__1__div__1,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_1212_unit__div__1__div__1,axiom,
! [A: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
= A ) ) ).
% unit_div_1_div_1
thf(fact_1213_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1214_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1215_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1216_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_1217_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_1218_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_1219_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_1220_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_1221_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_1222_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_1223_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri8010041392384452111omplex @ N )
= one_one_complex )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_1224_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_1225_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri681578069525770553at_rat @ N )
= one_one_rat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_1226_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_1227_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_1228_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_1229_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_1230_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_rat
= ( semiri681578069525770553at_rat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_1231_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_1232_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_1233_of__nat__1,axiom,
( ( semiri8010041392384452111omplex @ one_one_nat )
= one_one_complex ) ).
% of_nat_1
thf(fact_1234_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_1235_of__nat__1,axiom,
( ( semiri681578069525770553at_rat @ one_one_nat )
= one_one_rat ) ).
% of_nat_1
thf(fact_1236_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_1237_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_1238_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_1239_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_1240_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_1241_divide__le__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% divide_le_0_1_iff
thf(fact_1242_divide__le__0__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% divide_le_0_1_iff
thf(fact_1243_zero__le__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_1244_zero__le__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_1245_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_1246_zero__less__divide__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_1247_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_1248_less__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_1249_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_1250_less__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_1251_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_1252_divide__less__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_1253_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_1254_divide__less__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_rat @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_1255_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_1256_divide__less__0__1__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% divide_less_0_1_iff
thf(fact_1257_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1258_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1259_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1260_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_1261_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_1262_divide__less__eq__numeral1_I1_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_1263_less__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_1264_less__divide__eq__numeral1_I1_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_1265_nonzero__divide__mult__cancel__left,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1266_nonzero__divide__mult__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1267_nonzero__divide__mult__cancel__left,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_1268_nonzero__divide__mult__cancel__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
= ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1269_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1270_nonzero__divide__mult__cancel__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
= ( divide_divide_rat @ one_one_rat @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_1271_unit__mult__div__div,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
= ( divide6298287555418463151nteger @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_1272_unit__mult__div__div,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
= ( divide_divide_nat @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_1273_unit__mult__div__div,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% unit_mult_div_div
thf(fact_1274_unit__div__mult__self,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_1275_unit__div__mult__self,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_1276_unit__div__mult__self,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
= B ) ) ).
% unit_div_mult_self
thf(fact_1277_pow__divides__pow__iff,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_1278_pow__divides__pow__iff,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% pow_divides_pow_iff
thf(fact_1279_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_1280_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_1281_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_1282_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_1283_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_1284_divide__le__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_1285_divide__le__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_1286_divide__le__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_1287_divide__le__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_1288_le__divide__eq__1__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_1289_le__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_1290_le__divide__eq__1__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_1291_le__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_1292_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_1293_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_1294_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_1295_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_1296_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_1297_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_1298_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1299_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1300_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1301_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_1302_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_1303_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_1304_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_1305_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_1306_even__power,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_1307_even__power,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_1308_even__power,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% even_power
thf(fact_1309_power__less__zero__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq
thf(fact_1310_power__less__zero__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq
thf(fact_1311_power__less__zero__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq
thf(fact_1312_power__less__zero__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_1313_power__less__zero__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_1314_power__less__zero__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% power_less_zero_eq_numeral
thf(fact_1315_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_1316_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_1317_semiring__parity__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
= ( N = zero_zero_nat ) ) ).
% semiring_parity_class.even_mask_iff
thf(fact_1318_zero__less__power__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_1319_zero__less__power__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_1320_zero__less__power__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
= ( ( ( numeral_numeral_nat @ W )
= zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq_numeral
thf(fact_1321_power__le__zero__eq__numeral,axiom,
! [A: rat,W: num] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_1322_power__le__zero__eq__numeral,axiom,
! [A: int,W: num] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_1323_power__le__zero__eq__numeral,axiom,
! [A: real,W: num] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq_numeral
thf(fact_1324_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_1325_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( times_7803423173614009249d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
| ( N = zero_z5237406670263579293d_enat ) ) ) ).
% imult_is_0
thf(fact_1326_one__reorient,axiom,
! [X: complex] :
( ( one_one_complex = X )
= ( X = one_one_complex ) ) ).
% one_reorient
thf(fact_1327_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_1328_one__reorient,axiom,
! [X: rat] :
( ( one_one_rat = X )
= ( X = one_one_rat ) ) ).
% one_reorient
thf(fact_1329_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_1330_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_1331_linordered__field__no__lb,axiom,
! [X5: real] :
? [Y: real] : ( ord_less_real @ Y @ X5 ) ).
% linordered_field_no_lb
thf(fact_1332_linordered__field__no__lb,axiom,
! [X5: rat] :
? [Y: rat] : ( ord_less_rat @ Y @ X5 ) ).
% linordered_field_no_lb
thf(fact_1333_linordered__field__no__ub,axiom,
! [X5: real] :
? [X_1: real] : ( ord_less_real @ X5 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_1334_linordered__field__no__ub,axiom,
! [X5: rat] :
? [X_1: rat] : ( ord_less_rat @ X5 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_1335_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_1336_less__numeral__extra_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).
% less_numeral_extra(4)
thf(fact_1337_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_1338_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_1339_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_1340_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_1341_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_1342_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less_nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_1343_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_1344_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_1345_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_1346_linorder__neqE__nat,axiom,
! [X: nat,Y4: nat] :
( ( X != Y4 )
=> ( ~ ( ord_less_nat @ X @ Y4 )
=> ( ord_less_nat @ Y4 @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_1347_linorder__neqE__linordered__idom,axiom,
! [X: real,Y4: real] :
( ( X != Y4 )
=> ( ~ ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ Y4 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1348_linorder__neqE__linordered__idom,axiom,
! [X: rat,Y4: rat] :
( ( X != Y4 )
=> ( ~ ( ord_less_rat @ X @ Y4 )
=> ( ord_less_rat @ Y4 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1349_linorder__neqE__linordered__idom,axiom,
! [X: int,Y4: int] :
( ( X != Y4 )
=> ( ~ ( ord_less_int @ X @ Y4 )
=> ( ord_less_int @ Y4 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1350_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1351_verit__comp__simplify1_I1_J,axiom,
! [A: rat] :
~ ( ord_less_rat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1352_verit__comp__simplify1_I1_J,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1353_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1354_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_1355_lt__ex,axiom,
! [X: real] :
? [Y: real] : ( ord_less_real @ Y @ X ) ).
% lt_ex
thf(fact_1356_lt__ex,axiom,
! [X: rat] :
? [Y: rat] : ( ord_less_rat @ Y @ X ) ).
% lt_ex
thf(fact_1357_lt__ex,axiom,
! [X: int] :
? [Y: int] : ( ord_less_int @ Y @ X ) ).
% lt_ex
thf(fact_1358_gt__ex,axiom,
! [X: real] :
? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).
% gt_ex
thf(fact_1359_gt__ex,axiom,
! [X: rat] :
? [X_1: rat] : ( ord_less_rat @ X @ X_1 ) ).
% gt_ex
thf(fact_1360_gt__ex,axiom,
! [X: nat] :
? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).
% gt_ex
thf(fact_1361_gt__ex,axiom,
! [X: int] :
? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).
% gt_ex
thf(fact_1362_dense,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ? [Z2: real] :
( ( ord_less_real @ X @ Z2 )
& ( ord_less_real @ Z2 @ Y4 ) ) ) ).
% dense
thf(fact_1363_dense,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ? [Z2: rat] :
( ( ord_less_rat @ X @ Z2 )
& ( ord_less_rat @ Z2 @ Y4 ) ) ) ).
% dense
thf(fact_1364_less__imp__neq,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ( X != Y4 ) ) ).
% less_imp_neq
thf(fact_1365_less__imp__neq,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( X != Y4 ) ) ).
% less_imp_neq
thf(fact_1366_less__imp__neq,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
=> ( X != Y4 ) ) ).
% less_imp_neq
thf(fact_1367_less__imp__neq,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ( X != Y4 ) ) ).
% less_imp_neq
thf(fact_1368_less__imp__neq,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
=> ( X != Y4 ) ) ).
% less_imp_neq
thf(fact_1369_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_1370_order_Oasym,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( ord_less_rat @ B @ A ) ) ).
% order.asym
thf(fact_1371_order_Oasym,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order.asym
thf(fact_1372_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_1373_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_1374_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1375_ord__eq__less__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( A = B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1376_ord__eq__less__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1377_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1378_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_1379_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1380_ord__less__eq__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( B = C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1381_ord__less__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1382_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1383_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_1384_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X4: nat] :
( ! [Y3: nat] :
( ( ord_less_nat @ Y3 @ X4 )
=> ( P @ Y3 ) )
=> ( P @ X4 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_1385_antisym__conv3,axiom,
! [Y4: real,X: real] :
( ~ ( ord_less_real @ Y4 @ X )
=> ( ( ~ ( ord_less_real @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv3
thf(fact_1386_antisym__conv3,axiom,
! [Y4: rat,X: rat] :
( ~ ( ord_less_rat @ Y4 @ X )
=> ( ( ~ ( ord_less_rat @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv3
thf(fact_1387_antisym__conv3,axiom,
! [Y4: num,X: num] :
( ~ ( ord_less_num @ Y4 @ X )
=> ( ( ~ ( ord_less_num @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv3
thf(fact_1388_antisym__conv3,axiom,
! [Y4: nat,X: nat] :
( ~ ( ord_less_nat @ Y4 @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv3
thf(fact_1389_antisym__conv3,axiom,
! [Y4: int,X: int] :
( ~ ( ord_less_int @ Y4 @ X )
=> ( ( ~ ( ord_less_int @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv3
thf(fact_1390_linorder__cases,axiom,
! [X: real,Y4: real] :
( ~ ( ord_less_real @ X @ Y4 )
=> ( ( X != Y4 )
=> ( ord_less_real @ Y4 @ X ) ) ) ).
% linorder_cases
thf(fact_1391_linorder__cases,axiom,
! [X: rat,Y4: rat] :
( ~ ( ord_less_rat @ X @ Y4 )
=> ( ( X != Y4 )
=> ( ord_less_rat @ Y4 @ X ) ) ) ).
% linorder_cases
thf(fact_1392_linorder__cases,axiom,
! [X: num,Y4: num] :
( ~ ( ord_less_num @ X @ Y4 )
=> ( ( X != Y4 )
=> ( ord_less_num @ Y4 @ X ) ) ) ).
% linorder_cases
thf(fact_1393_linorder__cases,axiom,
! [X: nat,Y4: nat] :
( ~ ( ord_less_nat @ X @ Y4 )
=> ( ( X != Y4 )
=> ( ord_less_nat @ Y4 @ X ) ) ) ).
% linorder_cases
thf(fact_1394_linorder__cases,axiom,
! [X: int,Y4: int] :
( ~ ( ord_less_int @ X @ Y4 )
=> ( ( X != Y4 )
=> ( ord_less_int @ Y4 @ X ) ) ) ).
% linorder_cases
thf(fact_1395_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_1396_dual__order_Oasym,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ~ ( ord_less_rat @ A @ B ) ) ).
% dual_order.asym
thf(fact_1397_dual__order_Oasym,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ~ ( ord_less_num @ A @ B ) ) ).
% dual_order.asym
thf(fact_1398_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_1399_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_1400_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_1401_dual__order_Oirrefl,axiom,
! [A: rat] :
~ ( ord_less_rat @ A @ A ) ).
% dual_order.irrefl
thf(fact_1402_dual__order_Oirrefl,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% dual_order.irrefl
thf(fact_1403_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_1404_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_1405_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X6: nat] : ( P2 @ X6 ) )
= ( ^ [P3: nat > $o] :
? [N4: nat] :
( ( P3 @ N4 )
& ! [M5: nat] :
( ( ord_less_nat @ M5 @ N4 )
=> ~ ( P3 @ M5 ) ) ) ) ) ).
% exists_least_iff
thf(fact_1406_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B3: real] :
( ( ord_less_real @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: real] : ( P @ A4 @ A4 )
=> ( ! [A4: real,B3: real] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_1407_linorder__less__wlog,axiom,
! [P: rat > rat > $o,A: rat,B: rat] :
( ! [A4: rat,B3: rat] :
( ( ord_less_rat @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: rat] : ( P @ A4 @ A4 )
=> ( ! [A4: rat,B3: rat] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_1408_linorder__less__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A4: num,B3: num] :
( ( ord_less_num @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: num] : ( P @ A4 @ A4 )
=> ( ! [A4: num,B3: num] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_1409_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B3: nat] :
( ( ord_less_nat @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: nat] : ( P @ A4 @ A4 )
=> ( ! [A4: nat,B3: nat] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_1410_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B3: int] :
( ( ord_less_int @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: int] : ( P @ A4 @ A4 )
=> ( ! [A4: int,B3: int] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_1411_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_1412_order_Ostrict__trans,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_1413_order_Ostrict__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_1414_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_1415_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_1416_not__less__iff__gr__or__eq,axiom,
! [X: real,Y4: real] :
( ( ~ ( ord_less_real @ X @ Y4 ) )
= ( ( ord_less_real @ Y4 @ X )
| ( X = Y4 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_1417_not__less__iff__gr__or__eq,axiom,
! [X: rat,Y4: rat] :
( ( ~ ( ord_less_rat @ X @ Y4 ) )
= ( ( ord_less_rat @ Y4 @ X )
| ( X = Y4 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_1418_not__less__iff__gr__or__eq,axiom,
! [X: num,Y4: num] :
( ( ~ ( ord_less_num @ X @ Y4 ) )
= ( ( ord_less_num @ Y4 @ X )
| ( X = Y4 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_1419_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y4: nat] :
( ( ~ ( ord_less_nat @ X @ Y4 ) )
= ( ( ord_less_nat @ Y4 @ X )
| ( X = Y4 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_1420_not__less__iff__gr__or__eq,axiom,
! [X: int,Y4: int] :
( ( ~ ( ord_less_int @ X @ Y4 ) )
= ( ( ord_less_int @ Y4 @ X )
| ( X = Y4 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_1421_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_1422_dual__order_Ostrict__trans,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_1423_dual__order_Ostrict__trans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_1424_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_1425_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_1426_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_1427_order_Ostrict__implies__not__eq,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_1428_order_Ostrict__implies__not__eq,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_1429_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_1430_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_1431_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_1432_dual__order_Ostrict__implies__not__eq,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_1433_dual__order_Ostrict__implies__not__eq,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_1434_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_1435_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_1436_linorder__neqE,axiom,
! [X: real,Y4: real] :
( ( X != Y4 )
=> ( ~ ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ Y4 @ X ) ) ) ).
% linorder_neqE
thf(fact_1437_linorder__neqE,axiom,
! [X: rat,Y4: rat] :
( ( X != Y4 )
=> ( ~ ( ord_less_rat @ X @ Y4 )
=> ( ord_less_rat @ Y4 @ X ) ) ) ).
% linorder_neqE
thf(fact_1438_linorder__neqE,axiom,
! [X: num,Y4: num] :
( ( X != Y4 )
=> ( ~ ( ord_less_num @ X @ Y4 )
=> ( ord_less_num @ Y4 @ X ) ) ) ).
% linorder_neqE
thf(fact_1439_linorder__neqE,axiom,
! [X: nat,Y4: nat] :
( ( X != Y4 )
=> ( ~ ( ord_less_nat @ X @ Y4 )
=> ( ord_less_nat @ Y4 @ X ) ) ) ).
% linorder_neqE
thf(fact_1440_linorder__neqE,axiom,
! [X: int,Y4: int] :
( ( X != Y4 )
=> ( ~ ( ord_less_int @ X @ Y4 )
=> ( ord_less_int @ Y4 @ X ) ) ) ).
% linorder_neqE
thf(fact_1441_order__less__asym,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ~ ( ord_less_real @ Y4 @ X ) ) ).
% order_less_asym
thf(fact_1442_order__less__asym,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ~ ( ord_less_rat @ Y4 @ X ) ) ).
% order_less_asym
thf(fact_1443_order__less__asym,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
=> ~ ( ord_less_num @ Y4 @ X ) ) ).
% order_less_asym
thf(fact_1444_order__less__asym,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ~ ( ord_less_nat @ Y4 @ X ) ) ).
% order_less_asym
thf(fact_1445_order__less__asym,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
=> ~ ( ord_less_int @ Y4 @ X ) ) ).
% order_less_asym
thf(fact_1446_linorder__neq__iff,axiom,
! [X: real,Y4: real] :
( ( X != Y4 )
= ( ( ord_less_real @ X @ Y4 )
| ( ord_less_real @ Y4 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_1447_linorder__neq__iff,axiom,
! [X: rat,Y4: rat] :
( ( X != Y4 )
= ( ( ord_less_rat @ X @ Y4 )
| ( ord_less_rat @ Y4 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_1448_linorder__neq__iff,axiom,
! [X: num,Y4: num] :
( ( X != Y4 )
= ( ( ord_less_num @ X @ Y4 )
| ( ord_less_num @ Y4 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_1449_linorder__neq__iff,axiom,
! [X: nat,Y4: nat] :
( ( X != Y4 )
= ( ( ord_less_nat @ X @ Y4 )
| ( ord_less_nat @ Y4 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_1450_linorder__neq__iff,axiom,
! [X: int,Y4: int] :
( ( X != Y4 )
= ( ( ord_less_int @ X @ Y4 )
| ( ord_less_int @ Y4 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_1451_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_1452_order__less__asym_H,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ~ ( ord_less_rat @ B @ A ) ) ).
% order_less_asym'
thf(fact_1453_order__less__asym_H,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order_less_asym'
thf(fact_1454_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_1455_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_1456_order__less__trans,axiom,
! [X: real,Y4: real,Z: real] :
( ( ord_less_real @ X @ Y4 )
=> ( ( ord_less_real @ Y4 @ Z )
=> ( ord_less_real @ X @ Z ) ) ) ).
% order_less_trans
thf(fact_1457_order__less__trans,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( ( ord_less_rat @ Y4 @ Z )
=> ( ord_less_rat @ X @ Z ) ) ) ).
% order_less_trans
thf(fact_1458_order__less__trans,axiom,
! [X: num,Y4: num,Z: num] :
( ( ord_less_num @ X @ Y4 )
=> ( ( ord_less_num @ Y4 @ Z )
=> ( ord_less_num @ X @ Z ) ) ) ).
% order_less_trans
thf(fact_1459_order__less__trans,axiom,
! [X: nat,Y4: nat,Z: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ( ( ord_less_nat @ Y4 @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_less_trans
thf(fact_1460_order__less__trans,axiom,
! [X: int,Y4: int,Z: int] :
( ( ord_less_int @ X @ Y4 )
=> ( ( ord_less_int @ Y4 @ Z )
=> ( ord_less_int @ X @ Z ) ) ) ).
% order_less_trans
thf(fact_1461_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1462_ord__eq__less__subst,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1463_ord__eq__less__subst,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1464_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1465_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1466_ord__eq__less__subst,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1467_ord__eq__less__subst,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1468_ord__eq__less__subst,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1469_ord__eq__less__subst,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1470_ord__eq__less__subst,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_1471_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1472_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1473_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1474_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1475_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1476_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1477_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1478_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1479_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1480_ord__less__eq__subst,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_rat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_1481_order__less__irrefl,axiom,
! [X: real] :
~ ( ord_less_real @ X @ X ) ).
% order_less_irrefl
thf(fact_1482_order__less__irrefl,axiom,
! [X: rat] :
~ ( ord_less_rat @ X @ X ) ).
% order_less_irrefl
thf(fact_1483_order__less__irrefl,axiom,
! [X: num] :
~ ( ord_less_num @ X @ X ) ).
% order_less_irrefl
thf(fact_1484_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_1485_order__less__irrefl,axiom,
! [X: int] :
~ ( ord_less_int @ X @ X ) ).
% order_less_irrefl
thf(fact_1486_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1487_order__less__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1488_order__less__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_num @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1489_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_nat @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1490_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_int @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1491_order__less__subst1,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1492_order__less__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1493_order__less__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_num @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1494_order__less__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_nat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1495_order__less__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_int @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_1496_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1497_order__less__subst2,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1498_order__less__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1499_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1500_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1501_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1502_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1503_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1504_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1505_order__less__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_1506_order__less__not__sym,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ~ ( ord_less_real @ Y4 @ X ) ) ).
% order_less_not_sym
thf(fact_1507_order__less__not__sym,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ~ ( ord_less_rat @ Y4 @ X ) ) ).
% order_less_not_sym
thf(fact_1508_order__less__not__sym,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
=> ~ ( ord_less_num @ Y4 @ X ) ) ).
% order_less_not_sym
thf(fact_1509_order__less__not__sym,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ~ ( ord_less_nat @ Y4 @ X ) ) ).
% order_less_not_sym
thf(fact_1510_order__less__not__sym,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
=> ~ ( ord_less_int @ Y4 @ X ) ) ).
% order_less_not_sym
thf(fact_1511_order__less__imp__triv,axiom,
! [X: real,Y4: real,P: $o] :
( ( ord_less_real @ X @ Y4 )
=> ( ( ord_less_real @ Y4 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_1512_order__less__imp__triv,axiom,
! [X: rat,Y4: rat,P: $o] :
( ( ord_less_rat @ X @ Y4 )
=> ( ( ord_less_rat @ Y4 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_1513_order__less__imp__triv,axiom,
! [X: num,Y4: num,P: $o] :
( ( ord_less_num @ X @ Y4 )
=> ( ( ord_less_num @ Y4 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_1514_order__less__imp__triv,axiom,
! [X: nat,Y4: nat,P: $o] :
( ( ord_less_nat @ X @ Y4 )
=> ( ( ord_less_nat @ Y4 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_1515_order__less__imp__triv,axiom,
! [X: int,Y4: int,P: $o] :
( ( ord_less_int @ X @ Y4 )
=> ( ( ord_less_int @ Y4 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_1516_linorder__less__linear,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
| ( X = Y4 )
| ( ord_less_real @ Y4 @ X ) ) ).
% linorder_less_linear
thf(fact_1517_linorder__less__linear,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
| ( X = Y4 )
| ( ord_less_rat @ Y4 @ X ) ) ).
% linorder_less_linear
thf(fact_1518_linorder__less__linear,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
| ( X = Y4 )
| ( ord_less_num @ Y4 @ X ) ) ).
% linorder_less_linear
thf(fact_1519_linorder__less__linear,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
| ( X = Y4 )
| ( ord_less_nat @ Y4 @ X ) ) ).
% linorder_less_linear
thf(fact_1520_linorder__less__linear,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
| ( X = Y4 )
| ( ord_less_int @ Y4 @ X ) ) ).
% linorder_less_linear
thf(fact_1521_order__less__imp__not__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ( X != Y4 ) ) ).
% order_less_imp_not_eq
thf(fact_1522_order__less__imp__not__eq,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( X != Y4 ) ) ).
% order_less_imp_not_eq
thf(fact_1523_order__less__imp__not__eq,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
=> ( X != Y4 ) ) ).
% order_less_imp_not_eq
thf(fact_1524_order__less__imp__not__eq,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ( X != Y4 ) ) ).
% order_less_imp_not_eq
thf(fact_1525_order__less__imp__not__eq,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
=> ( X != Y4 ) ) ).
% order_less_imp_not_eq
thf(fact_1526_order__less__imp__not__eq2,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ( Y4 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_1527_order__less__imp__not__eq2,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( Y4 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_1528_order__less__imp__not__eq2,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
=> ( Y4 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_1529_order__less__imp__not__eq2,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ( Y4 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_1530_order__less__imp__not__eq2,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
=> ( Y4 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_1531_order__less__imp__not__less,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ~ ( ord_less_real @ Y4 @ X ) ) ).
% order_less_imp_not_less
thf(fact_1532_order__less__imp__not__less,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ~ ( ord_less_rat @ Y4 @ X ) ) ).
% order_less_imp_not_less
thf(fact_1533_order__less__imp__not__less,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
=> ~ ( ord_less_num @ Y4 @ X ) ) ).
% order_less_imp_not_less
thf(fact_1534_order__less__imp__not__less,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ~ ( ord_less_nat @ Y4 @ X ) ) ).
% order_less_imp_not_less
thf(fact_1535_order__less__imp__not__less,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
=> ~ ( ord_less_int @ Y4 @ X ) ) ).
% order_less_imp_not_less
thf(fact_1536_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_1537_less__numeral__extra_I1_J,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% less_numeral_extra(1)
thf(fact_1538_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_1539_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_1540_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_1541_zero__less__one,axiom,
ord_less_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one
thf(fact_1542_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_1543_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_1544_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_1545_not__one__less__zero,axiom,
~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_less_zero
thf(fact_1546_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_1547_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_1548_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_1549_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat ) ).
% not_numeral_less_one
thf(fact_1550_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_1551_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_1552_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_1553_less__1__mult,axiom,
! [M: rat,N: rat] :
( ( ord_less_rat @ one_one_rat @ M )
=> ( ( ord_less_rat @ one_one_rat @ N )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_1554_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_1555_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_1556_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_1557_lift__Suc__mono__less__iff,axiom,
! [F: nat > rat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_rat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_1558_lift__Suc__mono__less__iff,axiom,
! [F: nat > num,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_1559_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_1560_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_1561_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_1562_lift__Suc__mono__less,axiom,
! [F: nat > rat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_rat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_1563_lift__Suc__mono__less,axiom,
! [F: nat > num,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_num @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_1564_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_1565_lift__Suc__mono__less,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_1566_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_1567_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_1568_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_1569_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_1570_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_1571_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_1572_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_1573_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_1574_minf_I8_J,axiom,
! [T: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z2 )
=> ~ ( ord_less_eq_rat @ T @ X5 ) ) ).
% minf(8)
thf(fact_1575_minf_I8_J,axiom,
! [T: num] :
? [Z2: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z2 )
=> ~ ( ord_less_eq_num @ T @ X5 ) ) ).
% minf(8)
thf(fact_1576_minf_I8_J,axiom,
! [T: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z2 )
=> ~ ( ord_less_eq_nat @ T @ X5 ) ) ).
% minf(8)
thf(fact_1577_minf_I8_J,axiom,
! [T: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z2 )
=> ~ ( ord_less_eq_int @ T @ X5 ) ) ).
% minf(8)
thf(fact_1578_minf_I8_J,axiom,
! [T: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z2 )
=> ~ ( ord_less_eq_real @ T @ X5 ) ) ).
% minf(8)
thf(fact_1579_minf_I6_J,axiom,
! [T: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z2 )
=> ( ord_less_eq_rat @ X5 @ T ) ) ).
% minf(6)
thf(fact_1580_minf_I6_J,axiom,
! [T: num] :
? [Z2: num] :
! [X5: num] :
( ( ord_less_num @ X5 @ Z2 )
=> ( ord_less_eq_num @ X5 @ T ) ) ).
% minf(6)
thf(fact_1581_minf_I6_J,axiom,
! [T: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z2 )
=> ( ord_less_eq_nat @ X5 @ T ) ) ).
% minf(6)
thf(fact_1582_minf_I6_J,axiom,
! [T: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z2 )
=> ( ord_less_eq_int @ X5 @ T ) ) ).
% minf(6)
thf(fact_1583_minf_I6_J,axiom,
! [T: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z2 )
=> ( ord_less_eq_real @ X5 @ T ) ) ).
% minf(6)
thf(fact_1584_pinf_I8_J,axiom,
! [T: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z2 @ X5 )
=> ( ord_less_eq_rat @ T @ X5 ) ) ).
% pinf(8)
thf(fact_1585_pinf_I8_J,axiom,
! [T: num] :
? [Z2: num] :
! [X5: num] :
( ( ord_less_num @ Z2 @ X5 )
=> ( ord_less_eq_num @ T @ X5 ) ) ).
% pinf(8)
thf(fact_1586_pinf_I8_J,axiom,
! [T: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z2 @ X5 )
=> ( ord_less_eq_nat @ T @ X5 ) ) ).
% pinf(8)
thf(fact_1587_pinf_I8_J,axiom,
! [T: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ Z2 @ X5 )
=> ( ord_less_eq_int @ T @ X5 ) ) ).
% pinf(8)
thf(fact_1588_pinf_I8_J,axiom,
! [T: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ Z2 @ X5 )
=> ( ord_less_eq_real @ T @ X5 ) ) ).
% pinf(8)
thf(fact_1589_pinf_I6_J,axiom,
! [T: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z2 @ X5 )
=> ~ ( ord_less_eq_rat @ X5 @ T ) ) ).
% pinf(6)
thf(fact_1590_pinf_I6_J,axiom,
! [T: num] :
? [Z2: num] :
! [X5: num] :
( ( ord_less_num @ Z2 @ X5 )
=> ~ ( ord_less_eq_num @ X5 @ T ) ) ).
% pinf(6)
thf(fact_1591_pinf_I6_J,axiom,
! [T: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z2 @ X5 )
=> ~ ( ord_less_eq_nat @ X5 @ T ) ) ).
% pinf(6)
thf(fact_1592_pinf_I6_J,axiom,
! [T: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ Z2 @ X5 )
=> ~ ( ord_less_eq_int @ X5 @ T ) ) ).
% pinf(6)
thf(fact_1593_pinf_I6_J,axiom,
! [T: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ Z2 @ X5 )
=> ~ ( ord_less_eq_real @ X5 @ T ) ) ).
% pinf(6)
thf(fact_1594_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_1595_less__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_1596_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_1597_divide__less__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_less_eq_1
thf(fact_1598_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_1599_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_1600_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_1601_verit__comp__simplify1_I3_J,axiom,
! [B6: rat,A6: rat] :
( ( ~ ( ord_less_eq_rat @ B6 @ A6 ) )
= ( ord_less_rat @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1602_verit__comp__simplify1_I3_J,axiom,
! [B6: num,A6: num] :
( ( ~ ( ord_less_eq_num @ B6 @ A6 ) )
= ( ord_less_num @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1603_verit__comp__simplify1_I3_J,axiom,
! [B6: nat,A6: nat] :
( ( ~ ( ord_less_eq_nat @ B6 @ A6 ) )
= ( ord_less_nat @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1604_verit__comp__simplify1_I3_J,axiom,
! [B6: int,A6: int] :
( ( ~ ( ord_less_eq_int @ B6 @ A6 ) )
= ( ord_less_int @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1605_verit__comp__simplify1_I3_J,axiom,
! [B6: real,A6: real] :
( ( ~ ( ord_less_eq_real @ B6 @ A6 ) )
= ( ord_less_real @ A6 @ B6 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1606_leD,axiom,
! [Y4: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y4 @ X )
=> ~ ( ord_less_set_int @ X @ Y4 ) ) ).
% leD
thf(fact_1607_leD,axiom,
! [Y4: rat,X: rat] :
( ( ord_less_eq_rat @ Y4 @ X )
=> ~ ( ord_less_rat @ X @ Y4 ) ) ).
% leD
thf(fact_1608_leD,axiom,
! [Y4: num,X: num] :
( ( ord_less_eq_num @ Y4 @ X )
=> ~ ( ord_less_num @ X @ Y4 ) ) ).
% leD
thf(fact_1609_leD,axiom,
! [Y4: nat,X: nat] :
( ( ord_less_eq_nat @ Y4 @ X )
=> ~ ( ord_less_nat @ X @ Y4 ) ) ).
% leD
thf(fact_1610_leD,axiom,
! [Y4: int,X: int] :
( ( ord_less_eq_int @ Y4 @ X )
=> ~ ( ord_less_int @ X @ Y4 ) ) ).
% leD
thf(fact_1611_leD,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ Y4 @ X )
=> ~ ( ord_less_real @ X @ Y4 ) ) ).
% leD
thf(fact_1612_leI,axiom,
! [X: rat,Y4: rat] :
( ~ ( ord_less_rat @ X @ Y4 )
=> ( ord_less_eq_rat @ Y4 @ X ) ) ).
% leI
thf(fact_1613_leI,axiom,
! [X: num,Y4: num] :
( ~ ( ord_less_num @ X @ Y4 )
=> ( ord_less_eq_num @ Y4 @ X ) ) ).
% leI
thf(fact_1614_leI,axiom,
! [X: nat,Y4: nat] :
( ~ ( ord_less_nat @ X @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ X ) ) ).
% leI
thf(fact_1615_leI,axiom,
! [X: int,Y4: int] :
( ~ ( ord_less_int @ X @ Y4 )
=> ( ord_less_eq_int @ Y4 @ X ) ) ).
% leI
thf(fact_1616_leI,axiom,
! [X: real,Y4: real] :
( ~ ( ord_less_real @ X @ Y4 )
=> ( ord_less_eq_real @ Y4 @ X ) ) ).
% leI
thf(fact_1617_nless__le,axiom,
! [A: set_int,B: set_int] :
( ( ~ ( ord_less_set_int @ A @ B ) )
= ( ~ ( ord_less_eq_set_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_1618_nless__le,axiom,
! [A: rat,B: rat] :
( ( ~ ( ord_less_rat @ A @ B ) )
= ( ~ ( ord_less_eq_rat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_1619_nless__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_num @ A @ B ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_1620_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_1621_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_1622_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_1623_antisym__conv1,axiom,
! [X: set_int,Y4: set_int] :
( ~ ( ord_less_set_int @ X @ Y4 )
=> ( ( ord_less_eq_set_int @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% antisym_conv1
thf(fact_1624_antisym__conv1,axiom,
! [X: rat,Y4: rat] :
( ~ ( ord_less_rat @ X @ Y4 )
=> ( ( ord_less_eq_rat @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% antisym_conv1
thf(fact_1625_antisym__conv1,axiom,
! [X: num,Y4: num] :
( ~ ( ord_less_num @ X @ Y4 )
=> ( ( ord_less_eq_num @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% antisym_conv1
thf(fact_1626_antisym__conv1,axiom,
! [X: nat,Y4: nat] :
( ~ ( ord_less_nat @ X @ Y4 )
=> ( ( ord_less_eq_nat @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% antisym_conv1
thf(fact_1627_antisym__conv1,axiom,
! [X: int,Y4: int] :
( ~ ( ord_less_int @ X @ Y4 )
=> ( ( ord_less_eq_int @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% antisym_conv1
thf(fact_1628_antisym__conv1,axiom,
! [X: real,Y4: real] :
( ~ ( ord_less_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ X @ Y4 )
= ( X = Y4 ) ) ) ).
% antisym_conv1
thf(fact_1629_antisym__conv2,axiom,
! [X: set_int,Y4: set_int] :
( ( ord_less_eq_set_int @ X @ Y4 )
=> ( ( ~ ( ord_less_set_int @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv2
thf(fact_1630_antisym__conv2,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ~ ( ord_less_rat @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv2
thf(fact_1631_antisym__conv2,axiom,
! [X: num,Y4: num] :
( ( ord_less_eq_num @ X @ Y4 )
=> ( ( ~ ( ord_less_num @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv2
thf(fact_1632_antisym__conv2,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
=> ( ( ~ ( ord_less_nat @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv2
thf(fact_1633_antisym__conv2,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
=> ( ( ~ ( ord_less_int @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv2
thf(fact_1634_antisym__conv2,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ~ ( ord_less_real @ X @ Y4 ) )
= ( X = Y4 ) ) ) ).
% antisym_conv2
thf(fact_1635_dense__ge,axiom,
! [Z: rat,Y4: rat] :
( ! [X4: rat] :
( ( ord_less_rat @ Z @ X4 )
=> ( ord_less_eq_rat @ Y4 @ X4 ) )
=> ( ord_less_eq_rat @ Y4 @ Z ) ) ).
% dense_ge
thf(fact_1636_dense__ge,axiom,
! [Z: real,Y4: real] :
( ! [X4: real] :
( ( ord_less_real @ Z @ X4 )
=> ( ord_less_eq_real @ Y4 @ X4 ) )
=> ( ord_less_eq_real @ Y4 @ Z ) ) ).
% dense_ge
thf(fact_1637_dense__le,axiom,
! [Y4: rat,Z: rat] :
( ! [X4: rat] :
( ( ord_less_rat @ X4 @ Y4 )
=> ( ord_less_eq_rat @ X4 @ Z ) )
=> ( ord_less_eq_rat @ Y4 @ Z ) ) ).
% dense_le
thf(fact_1638_dense__le,axiom,
! [Y4: real,Z: real] :
( ! [X4: real] :
( ( ord_less_real @ X4 @ Y4 )
=> ( ord_less_eq_real @ X4 @ Z ) )
=> ( ord_less_eq_real @ Y4 @ Z ) ) ).
% dense_le
thf(fact_1639_less__le__not__le,axiom,
( ord_less_set_int
= ( ^ [X3: set_int,Y6: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y6 )
& ~ ( ord_less_eq_set_int @ Y6 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_1640_less__le__not__le,axiom,
( ord_less_rat
= ( ^ [X3: rat,Y6: rat] :
( ( ord_less_eq_rat @ X3 @ Y6 )
& ~ ( ord_less_eq_rat @ Y6 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_1641_less__le__not__le,axiom,
( ord_less_num
= ( ^ [X3: num,Y6: num] :
( ( ord_less_eq_num @ X3 @ Y6 )
& ~ ( ord_less_eq_num @ Y6 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_1642_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X3: nat,Y6: nat] :
( ( ord_less_eq_nat @ X3 @ Y6 )
& ~ ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_1643_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X3: int,Y6: int] :
( ( ord_less_eq_int @ X3 @ Y6 )
& ~ ( ord_less_eq_int @ Y6 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_1644_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X3: real,Y6: real] :
( ( ord_less_eq_real @ X3 @ Y6 )
& ~ ( ord_less_eq_real @ Y6 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_1645_not__le__imp__less,axiom,
! [Y4: rat,X: rat] :
( ~ ( ord_less_eq_rat @ Y4 @ X )
=> ( ord_less_rat @ X @ Y4 ) ) ).
% not_le_imp_less
thf(fact_1646_not__le__imp__less,axiom,
! [Y4: num,X: num] :
( ~ ( ord_less_eq_num @ Y4 @ X )
=> ( ord_less_num @ X @ Y4 ) ) ).
% not_le_imp_less
thf(fact_1647_not__le__imp__less,axiom,
! [Y4: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y4 @ X )
=> ( ord_less_nat @ X @ Y4 ) ) ).
% not_le_imp_less
thf(fact_1648_not__le__imp__less,axiom,
! [Y4: int,X: int] :
( ~ ( ord_less_eq_int @ Y4 @ X )
=> ( ord_less_int @ X @ Y4 ) ) ).
% not_le_imp_less
thf(fact_1649_not__le__imp__less,axiom,
! [Y4: real,X: real] :
( ~ ( ord_less_eq_real @ Y4 @ X )
=> ( ord_less_real @ X @ Y4 ) ) ).
% not_le_imp_less
thf(fact_1650_order_Oorder__iff__strict,axiom,
( ord_less_eq_set_int
= ( ^ [A3: set_int,B2: set_int] :
( ( ord_less_set_int @ A3 @ B2 )
| ( A3 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_1651_order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [A3: rat,B2: rat] :
( ( ord_less_rat @ A3 @ B2 )
| ( A3 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_1652_order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [A3: num,B2: num] :
( ( ord_less_num @ A3 @ B2 )
| ( A3 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_1653_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
( ( ord_less_nat @ A3 @ B2 )
| ( A3 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_1654_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B2: int] :
( ( ord_less_int @ A3 @ B2 )
| ( A3 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_1655_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A3: real,B2: real] :
( ( ord_less_real @ A3 @ B2 )
| ( A3 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_1656_order_Ostrict__iff__order,axiom,
( ord_less_set_int
= ( ^ [A3: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A3 @ B2 )
& ( A3 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_1657_order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [A3: rat,B2: rat] :
( ( ord_less_eq_rat @ A3 @ B2 )
& ( A3 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_1658_order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [A3: num,B2: num] :
( ( ord_less_eq_num @ A3 @ B2 )
& ( A3 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_1659_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ A3 @ B2 )
& ( A3 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_1660_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A3: int,B2: int] :
( ( ord_less_eq_int @ A3 @ B2 )
& ( A3 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_1661_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A3: real,B2: real] :
( ( ord_less_eq_real @ A3 @ B2 )
& ( A3 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_1662_order_Ostrict__trans1,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( ord_less_set_int @ B @ C )
=> ( ord_less_set_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_1663_order_Ostrict__trans1,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_1664_order_Ostrict__trans1,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_1665_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_1666_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_1667_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_1668_order_Ostrict__trans2,axiom,
! [A: set_int,B: set_int,C: set_int] :
( ( ord_less_set_int @ A @ B )
=> ( ( ord_less_eq_set_int @ B @ C )
=> ( ord_less_set_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_1669_order_Ostrict__trans2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_1670_order_Ostrict__trans2,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_1671_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_1672_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_1673_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_1674_order_Ostrict__iff__not,axiom,
( ord_less_set_int
= ( ^ [A3: set_int,B2: set_int] :
( ( ord_less_eq_set_int @ A3 @ B2 )
& ~ ( ord_less_eq_set_int @ B2 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_1675_order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [A3: rat,B2: rat] :
( ( ord_less_eq_rat @ A3 @ B2 )
& ~ ( ord_less_eq_rat @ B2 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_1676_order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [A3: num,B2: num] :
( ( ord_less_eq_num @ A3 @ B2 )
& ~ ( ord_less_eq_num @ B2 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_1677_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ A3 @ B2 )
& ~ ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_1678_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A3: int,B2: int] :
( ( ord_less_eq_int @ A3 @ B2 )
& ~ ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_1679_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A3: real,B2: real] :
( ( ord_less_eq_real @ A3 @ B2 )
& ~ ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).
% order.strict_iff_not
thf(fact_1680_dense__ge__bounded,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( ord_less_rat @ Z @ X )
=> ( ! [W2: rat] :
( ( ord_less_rat @ Z @ W2 )
=> ( ( ord_less_rat @ W2 @ X )
=> ( ord_less_eq_rat @ Y4 @ W2 ) ) )
=> ( ord_less_eq_rat @ Y4 @ Z ) ) ) ).
% dense_ge_bounded
thf(fact_1681_dense__ge__bounded,axiom,
! [Z: real,X: real,Y4: real] :
( ( ord_less_real @ Z @ X )
=> ( ! [W2: real] :
( ( ord_less_real @ Z @ W2 )
=> ( ( ord_less_real @ W2 @ X )
=> ( ord_less_eq_real @ Y4 @ W2 ) ) )
=> ( ord_less_eq_real @ Y4 @ Z ) ) ) ).
% dense_ge_bounded
thf(fact_1682_dense__le__bounded,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( ! [W2: rat] :
( ( ord_less_rat @ X @ W2 )
=> ( ( ord_less_rat @ W2 @ Y4 )
=> ( ord_less_eq_rat @ W2 @ Z ) ) )
=> ( ord_less_eq_rat @ Y4 @ Z ) ) ) ).
% dense_le_bounded
thf(fact_1683_dense__le__bounded,axiom,
! [X: real,Y4: real,Z: real] :
( ( ord_less_real @ X @ Y4 )
=> ( ! [W2: real] :
( ( ord_less_real @ X @ W2 )
=> ( ( ord_less_real @ W2 @ Y4 )
=> ( ord_less_eq_real @ W2 @ Z ) ) )
=> ( ord_less_eq_real @ Y4 @ Z ) ) ) ).
% dense_le_bounded
thf(fact_1684_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_set_int
= ( ^ [B2: set_int,A3: set_int] :
( ( ord_less_set_int @ B2 @ A3 )
| ( A3 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_1685_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_rat
= ( ^ [B2: rat,A3: rat] :
( ( ord_less_rat @ B2 @ A3 )
| ( A3 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_1686_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [B2: num,A3: num] :
( ( ord_less_num @ B2 @ A3 )
| ( A3 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_1687_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B2: nat,A3: nat] :
( ( ord_less_nat @ B2 @ A3 )
| ( A3 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_1688_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B2: int,A3: int] :
( ( ord_less_int @ B2 @ A3 )
| ( A3 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_1689_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B2: real,A3: real] :
( ( ord_less_real @ B2 @ A3 )
| ( A3 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_1690_dual__order_Ostrict__iff__order,axiom,
( ord_less_set_int
= ( ^ [B2: set_int,A3: set_int] :
( ( ord_less_eq_set_int @ B2 @ A3 )
& ( A3 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_1691_dual__order_Ostrict__iff__order,axiom,
( ord_less_rat
= ( ^ [B2: rat,A3: rat] :
( ( ord_less_eq_rat @ B2 @ A3 )
& ( A3 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_1692_dual__order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [B2: num,A3: num] :
( ( ord_less_eq_num @ B2 @ A3 )
& ( A3 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_1693_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B2: nat,A3: nat] :
( ( ord_less_eq_nat @ B2 @ A3 )
& ( A3 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_1694_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B2: int,A3: int] :
( ( ord_less_eq_int @ B2 @ A3 )
& ( A3 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_1695_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B2: real,A3: real] :
( ( ord_less_eq_real @ B2 @ A3 )
& ( A3 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_1696_dual__order_Ostrict__trans1,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_eq_set_int @ B @ A )
=> ( ( ord_less_set_int @ C @ B )
=> ( ord_less_set_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_1697_dual__order_Ostrict__trans1,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_1698_dual__order_Ostrict__trans1,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_1699_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_1700_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_1701_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_1702_dual__order_Ostrict__trans2,axiom,
! [B: set_int,A: set_int,C: set_int] :
( ( ord_less_set_int @ B @ A )
=> ( ( ord_less_eq_set_int @ C @ B )
=> ( ord_less_set_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_1703_dual__order_Ostrict__trans2,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_rat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_1704_dual__order_Ostrict__trans2,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_1705_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_1706_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_1707_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_1708_dual__order_Ostrict__iff__not,axiom,
( ord_less_set_int
= ( ^ [B2: set_int,A3: set_int] :
( ( ord_less_eq_set_int @ B2 @ A3 )
& ~ ( ord_less_eq_set_int @ A3 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_1709_dual__order_Ostrict__iff__not,axiom,
( ord_less_rat
= ( ^ [B2: rat,A3: rat] :
( ( ord_less_eq_rat @ B2 @ A3 )
& ~ ( ord_less_eq_rat @ A3 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_1710_dual__order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [B2: num,A3: num] :
( ( ord_less_eq_num @ B2 @ A3 )
& ~ ( ord_less_eq_num @ A3 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_1711_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B2: nat,A3: nat] :
( ( ord_less_eq_nat @ B2 @ A3 )
& ~ ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_1712_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B2: int,A3: int] :
( ( ord_less_eq_int @ B2 @ A3 )
& ~ ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_1713_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B2: real,A3: real] :
( ( ord_less_eq_real @ B2 @ A3 )
& ~ ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_1714_order_Ostrict__implies__order,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_set_int @ A @ B )
=> ( ord_less_eq_set_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_1715_order_Ostrict__implies__order,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_1716_order_Ostrict__implies__order,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( ord_less_eq_num @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_1717_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_1718_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_1719_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_1720_dual__order_Ostrict__implies__order,axiom,
! [B: set_int,A: set_int] :
( ( ord_less_set_int @ B @ A )
=> ( ord_less_eq_set_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_1721_dual__order_Ostrict__implies__order,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_1722_dual__order_Ostrict__implies__order,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ord_less_eq_num @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_1723_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_1724_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_1725_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_1726_order__le__less,axiom,
( ord_less_eq_set_int
= ( ^ [X3: set_int,Y6: set_int] :
( ( ord_less_set_int @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% order_le_less
thf(fact_1727_order__le__less,axiom,
( ord_less_eq_rat
= ( ^ [X3: rat,Y6: rat] :
( ( ord_less_rat @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% order_le_less
thf(fact_1728_order__le__less,axiom,
( ord_less_eq_num
= ( ^ [X3: num,Y6: num] :
( ( ord_less_num @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% order_le_less
thf(fact_1729_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X3: nat,Y6: nat] :
( ( ord_less_nat @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% order_le_less
thf(fact_1730_order__le__less,axiom,
( ord_less_eq_int
= ( ^ [X3: int,Y6: int] :
( ( ord_less_int @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% order_le_less
thf(fact_1731_order__le__less,axiom,
( ord_less_eq_real
= ( ^ [X3: real,Y6: real] :
( ( ord_less_real @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% order_le_less
thf(fact_1732_order__less__le,axiom,
( ord_less_set_int
= ( ^ [X3: set_int,Y6: set_int] :
( ( ord_less_eq_set_int @ X3 @ Y6 )
& ( X3 != Y6 ) ) ) ) ).
% order_less_le
thf(fact_1733_order__less__le,axiom,
( ord_less_rat
= ( ^ [X3: rat,Y6: rat] :
( ( ord_less_eq_rat @ X3 @ Y6 )
& ( X3 != Y6 ) ) ) ) ).
% order_less_le
thf(fact_1734_order__less__le,axiom,
( ord_less_num
= ( ^ [X3: num,Y6: num] :
( ( ord_less_eq_num @ X3 @ Y6 )
& ( X3 != Y6 ) ) ) ) ).
% order_less_le
thf(fact_1735_order__less__le,axiom,
( ord_less_nat
= ( ^ [X3: nat,Y6: nat] :
( ( ord_less_eq_nat @ X3 @ Y6 )
& ( X3 != Y6 ) ) ) ) ).
% order_less_le
thf(fact_1736_order__less__le,axiom,
( ord_less_int
= ( ^ [X3: int,Y6: int] :
( ( ord_less_eq_int @ X3 @ Y6 )
& ( X3 != Y6 ) ) ) ) ).
% order_less_le
thf(fact_1737_order__less__le,axiom,
( ord_less_real
= ( ^ [X3: real,Y6: real] :
( ( ord_less_eq_real @ X3 @ Y6 )
& ( X3 != Y6 ) ) ) ) ).
% order_less_le
thf(fact_1738_linorder__not__le,axiom,
! [X: rat,Y4: rat] :
( ( ~ ( ord_less_eq_rat @ X @ Y4 ) )
= ( ord_less_rat @ Y4 @ X ) ) ).
% linorder_not_le
thf(fact_1739_linorder__not__le,axiom,
! [X: num,Y4: num] :
( ( ~ ( ord_less_eq_num @ X @ Y4 ) )
= ( ord_less_num @ Y4 @ X ) ) ).
% linorder_not_le
thf(fact_1740_linorder__not__le,axiom,
! [X: nat,Y4: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y4 ) )
= ( ord_less_nat @ Y4 @ X ) ) ).
% linorder_not_le
thf(fact_1741_linorder__not__le,axiom,
! [X: int,Y4: int] :
( ( ~ ( ord_less_eq_int @ X @ Y4 ) )
= ( ord_less_int @ Y4 @ X ) ) ).
% linorder_not_le
thf(fact_1742_linorder__not__le,axiom,
! [X: real,Y4: real] :
( ( ~ ( ord_less_eq_real @ X @ Y4 ) )
= ( ord_less_real @ Y4 @ X ) ) ).
% linorder_not_le
thf(fact_1743_linorder__not__less,axiom,
! [X: rat,Y4: rat] :
( ( ~ ( ord_less_rat @ X @ Y4 ) )
= ( ord_less_eq_rat @ Y4 @ X ) ) ).
% linorder_not_less
thf(fact_1744_linorder__not__less,axiom,
! [X: num,Y4: num] :
( ( ~ ( ord_less_num @ X @ Y4 ) )
= ( ord_less_eq_num @ Y4 @ X ) ) ).
% linorder_not_less
thf(fact_1745_linorder__not__less,axiom,
! [X: nat,Y4: nat] :
( ( ~ ( ord_less_nat @ X @ Y4 ) )
= ( ord_less_eq_nat @ Y4 @ X ) ) ).
% linorder_not_less
thf(fact_1746_linorder__not__less,axiom,
! [X: int,Y4: int] :
( ( ~ ( ord_less_int @ X @ Y4 ) )
= ( ord_less_eq_int @ Y4 @ X ) ) ).
% linorder_not_less
thf(fact_1747_linorder__not__less,axiom,
! [X: real,Y4: real] :
( ( ~ ( ord_less_real @ X @ Y4 ) )
= ( ord_less_eq_real @ Y4 @ X ) ) ).
% linorder_not_less
thf(fact_1748_order__less__imp__le,axiom,
! [X: set_int,Y4: set_int] :
( ( ord_less_set_int @ X @ Y4 )
=> ( ord_less_eq_set_int @ X @ Y4 ) ) ).
% order_less_imp_le
thf(fact_1749_order__less__imp__le,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( ord_less_eq_rat @ X @ Y4 ) ) ).
% order_less_imp_le
thf(fact_1750_order__less__imp__le,axiom,
! [X: num,Y4: num] :
( ( ord_less_num @ X @ Y4 )
=> ( ord_less_eq_num @ X @ Y4 ) ) ).
% order_less_imp_le
thf(fact_1751_order__less__imp__le,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ( ord_less_eq_nat @ X @ Y4 ) ) ).
% order_less_imp_le
thf(fact_1752_order__less__imp__le,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ X @ Y4 )
=> ( ord_less_eq_int @ X @ Y4 ) ) ).
% order_less_imp_le
thf(fact_1753_order__less__imp__le,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ( ord_less_eq_real @ X @ Y4 ) ) ).
% order_less_imp_le
thf(fact_1754_order__le__neq__trans,axiom,
! [A: set_int,B: set_int] :
( ( ord_less_eq_set_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_set_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1755_order__le__neq__trans,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( A != B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1756_order__le__neq__trans,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( A != B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1757_order__le__neq__trans,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1758_order__le__neq__trans,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1759_order__le__neq__trans,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_1760_order__neq__le__trans,axiom,
! [A: set_int,B: set_int] :
( ( A != B )
=> ( ( ord_less_eq_set_int @ A @ B )
=> ( ord_less_set_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1761_order__neq__le__trans,axiom,
! [A: rat,B: rat] :
( ( A != B )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1762_order__neq__le__trans,axiom,
! [A: num,B: num] :
( ( A != B )
=> ( ( ord_less_eq_num @ A @ B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1763_order__neq__le__trans,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1764_order__neq__le__trans,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1765_order__neq__le__trans,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_1766_order__le__less__trans,axiom,
! [X: set_int,Y4: set_int,Z: set_int] :
( ( ord_less_eq_set_int @ X @ Y4 )
=> ( ( ord_less_set_int @ Y4 @ Z )
=> ( ord_less_set_int @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_1767_order__le__less__trans,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ord_less_rat @ Y4 @ Z )
=> ( ord_less_rat @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_1768_order__le__less__trans,axiom,
! [X: num,Y4: num,Z: num] :
( ( ord_less_eq_num @ X @ Y4 )
=> ( ( ord_less_num @ Y4 @ Z )
=> ( ord_less_num @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_1769_order__le__less__trans,axiom,
! [X: nat,Y4: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
=> ( ( ord_less_nat @ Y4 @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_1770_order__le__less__trans,axiom,
! [X: int,Y4: int,Z: int] :
( ( ord_less_eq_int @ X @ Y4 )
=> ( ( ord_less_int @ Y4 @ Z )
=> ( ord_less_int @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_1771_order__le__less__trans,axiom,
! [X: real,Y4: real,Z: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_real @ Y4 @ Z )
=> ( ord_less_real @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_1772_order__less__le__trans,axiom,
! [X: set_int,Y4: set_int,Z: set_int] :
( ( ord_less_set_int @ X @ Y4 )
=> ( ( ord_less_eq_set_int @ Y4 @ Z )
=> ( ord_less_set_int @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1773_order__less__le__trans,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( ( ord_less_eq_rat @ Y4 @ Z )
=> ( ord_less_rat @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1774_order__less__le__trans,axiom,
! [X: num,Y4: num,Z: num] :
( ( ord_less_num @ X @ Y4 )
=> ( ( ord_less_eq_num @ Y4 @ Z )
=> ( ord_less_num @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1775_order__less__le__trans,axiom,
! [X: nat,Y4: nat,Z: nat] :
( ( ord_less_nat @ X @ Y4 )
=> ( ( ord_less_eq_nat @ Y4 @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1776_order__less__le__trans,axiom,
! [X: int,Y4: int,Z: int] :
( ( ord_less_int @ X @ Y4 )
=> ( ( ord_less_eq_int @ Y4 @ Z )
=> ( ord_less_int @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1777_order__less__le__trans,axiom,
! [X: real,Y4: real,Z: real] :
( ( ord_less_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ Z )
=> ( ord_less_real @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1778_order__le__less__subst1,axiom,
! [A: rat,F: real > rat,B: real,C: real] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1779_order__le__less__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1780_order__le__less__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_num @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1781_order__le__less__subst1,axiom,
! [A: rat,F: nat > rat,B: nat,C: nat] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_nat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1782_order__le__less__subst1,axiom,
! [A: rat,F: int > rat,B: int,C: int] :
( ( ord_less_eq_rat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_int @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1783_order__le__less__subst1,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1784_order__le__less__subst1,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1785_order__le__less__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_num @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1786_order__le__less__subst1,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_nat @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1787_order__le__less__subst1,axiom,
! [A: num,F: int > num,B: int,C: int] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_int @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1788_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1789_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1790_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > nat,C: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1791_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > int,C: int] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1792_order__le__less__subst2,axiom,
! [A: rat,B: rat,F: rat > real,C: real] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1793_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_rat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1794_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1795_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1796_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1797_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_1798_order__less__le__subst1,axiom,
! [A: rat,F: rat > rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1799_order__less__le__subst1,axiom,
! [A: num,F: rat > num,B: rat,C: rat] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1800_order__less__le__subst1,axiom,
! [A: nat,F: rat > nat,B: rat,C: rat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1801_order__less__le__subst1,axiom,
! [A: int,F: rat > int,B: rat,C: rat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1802_order__less__le__subst1,axiom,
! [A: real,F: rat > real,B: rat,C: rat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_eq_rat @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1803_order__less__le__subst1,axiom,
! [A: rat,F: num > rat,B: num,C: num] :
( ( ord_less_rat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1804_order__less__le__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1805_order__less__le__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1806_order__less__le__subst1,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1807_order__less__le__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_eq_num @ X4 @ Y )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1808_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > rat,C: rat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1809_order__less__le__subst2,axiom,
! [A: rat,B: rat,F: rat > rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1810_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > rat,C: rat] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_num @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1811_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > rat,C: rat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_nat @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1812_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > rat,C: rat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_rat @ ( F @ B ) @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_int @ X4 @ Y )
=> ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1813_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: real,Y: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1814_order__less__le__subst2,axiom,
! [A: rat,B: rat,F: rat > num,C: num] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: rat,Y: rat] :
( ( ord_less_rat @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1815_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: num,Y: num] :
( ( ord_less_num @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1816_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y: nat] :
( ( ord_less_nat @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1817_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > num,C: num] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: int,Y: int] :
( ( ord_less_int @ X4 @ Y )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_1818_linorder__le__less__linear,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
| ( ord_less_rat @ Y4 @ X ) ) ).
% linorder_le_less_linear
thf(fact_1819_linorder__le__less__linear,axiom,
! [X: num,Y4: num] :
( ( ord_less_eq_num @ X @ Y4 )
| ( ord_less_num @ Y4 @ X ) ) ).
% linorder_le_less_linear
thf(fact_1820_linorder__le__less__linear,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
| ( ord_less_nat @ Y4 @ X ) ) ).
% linorder_le_less_linear
thf(fact_1821_linorder__le__less__linear,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
| ( ord_less_int @ Y4 @ X ) ) ).
% linorder_le_less_linear
thf(fact_1822_linorder__le__less__linear,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
| ( ord_less_real @ Y4 @ X ) ) ).
% linorder_le_less_linear
thf(fact_1823_order__le__imp__less__or__eq,axiom,
! [X: set_int,Y4: set_int] :
( ( ord_less_eq_set_int @ X @ Y4 )
=> ( ( ord_less_set_int @ X @ Y4 )
| ( X = Y4 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1824_order__le__imp__less__or__eq,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ord_less_rat @ X @ Y4 )
| ( X = Y4 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1825_order__le__imp__less__or__eq,axiom,
! [X: num,Y4: num] :
( ( ord_less_eq_num @ X @ Y4 )
=> ( ( ord_less_num @ X @ Y4 )
| ( X = Y4 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1826_order__le__imp__less__or__eq,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
=> ( ( ord_less_nat @ X @ Y4 )
| ( X = Y4 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1827_order__le__imp__less__or__eq,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
=> ( ( ord_less_int @ X @ Y4 )
| ( X = Y4 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1828_order__le__imp__less__or__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_real @ X @ Y4 )
| ( X = Y4 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1829_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_1830_less__numeral__extra_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).
% less_numeral_extra(3)
thf(fact_1831_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_1832_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_1833_field__lbound__gt__zero,axiom,
! [D1: real,D22: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D22 )
=> ? [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
& ( ord_less_real @ E @ D1 )
& ( ord_less_real @ E @ D22 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_1834_field__lbound__gt__zero,axiom,
! [D1: rat,D22: rat] :
( ( ord_less_rat @ zero_zero_rat @ D1 )
=> ( ( ord_less_rat @ zero_zero_rat @ D22 )
=> ? [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
& ( ord_less_rat @ E @ D1 )
& ( ord_less_rat @ E @ D22 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_1835_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_1836_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_1837_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_1838_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_1839_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y4: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y4 ) ) )
= ( ( ( ord_less_eq_nat @ Y4 @ X )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y4 ) ) ) )
& ( ( ord_less_nat @ X @ Y4 )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_1840_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_1841_diff__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_1842_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_1843_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_1844_diff__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_1845_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_1846_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_1847_diff__eq__diff__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( minus_minus_rat @ A @ B )
= ( minus_minus_rat @ C @ D ) )
=> ( ( ord_less_rat @ A @ B )
= ( ord_less_rat @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_1848_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_1849_diff__strict__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_1850_diff__strict__mono,axiom,
! [A: rat,B: rat,D: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ D @ C )
=> ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_1851_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_1852_double__diff,axiom,
! [A2: set_nat,B4: set_nat,C2: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( ord_less_eq_set_nat @ B4 @ C2 )
=> ( ( minus_minus_set_nat @ B4 @ ( minus_minus_set_nat @ C2 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_1853_double__diff,axiom,
! [A2: set_int,B4: set_int,C2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( ord_less_eq_set_int @ B4 @ C2 )
=> ( ( minus_minus_set_int @ B4 @ ( minus_minus_set_int @ C2 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_1854_Diff__subset,axiom,
! [A2: set_nat,B4: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B4 ) @ A2 ) ).
% Diff_subset
thf(fact_1855_Diff__subset,axiom,
! [A2: set_int,B4: set_int] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B4 ) @ A2 ) ).
% Diff_subset
thf(fact_1856_Diff__mono,axiom,
! [A2: set_nat,C2: set_nat,D3: set_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ C2 )
=> ( ( ord_less_eq_set_nat @ D3 @ B4 )
=> ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B4 ) @ ( minus_minus_set_nat @ C2 @ D3 ) ) ) ) ).
% Diff_mono
thf(fact_1857_Diff__mono,axiom,
! [A2: set_int,C2: set_int,D3: set_int,B4: set_int] :
( ( ord_less_eq_set_int @ A2 @ C2 )
=> ( ( ord_less_eq_set_int @ D3 @ B4 )
=> ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B4 ) @ ( minus_minus_set_int @ C2 @ D3 ) ) ) ) ).
% Diff_mono
thf(fact_1858_le__numeral__extra_I4_J,axiom,
ord_less_eq_rat @ one_one_rat @ one_one_rat ).
% le_numeral_extra(4)
thf(fact_1859_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_1860_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_1861_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_1862_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_1863_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_1864_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_1865_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_1866_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_1867_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_1868_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ N )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ I2 ) ) ) ) ).
% Ex_less_Suc
thf(fact_1869_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_1870_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_1871_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ N )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ I2 ) ) ) ) ).
% All_less_Suc
thf(fact_1872_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M6: nat] :
( ( M
= ( suc @ M6 ) )
& ( ord_less_nat @ N @ M6 ) ) ) ) ).
% Suc_less_eq2
thf(fact_1873_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_1874_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_1875_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_1876_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J2: nat,K2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ K2 )
=> ( ( P @ I3 @ J2 )
=> ( ( P @ J2 @ K2 )
=> ( P @ I3 @ K2 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_1877_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I3: nat] :
( ( J
= ( suc @ I3 ) )
=> ( P @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( P @ ( suc @ I3 ) )
=> ( P @ I3 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_1878_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_1879_zero__neq__one,axiom,
zero_zero_complex != one_one_complex ).
% zero_neq_one
thf(fact_1880_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_1881_zero__neq__one,axiom,
zero_zero_rat != one_one_rat ).
% zero_neq_one
thf(fact_1882_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_1883_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_1884_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_1885_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_1886_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_1887_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_1888_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_1889_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_1890_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_1891_comm__monoid__mult__class_Omult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1892_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1893_comm__monoid__mult__class_Omult__1,axiom,
! [A: rat] :
( ( times_times_rat @ one_one_rat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1894_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1895_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_1896_mult_Ocomm__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.comm_neutral
thf(fact_1897_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_1898_mult_Ocomm__neutral,axiom,
! [A: rat] :
( ( times_times_rat @ A @ one_one_rat )
= A ) ).
% mult.comm_neutral
thf(fact_1899_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_1900_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_1901_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1902_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_1903_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_1904_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_1905_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_1906_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M5: nat,N4: nat] :
( ( ord_less_nat @ M5 @ N4 )
| ( M5 = N4 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_1907_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_1908_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M5: nat,N4: nat] :
( ( ord_less_eq_nat @ M5 @ N4 )
& ( M5 != N4 ) ) ) ) ).
% nat_less_le
thf(fact_1909_int__diff__cases,axiom,
! [Z: int] :
~ ! [M4: nat,N2: nat] :
( Z
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M4 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% int_diff_cases
thf(fact_1910_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_1911_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_1912_dvd__unit__imp__unit,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ A @ one_one_Code_integer ) ) ) ).
% dvd_unit_imp_unit
thf(fact_1913_dvd__unit__imp__unit,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).
% dvd_unit_imp_unit
thf(fact_1914_dvd__unit__imp__unit,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ A @ one_one_int ) ) ) ).
% dvd_unit_imp_unit
thf(fact_1915_unit__imp__dvd,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( dvd_dvd_Code_integer @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_1916_unit__imp__dvd,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_1917_unit__imp__dvd,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% unit_imp_dvd
thf(fact_1918_one__dvd,axiom,
! [A: code_integer] : ( dvd_dvd_Code_integer @ one_one_Code_integer @ A ) ).
% one_dvd
thf(fact_1919_one__dvd,axiom,
! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).
% one_dvd
thf(fact_1920_one__dvd,axiom,
! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).
% one_dvd
thf(fact_1921_one__dvd,axiom,
! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).
% one_dvd
thf(fact_1922_one__dvd,axiom,
! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).
% one_dvd
thf(fact_1923_one__dvd,axiom,
! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).
% one_dvd
thf(fact_1924_zdvd__zdiffD,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ K @ ( minus_minus_int @ M @ N ) )
=> ( ( dvd_dvd_int @ K @ N )
=> ( dvd_dvd_int @ K @ M ) ) ) ).
% zdvd_zdiffD
thf(fact_1925_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_1926_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_1927_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ M @ N )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_1928_mult__le__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_1929_mult__le__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_1930_mult__le__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_1931_mult__le__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_1932_mult__le__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_1933_mult__le__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_1934_mult__le__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ one_one_rat @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_1935_mult__le__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_1936_mult__le__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_1937_mult__le__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ one_one_rat ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_1938_mult__le__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_1939_mult__le__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_1940_mult__less__cancel__left1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_1941_mult__less__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_1942_mult__less__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_1943_mult__less__cancel__left2,axiom,
! [C: rat,A: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_1944_mult__less__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_1945_mult__less__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_1946_mult__less__cancel__right1,axiom,
! [C: rat,B: rat] :
( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ one_one_rat @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_1947_mult__less__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_1948_mult__less__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_1949_mult__less__cancel__right2,axiom,
! [A: rat,C: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ one_one_rat ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_1950_mult__less__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_1951_mult__less__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_1952_field__le__mult__one__interval,axiom,
! [X: rat,Y4: rat] :
( ! [Z2: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z2 )
=> ( ( ord_less_rat @ Z2 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Z2 @ X ) @ Y4 ) ) )
=> ( ord_less_eq_rat @ X @ Y4 ) ) ).
% field_le_mult_one_interval
thf(fact_1953_field__le__mult__one__interval,axiom,
! [X: real,Y4: real] :
( ! [Z2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ Z2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ Y4 ) ) )
=> ( ord_less_eq_real @ X @ Y4 ) ) ).
% field_le_mult_one_interval
thf(fact_1954_divide__le__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ B @ A ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ A @ B ) )
| ( A = zero_zero_rat ) ) ) ).
% divide_le_eq_1
thf(fact_1955_divide__le__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_le_eq_1
thf(fact_1956_le__divide__eq__1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_eq_rat @ A @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_1957_le__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_1958_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_1959_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_1960_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_1961_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_1962_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_1963_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_1964_of__nat__less__two__power,axiom,
! [N: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% of_nat_less_two_power
thf(fact_1965_power__diff__power__eq,axiom,
! [A: nat,N: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
= ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
= ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_1966_power__diff__power__eq,axiom,
! [A: int,N: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
= ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
= ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% power_diff_power_eq
thf(fact_1967_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_1968_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).
% not_numeral_less_zero
thf(fact_1969_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_1970_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_1971_zero__less__numeral,axiom,
! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_less_numeral
thf(fact_1972_zero__less__numeral,axiom,
! [N: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).
% zero_less_numeral
thf(fact_1973_zero__less__numeral,axiom,
! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_less_numeral
thf(fact_1974_zero__less__numeral,axiom,
! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_less_numeral
thf(fact_1975_mult__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_1976_mult__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_1977_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_1978_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_1979_not__square__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).
% not_square_less_zero
thf(fact_1980_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_1981_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_1982_mult__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_1983_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_1984_mult__neg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_1985_mult__neg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_neg_pos
thf(fact_1986_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_1987_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_1988_mult__pos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_1989_mult__pos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg
thf(fact_1990_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_1991_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_1992_mult__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_1993_mult__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_1994_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_1995_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_1996_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_1997_mult__pos__neg2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).
% mult_pos_neg2
thf(fact_1998_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_1999_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_2000_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2001_zero__less__mult__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2002_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_2003_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2004_zero__less__mult__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2005_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2006_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_2007_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2008_zero__less__mult__pos2,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2009_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2010_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_2011_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2012_mult__less__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2013_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_2014_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2015_mult__less__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2016_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_2017_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2018_mult__strict__left__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2019_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_2020_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2021_mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2022_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2023_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_2024_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2025_mult__less__cancel__left__disj,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2026_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_2027_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2028_mult__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2029_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_2030_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2031_mult__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2032_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2033_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_2034_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2035_mult__less__cancel__right__disj,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
& ( ord_less_rat @ A @ B ) )
| ( ( ord_less_rat @ C @ zero_zero_rat )
& ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2036_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_2037_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2038_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2039_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2040_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_2041_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A3: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_2042_less__iff__diff__less__0,axiom,
( ord_less_rat
= ( ^ [A3: rat,B2: rat] : ( ord_less_rat @ ( minus_minus_rat @ A3 @ B2 ) @ zero_zero_rat ) ) ) ).
% less_iff_diff_less_0
thf(fact_2043_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_2044_divide__neg__neg,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y4 @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% divide_neg_neg
thf(fact_2045_divide__neg__neg,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ Y4 @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% divide_neg_neg
thf(fact_2046_divide__neg__pos,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y4 ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_2047_divide__neg__pos,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Y4 ) @ zero_zero_rat ) ) ) ).
% divide_neg_pos
thf(fact_2048_divide__pos__neg,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y4 @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y4 ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_2049_divide__pos__neg,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ Y4 @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Y4 ) @ zero_zero_rat ) ) ) ).
% divide_pos_neg
thf(fact_2050_divide__pos__pos,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% divide_pos_pos
thf(fact_2051_divide__pos__pos,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% divide_pos_pos
thf(fact_2052_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_2053_divide__less__0__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ B @ zero_zero_rat ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_2054_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_2055_divide__less__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) )
& ( C != zero_zero_rat ) ) ) ).
% divide_less_cancel
thf(fact_2056_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_2057_zero__less__divide__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ zero_zero_rat @ B ) )
| ( ( ord_less_rat @ A @ zero_zero_rat )
& ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).
% zero_less_divide_iff
thf(fact_2058_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_2059_divide__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_2060_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_2061_divide__strict__right__mono__neg,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_2062_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_2063_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).
% of_nat_less_0_iff
thf(fact_2064_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_2065_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_2066_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% zero_less_one_class.zero_le_one
thf(fact_2067_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_2068_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_2069_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_2070_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2071_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2072_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2073_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_2074_not__one__le__zero,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).
% not_one_le_zero
thf(fact_2075_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_2076_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_2077_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_2078_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) ) ).
% one_le_numeral
thf(fact_2079_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_2080_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).
% one_le_numeral
thf(fact_2081_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_2082_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_2083_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M4: nat] :
( N
= ( suc @ M4 ) ) ) ).
% gr0_implies_Suc
thf(fact_2084_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ ( suc @ I2 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_2085_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M5: nat] :
( N
= ( suc @ M5 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_2086_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ ( suc @ I2 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_2087_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_2088_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_2089_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_2090_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_2091_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_2092_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_2093_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_2094_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_2095_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_2096_right__inverse__eq,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( ( divide1717551699836669952omplex @ A @ B )
= one_one_complex )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_2097_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_2098_right__inverse__eq,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( ( divide_divide_rat @ A @ B )
= one_one_rat )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_2099_numeral__One,axiom,
( ( numera6690914467698888265omplex @ one )
= one_one_complex ) ).
% numeral_One
thf(fact_2100_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_2101_numeral__One,axiom,
( ( numeral_numeral_rat @ one )
= one_one_rat ) ).
% numeral_One
thf(fact_2102_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_2103_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_2104_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_2105_not__is__unit__0,axiom,
~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).
% not_is_unit_0
thf(fact_2106_not__is__unit__0,axiom,
~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).
% not_is_unit_0
thf(fact_2107_not__is__unit__0,axiom,
~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).
% not_is_unit_0
thf(fact_2108_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_2109_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_2110_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_2111_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_2112_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_2113_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_2114_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_2115_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_2116_is__unit__mult__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer )
= ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
& ( dvd_dvd_Code_integer @ B @ one_one_Code_integer ) ) ) ).
% is_unit_mult_iff
thf(fact_2117_is__unit__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
& ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).
% is_unit_mult_iff
thf(fact_2118_is__unit__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
& ( dvd_dvd_int @ B @ one_one_int ) ) ) ).
% is_unit_mult_iff
thf(fact_2119_dvd__mult__unit__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_2120_dvd__mult__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_2121_dvd__mult__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff
thf(fact_2122_mult__unit__dvd__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_2123_mult__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_2124_mult__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% mult_unit_dvd_iff
thf(fact_2125_dvd__mult__unit__iff_H,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_2126_dvd__mult__unit__iff_H,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_2127_dvd__mult__unit__iff_H,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_mult_unit_iff'
thf(fact_2128_mult__unit__dvd__iff_H,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_2129_mult__unit__dvd__iff_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_2130_mult__unit__dvd__iff_H,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% mult_unit_dvd_iff'
thf(fact_2131_unit__mult__left__cancel,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( ( times_3573771949741848930nteger @ A @ B )
= ( times_3573771949741848930nteger @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_2132_unit__mult__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ A @ B )
= ( times_times_nat @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_2133_unit__mult__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ A @ B )
= ( times_times_int @ A @ C ) )
= ( B = C ) ) ) ).
% unit_mult_left_cancel
thf(fact_2134_unit__mult__right__cancel,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( ( times_3573771949741848930nteger @ B @ A )
= ( times_3573771949741848930nteger @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_2135_unit__mult__right__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( times_times_nat @ B @ A )
= ( times_times_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_2136_unit__mult__right__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( times_times_int @ B @ A )
= ( times_times_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_mult_right_cancel
thf(fact_2137_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_2138_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_2139_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_2140_unit__div__cancel,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ B @ A )
= ( divide6298287555418463151nteger @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_2141_unit__div__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ( ( ( divide_divide_nat @ B @ A )
= ( divide_divide_nat @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_2142_unit__div__cancel,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ( ( ( divide_divide_int @ B @ A )
= ( divide_divide_int @ C @ A ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_2143_div__unit__dvd__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_2144_div__unit__dvd__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_2145_div__unit__dvd__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_2146_dvd__div__unit__iff,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ C @ B ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_2147_dvd__div__unit__iff,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_2148_dvd__div__unit__iff,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_2149_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide_nat @ M @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_2150_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_2151_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_2152_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
= ( ( ord_less_nat @ N @ M )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_minus_self
thf(fact_2153_less__mult__imp__div__less,axiom,
! [M: nat,I: nat,N: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).
% less_mult_imp_div_less
thf(fact_2154_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_2155_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_2156_zero__less__power__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_real ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_2157_zero__less__power__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_rat ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_2158_zero__less__power__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ( N = zero_zero_nat )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A != zero_zero_int ) )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).
% zero_less_power_eq
thf(fact_2159_mult__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2160_mult__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2161_mult__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_2162_mult__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2163_mult__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2164_mult__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_2165_mult__left__less__imp__less,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2166_mult__left__less__imp__less,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2167_mult__left__less__imp__less,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2168_mult__left__less__imp__less,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_2169_mult__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2170_mult__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2171_mult__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2172_mult__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_2173_mult__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2174_mult__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2175_mult__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_2176_mult__right__less__imp__less,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2177_mult__right__less__imp__less,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2178_mult__right__less__imp__less,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2179_mult__right__less__imp__less,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_2180_mult__strict__mono_H,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2181_mult__strict__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2182_mult__strict__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2183_mult__strict__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_2184_mult__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
= ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ A @ B ) )
& ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2185_mult__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2186_mult__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_2187_mult__le__cancel__left__neg,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2188_mult__le__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2189_mult__le__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_2190_mult__le__cancel__left__pos,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2191_mult__le__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2192_mult__le__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_2193_mult__left__le__imp__le,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2194_mult__left__le__imp__le,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2195_mult__left__le__imp__le,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2196_mult__left__le__imp__le,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_2197_mult__right__le__imp__le,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2198_mult__right__le__imp__le,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2199_mult__right__le__imp__le,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2200_mult__right__le__imp__le,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_2201_mult__le__less__imp__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2202_mult__le__less__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2203_mult__le__less__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2204_mult__le__less__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_2205_mult__less__le__imp__less,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2206_mult__less__le__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2207_mult__less__le__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2208_mult__less__le__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_2209_frac__le,axiom,
! [Y4: rat,X: rat,W: rat,Z: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_eq_rat @ W @ Z )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Z ) @ ( divide_divide_rat @ Y4 @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_2210_frac__le,axiom,
! [Y4: real,X: real,W: real,Z: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y4 @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_2211_frac__less,axiom,
! [X: rat,Y4: rat,W: rat,Z: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ X @ Y4 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_eq_rat @ W @ Z )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Z ) @ ( divide_divide_rat @ Y4 @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_2212_frac__less,axiom,
! [X: real,Y4: real,W: real,Z: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y4 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y4 @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_2213_frac__less2,axiom,
! [X: rat,Y4: rat,W: rat,Z: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ord_less_rat @ zero_zero_rat @ W )
=> ( ( ord_less_rat @ W @ Z )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Z ) @ ( divide_divide_rat @ Y4 @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_2214_frac__less2,axiom,
! [X: real,Y4: real,W: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_real @ W @ Z )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y4 @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_2215_divide__le__cancel,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ A @ B ) )
& ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_2216_divide__le__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_2217_divide__nonneg__neg,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ Y4 @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y4 ) @ zero_zero_rat ) ) ) ).
% divide_nonneg_neg
thf(fact_2218_divide__nonneg__neg,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y4 @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y4 ) @ zero_zero_real ) ) ) ).
% divide_nonneg_neg
thf(fact_2219_divide__nonneg__pos,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% divide_nonneg_pos
thf(fact_2220_divide__nonneg__pos,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% divide_nonneg_pos
thf(fact_2221_divide__nonpos__neg,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ Y4 @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% divide_nonpos_neg
thf(fact_2222_divide__nonpos__neg,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y4 @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% divide_nonpos_neg
thf(fact_2223_divide__nonpos__pos,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y4 ) @ zero_zero_rat ) ) ) ).
% divide_nonpos_pos
thf(fact_2224_divide__nonpos__pos,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y4 ) @ zero_zero_real ) ) ) ).
% divide_nonpos_pos
thf(fact_2225_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2226_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ) ).
% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2227_div__positive,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_positive
thf(fact_2228_div__positive,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_positive
thf(fact_2229_divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2230_divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_2231_less__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2232_less__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_2233_neg__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2234_neg__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_2235_neg__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2236_neg__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_2237_pos__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2238_pos__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_2239_pos__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2240_pos__less__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_2241_mult__imp__div__pos__less,axiom,
! [Y4: real,X: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ X @ ( times_times_real @ Z @ Y4 ) )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y4 ) @ Z ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2242_mult__imp__div__pos__less,axiom,
! [Y4: rat,X: rat,Z: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_rat @ X @ ( times_times_rat @ Z @ Y4 ) )
=> ( ord_less_rat @ ( divide_divide_rat @ X @ Y4 ) @ Z ) ) ) ).
% mult_imp_div_pos_less
thf(fact_2243_mult__imp__less__div__pos,axiom,
! [Y4: real,Z: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ ( times_times_real @ Z @ Y4 ) @ X )
=> ( ord_less_real @ Z @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2244_mult__imp__less__div__pos,axiom,
! [Y4: rat,Z: rat,X: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_rat @ ( times_times_rat @ Z @ Y4 ) @ X )
=> ( ord_less_rat @ Z @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_2245_divide__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2246_divide__strict__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_rat @ B @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_2247_divide__strict__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2248_divide__strict__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_2249_mult__left__le__one__le,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_eq_rat @ Y4 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ Y4 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2250_mult__left__le__one__le,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ord_less_eq_int @ Y4 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ Y4 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2251_mult__left__le__one__le,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Y4 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_2252_mult__right__le__one__le,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_eq_rat @ Y4 @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ X @ Y4 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2253_mult__right__le__one__le,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ord_less_eq_int @ Y4 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ X @ Y4 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2254_mult__right__le__one__le,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ X @ Y4 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_2255_mult__le__one,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ B @ one_one_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).
% mult_le_one
thf(fact_2256_mult__le__one,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).
% mult_le_one
thf(fact_2257_mult__le__one,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).
% mult_le_one
thf(fact_2258_mult__le__one,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).
% mult_le_one
thf(fact_2259_mult__left__le,axiom,
! [C: rat,A: rat] :
( ( ord_less_eq_rat @ C @ one_one_rat )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2260_mult__left__le,axiom,
! [C: nat,A: nat] :
( ( ord_less_eq_nat @ C @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2261_mult__left__le,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ C @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2262_mult__left__le,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ C @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_2263_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ! [I4: nat] :
( ( ord_less_eq_nat @ I4 @ K2 )
=> ~ ( P @ I4 ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_2264_unit__dvdE,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ~ ( ( A != zero_z3403309356797280102nteger )
=> ! [C3: code_integer] :
( B
!= ( times_3573771949741848930nteger @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_2265_unit__dvdE,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [C3: nat] :
( B
!= ( times_times_nat @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_2266_unit__dvdE,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [C3: int] :
( B
!= ( times_times_int @ A @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_2267_diff__Suc__less,axiom,
! [N: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_2268_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_2269_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_2270_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_2271_unit__div__eq__0__iff,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ) ).
% unit_div_eq_0_iff
thf(fact_2272_unit__div__eq__0__iff,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ) ).
% unit_div_eq_0_iff
thf(fact_2273_unit__div__eq__0__iff,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% unit_div_eq_0_iff
thf(fact_2274_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_2275_unit__eq__div1,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ A @ B )
= C )
= ( A
= ( times_3573771949741848930nteger @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_2276_unit__eq__div1,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A @ B )
= C )
= ( A
= ( times_times_nat @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_2277_unit__eq__div1,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A @ B )
= C )
= ( A
= ( times_times_int @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_2278_unit__eq__div2,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( A
= ( divide6298287555418463151nteger @ C @ B ) )
= ( ( times_3573771949741848930nteger @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_2279_unit__eq__div2,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( A
= ( divide_divide_nat @ C @ B ) )
= ( ( times_times_nat @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_2280_unit__eq__div2,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( A
= ( divide_divide_int @ C @ B ) )
= ( ( times_times_int @ A @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_2281_div__mult__unit2,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_2282_div__mult__unit2,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_2283_div__mult__unit2,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_2284_unit__div__commute,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_2285_unit__div__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
= ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_2286_unit__div__commute,axiom,
! [B: int,A: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
= ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_2287_unit__div__mult__swap,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
=> ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_2288_unit__div__mult__swap,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_2289_unit__div__mult__swap,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_2290_is__unit__div__mult2__eq,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_2291_is__unit__div__mult2__eq,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_2292_is__unit__div__mult2__eq,axiom,
! [B: int,C: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_2293_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ) ).
% dvd_imp_le
thf(fact_2294_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ N @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_2295_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_2296_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_2297_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_2298_div__less__iff__less__mult,axiom,
! [Q2: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N )
= ( ord_less_nat @ M @ ( times_times_nat @ N @ Q2 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_2299_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_2300_power__le__zero__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_rat @ A @ zero_zero_rat ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_rat ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_2301_power__le__zero__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_int @ A @ zero_zero_int ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_int ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_2302_power__le__zero__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
= ( ( ord_less_nat @ zero_zero_nat @ N )
& ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_real @ A @ zero_zero_real ) )
| ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( A = zero_zero_real ) ) ) ) ) ).
% power_le_zero_eq
thf(fact_2303_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_2304_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_2305_even__mask__div__iff_H,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% even_mask_div_iff'
thf(fact_2306_conj__le__cong,axiom,
! [X: int,X7: int,P: $o,P4: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X7 )
& P4 ) ) ) ) ).
% conj_le_cong
thf(fact_2307_imp__le__cong,axiom,
! [X: int,X7: int,P: $o,P4: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> P4 ) ) ) ) ).
% imp_le_cong
thf(fact_2308_gcd__nat_Onot__eq__order__implies__strict,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ) ).
% gcd_nat.not_eq_order_implies_strict
thf(fact_2309_gcd__nat_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( A != B ) ) ).
% gcd_nat.strict_implies_not_eq
thf(fact_2310_gcd__nat_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( dvd_dvd_nat @ A @ B ) ) ).
% gcd_nat.strict_implies_order
thf(fact_2311_gcd__nat_Ostrict__iff__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ).
% gcd_nat.strict_iff_order
thf(fact_2312_gcd__nat_Oorder__iff__strict,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B2: nat] :
( ( ( dvd_dvd_nat @ A3 @ B2 )
& ( A3 != B2 ) )
| ( A3 = B2 ) ) ) ) ).
% gcd_nat.order_iff_strict
thf(fact_2313_gcd__nat_Ostrict__iff__not,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% gcd_nat.strict_iff_not
thf(fact_2314_gcd__nat_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans2
thf(fact_2315_gcd__nat_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans1
thf(fact_2316_gcd__nat_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans
thf(fact_2317_gcd__nat_Oantisym,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( A = B ) ) ) ).
% gcd_nat.antisym
thf(fact_2318_gcd__nat_Oirrefl,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ A @ A )
& ( A != A ) ) ).
% gcd_nat.irrefl
thf(fact_2319_gcd__nat_Oeq__iff,axiom,
( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
= ( ^ [A3: nat,B2: nat] :
( ( dvd_dvd_nat @ A3 @ B2 )
& ( dvd_dvd_nat @ B2 @ A3 ) ) ) ) ).
% gcd_nat.eq_iff
thf(fact_2320_gcd__nat_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% gcd_nat.trans
thf(fact_2321_gcd__nat_Orefl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% gcd_nat.refl
thf(fact_2322_gcd__nat_Oasym,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ~ ( ( dvd_dvd_nat @ B @ A )
& ( B != A ) ) ) ).
% gcd_nat.asym
thf(fact_2323_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
= zero_z3403309356797280102nteger )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_2324_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= zero_zero_nat )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_2325_even__mask__div__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
= zero_zero_int )
| ( ord_less_eq_nat @ M @ N ) ) ) ).
% even_mask_div_iff
thf(fact_2326_divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2327_divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_2328_le__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2329_le__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_2330_divide__left__mono,axiom,
! [B: rat,A: rat,C: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2331_divide__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_2332_neg__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2333_neg__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_2334_neg__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2335_neg__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_2336_pos__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2337_pos__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_2338_pos__le__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2339_pos__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_2340_mult__imp__div__pos__le,axiom,
! [Y4: rat,X: rat,Z: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_eq_rat @ X @ ( times_times_rat @ Z @ Y4 ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y4 ) @ Z ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2341_mult__imp__div__pos__le,axiom,
! [Y4: real,X: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ X @ ( times_times_real @ Z @ Y4 ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y4 ) @ Z ) ) ) ).
% mult_imp_div_pos_le
thf(fact_2342_mult__imp__le__div__pos,axiom,
! [Y4: rat,Z: rat,X: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ Y4 ) @ X )
=> ( ord_less_eq_rat @ Z @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2343_mult__imp__le__div__pos,axiom,
! [Y4: real,Z: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z @ Y4 ) @ X )
=> ( ord_less_eq_real @ Z @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_2344_divide__left__mono__neg,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2345_divide__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_2346_divide__less__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2347_divide__less__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_2348_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2349_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_2350_frac__less__eq,axiom,
! [Y4: real,Z: real,X: real,W: real] :
( ( Y4 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ X @ Y4 ) @ ( divide_divide_real @ W @ Z ) )
= ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y4 ) ) @ ( times_times_real @ Y4 @ Z ) ) @ zero_zero_real ) ) ) ) ).
% frac_less_eq
thf(fact_2351_frac__less__eq,axiom,
! [Y4: rat,Z: rat,X: rat,W: rat] :
( ( Y4 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( ord_less_rat @ ( divide_divide_rat @ X @ Y4 ) @ ( divide_divide_rat @ W @ Z ) )
= ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y4 ) ) @ ( times_times_rat @ Y4 @ Z ) ) @ zero_zero_rat ) ) ) ) ).
% frac_less_eq
thf(fact_2352_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).
% not_exp_less_eq_0_int
thf(fact_2353_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_2354_is__unitE,axiom,
! [A: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
=> ~ ( ( A != zero_z3403309356797280102nteger )
=> ! [B3: code_integer] :
( ( B3 != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B3 @ one_one_Code_integer )
=> ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
= B3 )
=> ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B3 )
= A )
=> ( ( ( times_3573771949741848930nteger @ A @ B3 )
= one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ C @ A )
!= ( times_3573771949741848930nteger @ C @ B3 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_2355_is__unitE,axiom,
! [A: nat,C: nat] :
( ( dvd_dvd_nat @ A @ one_one_nat )
=> ~ ( ( A != zero_zero_nat )
=> ! [B3: nat] :
( ( B3 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B3 @ one_one_nat )
=> ( ( ( divide_divide_nat @ one_one_nat @ A )
= B3 )
=> ( ( ( divide_divide_nat @ one_one_nat @ B3 )
= A )
=> ( ( ( times_times_nat @ A @ B3 )
= one_one_nat )
=> ( ( divide_divide_nat @ C @ A )
!= ( times_times_nat @ C @ B3 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_2356_is__unitE,axiom,
! [A: int,C: int] :
( ( dvd_dvd_int @ A @ one_one_int )
=> ~ ( ( A != zero_zero_int )
=> ! [B3: int] :
( ( B3 != zero_zero_int )
=> ( ( dvd_dvd_int @ B3 @ one_one_int )
=> ( ( ( divide_divide_int @ one_one_int @ A )
= B3 )
=> ( ( ( divide_divide_int @ one_one_int @ B3 )
= A )
=> ( ( ( times_times_int @ A @ B3 )
= one_one_int )
=> ( ( divide_divide_int @ C @ A )
!= ( times_times_int @ C @ B3 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_2357_is__unit__div__mult__cancel__left,axiom,
! [A: code_integer,B: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
= ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_2358_is__unit__div__mult__cancel__left,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_2359_is__unit__div__mult__cancel__left,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_2360_is__unit__div__mult__cancel__right,axiom,
! [A: code_integer,B: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
= ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_2361_is__unit__div__mult__cancel__right,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_2362_is__unit__div__mult__cancel__right,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_2363_odd__one,axiom,
~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).
% odd_one
thf(fact_2364_odd__one,axiom,
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).
% odd_one
thf(fact_2365_odd__one,axiom,
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).
% odd_one
thf(fact_2366_div__if,axiom,
( divide_divide_nat
= ( ^ [M5: nat,N4: nat] :
( if_nat
@ ( ( ord_less_nat @ M5 @ N4 )
| ( N4 = zero_zero_nat ) )
@ zero_zero_nat
@ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M5 @ N4 ) @ N4 ) ) ) ) ) ).
% div_if
thf(fact_2367_div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).
% div_geq
thf(fact_2368_div__nat__eqI,axiom,
! [N: nat,Q2: nat,M: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q2 ) @ M )
=> ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q2 ) ) )
=> ( ( divide_divide_nat @ M @ N )
= Q2 ) ) ) ).
% div_nat_eqI
thf(fact_2369_less__eq__div__iff__mult__less__eq,axiom,
! [Q2: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q2 ) )
= ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_2370_even__mult__exp__div__exp__iff,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
= zero_z3403309356797280102nteger )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_2371_even__mult__exp__div__exp__iff,axiom,
! [A: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= zero_zero_nat )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_2372_even__mult__exp__div__exp__iff,axiom,
! [A: int,M: nat,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
= ( ( ord_less_nat @ N @ M )
| ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
= zero_zero_int )
| ( ( ord_less_eq_nat @ M @ N )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).
% even_mult_exp_div_exp_iff
thf(fact_2373_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N: nat,M: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
!= zero_zero_nat ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_2374_exp__not__zero__imp__exp__diff__not__zero,axiom,
! [N: nat,M: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
!= zero_zero_int ) ) ).
% exp_not_zero_imp_exp_diff_not_zero
thf(fact_2375_power__mono__odd,axiom,
! [N: nat,A: rat,B: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_2376_power__mono__odd,axiom,
! [N: nat,A: int,B: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_2377_power__mono__odd,axiom,
! [N: nat,A: real,B: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono_odd
thf(fact_2378_divide__le__eq__numeral_I1_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_2379_divide__le__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_2380_le__divide__eq__numeral_I1_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_2381_le__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_2382_half__gt__zero,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_2383_half__gt__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_2384_half__gt__zero__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% half_gt_zero_iff
thf(fact_2385_half__gt__zero__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% half_gt_zero_iff
thf(fact_2386_four__x__squared,axiom,
! [X: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_2387_less__2__cases,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_2388_less__2__cases__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_2389_real__of__nat__div2,axiom,
! [N: nat,X: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) ) ).
% real_of_nat_div2
thf(fact_2390_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_2391_le__div__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ M @ N )
= ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).
% le_div_geq
thf(fact_2392_split__div_H,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
& ( P @ zero_zero_nat ) )
| ? [Q3: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q3 ) @ M )
& ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q3 ) ) )
& ( P @ Q3 ) ) ) ) ).
% split_div'
thf(fact_2393_inverse__of__nat__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( N != zero_zero_nat )
=> ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_2394_inverse__of__nat__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( N != zero_zero_nat )
=> ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% inverse_of_nat_le
thf(fact_2395_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M4: nat] :
( ( ord_less_nat @ zero_zero_nat @ M4 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X ) @ C ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_2396_zero__le__power__eq,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_2397_zero__le__power__eq,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_2398_zero__le__power__eq,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
| ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
& ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).
% zero_le_power_eq
thf(fact_2399_zero__le__odd__power,axiom,
! [N: nat,A: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).
% zero_le_odd_power
thf(fact_2400_zero__le__odd__power,axiom,
! [N: nat,A: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% zero_le_odd_power
thf(fact_2401_zero__le__odd__power,axiom,
! [N: nat,A: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).
% zero_le_odd_power
thf(fact_2402_zero__le__even__power,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_2403_zero__le__even__power,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_2404_zero__le__even__power,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_even_power
thf(fact_2405_nat__bit__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_bit_induct
thf(fact_2406_div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_2407_Suc__n__div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_2408_inf__period_I2_J,axiom,
! [P: real > $o,D3: real,Q: real > $o] :
( ! [X4: real,K2: real] :
( ( P @ X4 )
= ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ( ! [X4: real,K2: real] :
( ( Q @ X4 )
= ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ! [X5: real,K4: real] :
( ( ( P @ X5 )
| ( Q @ X5 ) )
= ( ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) )
| ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_2409_inf__period_I2_J,axiom,
! [P: rat > $o,D3: rat,Q: rat > $o] :
( ! [X4: rat,K2: rat] :
( ( P @ X4 )
= ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D3 ) ) ) )
=> ( ! [X4: rat,K2: rat] :
( ( Q @ X4 )
= ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D3 ) ) ) )
=> ! [X5: rat,K4: rat] :
( ( ( P @ X5 )
| ( Q @ X5 ) )
= ( ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) )
| ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_2410_inf__period_I2_J,axiom,
! [P: int > $o,D3: int,Q: int > $o] :
( ! [X4: int,K2: int] :
( ( P @ X4 )
= ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ( ! [X4: int,K2: int] :
( ( Q @ X4 )
= ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ! [X5: int,K4: int] :
( ( ( P @ X5 )
| ( Q @ X5 ) )
= ( ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) )
| ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_2411_inf__period_I1_J,axiom,
! [P: real > $o,D3: real,Q: real > $o] :
( ! [X4: real,K2: real] :
( ( P @ X4 )
= ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ( ! [X4: real,K2: real] :
( ( Q @ X4 )
= ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ! [X5: real,K4: real] :
( ( ( P @ X5 )
& ( Q @ X5 ) )
= ( ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) )
& ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_2412_inf__period_I1_J,axiom,
! [P: rat > $o,D3: rat,Q: rat > $o] :
( ! [X4: rat,K2: rat] :
( ( P @ X4 )
= ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D3 ) ) ) )
=> ( ! [X4: rat,K2: rat] :
( ( Q @ X4 )
= ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D3 ) ) ) )
=> ! [X5: rat,K4: rat] :
( ( ( P @ X5 )
& ( Q @ X5 ) )
= ( ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) )
& ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_2413_inf__period_I1_J,axiom,
! [P: int > $o,D3: int,Q: int > $o] :
( ! [X4: int,K2: int] :
( ( P @ X4 )
= ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ( ! [X4: int,K2: int] :
( ( Q @ X4 )
= ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ! [X5: int,K4: int] :
( ( ( P @ X5 )
& ( Q @ X5 ) )
= ( ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) )
& ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_2414_dvd__productE,axiom,
! [P5: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ P5 @ ( times_times_nat @ A @ B ) )
=> ~ ! [X4: nat,Y: nat] :
( ( P5
= ( times_times_nat @ X4 @ Y ) )
=> ( ( dvd_dvd_nat @ X4 @ A )
=> ~ ( dvd_dvd_nat @ Y @ B ) ) ) ) ).
% dvd_productE
thf(fact_2415_dvd__productE,axiom,
! [P5: int,A: int,B: int] :
( ( dvd_dvd_int @ P5 @ ( times_times_int @ A @ B ) )
=> ~ ! [X4: int,Y: int] :
( ( P5
= ( times_times_int @ X4 @ Y ) )
=> ( ( dvd_dvd_int @ X4 @ A )
=> ~ ( dvd_dvd_int @ Y @ B ) ) ) ) ).
% dvd_productE
thf(fact_2416_division__decomp,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
=> ? [B7: nat,C4: nat] :
( ( A
= ( times_times_nat @ B7 @ C4 ) )
& ( dvd_dvd_nat @ B7 @ B )
& ( dvd_dvd_nat @ C4 @ C ) ) ) ).
% division_decomp
thf(fact_2417_division__decomp,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
=> ? [B7: int,C4: int] :
( ( A
= ( times_times_int @ B7 @ C4 ) )
& ( dvd_dvd_int @ B7 @ B )
& ( dvd_dvd_int @ C4 @ C ) ) ) ).
% division_decomp
thf(fact_2418_space__space_H,axiom,
! [T: vEBT_VEBT] : ( ord_less_nat @ ( vEBT_VEBT_space @ T ) @ ( vEBT_VEBT_space2 @ T ) ) ).
% space_space'
thf(fact_2419_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_2420_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_2421_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_2422_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_2423_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_2424_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_2425_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_2426_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_2427_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2428_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2429_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2430_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_2431_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2432_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2433_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2434_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_2435_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2436_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2437_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2438_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_2439_zero__less__power2,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_real ) ) ).
% zero_less_power2
thf(fact_2440_zero__less__power2,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_power2
thf(fact_2441_zero__less__power2,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_int ) ) ).
% zero_less_power2
thf(fact_2442_power2__less__eq__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% power2_less_eq_zero_iff
thf(fact_2443_power2__less__eq__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% power2_less_eq_zero_iff
thf(fact_2444_power2__less__eq__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% power2_less_eq_zero_iff
thf(fact_2445_power2__eq__iff__nonneg,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y4 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_2446_power2__eq__iff__nonneg,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y4 )
=> ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y4 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_2447_power2__eq__iff__nonneg,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y4 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_2448_power2__eq__iff__nonneg,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y4 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_2449_power__decreasing__iff,axiom,
! [B: rat,M: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2450_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2451_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2452_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_2453_power__mono__iff,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2454_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2455_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2456_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_2457_psubsetI,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( A2 != B4 )
=> ( ord_less_set_int @ A2 @ B4 ) ) ) ).
% psubsetI
thf(fact_2458_DiffI,axiom,
! [C: complex,A2: set_complex,B4: set_complex] :
( ( member_complex @ C @ A2 )
=> ( ~ ( member_complex @ C @ B4 )
=> ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B4 ) ) ) ) ).
% DiffI
thf(fact_2459_DiffI,axiom,
! [C: real,A2: set_real,B4: set_real] :
( ( member_real @ C @ A2 )
=> ( ~ ( member_real @ C @ B4 )
=> ( member_real @ C @ ( minus_minus_set_real @ A2 @ B4 ) ) ) ) ).
% DiffI
thf(fact_2460_DiffI,axiom,
! [C: set_nat,A2: set_set_nat,B4: set_set_nat] :
( ( member_set_nat @ C @ A2 )
=> ( ~ ( member_set_nat @ C @ B4 )
=> ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B4 ) ) ) ) ).
% DiffI
thf(fact_2461_DiffI,axiom,
! [C: int,A2: set_int,B4: set_int] :
( ( member_int @ C @ A2 )
=> ( ~ ( member_int @ C @ B4 )
=> ( member_int @ C @ ( minus_minus_set_int @ A2 @ B4 ) ) ) ) ).
% DiffI
thf(fact_2462_DiffI,axiom,
! [C: nat,A2: set_nat,B4: set_nat] :
( ( member_nat @ C @ A2 )
=> ( ~ ( member_nat @ C @ B4 )
=> ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B4 ) ) ) ) ).
% DiffI
thf(fact_2463_Diff__iff,axiom,
! [C: complex,A2: set_complex,B4: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
= ( ( member_complex @ C @ A2 )
& ~ ( member_complex @ C @ B4 ) ) ) ).
% Diff_iff
thf(fact_2464_Diff__iff,axiom,
! [C: real,A2: set_real,B4: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B4 ) )
= ( ( member_real @ C @ A2 )
& ~ ( member_real @ C @ B4 ) ) ) ).
% Diff_iff
thf(fact_2465_Diff__iff,axiom,
! [C: set_nat,A2: set_set_nat,B4: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B4 ) )
= ( ( member_set_nat @ C @ A2 )
& ~ ( member_set_nat @ C @ B4 ) ) ) ).
% Diff_iff
thf(fact_2466_Diff__iff,axiom,
! [C: int,A2: set_int,B4: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B4 ) )
= ( ( member_int @ C @ A2 )
& ~ ( member_int @ C @ B4 ) ) ) ).
% Diff_iff
thf(fact_2467_Diff__iff,axiom,
! [C: nat,A2: set_nat,B4: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B4 ) )
= ( ( member_nat @ C @ A2 )
& ~ ( member_nat @ C @ B4 ) ) ) ).
% Diff_iff
thf(fact_2468_Diff__idemp,axiom,
! [A2: set_nat,B4: set_nat] :
( ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B4 ) @ B4 )
= ( minus_minus_set_nat @ A2 @ B4 ) ) ).
% Diff_idemp
thf(fact_2469_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_2470_two__realpow__ge__two,axiom,
! [N: nat] :
( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).
% two_realpow_ge_two
thf(fact_2471_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
= ( X = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_2472_zle__diff1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
= ( ord_less_int @ W @ Z ) ) ).
% zle_diff1_eq
thf(fact_2473_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_2474_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_2475_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(80)
thf(fact_2476_unset__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% unset_bit_negative_int_iff
thf(fact_2477_set__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% set_bit_negative_int_iff
thf(fact_2478_flip__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% flip_bit_negative_int_iff
thf(fact_2479_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_rat @ zero_zero_rat @ ( suc @ N ) )
= zero_zero_rat ) ).
% power_0_Suc
thf(fact_2480_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_2481_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_2482_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_2483_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_complex @ zero_zero_complex @ ( suc @ N ) )
= zero_zero_complex ) ).
% power_0_Suc
thf(fact_2484_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
= zero_zero_rat ) ).
% power_zero_numeral
thf(fact_2485_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_2486_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_2487_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_2488_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
= zero_zero_complex ) ).
% power_zero_numeral
thf(fact_2489_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2490_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2491_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2492_power__Suc0__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_2493_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_2494_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power_nat @ X @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_2495_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_2496_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N ) )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N ) ) ).
% of_nat_power
thf(fact_2497_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).
% of_nat_power
thf(fact_2498_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( power_power_nat @ M @ N ) )
= ( power_power_rat @ ( semiri681578069525770553at_rat @ M ) @ N ) ) ).
% of_nat_power
thf(fact_2499_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).
% of_nat_power
thf(fact_2500_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).
% of_nat_power
thf(fact_2501_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
= ( semiri8010041392384452111omplex @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_2502_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
= ( semiri5074537144036343181t_real @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_2503_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W )
= ( semiri681578069525770553at_rat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_2504_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
= ( semiri1316708129612266289at_nat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_2505_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
= ( semiri1314217659103216013at_int @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_2506_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri8010041392384452111omplex @ X )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_2507_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri5074537144036343181t_real @ X )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_2508_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri681578069525770553at_rat @ X )
= ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_2509_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_2510_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1314217659103216013at_int @ X )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_2511_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_2512_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_2513_power__mult__numeral,axiom,
! [A: int,M: num,N: num] :
( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_2514_power__mult__numeral,axiom,
! [A: real,M: num,N: num] :
( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_2515_power__mult__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_2516_power__mult__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_2517_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_2518_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(81)
thf(fact_2519_semiring__norm_I77_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).
% semiring_norm(77)
thf(fact_2520_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_2521_power__eq__0__iff,axiom,
! [A: rat,N: nat] :
( ( ( power_power_rat @ A @ N )
= zero_zero_rat )
= ( ( A = zero_zero_rat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_2522_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_2523_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_2524_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_2525_power__eq__0__iff,axiom,
! [A: complex,N: nat] :
( ( ( power_power_complex @ A @ N )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_2526_real__of__nat__less__numeral__iff,axiom,
! [N: nat,W: num] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
= ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_2527_numeral__less__real__of__nat__iff,axiom,
! [W: num,N: nat] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_2528_semiring__norm_I74_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(74)
thf(fact_2529_semiring__norm_I79_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(79)
thf(fact_2530_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2531_power__strict__decreasing__iff,axiom,
! [B: rat,M: nat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ B @ one_one_rat )
=> ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2532_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2533_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_2534_power__increasing__iff,axiom,
! [B: rat,X: nat,Y4: nat] :
( ( ord_less_rat @ one_one_rat @ B )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y4 ) )
= ( ord_less_eq_nat @ X @ Y4 ) ) ) ).
% power_increasing_iff
thf(fact_2535_power__increasing__iff,axiom,
! [B: nat,X: nat,Y4: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y4 ) )
= ( ord_less_eq_nat @ X @ Y4 ) ) ) ).
% power_increasing_iff
thf(fact_2536_power__increasing__iff,axiom,
! [B: int,X: nat,Y4: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y4 ) )
= ( ord_less_eq_nat @ X @ Y4 ) ) ) ).
% power_increasing_iff
thf(fact_2537_power__increasing__iff,axiom,
! [B: real,X: nat,Y4: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y4 ) )
= ( ord_less_eq_nat @ X @ Y4 ) ) ) ).
% power_increasing_iff
thf(fact_2538_zero__eq__power2,axiom,
! [A: rat] :
( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% zero_eq_power2
thf(fact_2539_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_2540_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_2541_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_2542_zero__eq__power2,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% zero_eq_power2
thf(fact_2543_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2544_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2545_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2546_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_2547_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2548_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2549_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2550_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_2551_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_2552_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_2553_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_2554_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_2555_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_2556_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_2557_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_2558_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_2559_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y4: nat,X: num,N: nat] :
( ( ( semiri8010041392384452111omplex @ Y4 )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
= ( Y4
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_2560_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y4: nat,X: num,N: nat] :
( ( ( semiri5074537144036343181t_real @ Y4 )
= ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( Y4
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_2561_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y4: nat,X: num,N: nat] :
( ( ( semiri681578069525770553at_rat @ Y4 )
= ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
= ( Y4
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_2562_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y4: nat,X: num,N: nat] :
( ( ( semiri1316708129612266289at_nat @ Y4 )
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( Y4
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_2563_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y4: nat,X: num,N: nat] :
( ( ( semiri1314217659103216013at_int @ Y4 )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
= ( Y4
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_2564_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y4: nat] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
= ( semiri8010041392384452111omplex @ Y4 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_2565_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y4: nat] :
( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
= ( semiri5074537144036343181t_real @ Y4 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_2566_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y4: nat] :
( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N )
= ( semiri681578069525770553at_rat @ Y4 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_2567_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y4: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= ( semiri1316708129612266289at_nat @ Y4 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_2568_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y4: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= ( semiri1314217659103216013at_int @ Y4 ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_2569_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_2570_DiffE,axiom,
! [C: complex,A2: set_complex,B4: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
=> ~ ( ( member_complex @ C @ A2 )
=> ( member_complex @ C @ B4 ) ) ) ).
% DiffE
thf(fact_2571_DiffE,axiom,
! [C: real,A2: set_real,B4: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B4 ) )
=> ~ ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B4 ) ) ) ).
% DiffE
thf(fact_2572_DiffE,axiom,
! [C: set_nat,A2: set_set_nat,B4: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B4 ) )
=> ~ ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B4 ) ) ) ).
% DiffE
thf(fact_2573_DiffE,axiom,
! [C: int,A2: set_int,B4: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B4 ) )
=> ~ ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B4 ) ) ) ).
% DiffE
thf(fact_2574_DiffE,axiom,
! [C: nat,A2: set_nat,B4: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B4 ) )
=> ~ ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B4 ) ) ) ).
% DiffE
thf(fact_2575_DiffD1,axiom,
! [C: complex,A2: set_complex,B4: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
=> ( member_complex @ C @ A2 ) ) ).
% DiffD1
thf(fact_2576_DiffD1,axiom,
! [C: real,A2: set_real,B4: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B4 ) )
=> ( member_real @ C @ A2 ) ) ).
% DiffD1
thf(fact_2577_DiffD1,axiom,
! [C: set_nat,A2: set_set_nat,B4: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B4 ) )
=> ( member_set_nat @ C @ A2 ) ) ).
% DiffD1
thf(fact_2578_DiffD1,axiom,
! [C: int,A2: set_int,B4: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B4 ) )
=> ( member_int @ C @ A2 ) ) ).
% DiffD1
thf(fact_2579_DiffD1,axiom,
! [C: nat,A2: set_nat,B4: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B4 ) )
=> ( member_nat @ C @ A2 ) ) ).
% DiffD1
thf(fact_2580_DiffD2,axiom,
! [C: complex,A2: set_complex,B4: set_complex] :
( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B4 ) )
=> ~ ( member_complex @ C @ B4 ) ) ).
% DiffD2
thf(fact_2581_DiffD2,axiom,
! [C: real,A2: set_real,B4: set_real] :
( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B4 ) )
=> ~ ( member_real @ C @ B4 ) ) ).
% DiffD2
thf(fact_2582_DiffD2,axiom,
! [C: set_nat,A2: set_set_nat,B4: set_set_nat] :
( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B4 ) )
=> ~ ( member_set_nat @ C @ B4 ) ) ).
% DiffD2
thf(fact_2583_DiffD2,axiom,
! [C: int,A2: set_int,B4: set_int] :
( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B4 ) )
=> ~ ( member_int @ C @ B4 ) ) ).
% DiffD2
thf(fact_2584_DiffD2,axiom,
! [C: nat,A2: set_nat,B4: set_nat] :
( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B4 ) )
=> ~ ( member_nat @ C @ B4 ) ) ).
% DiffD2
thf(fact_2585_psubset__imp__ex__mem,axiom,
! [A2: set_complex,B4: set_complex] :
( ( ord_less_set_complex @ A2 @ B4 )
=> ? [B3: complex] : ( member_complex @ B3 @ ( minus_811609699411566653omplex @ B4 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_2586_psubset__imp__ex__mem,axiom,
! [A2: set_real,B4: set_real] :
( ( ord_less_set_real @ A2 @ B4 )
=> ? [B3: real] : ( member_real @ B3 @ ( minus_minus_set_real @ B4 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_2587_psubset__imp__ex__mem,axiom,
! [A2: set_set_nat,B4: set_set_nat] :
( ( ord_less_set_set_nat @ A2 @ B4 )
=> ? [B3: set_nat] : ( member_set_nat @ B3 @ ( minus_2163939370556025621et_nat @ B4 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_2588_psubset__imp__ex__mem,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_set_int @ A2 @ B4 )
=> ? [B3: int] : ( member_int @ B3 @ ( minus_minus_set_int @ B4 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_2589_psubset__imp__ex__mem,axiom,
! [A2: set_nat,B4: set_nat] :
( ( ord_less_set_nat @ A2 @ B4 )
=> ? [B3: nat] : ( member_nat @ B3 @ ( minus_minus_set_nat @ B4 @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_2590_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_2591_real__arch__pow,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y4 @ ( power_power_real @ X @ N2 ) ) ) ).
% real_arch_pow
thf(fact_2592_real__arch__pow__inv,axiom,
! [Y4: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y4 ) ) ) ).
% real_arch_pow_inv
thf(fact_2593_int__one__le__iff__zero__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ Z )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% int_one_le_iff_zero_less
thf(fact_2594_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_2595_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_2596_psubsetE,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_set_int @ A2 @ B4 )
=> ~ ( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ord_less_eq_set_int @ B4 @ A2 ) ) ) ).
% psubsetE
thf(fact_2597_psubset__eq,axiom,
( ord_less_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ( A5 != B5 ) ) ) ) ).
% psubset_eq
thf(fact_2598_psubset__imp__subset,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_set_int @ A2 @ B4 )
=> ( ord_less_eq_set_int @ A2 @ B4 ) ) ).
% psubset_imp_subset
thf(fact_2599_psubset__subset__trans,axiom,
! [A2: set_int,B4: set_int,C2: set_int] :
( ( ord_less_set_int @ A2 @ B4 )
=> ( ( ord_less_eq_set_int @ B4 @ C2 )
=> ( ord_less_set_int @ A2 @ C2 ) ) ) ).
% psubset_subset_trans
thf(fact_2600_subset__not__subset__eq,axiom,
( ord_less_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_eq_set_int @ A5 @ B5 )
& ~ ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_2601_subset__psubset__trans,axiom,
! [A2: set_int,B4: set_int,C2: set_int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ( ord_less_set_int @ B4 @ C2 )
=> ( ord_less_set_int @ A2 @ C2 ) ) ) ).
% subset_psubset_trans
thf(fact_2602_subset__iff__psubset__eq,axiom,
( ord_less_eq_set_int
= ( ^ [A5: set_int,B5: set_int] :
( ( ord_less_set_int @ A5 @ B5 )
| ( A5 = B5 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_2603_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_2604_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X3: real,Y6: real] :
( ( ord_less_real @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% less_eq_real_def
thf(fact_2605_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_2606_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_2607_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_2608_zero__one__enat__neq_I1_J,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_one_enat_neq(1)
thf(fact_2609_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ( ( power_power_real @ R3 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_2610_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_2611_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_2612_plusinfinity,axiom,
! [D: int,P4: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int,K2: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [X_12: int] : ( P4 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% plusinfinity
thf(fact_2613_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int,K2: int] :
( ( P1 @ X4 )
= ( P1 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ( P @ X4 )
= ( P1 @ X4 ) ) )
=> ( ? [X_12: int] : ( P1 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% minusinfinity
thf(fact_2614_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_2615_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_2616_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_2617_zdvd__not__zless,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_int @ M @ N )
=> ~ ( dvd_dvd_int @ N @ M ) ) ) ).
% zdvd_not_zless
thf(fact_2618_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_2619_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ( power_power_real @ X4 @ N )
= A )
& ! [Y3: real] :
( ( ( ord_less_real @ zero_zero_real @ Y3 )
& ( ( power_power_real @ Y3 @ N )
= A ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_2620_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ( ( power_power_real @ R3 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_2621_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_2622_decr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_2623_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y3: real] :
? [N2: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_2624_zdiv__mono1,axiom,
! [A: int,A6: int,B: int] :
( ( ord_less_eq_int @ A @ A6 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A6 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_2625_zdiv__mono2,axiom,
! [A: int,B6: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B6 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_2626_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( ( divide_divide_int @ I @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_2627_zdiv__mono1__neg,axiom,
! [A: int,A6: int,B: int] :
( ( ord_less_eq_int @ A @ A6 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A6 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_2628_zdiv__mono2__neg,axiom,
! [A: int,B6: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B6 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_2629_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
= ( ( K = zero_zero_int )
| ( L = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_2630_div__positive__int,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ L @ K )
=> ( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) ) ) ) ).
% div_positive_int
thf(fact_2631_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_2632_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_2633_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
= ( ord_less_eq_int @ K @ I ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_2634_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_2635_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_2636_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_2637_zdvd__imp__le,axiom,
! [Z: int,N: int] :
( ( dvd_dvd_int @ Z @ N )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ Z @ N ) ) ) ).
% zdvd_imp_le
thf(fact_2638_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% pos_int_cases
thf(fact_2639_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_2640_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_2641_two__realpow__ge__one,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% two_realpow_ge_one
thf(fact_2642_real__of__nat__div3,axiom,
! [N: nat,X: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) ) @ one_one_real ) ).
% real_of_nat_div3
thf(fact_2643_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
= ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_2644_power__not__zero,axiom,
! [A: rat,N: nat] :
( ( A != zero_zero_rat )
=> ( ( power_power_rat @ A @ N )
!= zero_zero_rat ) ) ).
% power_not_zero
thf(fact_2645_power__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_2646_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_2647_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_2648_power__not__zero,axiom,
! [A: complex,N: nat] :
( ( A != zero_zero_complex )
=> ( ( power_power_complex @ A @ N )
!= zero_zero_complex ) ) ).
% power_not_zero
thf(fact_2649_power__commuting__commutes,axiom,
! [X: complex,Y4: complex,N: nat] :
( ( ( times_times_complex @ X @ Y4 )
= ( times_times_complex @ Y4 @ X ) )
=> ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ Y4 )
= ( times_times_complex @ Y4 @ ( power_power_complex @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_2650_power__commuting__commutes,axiom,
! [X: real,Y4: real,N: nat] :
( ( ( times_times_real @ X @ Y4 )
= ( times_times_real @ Y4 @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y4 )
= ( times_times_real @ Y4 @ ( power_power_real @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_2651_power__commuting__commutes,axiom,
! [X: rat,Y4: rat,N: nat] :
( ( ( times_times_rat @ X @ Y4 )
= ( times_times_rat @ Y4 @ X ) )
=> ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ Y4 )
= ( times_times_rat @ Y4 @ ( power_power_rat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_2652_power__commuting__commutes,axiom,
! [X: nat,Y4: nat,N: nat] :
( ( ( times_times_nat @ X @ Y4 )
= ( times_times_nat @ Y4 @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y4 )
= ( times_times_nat @ Y4 @ ( power_power_nat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_2653_power__commuting__commutes,axiom,
! [X: int,Y4: int,N: nat] :
( ( ( times_times_int @ X @ Y4 )
= ( times_times_int @ Y4 @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y4 )
= ( times_times_int @ Y4 @ ( power_power_int @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_2654_power__mult__distrib,axiom,
! [A: complex,B: complex,N: nat] :
( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N )
= ( times_times_complex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_2655_power__mult__distrib,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_2656_power__mult__distrib,axiom,
! [A: rat,B: rat,N: nat] :
( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N )
= ( times_times_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_2657_power__mult__distrib,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_2658_power__mult__distrib,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
= ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_2659_power__commutes,axiom,
! [A: complex,N: nat] :
( ( times_times_complex @ ( power_power_complex @ A @ N ) @ A )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).
% power_commutes
thf(fact_2660_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_2661_power__commutes,axiom,
! [A: rat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ A @ N ) @ A )
= ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).
% power_commutes
thf(fact_2662_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_2663_power__commutes,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_commutes
thf(fact_2664_power__divide,axiom,
! [A: complex,B: complex,N: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).
% power_divide
thf(fact_2665_power__divide,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
= ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_divide
thf(fact_2666_power__divide,axiom,
! [A: rat,B: rat,N: nat] :
( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N )
= ( divide_divide_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).
% power_divide
thf(fact_2667_dvd__power__same,axiom,
! [X: code_integer,Y4: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ X @ Y4 )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y4 @ N ) ) ) ).
% dvd_power_same
thf(fact_2668_dvd__power__same,axiom,
! [X: int,Y4: int,N: nat] :
( ( dvd_dvd_int @ X @ Y4 )
=> ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y4 @ N ) ) ) ).
% dvd_power_same
thf(fact_2669_dvd__power__same,axiom,
! [X: real,Y4: real,N: nat] :
( ( dvd_dvd_real @ X @ Y4 )
=> ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y4 @ N ) ) ) ).
% dvd_power_same
thf(fact_2670_dvd__power__same,axiom,
! [X: nat,Y4: nat,N: nat] :
( ( dvd_dvd_nat @ X @ Y4 )
=> ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y4 @ N ) ) ) ).
% dvd_power_same
thf(fact_2671_dvd__power__same,axiom,
! [X: complex,Y4: complex,N: nat] :
( ( dvd_dvd_complex @ X @ Y4 )
=> ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y4 @ N ) ) ) ).
% dvd_power_same
thf(fact_2672_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_2673_power__mult,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_2674_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_2675_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_2676_power__mult,axiom,
! [A: complex,M: nat,N: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_complex @ ( power_power_complex @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_2677_power__mono,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2678_power__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2679_power__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2680_power__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono
thf(fact_2681_zero__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2682_zero__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2683_zero__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2684_zero__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_power
thf(fact_2685_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2686_zero__less__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2687_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2688_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_2689_one__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).
% one_le_power
thf(fact_2690_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_2691_one__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).
% one_le_power
thf(fact_2692_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_2693_left__right__inverse__power,axiom,
! [X: complex,Y4: complex,N: nat] :
( ( ( times_times_complex @ X @ Y4 )
= one_one_complex )
=> ( ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y4 @ N ) )
= one_one_complex ) ) ).
% left_right_inverse_power
thf(fact_2694_left__right__inverse__power,axiom,
! [X: real,Y4: real,N: nat] :
( ( ( times_times_real @ X @ Y4 )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y4 @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_2695_left__right__inverse__power,axiom,
! [X: rat,Y4: rat,N: nat] :
( ( ( times_times_rat @ X @ Y4 )
= one_one_rat )
=> ( ( times_times_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ Y4 @ N ) )
= one_one_rat ) ) ).
% left_right_inverse_power
thf(fact_2696_left__right__inverse__power,axiom,
! [X: nat,Y4: nat,N: nat] :
( ( ( times_times_nat @ X @ Y4 )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y4 @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_2697_left__right__inverse__power,axiom,
! [X: int,Y4: int,N: nat] :
( ( ( times_times_int @ X @ Y4 )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y4 @ N ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_2698_power__Suc2,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ N ) )
= ( times_times_complex @ ( power_power_complex @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_2699_power__Suc2,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_2700_power__Suc2,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ ( power_power_rat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_2701_power__Suc2,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_2702_power__Suc2,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_2703_power__Suc,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ N ) )
= ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).
% power_Suc
thf(fact_2704_power__Suc,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_Suc
thf(fact_2705_power__Suc,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).
% power_Suc
thf(fact_2706_power__Suc,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_Suc
thf(fact_2707_power__Suc,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_Suc
thf(fact_2708_power__one__over,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N )
= ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N ) ) ) ).
% power_one_over
thf(fact_2709_power__one__over,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% power_one_over
thf(fact_2710_power__one__over,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N )
= ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).
% power_one_over
thf(fact_2711_power__0,axiom,
! [A: rat] :
( ( power_power_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% power_0
thf(fact_2712_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_2713_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_2714_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_2715_power__0,axiom,
! [A: complex] :
( ( power_power_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% power_0
thf(fact_2716_div__power,axiom,
! [B: code_integer,A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N )
= ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% div_power
thf(fact_2717_div__power,axiom,
! [B: nat,A: nat,N: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
= ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% div_power
thf(fact_2718_div__power,axiom,
! [B: int,A: int,N: nat] :
( ( dvd_dvd_int @ B @ A )
=> ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
= ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% div_power
thf(fact_2719_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_2720_nat__one__le__power,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).
% nat_one_le_power
thf(fact_2721_dvd__power__le,axiom,
! [X: code_integer,Y4: code_integer,N: nat,M: nat] :
( ( dvd_dvd_Code_integer @ X @ Y4 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N ) @ ( power_8256067586552552935nteger @ Y4 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_2722_dvd__power__le,axiom,
! [X: int,Y4: int,N: nat,M: nat] :
( ( dvd_dvd_int @ X @ Y4 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y4 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_2723_dvd__power__le,axiom,
! [X: real,Y4: real,N: nat,M: nat] :
( ( dvd_dvd_real @ X @ Y4 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y4 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_2724_dvd__power__le,axiom,
! [X: nat,Y4: nat,N: nat,M: nat] :
( ( dvd_dvd_nat @ X @ Y4 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y4 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_2725_dvd__power__le,axiom,
! [X: complex,Y4: complex,N: nat,M: nat] :
( ( dvd_dvd_complex @ X @ Y4 )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ Y4 @ M ) ) ) ) ).
% dvd_power_le
thf(fact_2726_power__le__dvd,axiom,
! [A: code_integer,N: nat,B: code_integer,M: nat] :
( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_2727_power__le__dvd,axiom,
! [A: int,N: nat,B: int,M: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_2728_power__le__dvd,axiom,
! [A: real,N: nat,B: real,M: nat] :
( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_2729_power__le__dvd,axiom,
! [A: nat,N: nat,B: nat,M: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_2730_power__le__dvd,axiom,
! [A: complex,N: nat,B: complex,M: nat] :
( ( dvd_dvd_complex @ ( power_power_complex @ A @ N ) @ B )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).
% power_le_dvd
thf(fact_2731_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_2732_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_2733_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_2734_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_2735_le__imp__power__dvd,axiom,
! [M: nat,N: nat,A: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).
% le_imp_power_dvd
thf(fact_2736_power__less__imp__less__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2737_power__less__imp__less__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2738_power__less__imp__less__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2739_power__less__imp__less__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_2740_power__le__one,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ one_one_rat ) ) ) ).
% power_le_one
thf(fact_2741_power__le__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_2742_power__le__one,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_2743_power__le__one,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_2744_power__le__imp__le__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ ( power_power_rat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2745_power__le__imp__le__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2746_power__le__imp__le__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2747_power__le__imp__le__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_2748_power__inject__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ( power_power_rat @ A @ ( suc @ N ) )
= ( power_power_rat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2749_power__inject__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N ) )
= ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2750_power__inject__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N ) )
= ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2751_power__inject__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ ( suc @ N ) )
= ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_2752_power__less__power__Suc,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2753_power__less__power__Suc,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2754_power__less__power__Suc,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2755_power__less__power__Suc,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_2756_power__gt1__lemma,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2757_power__gt1__lemma,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2758_power__gt1__lemma,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2759_power__gt1__lemma,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_2760_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= one_one_rat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ) ).
% power_0_left
thf(fact_2761_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_2762_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_2763_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_2764_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= one_one_complex ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ) ).
% power_0_left
thf(fact_2765_power__gt1,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2766_power__gt1,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2767_power__gt1,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2768_power__gt1,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_2769_power__increasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2770_power__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2771_power__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2772_power__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_2773_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ).
% zero_power
thf(fact_2774_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_2775_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_2776_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_2777_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ).
% zero_power
thf(fact_2778_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_2779_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_2780_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_2781_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_2782_is__unit__power__iff,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer )
= ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_2783_is__unit__power__iff,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
= ( ( dvd_dvd_int @ A @ one_one_int )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_2784_is__unit__power__iff,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A @ one_one_nat )
| ( N = zero_zero_nat ) ) ) ).
% is_unit_power_iff
thf(fact_2785_power__dvd__imp__le,axiom,
! [I: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ( ord_less_nat @ one_one_nat @ I )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_dvd_imp_le
thf(fact_2786_power__Suc__less,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2787_power__Suc__less,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2788_power__Suc__less,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2789_power__Suc__less,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_2790_power__Suc__le__self,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2791_power__Suc__le__self,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2792_power__Suc__le__self,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2793_power__Suc__le__self,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_2794_power__Suc__less__one,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_2795_power__Suc__less__one,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ one_one_rat ) ) ) ).
% power_Suc_less_one
thf(fact_2796_power__Suc__less__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_2797_power__Suc__less__one,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_2798_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2799_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2800_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2801_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_2802_power__decreasing,axiom,
! [N: nat,N5: nat,A: rat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N5 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2803_power__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2804_power__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2805_power__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_2806_power__le__imp__le__exp,axiom,
! [A: rat,M: nat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2807_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2808_power__le__imp__le__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2809_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_2810_zero__power2,axiom,
( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_rat ) ).
% zero_power2
thf(fact_2811_zero__power2,axiom,
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% zero_power2
thf(fact_2812_zero__power2,axiom,
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real ) ).
% zero_power2
thf(fact_2813_zero__power2,axiom,
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% zero_power2
thf(fact_2814_zero__power2,axiom,
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex ) ).
% zero_power2
thf(fact_2815_power__eq__iff__eq__base,axiom,
! [N: nat,A: rat,B: rat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ( power_power_rat @ A @ N )
= ( power_power_rat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2816_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2817_power__eq__iff__eq__base,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2818_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_2819_power__eq__imp__eq__base,axiom,
! [A: rat,N: nat,B: rat] :
( ( ( power_power_rat @ A @ N )
= ( power_power_rat @ B @ N ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2820_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2821_power__eq__imp__eq__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2822_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_2823_power2__eq__square,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_complex @ A @ A ) ) ).
% power2_eq_square
thf(fact_2824_power2__eq__square,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ A @ A ) ) ).
% power2_eq_square
thf(fact_2825_power2__eq__square,axiom,
! [A: rat] :
( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_rat @ A @ A ) ) ).
% power2_eq_square
thf(fact_2826_power2__eq__square,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ A @ A ) ) ).
% power2_eq_square
thf(fact_2827_power2__eq__square,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_int @ A @ A ) ) ).
% power2_eq_square
thf(fact_2828_power4__eq__xxxx,axiom,
! [X: complex] :
( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_2829_power4__eq__xxxx,axiom,
! [X: real] :
( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_2830_power4__eq__xxxx,axiom,
! [X: rat] :
( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_2831_power4__eq__xxxx,axiom,
! [X: nat] :
( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_2832_power4__eq__xxxx,axiom,
! [X: int] :
( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_2833_one__power2,axiom,
( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat ) ).
% one_power2
thf(fact_2834_one__power2,axiom,
( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_power2
thf(fact_2835_one__power2,axiom,
( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real ) ).
% one_power2
thf(fact_2836_one__power2,axiom,
( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_power2
thf(fact_2837_one__power2,axiom,
( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex ) ).
% one_power2
thf(fact_2838_self__le__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2839_self__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2840_self__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2841_self__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_2842_power2__commute,axiom,
! [X: complex,Y4: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ ( minus_minus_complex @ Y4 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2843_power2__commute,axiom,
! [X: real,Y4: real] :
( ( power_power_real @ ( minus_minus_real @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ ( minus_minus_real @ Y4 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2844_power2__commute,axiom,
! [X: rat,Y4: rat] :
( ( power_power_rat @ ( minus_minus_rat @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ ( minus_minus_rat @ Y4 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2845_power2__commute,axiom,
! [X: int,Y4: int] :
( ( power_power_int @ ( minus_minus_int @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ ( minus_minus_int @ Y4 @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_commute
thf(fact_2846_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2847_one__less__power,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ one_one_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2848_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2849_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_2850_dvd__power__iff,axiom,
! [X: code_integer,M: nat,N: nat] :
( ( X != zero_z3403309356797280102nteger )
=> ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ M ) @ ( power_8256067586552552935nteger @ X @ N ) )
= ( ( dvd_dvd_Code_integer @ X @ one_one_Code_integer )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_2851_dvd__power__iff,axiom,
! [X: int,M: nat,N: nat] :
( ( X != zero_zero_int )
=> ( ( dvd_dvd_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ N ) )
= ( ( dvd_dvd_int @ X @ one_one_int )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_2852_dvd__power__iff,axiom,
! [X: nat,M: nat,N: nat] :
( ( X != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ X @ M ) @ ( power_power_nat @ X @ N ) )
= ( ( dvd_dvd_nat @ X @ one_one_nat )
| ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% dvd_power_iff
thf(fact_2853_power3__eq__cube,axiom,
! [A: complex] :
( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_2854_power3__eq__cube,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_2855_power3__eq__cube,axiom,
! [A: rat] :
( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_2856_power3__eq__cube,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_2857_power3__eq__cube,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
= ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).
% power3_eq_cube
thf(fact_2858_dvd__power,axiom,
! [N: nat,X: code_integer] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_Code_integer ) )
=> ( dvd_dvd_Code_integer @ X @ ( power_8256067586552552935nteger @ X @ N ) ) ) ).
% dvd_power
thf(fact_2859_dvd__power,axiom,
! [N: nat,X: rat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_rat ) )
=> ( dvd_dvd_rat @ X @ ( power_power_rat @ X @ N ) ) ) ).
% dvd_power
thf(fact_2860_dvd__power,axiom,
! [N: nat,X: int] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_int ) )
=> ( dvd_dvd_int @ X @ ( power_power_int @ X @ N ) ) ) ).
% dvd_power
thf(fact_2861_dvd__power,axiom,
! [N: nat,X: real] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_real ) )
=> ( dvd_dvd_real @ X @ ( power_power_real @ X @ N ) ) ) ).
% dvd_power
thf(fact_2862_dvd__power,axiom,
! [N: nat,X: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_nat ) )
=> ( dvd_dvd_nat @ X @ ( power_power_nat @ X @ N ) ) ) ).
% dvd_power
thf(fact_2863_dvd__power,axiom,
! [N: nat,X: complex] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
| ( X = one_one_complex ) )
=> ( dvd_dvd_complex @ X @ ( power_power_complex @ X @ N ) ) ) ).
% dvd_power
thf(fact_2864_power__diff,axiom,
! [A: complex,N: nat,M: nat] :
( ( A != zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2865_power__diff,axiom,
! [A: real,N: nat,M: nat] :
( ( A != zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2866_power__diff,axiom,
! [A: rat,N: nat,M: nat] :
( ( A != zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2867_power__diff,axiom,
! [A: nat,N: nat,M: nat] :
( ( A != zero_zero_nat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2868_power__diff,axiom,
! [A: int,N: nat,M: nat] :
( ( A != zero_zero_int )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
= ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_diff
thf(fact_2869_power__even__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_2870_power__even__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_2871_power__even__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_2872_power__even__eq,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_2873_diff__le__diff__pow,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) ) ) ) ).
% diff_le_diff_pow
thf(fact_2874_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% dvd_power_iff_le
thf(fact_2875_power2__le__imp__le,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_eq_rat @ X @ Y4 ) ) ) ).
% power2_le_imp_le
thf(fact_2876_power2__le__imp__le,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y4 )
=> ( ord_less_eq_nat @ X @ Y4 ) ) ) ).
% power2_le_imp_le
thf(fact_2877_power2__le__imp__le,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ord_less_eq_int @ X @ Y4 ) ) ) ).
% power2_le_imp_le
thf(fact_2878_power2__le__imp__le,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ X @ Y4 ) ) ) ).
% power2_le_imp_le
thf(fact_2879_power2__eq__imp__eq,axiom,
! [X: rat,Y4: rat] :
( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( X = Y4 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2880_power2__eq__imp__eq,axiom,
! [X: nat,Y4: nat] :
( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y4 )
=> ( X = Y4 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2881_power2__eq__imp__eq,axiom,
! [X: int,Y4: int] :
( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( X = Y4 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2882_power2__eq__imp__eq,axiom,
! [X: real,Y4: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( X = Y4 ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_2883_zero__le__power2,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_2884_zero__le__power2,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_2885_zero__le__power2,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_2886_power2__less__0,axiom,
! [A: real] :
~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).
% power2_less_0
thf(fact_2887_power2__less__0,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).
% power2_less_0
thf(fact_2888_power2__less__0,axiom,
! [A: int] :
~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).
% power2_less_0
thf(fact_2889_power__strict__mono,axiom,
! [A: rat,B: rat,N: nat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2890_power__strict__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2891_power__strict__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2892_power__strict__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_2893_power__eq__if,axiom,
( power_power_complex
= ( ^ [P6: complex,M5: nat] : ( if_complex @ ( M5 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P6 @ ( power_power_complex @ P6 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2894_power__eq__if,axiom,
( power_power_real
= ( ^ [P6: real,M5: nat] : ( if_real @ ( M5 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P6 @ ( power_power_real @ P6 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2895_power__eq__if,axiom,
( power_power_rat
= ( ^ [P6: rat,M5: nat] : ( if_rat @ ( M5 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P6 @ ( power_power_rat @ P6 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2896_power__eq__if,axiom,
( power_power_nat
= ( ^ [P6: nat,M5: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P6 @ ( power_power_nat @ P6 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2897_power__eq__if,axiom,
( power_power_int
= ( ^ [P6: int,M5: nat] : ( if_int @ ( M5 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P6 @ ( power_power_int @ P6 @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_2898_power__minus__mult,axiom,
! [N: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_complex @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2899_power__minus__mult,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_real @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2900_power__minus__mult,axiom,
! [N: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_rat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2901_power__minus__mult,axiom,
! [N: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2902_power__minus__mult,axiom,
! [N: nat,A: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_int @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_2903_power2__less__imp__less,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_rat @ X @ Y4 ) ) ) ).
% power2_less_imp_less
thf(fact_2904_power2__less__imp__less,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y4 )
=> ( ord_less_nat @ X @ Y4 ) ) ) ).
% power2_less_imp_less
thf(fact_2905_power2__less__imp__less,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ord_less_int @ X @ Y4 ) ) ) ).
% power2_less_imp_less
thf(fact_2906_power2__less__imp__less,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_real @ X @ Y4 ) ) ) ).
% power2_less_imp_less
thf(fact_2907_zero__le__even__power_H,axiom,
! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_2908_zero__le__even__power_H,axiom,
! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_2909_zero__le__even__power_H,axiom,
! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_2910_power__odd__eq,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_2911_power__odd__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_2912_power__odd__eq,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_2913_power__odd__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_2914_power__odd__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_2915_odd__0__le__power__imp__0__le,axiom,
! [A: rat,N: nat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_2916_odd__0__le__power__imp__0__le,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_2917_odd__0__le__power__imp__0__le,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_2918_odd__power__less__zero,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).
% odd_power_less_zero
thf(fact_2919_odd__power__less__zero,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_rat ) ) ).
% odd_power_less_zero
thf(fact_2920_odd__power__less__zero,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).
% odd_power_less_zero
thf(fact_2921_space__2__pow__bound,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_VEBT_space2 @ T ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( minus_minus_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) @ one_one_real ) ) ) ) ).
% space_2_pow_bound
thf(fact_2922_cnt__bound,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ord_less_eq_real @ ( vEBT_VEBT_cnt @ T ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( minus_minus_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% cnt_bound
thf(fact_2923_space__bound,axiom,
! [T: vEBT_VEBT,N: nat,U: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( U
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_space @ T ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ U ) ) ) ) ).
% space_bound
thf(fact_2924_cnt__bound_H,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ord_less_eq_real @ ( vEBT_VEBT_cnt @ T ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( minus_minus_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) @ one_one_real ) ) ) ) ).
% cnt_bound'
thf(fact_2925_space_H__bound,axiom,
! [T: vEBT_VEBT,N: nat,U: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ( U
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_eq_nat @ ( vEBT_VEBT_space2 @ T ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ U ) ) ) ) ).
% space'_bound
thf(fact_2926_nat__approx__posE,axiom,
! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ~ ! [N2: nat] :
~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ E2 ) ) ).
% nat_approx_posE
thf(fact_2927_nat__approx__posE,axiom,
! [E2: rat] :
( ( ord_less_rat @ zero_zero_rat @ E2 )
=> ~ ! [N2: nat] :
~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) ) @ E2 ) ) ).
% nat_approx_posE
thf(fact_2928_high__def,axiom,
( vEBT_VEBT_high
= ( ^ [X3: nat,N4: nat] : ( divide_divide_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% high_def
thf(fact_2929_pow__sum,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).
% pow_sum
thf(fact_2930_even__odd__cases,axiom,
! [X: nat] :
( ! [N2: nat] :
( X
!= ( plus_plus_nat @ N2 @ N2 ) )
=> ~ ! [N2: nat] :
( X
!= ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) ) ) ).
% even_odd_cases
thf(fact_2931_deg__not__0,axiom,
! [T: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ T @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% deg_not_0
thf(fact_2932_buildup__gives__valid,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N ) @ N ) ) ).
% buildup_gives_valid
thf(fact_2933_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_2934_add__left__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_2935_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_2936_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_2937_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_2938_add__right__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_2939_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_2940_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_2941_high__bound__aux,axiom,
! [Ma: nat,N: nat,M: nat] :
( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% high_bound_aux
thf(fact_2942_add__le__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_2943_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_2944_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_2945_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_2946_add__le__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_2947_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_2948_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_2949_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_2950_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_2951_double__eq__0__iff,axiom,
! [A: rat] :
( ( ( plus_plus_rat @ A @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% double_eq_0_iff
thf(fact_2952_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_2953_add__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add_0
thf(fact_2954_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_2955_add__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add_0
thf(fact_2956_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_2957_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_2958_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y4: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y4 ) )
= ( ( X = zero_zero_nat )
& ( Y4 = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_2959_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y4: nat] :
( ( ( plus_plus_nat @ X @ Y4 )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y4 = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_2960_add__cancel__right__right,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ A @ B ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_right
thf(fact_2961_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_2962_add__cancel__right__right,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ A @ B ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_right
thf(fact_2963_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_2964_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_2965_add__cancel__right__left,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ B @ A ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_left
thf(fact_2966_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_2967_add__cancel__right__left,axiom,
! [A: rat,B: rat] :
( ( A
= ( plus_plus_rat @ B @ A ) )
= ( B = zero_zero_rat ) ) ).
% add_cancel_right_left
thf(fact_2968_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_2969_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_2970_add__cancel__left__right,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_right
thf(fact_2971_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_2972_add__cancel__left__right,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_right
thf(fact_2973_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_2974_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_2975_add__cancel__left__left,axiom,
! [B: complex,A: complex] :
( ( ( plus_plus_complex @ B @ A )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_left
thf(fact_2976_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_2977_add__cancel__left__left,axiom,
! [B: rat,A: rat] :
( ( ( plus_plus_rat @ B @ A )
= A )
= ( B = zero_zero_rat ) ) ).
% add_cancel_left_left
thf(fact_2978_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_2979_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_2980_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_2981_double__zero__sym,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( plus_plus_rat @ A @ A ) )
= ( A = zero_zero_rat ) ) ).
% double_zero_sym
thf(fact_2982_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_2983_add_Oright__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.right_neutral
thf(fact_2984_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_2985_add_Oright__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.right_neutral
thf(fact_2986_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_2987_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_2988_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_2989_add__less__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_2990_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_2991_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_2992_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_2993_add__less__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( ord_less_rat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_2994_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_2995_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_2996_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_2997_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_2998_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_2999_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_3000_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_3001_add__numeral__left,axiom,
! [V: num,W: num,Z: complex] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_3002_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_3003_add__numeral__left,axiom,
! [V: num,W: num,Z: rat] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_3004_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_3005_add__numeral__left,axiom,
! [V: num,W: num,Z: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_3006_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_3007_add__diff__cancel__right_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_3008_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_3009_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_3010_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_3011_add__diff__cancel__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_3012_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_3013_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_3014_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_3015_add__diff__cancel__left_H,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_3016_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_3017_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_3018_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_3019_add__diff__cancel__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
= ( minus_minus_rat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_3020_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_3021_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_3022_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_3023_diff__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_3024_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_3025_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_3026_add__diff__cancel,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_3027_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_3028_high__inv,axiom,
! [X: nat,N: nat,Y4: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X ) @ N )
= Y4 ) ) ).
% high_inv
thf(fact_3029_dvd__add__triv__right__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ A ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3030_dvd__add__triv__right__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3031_dvd__add__triv__right__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3032_dvd__add__triv__right__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3033_dvd__add__triv__right__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_3034_dvd__add__triv__left__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3035_dvd__add__triv__left__iff,axiom,
! [A: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3036_dvd__add__triv__left__iff,axiom,
! [A: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3037_dvd__add__triv__left__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3038_dvd__add__triv__left__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_3039_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_3040_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_3041_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_3042_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_3043_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_3044_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_3045_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_3046_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_3047_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_3048_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_3049_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_3050_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_3051_le__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel2
thf(fact_3052_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_3053_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_3054_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_3055_le__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).
% le_add_same_cancel1
thf(fact_3056_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_3057_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_3058_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_3059_add__le__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel2
thf(fact_3060_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_3061_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_3062_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_3063_add__le__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% add_le_same_cancel1
thf(fact_3064_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_3065_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_3066_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_3067_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_3068_add__less__same__cancel1,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel1
thf(fact_3069_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_3070_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_3071_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_3072_add__less__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% add_less_same_cancel2
thf(fact_3073_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_3074_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_3075_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_3076_less__add__same__cancel1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel1
thf(fact_3077_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_3078_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_3079_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_3080_less__add__same__cancel2,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
= ( ord_less_rat @ zero_zero_rat @ B ) ) ).
% less_add_same_cancel2
thf(fact_3081_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_3082_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_3083_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_3084_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_3085_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_3086_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_3087_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_3088_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_3089_sum__squares__eq__zero__iff,axiom,
! [X: real,Y4: real] :
( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y4 @ Y4 ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y4 = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_3090_sum__squares__eq__zero__iff,axiom,
! [X: rat,Y4: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y4 @ Y4 ) )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y4 = zero_zero_rat ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_3091_sum__squares__eq__zero__iff,axiom,
! [X: int,Y4: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y4 @ Y4 ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y4 = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_3092_le__add__diff__inverse,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_3093_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_3094_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_3095_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_3096_le__add__diff__inverse2,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_3097_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_3098_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_3099_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_3100_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_3101_distrib__left__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_3102_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_3103_distrib__left__numeral,axiom,
! [V: num,B: rat,C: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_3104_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_3105_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_3106_distrib__right__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_3107_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_3108_distrib__right__numeral,axiom,
! [A: rat,B: rat,V: num] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_3109_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_3110_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_3111_dvd__add__times__triv__left__iff,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ A ) @ B ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3112_dvd__add__times__triv__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3113_dvd__add__times__triv__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3114_dvd__add__times__triv__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3115_dvd__add__times__triv__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_3116_dvd__add__times__triv__right__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ ( times_3573771949741848930nteger @ C @ A ) ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3117_dvd__add__times__triv__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
= ( dvd_dvd_real @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3118_dvd__add__times__triv__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
= ( dvd_dvd_rat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3119_dvd__add__times__triv__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
= ( dvd_dvd_nat @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3120_dvd__add__times__triv__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
= ( dvd_dvd_int @ A @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_3121_div__add,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3122_div__add,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3123_div__add,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_3124_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).
% of_nat_add
thf(fact_3125_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_add
thf(fact_3126_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% of_nat_add
thf(fact_3127_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_add
thf(fact_3128_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_add
thf(fact_3129_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_3130_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ M @ ( suc @ N ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_3131_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_3132_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_3133_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_3134_triangle__Suc,axiom,
! [N: nat] :
( ( nat_triangle @ ( suc @ N ) )
= ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).
% triangle_Suc
thf(fact_3135_div__mult__self1,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_3136_div__mult__self1,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_3137_div__mult__self2,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_3138_div__mult__self2,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_3139_div__mult__self3,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_3140_div__mult__self3,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_3141_div__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_3142_div__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_3143_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_3144_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_3145_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
= ( numeral_numeral_rat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_3146_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_3147_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_3148_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_3149_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_3150_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_3151_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_3152_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_3153_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri8010041392384452111omplex @ ( suc @ M ) )
= ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).
% of_nat_Suc
thf(fact_3154_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ M ) )
= ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).
% of_nat_Suc
thf(fact_3155_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri681578069525770553at_rat @ ( suc @ M ) )
= ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).
% of_nat_Suc
thf(fact_3156_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
= ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).
% of_nat_Suc
thf(fact_3157_of__nat__Suc,axiom,
! [M: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ M ) )
= ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% of_nat_Suc
thf(fact_3158_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_3159_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_3160_one__add__one,axiom,
( ( plus_plus_complex @ one_one_complex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_3161_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_3162_one__add__one,axiom,
( ( plus_plus_rat @ one_one_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_3163_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_3164_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_3165_odd__add,axiom,
! [A: code_integer,B: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3166_odd__add,axiom,
! [A: nat,B: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3167_odd__add,axiom,
! [A: int,B: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_3168_even__add,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3169_even__add,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3170_even__add,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_3171_add__2__eq__Suc,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc
thf(fact_3172_add__2__eq__Suc_H,axiom,
! [N: nat] :
( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc'
thf(fact_3173_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_3174_even__plus__one__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3175_even__plus__one__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3176_even__plus__one__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_plus_one_iff
thf(fact_3177_sum__power2__eq__zero__iff,axiom,
! [X: rat,Y4: rat] :
( ( ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y4 = zero_zero_rat ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_3178_sum__power2__eq__zero__iff,axiom,
! [X: int,Y4: int] :
( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y4 = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_3179_sum__power2__eq__zero__iff,axiom,
! [X: real,Y4: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y4 = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_3180_even__diff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).
% even_diff
thf(fact_3181_even__diff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).
% even_diff
thf(fact_3182_div__Suc__eq__div__add3,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).
% div_Suc_eq_div_add3
thf(fact_3183_Suc__div__eq__add3__div__numeral,axiom,
! [M: nat,V: num] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_div_eq_add3_div_numeral
thf(fact_3184_odd__succ__div__two,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).
% odd_succ_div_two
thf(fact_3185_odd__succ__div__two,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).
% odd_succ_div_two
thf(fact_3186_odd__succ__div__two,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% odd_succ_div_two
thf(fact_3187_even__succ__div__two,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3188_even__succ__div__two,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3189_even__succ__div__two,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_3190_even__succ__div__2,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3191_even__succ__div__2,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3192_even__succ__div__2,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_3193_even__diff__nat,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% even_diff_nat
thf(fact_3194_odd__two__times__div__two__succ,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3195_odd__two__times__div__two__succ,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3196_odd__two__times__div__two__succ,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
= A ) ) ).
% odd_two_times_div_two_succ
thf(fact_3197_set__bit__0,axiom,
! [A: int] :
( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_3198_set__bit__0,axiom,
! [A: nat] :
( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_3199_set__bit__0,axiom,
! [A: code_integer] :
( ( bit_se2793503036327961859nteger @ zero_zero_nat @ A )
= ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).
% set_bit_0
thf(fact_3200_even__succ__div__exp,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3201_even__succ__div__exp,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3202_even__succ__div__exp,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% even_succ_div_exp
thf(fact_3203_psubsetD,axiom,
! [A2: set_complex,B4: set_complex,C: complex] :
( ( ord_less_set_complex @ A2 @ B4 )
=> ( ( member_complex @ C @ A2 )
=> ( member_complex @ C @ B4 ) ) ) ).
% psubsetD
thf(fact_3204_psubsetD,axiom,
! [A2: set_real,B4: set_real,C: real] :
( ( ord_less_set_real @ A2 @ B4 )
=> ( ( member_real @ C @ A2 )
=> ( member_real @ C @ B4 ) ) ) ).
% psubsetD
thf(fact_3205_psubsetD,axiom,
! [A2: set_set_nat,B4: set_set_nat,C: set_nat] :
( ( ord_less_set_set_nat @ A2 @ B4 )
=> ( ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ B4 ) ) ) ).
% psubsetD
thf(fact_3206_psubsetD,axiom,
! [A2: set_nat,B4: set_nat,C: nat] :
( ( ord_less_set_nat @ A2 @ B4 )
=> ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B4 ) ) ) ).
% psubsetD
thf(fact_3207_psubsetD,axiom,
! [A2: set_int,B4: set_int,C: int] :
( ( ord_less_set_int @ A2 @ B4 )
=> ( ( member_int @ C @ A2 )
=> ( member_int @ C @ B4 ) ) ) ).
% psubsetD
thf(fact_3208_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N2: extended_enat] :
( ! [M2: extended_enat] :
( ( ord_le72135733267957522d_enat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_3209_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_3210_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_3211_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_3212_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_3213_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_3214_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_rat @ I @ K )
= ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_3215_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_3216_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_3217_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_3218_group__cancel_Oadd1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( plus_plus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_3219_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_3220_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_3221_group__cancel_Oadd2,axiom,
! [B4: real,K: real,B: real,A: real] :
( ( B4
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B4 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_3222_group__cancel_Oadd2,axiom,
! [B4: rat,K: rat,B: rat,A: rat] :
( ( B4
= ( plus_plus_rat @ K @ B ) )
=> ( ( plus_plus_rat @ A @ B4 )
= ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_3223_group__cancel_Oadd2,axiom,
! [B4: nat,K: nat,B: nat,A: nat] :
( ( B4
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B4 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_3224_group__cancel_Oadd2,axiom,
! [B4: int,K: int,B: int,A: int] :
( ( B4
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B4 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_3225_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_3226_add_Oassoc,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% add.assoc
thf(fact_3227_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_3228_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_3229_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_3230_add_Oleft__cancel,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_3231_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_3232_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_3233_add_Oright__cancel,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_3234_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_3235_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_3236_add_Ocommute,axiom,
( plus_plus_rat
= ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_3237_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_3238_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_3239_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_3240_add_Oleft__commute,axiom,
! [B: rat,A: rat,C: rat] :
( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_3241_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_3242_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_3243_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_3244_add__left__imp__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( plus_plus_rat @ A @ B )
= ( plus_plus_rat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_3245_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_3246_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_3247_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_3248_add__right__imp__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( ( plus_plus_rat @ B @ A )
= ( plus_plus_rat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_3249_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_3250_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_3251_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_3252_is__num__normalize_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_3253_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_3254_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_3255_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_3256_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_3257_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_3258_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( I = J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_3259_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_3260_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_3261_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_3262_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_3263_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_3264_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_3265_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_3266_add__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_3267_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_3268_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_3269_add__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_mono
thf(fact_3270_add__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_3271_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_3272_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_3273_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_3274_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_3275_add__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_3276_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_3277_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_3278_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_3279_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
? [C5: nat] :
( B2
= ( plus_plus_nat @ A3 @ C5 ) ) ) ) ).
% le_iff_add
thf(fact_3280_add__le__imp__le__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_3281_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_3282_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_3283_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_3284_add__le__imp__le__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_3285_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_3286_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_3287_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_3288_verit__sum__simplify,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% verit_sum_simplify
thf(fact_3289_verit__sum__simplify,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% verit_sum_simplify
thf(fact_3290_verit__sum__simplify,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% verit_sum_simplify
thf(fact_3291_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_3292_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_3293_add_Ogroup__left__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add.group_left_neutral
thf(fact_3294_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_3295_add_Ogroup__left__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% add.group_left_neutral
thf(fact_3296_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_3297_add_Ocomm__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.comm_neutral
thf(fact_3298_add_Ocomm__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.comm_neutral
thf(fact_3299_add_Ocomm__neutral,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ zero_zero_rat )
= A ) ).
% add.comm_neutral
thf(fact_3300_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_3301_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_3302_comm__monoid__add__class_Oadd__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_3303_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_3304_comm__monoid__add__class_Oadd__0,axiom,
! [A: rat] :
( ( plus_plus_rat @ zero_zero_rat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_3305_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_3306_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_3307_add__mono__thms__linordered__field_I5_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_3308_add__mono__thms__linordered__field_I5_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I @ J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_3309_add__mono__thms__linordered__field_I5_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_3310_add__mono__thms__linordered__field_I5_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_3311_add__mono__thms__linordered__field_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_3312_add__mono__thms__linordered__field_I2_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( I = J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_3313_add__mono__thms__linordered__field_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_3314_add__mono__thms__linordered__field_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_3315_add__mono__thms__linordered__field_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( K = L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_3316_add__mono__thms__linordered__field_I1_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I @ J )
& ( K = L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_3317_add__mono__thms__linordered__field_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_3318_add__mono__thms__linordered__field_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_3319_add__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_3320_add__strict__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_3321_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_3322_add__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_3323_add__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_3324_add__strict__left__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_3325_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_3326_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_3327_add__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_3328_add__strict__right__mono,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_3329_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_3330_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_3331_add__less__imp__less__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_3332_add__less__imp__less__left,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_3333_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_3334_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_3335_add__less__imp__less__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_3336_add__less__imp__less__right,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
=> ( ord_less_rat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_3337_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_3338_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_3339_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_3340_ring__class_Oring__distribs_I2_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_3341_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_3342_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_3343_ring__class_Oring__distribs_I1_J,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_3344_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_3345_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_3346_comm__semiring__class_Odistrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_3347_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_3348_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_3349_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_3350_distrib__left,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).
% distrib_left
thf(fact_3351_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_3352_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_3353_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_3354_distrib__right,axiom,
! [A: rat,B: rat,C: rat] :
( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).
% distrib_right
thf(fact_3355_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_3356_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_3357_combine__common__factor,axiom,
! [A: real,E2: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_3358_combine__common__factor,axiom,
! [A: rat,E2: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ C ) )
= ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_3359_combine__common__factor,axiom,
! [A: nat,E2: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E2 ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E2 ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_3360_combine__common__factor,axiom,
! [A: int,E2: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E2 ) @ C ) ) ).
% combine_common_factor
thf(fact_3361_diff__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_3362_diff__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_3363_diff__diff__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_3364_diff__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_3365_add__implies__diff,axiom,
! [C: real,B: real,A: real] :
( ( ( plus_plus_real @ C @ B )
= A )
=> ( C
= ( minus_minus_real @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_3366_add__implies__diff,axiom,
! [C: rat,B: rat,A: rat] :
( ( ( plus_plus_rat @ C @ B )
= A )
=> ( C
= ( minus_minus_rat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_3367_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_3368_add__implies__diff,axiom,
! [C: int,B: int,A: int] :
( ( ( plus_plus_int @ C @ B )
= A )
=> ( C
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_3369_diff__add__eq__diff__diff__swap,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_3370_diff__add__eq__diff__diff__swap,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_3371_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_3372_diff__add__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_3373_diff__add__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_3374_diff__add__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_3375_diff__diff__eq2,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_3376_diff__diff__eq2,axiom,
! [A: rat,B: rat,C: rat] :
( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_3377_diff__diff__eq2,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_3378_add__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_3379_add__diff__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
= ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_3380_add__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_3381_eq__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( A
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_3382_eq__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( A
= ( minus_minus_rat @ C @ B ) )
= ( ( plus_plus_rat @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_3383_eq__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( A
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_3384_diff__eq__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( minus_minus_real @ A @ B )
= C )
= ( A
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_3385_diff__eq__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ( minus_minus_rat @ A @ B )
= C )
= ( A
= ( plus_plus_rat @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_3386_diff__eq__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( minus_minus_int @ A @ B )
= C )
= ( A
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_3387_group__cancel_Osub1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( minus_minus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_3388_group__cancel_Osub1,axiom,
! [A2: rat,K: rat,A: rat,B: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( minus_minus_rat @ A2 @ B )
= ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_3389_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_3390_add__diff__add,axiom,
! [A: real,C: real,B: real,D: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
= ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).
% add_diff_add
thf(fact_3391_add__diff__add,axiom,
! [A: rat,C: rat,B: rat,D: rat] :
( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) )
= ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D ) ) ) ).
% add_diff_add
thf(fact_3392_add__diff__add,axiom,
! [A: int,C: int,B: int,D: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
= ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).
% add_diff_add
thf(fact_3393_add__divide__distrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_3394_add__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_3395_add__divide__distrib,axiom,
! [A: rat,B: rat,C: rat] :
( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
= ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_3396_dvd__add__right__iff,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3397_dvd__add__right__iff,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3398_dvd__add__right__iff,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3399_dvd__add__right__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3400_dvd__add__right__iff,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_3401_dvd__add__left__iff,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ C )
=> ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3402_dvd__add__left__iff,axiom,
! [A: real,C: real,B: real] :
( ( dvd_dvd_real @ A @ C )
=> ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3403_dvd__add__left__iff,axiom,
! [A: rat,C: rat,B: rat] :
( ( dvd_dvd_rat @ A @ C )
=> ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
= ( dvd_dvd_rat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3404_dvd__add__left__iff,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3405_dvd__add__left__iff,axiom,
! [A: int,C: int,B: int] :
( ( dvd_dvd_int @ A @ C )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_3406_dvd__add,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( dvd_dvd_Code_integer @ A @ C )
=> ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3407_dvd__add,axiom,
! [A: real,B: real,C: real] :
( ( dvd_dvd_real @ A @ B )
=> ( ( dvd_dvd_real @ A @ C )
=> ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3408_dvd__add,axiom,
! [A: rat,B: rat,C: rat] :
( ( dvd_dvd_rat @ A @ B )
=> ( ( dvd_dvd_rat @ A @ C )
=> ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3409_dvd__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3410_dvd__add,axiom,
! [A: int,B: int,C: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ A @ C )
=> ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_3411_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_3412_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_3413_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_3414_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B3: nat] :
( ( P @ A4 @ B3 )
= ( P @ B3 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
=> ( ! [A4: nat,B3: nat] :
( ( P @ A4 @ B3 )
=> ( P @ A4 @ ( plus_plus_nat @ A4 @ B3 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_3415_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_3416_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_3417_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_3418_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_3419_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_3420_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_3421_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_3422_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_3423_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_3424_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_3425_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M5: nat,N4: nat] :
? [K3: nat] :
( N4
= ( plus_plus_nat @ M5 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_3426_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_3427_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_3428_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_3429_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_3430_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_3431_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_3432_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_3433_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_3434_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_3435_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_3436_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_3437_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_3438_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_3439_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_3440_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_3441_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_3442_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_3443_add__nonpos__eq__0__iff,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ Y4 @ zero_zero_rat )
=> ( ( ( plus_plus_rat @ X @ Y4 )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y4 = zero_zero_rat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_3444_add__nonpos__eq__0__iff,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y4 @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X @ Y4 )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y4 = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_3445_add__nonpos__eq__0__iff,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y4 @ zero_zero_int )
=> ( ( ( plus_plus_int @ X @ Y4 )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y4 = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_3446_add__nonpos__eq__0__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y4 @ zero_zero_real )
=> ( ( ( plus_plus_real @ X @ Y4 )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y4 = zero_zero_real ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_3447_add__nonneg__eq__0__iff,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ( ( plus_plus_rat @ X @ Y4 )
= zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y4 = zero_zero_rat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_3448_add__nonneg__eq__0__iff,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y4 )
=> ( ( ( plus_plus_nat @ X @ Y4 )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y4 = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_3449_add__nonneg__eq__0__iff,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ( plus_plus_int @ X @ Y4 )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y4 = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_3450_add__nonneg__eq__0__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ( plus_plus_real @ X @ Y4 )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y4 = zero_zero_real ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_3451_add__nonpos__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_nonpos
thf(fact_3452_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_3453_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_3454_add__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_nonpos
thf(fact_3455_add__nonneg__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_3456_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_3457_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_3458_add__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_3459_add__increasing2,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ B @ A )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_3460_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_3461_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_3462_add__increasing2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_3463_add__decreasing2,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_eq_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_3464_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_3465_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_3466_add__decreasing2,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_3467_add__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_3468_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_3469_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_3470_add__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_3471_add__decreasing,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ C @ B )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_3472_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_3473_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_3474_add__decreasing,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_3475_add__mono__thms__linordered__field_I4_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_eq_rat @ I @ J )
& ( ord_less_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_3476_add__mono__thms__linordered__field_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_3477_add__mono__thms__linordered__field_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_3478_add__mono__thms__linordered__field_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_3479_add__mono__thms__linordered__field_I3_J,axiom,
! [I: rat,J: rat,K: rat,L: rat] :
( ( ( ord_less_rat @ I @ J )
& ( ord_less_eq_rat @ K @ L ) )
=> ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_3480_add__mono__thms__linordered__field_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_3481_add__mono__thms__linordered__field_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_3482_add__mono__thms__linordered__field_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_3483_add__le__less__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_3484_add__le__less__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_3485_add__le__less__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_3486_add__le__less__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_3487_add__less__le__mono,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_eq_rat @ C @ D )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_3488_add__less__le__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_3489_add__less__le__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_3490_add__less__le__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_3491_add__less__zeroD,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y4 ) @ zero_zero_real )
=> ( ( ord_less_real @ X @ zero_zero_real )
| ( ord_less_real @ Y4 @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_3492_add__less__zeroD,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ X @ Y4 ) @ zero_zero_rat )
=> ( ( ord_less_rat @ X @ zero_zero_rat )
| ( ord_less_rat @ Y4 @ zero_zero_rat ) ) ) ).
% add_less_zeroD
thf(fact_3493_add__less__zeroD,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ ( plus_plus_int @ X @ Y4 ) @ zero_zero_int )
=> ( ( ord_less_int @ X @ zero_zero_int )
| ( ord_less_int @ Y4 @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_3494_add__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_neg
thf(fact_3495_add__neg__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_neg
thf(fact_3496_add__neg__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_3497_add__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_3498_add__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_3499_add__pos__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_3500_add__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_3501_add__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_3502_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C3: nat] :
( ( B
= ( plus_plus_nat @ A @ C3 ) )
=> ( C3 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_3503_pos__add__strict,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_3504_pos__add__strict,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_3505_pos__add__strict,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_3506_pos__add__strict,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_3507_add__le__imp__le__diff,axiom,
! [I: rat,K: rat,N: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
=> ( ord_less_eq_rat @ I @ ( minus_minus_rat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_3508_add__le__imp__le__diff,axiom,
! [I: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_3509_add__le__imp__le__diff,axiom,
! [I: int,K: int,N: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_3510_add__le__imp__le__diff,axiom,
! [I: real,K: real,N: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_3511_add__le__add__imp__diff__le,axiom,
! [I: rat,K: rat,N: rat,J: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
=> ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
=> ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
=> ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
=> ( ord_less_eq_rat @ ( minus_minus_rat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_3512_add__le__add__imp__diff__le,axiom,
! [I: nat,K: nat,N: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_3513_add__le__add__imp__diff__le,axiom,
! [I: int,K: int,N: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_3514_add__le__add__imp__diff__le,axiom,
! [I: real,K: real,N: real,J: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_3515_diff__le__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_3516_diff__le__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_3517_diff__le__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_3518_le__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_3519_le__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_3520_le__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_3521_diff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% diff_add
thf(fact_3522_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_3523_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_3524_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_3525_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_3526_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_3527_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_3528_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_3529_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_3530_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_3531_less__add__one,axiom,
! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).
% less_add_one
thf(fact_3532_less__add__one,axiom,
! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).
% less_add_one
thf(fact_3533_less__add__one,axiom,
! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).
% less_add_one
thf(fact_3534_less__add__one,axiom,
! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).
% less_add_one
thf(fact_3535_add__mono1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).
% add_mono1
thf(fact_3536_add__mono1,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).
% add_mono1
thf(fact_3537_add__mono1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).
% add_mono1
thf(fact_3538_add__mono1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).
% add_mono1
thf(fact_3539_numeral__Bit0,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_Bit0
thf(fact_3540_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_3541_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit0 @ N ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_Bit0
thf(fact_3542_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_3543_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_Bit0
thf(fact_3544_less__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_3545_less__diff__eq,axiom,
! [A: rat,C: rat,B: rat] :
( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
= ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_3546_less__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% less_diff_eq
thf(fact_3547_diff__less__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_3548_diff__less__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
= ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_3549_diff__less__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_less_eq
thf(fact_3550_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: real,B: real] :
( ~ ( ord_less_real @ A @ B )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_3551_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: rat,B: rat] :
( ~ ( ord_less_rat @ A @ B )
=> ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_3552_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ~ ( ord_less_nat @ A @ B )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_3553_linordered__semidom__class_Oadd__diff__inverse,axiom,
! [A: int,B: int] :
( ~ ( ord_less_int @ A @ B )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% linordered_semidom_class.add_diff_inverse
thf(fact_3554_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).
% one_plus_numeral_commute
thf(fact_3555_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_3556_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).
% one_plus_numeral_commute
thf(fact_3557_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_3558_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_3559_eq__add__iff1,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_3560_eq__add__iff1,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_3561_eq__add__iff1,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_3562_eq__add__iff2,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C )
= ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( C
= ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_3563_eq__add__iff2,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C )
= ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( C
= ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_3564_eq__add__iff2,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( C
= ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_3565_square__diff__square__factored,axiom,
! [X: real,Y4: real] :
( ( minus_minus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y4 @ Y4 ) )
= ( times_times_real @ ( plus_plus_real @ X @ Y4 ) @ ( minus_minus_real @ X @ Y4 ) ) ) ).
% square_diff_square_factored
thf(fact_3566_square__diff__square__factored,axiom,
! [X: rat,Y4: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y4 @ Y4 ) )
= ( times_times_rat @ ( plus_plus_rat @ X @ Y4 ) @ ( minus_minus_rat @ X @ Y4 ) ) ) ).
% square_diff_square_factored
thf(fact_3567_square__diff__square__factored,axiom,
! [X: int,Y4: int] :
( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y4 @ Y4 ) )
= ( times_times_int @ ( plus_plus_int @ X @ Y4 ) @ ( minus_minus_int @ X @ Y4 ) ) ) ).
% square_diff_square_factored
thf(fact_3568_mult__diff__mult,axiom,
! [X: real,Y4: real,A: real,B: real] :
( ( minus_minus_real @ ( times_times_real @ X @ Y4 ) @ ( times_times_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ X @ ( minus_minus_real @ Y4 @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_3569_mult__diff__mult,axiom,
! [X: rat,Y4: rat,A: rat,B: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X @ Y4 ) @ ( times_times_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ X @ ( minus_minus_rat @ Y4 @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_3570_mult__diff__mult,axiom,
! [X: int,Y4: int,A: int,B: int] :
( ( minus_minus_int @ ( times_times_int @ X @ Y4 ) @ ( times_times_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ X @ ( minus_minus_int @ Y4 @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X @ A ) @ B ) ) ) ).
% mult_diff_mult
thf(fact_3571_minf_I10_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z2: code_integer] :
! [X5: code_integer] :
( ( ord_le6747313008572928689nteger @ X5 @ Z2 )
=> ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_3572_minf_I10_J,axiom,
! [D: real,S2: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z2 )
=> ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_3573_minf_I10_J,axiom,
! [D: rat,S2: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z2 )
=> ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_3574_minf_I10_J,axiom,
! [D: nat,S2: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z2 )
=> ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_3575_minf_I10_J,axiom,
! [D: int,S2: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z2 )
=> ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) ) ) ) ) ).
% minf(10)
thf(fact_3576_minf_I9_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z2: code_integer] :
! [X5: code_integer] :
( ( ord_le6747313008572928689nteger @ X5 @ Z2 )
=> ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) )
= ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_3577_minf_I9_J,axiom,
! [D: real,S2: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ X5 @ Z2 )
=> ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_3578_minf_I9_J,axiom,
! [D: rat,S2: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ X5 @ Z2 )
=> ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_3579_minf_I9_J,axiom,
! [D: nat,S2: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z2 )
=> ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) )
= ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_3580_minf_I9_J,axiom,
! [D: int,S2: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z2 )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) ) ) ) ).
% minf(9)
thf(fact_3581_pinf_I10_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z2: code_integer] :
! [X5: code_integer] :
( ( ord_le6747313008572928689nteger @ Z2 @ X5 )
=> ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_3582_pinf_I10_J,axiom,
! [D: real,S2: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ Z2 @ X5 )
=> ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_3583_pinf_I10_J,axiom,
! [D: rat,S2: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z2 @ X5 )
=> ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_3584_pinf_I10_J,axiom,
! [D: nat,S2: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z2 @ X5 )
=> ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_3585_pinf_I10_J,axiom,
! [D: int,S2: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ Z2 @ X5 )
=> ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) ) ) ) ) ).
% pinf(10)
thf(fact_3586_pinf_I9_J,axiom,
! [D: code_integer,S2: code_integer] :
? [Z2: code_integer] :
! [X5: code_integer] :
( ( ord_le6747313008572928689nteger @ Z2 @ X5 )
=> ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) )
= ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_3587_pinf_I9_J,axiom,
! [D: real,S2: real] :
? [Z2: real] :
! [X5: real] :
( ( ord_less_real @ Z2 @ X5 )
=> ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_3588_pinf_I9_J,axiom,
! [D: rat,S2: rat] :
? [Z2: rat] :
! [X5: rat] :
( ( ord_less_rat @ Z2 @ X5 )
=> ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_3589_pinf_I9_J,axiom,
! [D: nat,S2: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z2 @ X5 )
=> ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) )
= ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X5 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_3590_pinf_I9_J,axiom,
! [D: int,S2: int] :
? [Z2: int] :
! [X5: int] :
( ( ord_less_int @ Z2 @ X5 )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ S2 ) ) ) ) ).
% pinf(9)
thf(fact_3591_div__plus__div__distrib__dvd__left,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ A )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_3592_div__plus__div__distrib__dvd__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_3593_div__plus__div__distrib__dvd__left,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_left
thf(fact_3594_div__plus__div__distrib__dvd__right,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_3595_div__plus__div__distrib__dvd__right,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_3596_div__plus__div__distrib__dvd__right,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).
% div_plus_div_distrib_dvd_right
thf(fact_3597_power__add,axiom,
! [A: complex,M: nat,N: nat] :
( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).
% power_add
thf(fact_3598_power__add,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% power_add
thf(fact_3599_power__add,axiom,
! [A: rat,M: nat,N: nat] :
( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ).
% power_add
thf(fact_3600_power__add,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% power_add
thf(fact_3601_power__add,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% power_add
thf(fact_3602_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_3603_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_3604_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K2: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_3605_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M5: nat,N4: nat] :
? [K3: nat] :
( N4
= ( suc @ ( plus_plus_nat @ M5 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_3606_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_3607_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_3608_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q4: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q4 ) ) ) ) ).
% less_natE
thf(fact_3609_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_3610_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M4: nat,N2: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( ord_less_nat @ ( F @ M4 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_3611_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_3612_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_3613_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_3614_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_3615_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_3616_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_3617_Suc__eq__plus1,axiom,
( suc
= ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_3618_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_3619_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_3620_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_3621_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_3622_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_3623_bezout__lemma__nat,axiom,
! [D: nat,A: nat,B: nat,X: nat,Y4: nat] :
( ( dvd_dvd_nat @ D @ A )
=> ( ( dvd_dvd_nat @ D @ B )
=> ( ( ( ( times_times_nat @ A @ X )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D ) )
| ( ( times_times_nat @ B @ X )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D ) ) )
=> ? [X4: nat,Y: nat] :
( ( dvd_dvd_nat @ D @ A )
& ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
& ( ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y ) @ D ) )
| ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_3624_bezout__add__nat,axiom,
! [A: nat,B: nat] :
? [D2: nat,X4: nat,Y: nat] :
( ( dvd_dvd_nat @ D2 @ A )
& ( dvd_dvd_nat @ D2 @ B )
& ( ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D2 ) )
| ( ( times_times_nat @ B @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D2 ) ) ) ) ).
% bezout_add_nat
thf(fact_3625_field__le__epsilon,axiom,
! [X: rat,Y4: rat] :
( ! [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
=> ( ord_less_eq_rat @ X @ ( plus_plus_rat @ Y4 @ E ) ) )
=> ( ord_less_eq_rat @ X @ Y4 ) ) ).
% field_le_epsilon
thf(fact_3626_field__le__epsilon,axiom,
! [X: real,Y4: real] :
( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ( ord_less_eq_real @ X @ ( plus_plus_real @ Y4 @ E ) ) )
=> ( ord_less_eq_real @ X @ Y4 ) ) ).
% field_le_epsilon
thf(fact_3627_add__strict__increasing2,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_3628_add__strict__increasing2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_3629_add__strict__increasing2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_3630_add__strict__increasing2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_3631_add__strict__increasing,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ B @ C )
=> ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_3632_add__strict__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_3633_add__strict__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_3634_add__strict__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_3635_add__pos__nonneg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_3636_add__pos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_3637_add__pos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_3638_add__pos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_3639_add__nonpos__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_nonpos_neg
thf(fact_3640_add__nonpos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_3641_add__nonpos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_neg
thf(fact_3642_add__nonpos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_neg
thf(fact_3643_add__nonneg__pos,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_3644_add__nonneg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_3645_add__nonneg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_3646_add__nonneg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_3647_add__neg__nonpos,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).
% add_neg_nonpos
thf(fact_3648_add__neg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_3649_add__neg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_nonpos
thf(fact_3650_add__neg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_nonpos
thf(fact_3651_sum__squares__ge__zero,axiom,
! [X: rat,Y4: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y4 @ Y4 ) ) ) ).
% sum_squares_ge_zero
thf(fact_3652_sum__squares__ge__zero,axiom,
! [X: int,Y4: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y4 @ Y4 ) ) ) ).
% sum_squares_ge_zero
thf(fact_3653_sum__squares__ge__zero,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y4 @ Y4 ) ) ) ).
% sum_squares_ge_zero
thf(fact_3654_sum__squares__le__zero__iff,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y4 @ Y4 ) ) @ zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y4 = zero_zero_rat ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_3655_sum__squares__le__zero__iff,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y4 @ Y4 ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y4 = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_3656_sum__squares__le__zero__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y4 @ Y4 ) ) @ zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y4 = zero_zero_real ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_3657_not__sum__squares__lt__zero,axiom,
! [X: real,Y4: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y4 @ Y4 ) ) @ zero_zero_real ) ).
% not_sum_squares_lt_zero
thf(fact_3658_not__sum__squares__lt__zero,axiom,
! [X: rat,Y4: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y4 @ Y4 ) ) @ zero_zero_rat ) ).
% not_sum_squares_lt_zero
thf(fact_3659_not__sum__squares__lt__zero,axiom,
! [X: int,Y4: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y4 @ Y4 ) ) @ zero_zero_int ) ).
% not_sum_squares_lt_zero
thf(fact_3660_sum__squares__gt__zero__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y4 @ Y4 ) ) )
= ( ( X != zero_zero_real )
| ( Y4 != zero_zero_real ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_3661_sum__squares__gt__zero__iff,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y4 @ Y4 ) ) )
= ( ( X != zero_zero_rat )
| ( Y4 != zero_zero_rat ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_3662_sum__squares__gt__zero__iff,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y4 @ Y4 ) ) )
= ( ( X != zero_zero_int )
| ( Y4 != zero_zero_int ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_3663_discrete,axiom,
( ord_less_nat
= ( ^ [A3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A3 @ one_one_nat ) ) ) ) ).
% discrete
thf(fact_3664_discrete,axiom,
( ord_less_int
= ( ^ [A3: int] : ( ord_less_eq_int @ ( plus_plus_int @ A3 @ one_one_int ) ) ) ) ).
% discrete
thf(fact_3665_zero__less__two,axiom,
ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).
% zero_less_two
thf(fact_3666_zero__less__two,axiom,
ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).
% zero_less_two
thf(fact_3667_zero__less__two,axiom,
ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).
% zero_less_two
thf(fact_3668_zero__less__two,axiom,
ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).
% zero_less_two
thf(fact_3669_ordered__ring__class_Ole__add__iff1,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_3670_ordered__ring__class_Ole__add__iff1,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_3671_ordered__ring__class_Ole__add__iff1,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_3672_ordered__ring__class_Ole__add__iff2,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_3673_ordered__ring__class_Ole__add__iff2,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_3674_ordered__ring__class_Ole__add__iff2,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_3675_add__divide__eq__if__simps_I2_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_3676_add__divide__eq__if__simps_I2_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_3677_add__divide__eq__if__simps_I2_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_3678_add__divide__eq__if__simps_I1_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_3679_add__divide__eq__if__simps_I1_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_3680_add__divide__eq__if__simps_I1_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_3681_add__frac__eq,axiom,
! [Y4: complex,Z: complex,X: complex,W: complex] :
( ( Y4 != zero_zero_complex )
=> ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y4 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ W @ Y4 ) ) @ ( times_times_complex @ Y4 @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_3682_add__frac__eq,axiom,
! [Y4: real,Z: real,X: real,W: real] :
( ( Y4 != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y4 ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y4 ) ) @ ( times_times_real @ Y4 @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_3683_add__frac__eq,axiom,
! [Y4: rat,Z: rat,X: rat,W: rat] :
( ( Y4 != zero_zero_rat )
=> ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y4 ) @ ( divide_divide_rat @ W @ Z ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y4 ) ) @ ( times_times_rat @ Y4 @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_3684_add__frac__num,axiom,
! [Y4: complex,X: complex,Z: complex] :
( ( Y4 != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y4 ) @ Z )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z @ Y4 ) ) @ Y4 ) ) ) ).
% add_frac_num
thf(fact_3685_add__frac__num,axiom,
! [Y4: real,X: real,Z: real] :
( ( Y4 != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y4 ) @ Z )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y4 ) ) @ Y4 ) ) ) ).
% add_frac_num
thf(fact_3686_add__frac__num,axiom,
! [Y4: rat,X: rat,Z: rat] :
( ( Y4 != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y4 ) @ Z )
= ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z @ Y4 ) ) @ Y4 ) ) ) ).
% add_frac_num
thf(fact_3687_add__num__frac,axiom,
! [Y4: complex,Z: complex,X: complex] :
( ( Y4 != zero_zero_complex )
=> ( ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ X @ Y4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z @ Y4 ) ) @ Y4 ) ) ) ).
% add_num_frac
thf(fact_3688_add__num__frac,axiom,
! [Y4: real,Z: real,X: real] :
( ( Y4 != zero_zero_real )
=> ( ( plus_plus_real @ Z @ ( divide_divide_real @ X @ Y4 ) )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y4 ) ) @ Y4 ) ) ) ).
% add_num_frac
thf(fact_3689_add__num__frac,axiom,
! [Y4: rat,Z: rat,X: rat] :
( ( Y4 != zero_zero_rat )
=> ( ( plus_plus_rat @ Z @ ( divide_divide_rat @ X @ Y4 ) )
= ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z @ Y4 ) ) @ Y4 ) ) ) ).
% add_num_frac
thf(fact_3690_add__divide__eq__iff,axiom,
! [Z: complex,X: complex,Y4: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ Y4 @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z ) @ Y4 ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_3691_add__divide__eq__iff,axiom,
! [Z: real,X: real,Y4: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ X @ ( divide_divide_real @ Y4 @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ Y4 ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_3692_add__divide__eq__iff,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ X @ ( divide_divide_rat @ Y4 @ Z ) )
= ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z ) @ Y4 ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_3693_divide__add__eq__iff,axiom,
! [Z: complex,X: complex,Y4: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Z ) @ Y4 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Y4 @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_3694_divide__add__eq__iff,axiom,
! [Z: real,X: real,Y4: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Z ) @ Y4 )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y4 @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_3695_divide__add__eq__iff,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Z ) @ Y4 )
= ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Y4 @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_3696_less__add__iff1,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_3697_less__add__iff1,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_3698_less__add__iff1,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% less_add_iff1
thf(fact_3699_less__add__iff2,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D ) )
= ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D ) ) ) ).
% less_add_iff2
thf(fact_3700_less__add__iff2,axiom,
! [A: rat,E2: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D ) )
= ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D ) ) ) ).
% less_add_iff2
thf(fact_3701_less__add__iff2,axiom,
! [A: int,E2: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D ) )
= ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D ) ) ) ).
% less_add_iff2
thf(fact_3702_div__add__self2,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self2
thf(fact_3703_div__add__self2,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self2
thf(fact_3704_div__add__self1,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self1
thf(fact_3705_div__add__self1,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self1
thf(fact_3706_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
! [X: nat,N: nat,M: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_high @ X @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(1)
thf(fact_3707_less__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).
% less_half_sum
thf(fact_3708_less__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).
% less_half_sum
thf(fact_3709_gt__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).
% gt_half_sum
thf(fact_3710_gt__half__sum,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).
% gt_half_sum
thf(fact_3711_square__diff__one__factored,axiom,
! [X: complex] :
( ( minus_minus_complex @ ( times_times_complex @ X @ X ) @ one_one_complex )
= ( times_times_complex @ ( plus_plus_complex @ X @ one_one_complex ) @ ( minus_minus_complex @ X @ one_one_complex ) ) ) ).
% square_diff_one_factored
thf(fact_3712_square__diff__one__factored,axiom,
! [X: real] :
( ( minus_minus_real @ ( times_times_real @ X @ X ) @ one_one_real )
= ( times_times_real @ ( plus_plus_real @ X @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).
% square_diff_one_factored
thf(fact_3713_square__diff__one__factored,axiom,
! [X: rat] :
( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ one_one_rat )
= ( times_times_rat @ ( plus_plus_rat @ X @ one_one_rat ) @ ( minus_minus_rat @ X @ one_one_rat ) ) ) ).
% square_diff_one_factored
thf(fact_3714_square__diff__one__factored,axiom,
! [X: int] :
( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
= ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).
% square_diff_one_factored
thf(fact_3715_unity__coeff__ex,axiom,
! [P: code_integer > $o,L: code_integer] :
( ( ? [X3: code_integer] : ( P @ ( times_3573771949741848930nteger @ L @ X3 ) ) )
= ( ? [X3: code_integer] :
( ( dvd_dvd_Code_integer @ L @ ( plus_p5714425477246183910nteger @ X3 @ zero_z3403309356797280102nteger ) )
& ( P @ X3 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3716_unity__coeff__ex,axiom,
! [P: complex > $o,L: complex] :
( ( ? [X3: complex] : ( P @ ( times_times_complex @ L @ X3 ) ) )
= ( ? [X3: complex] :
( ( dvd_dvd_complex @ L @ ( plus_plus_complex @ X3 @ zero_zero_complex ) )
& ( P @ X3 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3717_unity__coeff__ex,axiom,
! [P: real > $o,L: real] :
( ( ? [X3: real] : ( P @ ( times_times_real @ L @ X3 ) ) )
= ( ? [X3: real] :
( ( dvd_dvd_real @ L @ ( plus_plus_real @ X3 @ zero_zero_real ) )
& ( P @ X3 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3718_unity__coeff__ex,axiom,
! [P: rat > $o,L: rat] :
( ( ? [X3: rat] : ( P @ ( times_times_rat @ L @ X3 ) ) )
= ( ? [X3: rat] :
( ( dvd_dvd_rat @ L @ ( plus_plus_rat @ X3 @ zero_zero_rat ) )
& ( P @ X3 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3719_unity__coeff__ex,axiom,
! [P: nat > $o,L: nat] :
( ( ? [X3: nat] : ( P @ ( times_times_nat @ L @ X3 ) ) )
= ( ? [X3: nat] :
( ( dvd_dvd_nat @ L @ ( plus_plus_nat @ X3 @ zero_zero_nat ) )
& ( P @ X3 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3720_unity__coeff__ex,axiom,
! [P: int > $o,L: int] :
( ( ? [X3: int] : ( P @ ( times_times_int @ L @ X3 ) ) )
= ( ? [X3: int] :
( ( dvd_dvd_int @ L @ ( plus_plus_int @ X3 @ zero_zero_int ) )
& ( P @ X3 ) ) ) ) ).
% unity_coeff_ex
thf(fact_3721_inf__period_I3_J,axiom,
! [D: code_integer,D3: code_integer,T: code_integer] :
( ( dvd_dvd_Code_integer @ D @ D3 )
=> ! [X5: code_integer,K4: code_integer] :
( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ T ) )
= ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X5 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_3722_inf__period_I3_J,axiom,
! [D: real,D3: real,T: real] :
( ( dvd_dvd_real @ D @ D3 )
=> ! [X5: real,K4: real] :
( ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ T ) )
= ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_3723_inf__period_I3_J,axiom,
! [D: rat,D3: rat,T: rat] :
( ( dvd_dvd_rat @ D @ D3 )
=> ! [X5: rat,K4: rat] :
( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ T ) )
= ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_3724_inf__period_I3_J,axiom,
! [D: int,D3: int,T: int] :
( ( dvd_dvd_int @ D @ D3 )
=> ! [X5: int,K4: int] :
( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
= ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ).
% inf_period(3)
thf(fact_3725_inf__period_I4_J,axiom,
! [D: code_integer,D3: code_integer,T: code_integer] :
( ( dvd_dvd_Code_integer @ D @ D3 )
=> ! [X5: code_integer,K4: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X5 @ T ) ) )
= ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X5 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_3726_inf__period_I4_J,axiom,
! [D: real,D3: real,T: real] :
( ( dvd_dvd_real @ D @ D3 )
=> ! [X5: real,K4: real] :
( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X5 @ T ) ) )
= ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X5 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_3727_inf__period_I4_J,axiom,
! [D: rat,D3: rat,T: rat] :
( ( dvd_dvd_rat @ D @ D3 )
=> ! [X5: rat,K4: rat] :
( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X5 @ T ) ) )
= ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_3728_inf__period_I4_J,axiom,
! [D: int,D3: int,T: int] :
( ( dvd_dvd_int @ D @ D3 )
=> ! [X5: int,K4: int] :
( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) ) )
= ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ) ).
% inf_period(4)
thf(fact_3729_numeral__Bit1,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).
% numeral_Bit1
thf(fact_3730_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit1 @ N ) )
= ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).
% numeral_Bit1
thf(fact_3731_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_rat @ ( bit1 @ N ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).
% numeral_Bit1
thf(fact_3732_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit1 @ N ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).
% numeral_Bit1
thf(fact_3733_numeral__Bit1,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit1 @ N ) )
= ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).
% numeral_Bit1
thf(fact_3734_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
& ~ ( P @ D4 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_3735_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
=> ( P @ D4 ) ) ) ) ).
% nat_diff_split
thf(fact_3736_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_3737_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_3738_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_3739_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_3740_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_3741_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_3742_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_3743_bezout__add__strong__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [D2: nat,X4: nat,Y: nat] :
( ( dvd_dvd_nat @ D2 @ A )
& ( dvd_dvd_nat @ D2 @ B )
& ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D2 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_3744_convex__bound__le,axiom,
! [X: rat,A: rat,Y4: rat,U: rat,V: rat] :
( ( ord_less_eq_rat @ X @ A )
=> ( ( ord_less_eq_rat @ Y4 @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U @ V )
= one_one_rat )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y4 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_3745_convex__bound__le,axiom,
! [X: int,A: int,Y4: int,U: int,V: int] :
( ( ord_less_eq_int @ X @ A )
=> ( ( ord_less_eq_int @ Y4 @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y4 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_3746_convex__bound__le,axiom,
! [X: real,A: real,Y4: real,U: real,V: real] :
( ( ord_less_eq_real @ X @ A )
=> ( ( ord_less_eq_real @ Y4 @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y4 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_3747_mult__2,axiom,
! [Z: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_complex @ Z @ Z ) ) ).
% mult_2
thf(fact_3748_mult__2,axiom,
! [Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2
thf(fact_3749_mult__2,axiom,
! [Z: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_rat @ Z @ Z ) ) ).
% mult_2
thf(fact_3750_mult__2,axiom,
! [Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2
thf(fact_3751_mult__2,axiom,
! [Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2
thf(fact_3752_mult__2__right,axiom,
! [Z: complex] :
( ( times_times_complex @ Z @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ Z @ Z ) ) ).
% mult_2_right
thf(fact_3753_mult__2__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2_right
thf(fact_3754_mult__2__right,axiom,
! [Z: rat] :
( ( times_times_rat @ Z @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_3755_mult__2__right,axiom,
! [Z: nat] :
( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_3756_mult__2__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2_right
thf(fact_3757_left__add__twice,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_3758_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_3759_left__add__twice,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_3760_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_3761_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_3762_field__sum__of__halves,axiom,
! [X: real] :
( ( plus_plus_real @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= X ) ).
% field_sum_of_halves
thf(fact_3763_field__sum__of__halves,axiom,
! [X: rat] :
( ( plus_plus_rat @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
= X ) ).
% field_sum_of_halves
thf(fact_3764_odd__even__add,axiom,
! [A: code_integer,B: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_3765_odd__even__add,axiom,
! [A: nat,B: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_3766_odd__even__add,axiom,
! [A: int,B: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
=> ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).
% odd_even_add
thf(fact_3767_Suc3__eq__add__3,axiom,
! [N: nat] :
( ( suc @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).
% Suc3_eq_add_3
thf(fact_3768_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_3769_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M5: nat,N4: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% add_eq_if
thf(fact_3770_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_less_add_iff2
thf(fact_3771_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_less_add_iff1
thf(fact_3772_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_3773_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_3774_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I2: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I2 ) @ J3 ) )
=> ( P @ I2 ) ) ) ) ) ) ).
% split_div
thf(fact_3775_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M5: nat,N4: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N4 @ ( times_times_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% mult_eq_if
thf(fact_3776_dvd__minus__add,axiom,
! [Q2: nat,N: nat,R2: nat,M: nat] :
( ( ord_less_eq_nat @ Q2 @ N )
=> ( ( ord_less_eq_nat @ Q2 @ ( times_times_nat @ R2 @ M ) )
=> ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ Q2 ) )
= ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N @ ( minus_minus_nat @ ( times_times_nat @ R2 @ M ) @ Q2 ) ) ) ) ) ) ).
% dvd_minus_add
thf(fact_3777_convex__bound__lt,axiom,
! [X: rat,A: rat,Y4: rat,U: rat,V: rat] :
( ( ord_less_rat @ X @ A )
=> ( ( ord_less_rat @ Y4 @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ U )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ V )
=> ( ( ( plus_plus_rat @ U @ V )
= one_one_rat )
=> ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y4 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_3778_convex__bound__lt,axiom,
! [X: int,A: int,Y4: int,U: int,V: int] :
( ( ord_less_int @ X @ A )
=> ( ( ord_less_int @ Y4 @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y4 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_3779_convex__bound__lt,axiom,
! [X: real,A: real,Y4: real,U: real,V: real] :
( ( ord_less_real @ X @ A )
=> ( ( ord_less_real @ Y4 @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y4 ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_3780_scaling__mono,axiom,
! [U: rat,V: rat,R2: rat,S2: rat] :
( ( ord_less_eq_rat @ U @ V )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
=> ( ( ord_less_eq_rat @ R2 @ S2 )
=> ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R2 @ ( minus_minus_rat @ V @ U ) ) @ S2 ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_3781_scaling__mono,axiom,
! [U: real,V: real,R2: real,S2: real] :
( ( ord_less_eq_real @ U @ V )
=> ( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ( ord_less_eq_real @ R2 @ S2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R2 @ ( minus_minus_real @ V @ U ) ) @ S2 ) ) @ V ) ) ) ) ).
% scaling_mono
thf(fact_3782_field__less__half__sum,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ X @ ( divide_divide_real @ ( plus_plus_real @ X @ Y4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_3783_field__less__half__sum,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ X @ Y4 )
=> ( ord_less_rat @ X @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y4 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% field_less_half_sum
thf(fact_3784_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_left
thf(fact_3785_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_left
thf(fact_3786_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_right
thf(fact_3787_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_right
thf(fact_3788_div__exp__eq,axiom,
! [A: nat,M: nat,N: nat] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_3789_div__exp__eq,axiom,
! [A: int,M: nat,N: nat] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_3790_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_3791_Suc__div__eq__add3__div,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).
% Suc_div_eq_add3_div
thf(fact_3792_sum__power2__ge__zero,axiom,
! [X: rat,Y4: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_3793_sum__power2__ge__zero,axiom,
! [X: int,Y4: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_3794_sum__power2__ge__zero,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_3795_sum__power2__le__zero__iff,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
= ( ( X = zero_zero_rat )
& ( Y4 = zero_zero_rat ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_3796_sum__power2__le__zero__iff,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y4 = zero_zero_int ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_3797_sum__power2__le__zero__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y4 = zero_zero_real ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_3798_not__sum__power2__lt__zero,axiom,
! [X: real,Y4: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).
% not_sum_power2_lt_zero
thf(fact_3799_not__sum__power2__lt__zero,axiom,
! [X: rat,Y4: rat] :
~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).
% not_sum_power2_lt_zero
thf(fact_3800_not__sum__power2__lt__zero,axiom,
! [X: int,Y4: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).
% not_sum_power2_lt_zero
thf(fact_3801_sum__power2__gt__zero__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_real )
| ( Y4 != zero_zero_real ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_3802_sum__power2__gt__zero__iff,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_rat )
| ( Y4 != zero_zero_rat ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_3803_sum__power2__gt__zero__iff,axiom,
! [X: int,Y4: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_int )
| ( Y4 != zero_zero_int ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_3804_oddE,axiom,
! [A: code_integer] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: code_integer] :
( A
!= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B3 ) @ one_one_Code_integer ) ) ) ).
% oddE
thf(fact_3805_oddE,axiom,
! [A: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: nat] :
( A
!= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) @ one_one_nat ) ) ) ).
% oddE
thf(fact_3806_oddE,axiom,
! [A: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ~ ! [B3: int] :
( A
!= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) @ one_one_int ) ) ) ).
% oddE
thf(fact_3807_power2__sum,axiom,
! [X: complex,Y4: complex] :
( ( power_power_complex @ ( plus_plus_complex @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_sum
thf(fact_3808_power2__sum,axiom,
! [X: real,Y4: real] :
( ( power_power_real @ ( plus_plus_real @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_sum
thf(fact_3809_power2__sum,axiom,
! [X: rat,Y4: rat] :
( ( power_power_rat @ ( plus_plus_rat @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_sum
thf(fact_3810_power2__sum,axiom,
! [X: nat,Y4: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_sum
thf(fact_3811_power2__sum,axiom,
! [X: int,Y4: int] :
( ( power_power_int @ ( plus_plus_int @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_sum
thf(fact_3812_real__arch__simple,axiom,
! [X: rat] :
? [N2: nat] : ( ord_less_eq_rat @ X @ ( semiri681578069525770553at_rat @ N2 ) ) ).
% real_arch_simple
thf(fact_3813_real__arch__simple,axiom,
! [X: real] :
? [N2: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% real_arch_simple
thf(fact_3814_reals__Archimedean2,axiom,
! [X: real] :
? [N2: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% reals_Archimedean2
thf(fact_3815_reals__Archimedean2,axiom,
! [X: rat] :
? [N2: nat] : ( ord_less_rat @ X @ ( semiri681578069525770553at_rat @ N2 ) ) ).
% reals_Archimedean2
thf(fact_3816_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_12: nat] : ( P @ X_12 )
=> ? [N2: nat] :
( ~ ( P @ N2 )
& ( P @ ( suc @ N2 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_3817_sum__squares__bound,axiom,
! [X: rat,Y4: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y4 ) @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_3818_sum__squares__bound,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y4 ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_3819_power2__diff,axiom,
! [X: complex,Y4: complex] :
( ( power_power_complex @ ( minus_minus_complex @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_diff
thf(fact_3820_power2__diff,axiom,
! [X: real,Y4: real] :
( ( power_power_real @ ( minus_minus_real @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_diff
thf(fact_3821_power2__diff,axiom,
! [X: rat,Y4: rat] :
( ( power_power_rat @ ( minus_minus_rat @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_diff
thf(fact_3822_power2__diff,axiom,
! [X: int,Y4: int] :
( ( power_power_int @ ( minus_minus_int @ X @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y4 ) ) ) ).
% power2_diff
thf(fact_3823_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_3824_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_3825_arith__geo__mean,axiom,
! [U: rat,X: rat,Y4: rat] :
( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_rat @ X @ Y4 ) )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y4 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_3826_arith__geo__mean,axiom,
! [U: real,X: real,Y4: real] :
( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ X @ Y4 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X @ Y4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_3827_ex__less__of__nat__mult,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y4 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).
% ex_less_of_nat_mult
thf(fact_3828_ex__less__of__nat__mult,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ? [N2: nat] : ( ord_less_rat @ Y4 @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ X ) ) ) ).
% ex_less_of_nat_mult
thf(fact_3829_low__inv,axiom,
! [X: nat,N: nat,Y4: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X ) @ N )
= X ) ) ).
% low_inv
thf(fact_3830_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A4: real,B3: real,C3: real] :
( ( P @ A4 @ B3 )
=> ( ( P @ B3 @ C3 )
=> ( ( ord_less_eq_real @ A4 @ B3 )
=> ( ( ord_less_eq_real @ B3 @ C3 )
=> ( P @ A4 @ C3 ) ) ) ) )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [D5: real] :
( ( ord_less_real @ zero_zero_real @ D5 )
& ! [A4: real,B3: real] :
( ( ( ord_less_eq_real @ A4 @ X4 )
& ( ord_less_eq_real @ X4 @ B3 )
& ( ord_less_real @ ( minus_minus_real @ B3 @ A4 ) @ D5 ) )
=> ( P @ A4 @ B3 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_3831_mult__le__cancel__iff1,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ Y4 @ Z ) )
= ( ord_less_eq_rat @ X @ Y4 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3832_mult__le__cancel__iff1,axiom,
! [Z: int,X: int,Y4: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ ( times_times_int @ X @ Z ) @ ( times_times_int @ Y4 @ Z ) )
= ( ord_less_eq_int @ X @ Y4 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3833_mult__le__cancel__iff1,axiom,
! [Z: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( ( ord_less_eq_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y4 @ Z ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_3834_mult__le__cancel__iff2,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z )
=> ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ X ) @ ( times_times_rat @ Z @ Y4 ) )
= ( ord_less_eq_rat @ X @ Y4 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3835_mult__le__cancel__iff2,axiom,
! [Z: int,X: int,Y4: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ ( times_times_int @ Z @ X ) @ ( times_times_int @ Z @ Y4 ) )
= ( ord_less_eq_int @ X @ Y4 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3836_mult__le__cancel__iff2,axiom,
! [Z: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z @ X ) @ ( times_times_real @ Z @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_3837_lemma__termdiff3,axiom,
! [H: real,Z: real,K5: real,N: nat] :
( ( H != zero_zero_real )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ K5 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z @ H ) ) @ K5 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H ) @ N ) @ ( power_power_real @ Z @ N ) ) @ H ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_3838_lemma__termdiff3,axiom,
! [H: complex,Z: complex,K5: real,N: nat] :
( ( H != zero_zero_complex )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ K5 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z @ H ) ) @ K5 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H ) @ N ) @ ( power_power_complex @ Z @ N ) ) @ H ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H ) ) ) ) ) ) ).
% lemma_termdiff3
thf(fact_3839_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8557863876264182079omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_3840_dbl__inc__simps_I3_J,axiom,
( ( neg_nu8295874005876285629c_real @ one_one_real )
= ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_3841_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_3842_dbl__inc__simps_I3_J,axiom,
( ( neg_nu5851722552734809277nc_int @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).
% dbl_inc_simps(3)
thf(fact_3843_dbl__simps_I3_J,axiom,
( ( neg_nu7009210354673126013omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3844_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3845_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_rat @ one_one_rat )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3846_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_3847_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_3848_dbl__simps_I2_J,axiom,
( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% dbl_simps(2)
thf(fact_3849_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_3850_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% dbl_simps(2)
thf(fact_3851_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_3852_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_3853_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% zle_add1_eq_le
thf(fact_3854_semiring__norm_I7_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(7)
thf(fact_3855_semiring__norm_I9_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(9)
thf(fact_3856_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
= ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3857_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3858_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
= ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3859_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_3860_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
= one_one_complex ) ).
% dbl_inc_simps(2)
thf(fact_3861_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_3862_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
= one_one_rat ) ).
% dbl_inc_simps(2)
thf(fact_3863_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_3864_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
= ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_3865_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_3866_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
= ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_3867_dbl__inc__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).
% dbl_inc_simps(5)
thf(fact_3868_power__add__numeral2,axiom,
! [A: complex,M: num,N: num,B: complex] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_3869_power__add__numeral2,axiom,
! [A: real,M: num,N: num,B: real] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_3870_power__add__numeral2,axiom,
! [A: rat,M: num,N: num,B: rat] :
( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_3871_power__add__numeral2,axiom,
! [A: nat,M: num,N: num,B: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_3872_power__add__numeral2,axiom,
! [A: int,M: num,N: num,B: int] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_3873_power__add__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_3874_power__add__numeral,axiom,
! [A: real,M: num,N: num] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_3875_power__add__numeral,axiom,
! [A: rat,M: num,N: num] :
( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_3876_power__add__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_3877_power__add__numeral,axiom,
! [A: int,M: num,N: num] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_3878_Suc__numeral,axiom,
! [N: num] :
( ( suc @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% Suc_numeral
thf(fact_3879_semiring__norm_I3_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit0 @ N ) )
= ( bit1 @ N ) ) ).
% semiring_norm(3)
thf(fact_3880_semiring__norm_I4_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).
% semiring_norm(4)
thf(fact_3881_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ one )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_3882_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ one )
= ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).
% semiring_norm(8)
thf(fact_3883_semiring__norm_I10_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).
% semiring_norm(10)
thf(fact_3884_semiring__norm_I16_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).
% semiring_norm(16)
thf(fact_3885_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_3886_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_3887_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_3888_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_3889_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_3890_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
& ( N = zero_z5237406670263579293d_enat ) ) ) ).
% iadd_is_0
thf(fact_3891_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X3: real] : ( plus_plus_real @ X3 @ X3 ) ) ) ).
% dbl_def
thf(fact_3892_dbl__def,axiom,
( neg_numeral_dbl_rat
= ( ^ [X3: rat] : ( plus_plus_rat @ X3 @ X3 ) ) ) ).
% dbl_def
thf(fact_3893_dbl__def,axiom,
( neg_numeral_dbl_int
= ( ^ [X3: int] : ( plus_plus_int @ X3 @ X3 ) ) ) ).
% dbl_def
thf(fact_3894_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_3895_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_3896_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_3897_zadd__int__left,axiom,
! [M: nat,N: nat,Z: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).
% zadd_int_left
thf(fact_3898_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_3899_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_3900_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_3901_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W3: int,Z5: int] :
? [N4: nat] :
( Z5
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_3902_zdvd__period,axiom,
! [A: int,D: int,X: int,T: int,C: int] :
( ( dvd_dvd_int @ A @ D )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X @ T ) )
= ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).
% zdvd_period
thf(fact_3903_zdvd__reduce,axiom,
! [K: int,N: int,M: int] :
( ( dvd_dvd_int @ K @ ( plus_plus_int @ N @ ( times_times_int @ K @ M ) ) )
= ( dvd_dvd_int @ K @ N ) ) ).
% zdvd_reduce
thf(fact_3904_add__diff__assoc__enat,axiom,
! [Z: extended_enat,Y4: extended_enat,X: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Z @ Y4 )
=> ( ( plus_p3455044024723400733d_enat @ X @ ( minus_3235023915231533773d_enat @ Y4 @ Z ) )
= ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y4 ) @ Z ) ) ) ).
% add_diff_assoc_enat
thf(fact_3905_int__Suc,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).
% int_Suc
thf(fact_3906_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_3907_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W3: int,Z5: int] :
? [N4: nat] :
( Z5
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N4 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_3908_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_3909_add1__zle__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
= ( ord_less_int @ W @ Z ) ) ).
% add1_zle_eq
thf(fact_3910_zless__imp__add1__zle,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ Z )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).
% zless_imp_add1_zle
thf(fact_3911_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_3912_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).
% Suc_nat_number_of_add
thf(fact_3913_dbl__inc__def,axiom,
( neg_nu8557863876264182079omplex
= ( ^ [X3: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X3 @ X3 ) @ one_one_complex ) ) ) ).
% dbl_inc_def
thf(fact_3914_dbl__inc__def,axiom,
( neg_nu8295874005876285629c_real
= ( ^ [X3: real] : ( plus_plus_real @ ( plus_plus_real @ X3 @ X3 ) @ one_one_real ) ) ) ).
% dbl_inc_def
thf(fact_3915_dbl__inc__def,axiom,
( neg_nu5219082963157363817nc_rat
= ( ^ [X3: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X3 @ X3 ) @ one_one_rat ) ) ) ).
% dbl_inc_def
thf(fact_3916_dbl__inc__def,axiom,
( neg_nu5851722552734809277nc_int
= ( ^ [X3: int] : ( plus_plus_int @ ( plus_plus_int @ X3 @ X3 ) @ one_one_int ) ) ) ).
% dbl_inc_def
thf(fact_3917_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N4: nat,M5: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N4 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M5 ) ) ) ) ).
% nat_less_real_le
thf(fact_3918_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N4: nat,M5: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M5 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_3919_le__imp__0__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).
% le_imp_0_less
thf(fact_3920_unique__quotient__lemma__neg,axiom,
! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( ord_less_int @ B @ R4 )
=> ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ).
% unique_quotient_lemma_neg
thf(fact_3921_unique__quotient__lemma,axiom,
! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R4 )
=> ( ( ord_less_int @ R4 @ B )
=> ( ( ord_less_int @ R2 @ B )
=> ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ).
% unique_quotient_lemma
thf(fact_3922_zdiv__mono2__neg__lemma,axiom,
! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) @ zero_zero_int )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ R4 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ) ) ).
% zdiv_mono2_neg_lemma
thf(fact_3923_zdiv__mono2__lemma,axiom,
! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
= ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_int @ R4 @ B6 )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ( ord_less_eq_int @ B6 @ B )
=> ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ) ) ).
% zdiv_mono2_lemma
thf(fact_3924_q__pos__lemma,axiom,
! [B6: int,Q5: int,R4: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
=> ( ( ord_less_int @ R4 @ B6 )
=> ( ( ord_less_int @ zero_zero_int @ B6 )
=> ( ord_less_eq_int @ zero_zero_int @ Q5 ) ) ) ) ).
% q_pos_lemma
thf(fact_3925_incr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_3926_linear__plus__1__le__power,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_3927_even__diff__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_diff_iff
thf(fact_3928_int__div__pos__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_pos_eq
thf(fact_3929_int__div__neg__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( divide_divide_int @ A @ B )
= Q2 ) ) ) ) ).
% int_div_neg_eq
thf(fact_3930_split__zdiv,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( divide_divide_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ zero_zero_int ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I2: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ I2 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I2: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ I2 ) ) ) ) ) ).
% split_zdiv
thf(fact_3931_div__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).
% div_pos_geq
thf(fact_3932_L2__set__mult__ineq__lemma,axiom,
! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% L2_set_mult_ineq_lemma
thf(fact_3933_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
! [X: nat,N: nat,M: nat] :
( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( vEBT_VEBT_low @ X @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% VEBT_internal.exp_split_high_low(2)
thf(fact_3934_neg__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).
% neg_zdiv_mult_2
thf(fact_3935_pos__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% pos_zdiv_mult_2
thf(fact_3936_Bernoulli__inequality__even,axiom,
! [N: nat,X: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).
% Bernoulli_inequality_even
thf(fact_3937_mult__less__iff1,axiom,
! [Z: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( ( ord_less_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y4 @ Z ) )
= ( ord_less_real @ X @ Y4 ) ) ) ).
% mult_less_iff1
thf(fact_3938_mult__less__iff1,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( ord_less_rat @ zero_zero_rat @ Z )
=> ( ( ord_less_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ Y4 @ Z ) )
= ( ord_less_rat @ X @ Y4 ) ) ) ).
% mult_less_iff1
thf(fact_3939_mult__less__iff1,axiom,
! [Z: int,X: int,Y4: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_int @ ( times_times_int @ X @ Z ) @ ( times_times_int @ Y4 @ Z ) )
= ( ord_less_int @ X @ Y4 ) ) ) ).
% mult_less_iff1
thf(fact_3940_real__average__minus__second,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_second
thf(fact_3941_real__average__minus__first,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
= ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_first
thf(fact_3942_norm__divide__numeral,axiom,
! [A: real,W: num] :
( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_divide_numeral
thf(fact_3943_norm__divide__numeral,axiom,
! [A: complex,W: num] :
( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_divide_numeral
thf(fact_3944_norm__mult__numeral2,axiom,
! [A: real,W: num] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
= ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_mult_numeral2
thf(fact_3945_norm__mult__numeral2,axiom,
! [A: complex,W: num] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
= ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).
% norm_mult_numeral2
thf(fact_3946_norm__mult__numeral1,axiom,
! [W: num,A: real] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
= ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).
% norm_mult_numeral1
thf(fact_3947_norm__mult__numeral1,axiom,
! [W: num,A: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
= ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).
% norm_mult_numeral1
thf(fact_3948_norm__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ zero_zero_real )
= ( X = zero_zero_real ) ) ).
% norm_le_zero_iff
thf(fact_3949_norm__le__zero__iff,axiom,
! [X: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ zero_zero_real )
= ( X = zero_zero_complex ) ) ).
% norm_le_zero_iff
thf(fact_3950_zero__less__norm__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X ) )
= ( X != zero_zero_real ) ) ).
% zero_less_norm_iff
thf(fact_3951_zero__less__norm__iff,axiom,
! [X: complex] :
( ( ord_less_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X ) )
= ( X != zero_zero_complex ) ) ).
% zero_less_norm_iff
thf(fact_3952_norm__of__nat,axiom,
! [N: nat] :
( ( real_V7735802525324610683m_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% norm_of_nat
thf(fact_3953_norm__of__nat,axiom,
! [N: nat] :
( ( real_V1022390504157884413omplex @ ( semiri8010041392384452111omplex @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% norm_of_nat
thf(fact_3954_norm__eq__zero,axiom,
! [X: real] :
( ( ( real_V7735802525324610683m_real @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% norm_eq_zero
thf(fact_3955_norm__eq__zero,axiom,
! [X: complex] :
( ( ( real_V1022390504157884413omplex @ X )
= zero_zero_real )
= ( X = zero_zero_complex ) ) ).
% norm_eq_zero
thf(fact_3956_norm__zero,axiom,
( ( real_V7735802525324610683m_real @ zero_zero_real )
= zero_zero_real ) ).
% norm_zero
thf(fact_3957_norm__zero,axiom,
( ( real_V1022390504157884413omplex @ zero_zero_complex )
= zero_zero_real ) ).
% norm_zero
thf(fact_3958_norm__numeral,axiom,
! [W: num] :
( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_numeral
thf(fact_3959_norm__numeral,axiom,
! [W: num] :
( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_numeral
thf(fact_3960_norm__minus__commute,axiom,
! [A: real,B: real] :
( ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) )
= ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ A ) ) ) ).
% norm_minus_commute
thf(fact_3961_norm__minus__commute,axiom,
! [A: complex,B: complex] :
( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) )
= ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ A ) ) ) ).
% norm_minus_commute
thf(fact_3962_norm__triangle__mono,axiom,
! [A: real,R2: real,B: real,S2: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).
% norm_triangle_mono
thf(fact_3963_norm__triangle__mono,axiom,
! [A: complex,R2: real,B: complex,S2: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R2 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).
% norm_triangle_mono
thf(fact_3964_norm__triangle__ineq,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y4 ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y4 ) ) ) ).
% norm_triangle_ineq
thf(fact_3965_norm__triangle__ineq,axiom,
! [X: complex,Y4: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y4 ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y4 ) ) ) ).
% norm_triangle_ineq
thf(fact_3966_norm__triangle__le,axiom,
! [X: real,Y4: real,E2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y4 ) ) @ E2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y4 ) ) @ E2 ) ) ).
% norm_triangle_le
thf(fact_3967_norm__triangle__le,axiom,
! [X: complex,Y4: complex,E2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y4 ) ) @ E2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y4 ) ) @ E2 ) ) ).
% norm_triangle_le
thf(fact_3968_norm__add__leD,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_3969_norm__add__leD,axiom,
! [A: complex,B: complex,C: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).
% norm_add_leD
thf(fact_3970_norm__diff__triangle__less,axiom,
! [X: real,Y4: real,E1: real,Z: real,E22: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y4 ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y4 @ Z ) ) @ E22 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_3971_norm__diff__triangle__less,axiom,
! [X: complex,Y4: complex,E1: real,Z: complex,E22: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y4 ) ) @ E1 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y4 @ Z ) ) @ E22 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_less
thf(fact_3972_norm__triangle__sub,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y4 ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y4 ) ) ) ) ).
% norm_triangle_sub
thf(fact_3973_norm__triangle__sub,axiom,
! [X: complex,Y4: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y4 ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y4 ) ) ) ) ).
% norm_triangle_sub
thf(fact_3974_norm__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).
% norm_triangle_ineq4
thf(fact_3975_norm__triangle__ineq4,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).
% norm_triangle_ineq4
thf(fact_3976_norm__diff__triangle__le,axiom,
! [X: real,Y4: real,E1: real,Z: real,E22: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y4 ) ) @ E1 )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y4 @ Z ) ) @ E22 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_le
thf(fact_3977_norm__diff__triangle__le,axiom,
! [X: complex,Y4: complex,E1: real,Z: complex,E22: real] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y4 ) ) @ E1 )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y4 @ Z ) ) @ E22 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).
% norm_diff_triangle_le
thf(fact_3978_norm__triangle__le__diff,axiom,
! [X: real,Y4: real,E2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y4 ) ) @ E2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y4 ) ) @ E2 ) ) ).
% norm_triangle_le_diff
thf(fact_3979_norm__triangle__le__diff,axiom,
! [X: complex,Y4: complex,E2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y4 ) ) @ E2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y4 ) ) @ E2 ) ) ).
% norm_triangle_le_diff
thf(fact_3980_norm__not__less__zero,axiom,
! [X: complex] :
~ ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ zero_zero_real ) ).
% norm_not_less_zero
thf(fact_3981_norm__ge__zero,axiom,
! [X: complex] : ( ord_less_eq_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X ) ) ).
% norm_ge_zero
thf(fact_3982_norm__mult,axiom,
! [X: real,Y4: real] :
( ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y4 ) )
= ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y4 ) ) ) ).
% norm_mult
thf(fact_3983_norm__mult,axiom,
! [X: complex,Y4: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y4 ) )
= ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y4 ) ) ) ).
% norm_mult
thf(fact_3984_norm__divide,axiom,
! [A: real,B: real] :
( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).
% norm_divide
thf(fact_3985_norm__divide,axiom,
! [A: complex,B: complex] :
( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).
% norm_divide
thf(fact_3986_norm__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_3987_norm__diff__triangle__ineq,axiom,
! [A: complex,B: complex,C: complex,D: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D ) ) ) ) ).
% norm_diff_triangle_ineq
thf(fact_3988_nonzero__norm__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_3989_nonzero__norm__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).
% nonzero_norm_divide
thf(fact_3990_power__eq__imp__eq__norm,axiom,
! [W: real,N: nat,Z: real] :
( ( ( power_power_real @ W @ N )
= ( power_power_real @ Z @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( real_V7735802525324610683m_real @ W )
= ( real_V7735802525324610683m_real @ Z ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_3991_power__eq__imp__eq__norm,axiom,
! [W: complex,N: nat,Z: complex] :
( ( ( power_power_complex @ W @ N )
= ( power_power_complex @ Z @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( real_V1022390504157884413omplex @ W )
= ( real_V1022390504157884413omplex @ Z ) ) ) ) ).
% power_eq_imp_eq_norm
thf(fact_3992_norm__mult__less,axiom,
! [X: real,R2: real,Y4: real,S2: real] :
( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R2 )
=> ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y4 ) @ S2 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y4 ) ) @ ( times_times_real @ R2 @ S2 ) ) ) ) ).
% norm_mult_less
thf(fact_3993_norm__mult__less,axiom,
! [X: complex,R2: real,Y4: complex,S2: real] :
( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R2 )
=> ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y4 ) @ S2 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y4 ) ) @ ( times_times_real @ R2 @ S2 ) ) ) ) ).
% norm_mult_less
thf(fact_3994_norm__mult__ineq,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y4 ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y4 ) ) ) ).
% norm_mult_ineq
thf(fact_3995_norm__mult__ineq,axiom,
! [X: complex,Y4: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y4 ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y4 ) ) ) ).
% norm_mult_ineq
thf(fact_3996_norm__power__ineq,axiom,
! [X: real,N: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N ) ) ).
% norm_power_ineq
thf(fact_3997_norm__power__ineq,axiom,
! [X: complex,N: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N ) ) ).
% norm_power_ineq
thf(fact_3998_norm__diff__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_3999_norm__diff__ineq,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).
% norm_diff_ineq
thf(fact_4000_norm__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).
% norm_triangle_ineq2
thf(fact_4001_norm__triangle__ineq2,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% norm_triangle_ineq2
thf(fact_4002_power__eq__1__iff,axiom,
! [W: real,N: nat] :
( ( ( power_power_real @ W @ N )
= one_one_real )
=> ( ( ( real_V7735802525324610683m_real @ W )
= one_one_real )
| ( N = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_4003_power__eq__1__iff,axiom,
! [W: complex,N: nat] :
( ( ( power_power_complex @ W @ N )
= one_one_complex )
=> ( ( ( real_V1022390504157884413omplex @ W )
= one_one_real )
| ( N = zero_zero_nat ) ) ) ).
% power_eq_1_iff
thf(fact_4004_square__norm__one,axiom,
! [X: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
=> ( ( real_V7735802525324610683m_real @ X )
= one_one_real ) ) ).
% square_norm_one
thf(fact_4005_square__norm__one,axiom,
! [X: complex] :
( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex )
=> ( ( real_V1022390504157884413omplex @ X )
= one_one_real ) ) ).
% square_norm_one
thf(fact_4006_norm__power__diff,axiom,
! [Z: real,W: real,M: nat] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z @ W ) ) ) ) ) ) ).
% norm_power_diff
thf(fact_4007_norm__power__diff,axiom,
! [Z: complex,W: complex,M: nat] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z @ W ) ) ) ) ) ) ).
% norm_power_diff
thf(fact_4008_arcosh__1,axiom,
( ( arcosh_real @ one_one_real )
= zero_zero_real ) ).
% arcosh_1
thf(fact_4009_artanh__0,axiom,
( ( artanh_real @ zero_zero_real )
= zero_zero_real ) ).
% artanh_0
thf(fact_4010_arsinh__0,axiom,
( ( arsinh_real @ zero_zero_real )
= zero_zero_real ) ).
% arsinh_0
thf(fact_4011_low__def,axiom,
( vEBT_VEBT_low
= ( ^ [X3: nat,N4: nat] : ( modulo_modulo_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% low_def
thf(fact_4012_pochhammer__double,axiom,
! [Z: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s2602460028002588243omplex @ Z @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_4013_pochhammer__double,axiom,
! [Z: real,N: nat] :
( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s7457072308508201937r_real @ Z @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_4014_pochhammer__double,axiom,
! [Z: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).
% pochhammer_double
thf(fact_4015_central__binomial__lower__bound,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ) ) ).
% central_binomial_lower_bound
thf(fact_4016_flip__bit__0,axiom,
! [A: int] :
( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
= ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4017_flip__bit__0,axiom,
! [A: nat] :
( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
= ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4018_flip__bit__0,axiom,
! [A: code_integer] :
( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
= ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).
% flip_bit_0
thf(fact_4019_mod__mod__trivial,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_4020_mod__mod__trivial,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_4021_mod__mod__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_4022_mod__self,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ A )
= zero_zero_nat ) ).
% mod_self
thf(fact_4023_mod__self,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ A )
= zero_zero_int ) ).
% mod_self
thf(fact_4024_mod__self,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ A )
= zero_z3403309356797280102nteger ) ).
% mod_self
thf(fact_4025_mod__by__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ zero_zero_nat )
= A ) ).
% mod_by_0
thf(fact_4026_mod__by__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ zero_zero_int )
= A ) ).
% mod_by_0
thf(fact_4027_mod__by__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
= A ) ).
% mod_by_0
thf(fact_4028_mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mod_0
thf(fact_4029_mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mod_0
thf(fact_4030_mod__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
= zero_z3403309356797280102nteger ) ).
% mod_0
thf(fact_4031_bits__mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_mod_0
thf(fact_4032_bits__mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_mod_0
thf(fact_4033_bits__mod__0,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
= zero_z3403309356797280102nteger ) ).
% bits_mod_0
thf(fact_4034_mod__add__self2,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self2
thf(fact_4035_mod__add__self2,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self2
thf(fact_4036_mod__add__self2,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_add_self2
thf(fact_4037_mod__add__self1,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_add_self1
thf(fact_4038_mod__add__self1,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_add_self1
thf(fact_4039_mod__add__self1,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_add_self1
thf(fact_4040_minus__mod__self2,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_mod_self2
thf(fact_4041_minus__mod__self2,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_mod_self2
thf(fact_4042_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4043_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4044_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4045_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4046_of__bool__less__eq__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
= ( P
=> Q ) ) ).
% of_bool_less_eq_iff
thf(fact_4047_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n1201886186963655149omplex @ P )
= zero_zero_complex )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4048_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n3304061248610475627l_real @ P )
= zero_zero_real )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4049_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2052037380579107095ol_rat @ P )
= zero_zero_rat )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4050_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P )
= zero_zero_nat )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4051_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n2684676970156552555ol_int @ P )
= zero_zero_int )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4052_of__bool__eq__0__iff,axiom,
! [P: $o] :
( ( ( zero_n356916108424825756nteger @ P )
= zero_z3403309356797280102nteger )
= ~ P ) ).
% of_bool_eq_0_iff
thf(fact_4053_of__bool__eq_I1_J,axiom,
( ( zero_n1201886186963655149omplex @ $false )
= zero_zero_complex ) ).
% of_bool_eq(1)
thf(fact_4054_of__bool__eq_I1_J,axiom,
( ( zero_n3304061248610475627l_real @ $false )
= zero_zero_real ) ).
% of_bool_eq(1)
thf(fact_4055_of__bool__eq_I1_J,axiom,
( ( zero_n2052037380579107095ol_rat @ $false )
= zero_zero_rat ) ).
% of_bool_eq(1)
thf(fact_4056_of__bool__eq_I1_J,axiom,
( ( zero_n2687167440665602831ol_nat @ $false )
= zero_zero_nat ) ).
% of_bool_eq(1)
thf(fact_4057_of__bool__eq_I1_J,axiom,
( ( zero_n2684676970156552555ol_int @ $false )
= zero_zero_int ) ).
% of_bool_eq(1)
thf(fact_4058_of__bool__eq_I1_J,axiom,
( ( zero_n356916108424825756nteger @ $false )
= zero_z3403309356797280102nteger ) ).
% of_bool_eq(1)
thf(fact_4059_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4060_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4061_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4062_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4063_of__bool__less__iff,axiom,
! [P: $o,Q: $o] :
( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
= ( ~ P
& Q ) ) ).
% of_bool_less_iff
thf(fact_4064_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n1201886186963655149omplex @ P )
= one_one_complex )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4065_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n3304061248610475627l_real @ P )
= one_one_real )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4066_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2052037380579107095ol_rat @ P )
= one_one_rat )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4067_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P )
= one_one_nat )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4068_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n2684676970156552555ol_int @ P )
= one_one_int )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4069_of__bool__eq__1__iff,axiom,
! [P: $o] :
( ( ( zero_n356916108424825756nteger @ P )
= one_one_Code_integer )
= P ) ).
% of_bool_eq_1_iff
thf(fact_4070_of__bool__eq_I2_J,axiom,
( ( zero_n1201886186963655149omplex @ $true )
= one_one_complex ) ).
% of_bool_eq(2)
thf(fact_4071_of__bool__eq_I2_J,axiom,
( ( zero_n3304061248610475627l_real @ $true )
= one_one_real ) ).
% of_bool_eq(2)
thf(fact_4072_of__bool__eq_I2_J,axiom,
( ( zero_n2052037380579107095ol_rat @ $true )
= one_one_rat ) ).
% of_bool_eq(2)
thf(fact_4073_of__bool__eq_I2_J,axiom,
( ( zero_n2687167440665602831ol_nat @ $true )
= one_one_nat ) ).
% of_bool_eq(2)
thf(fact_4074_of__bool__eq_I2_J,axiom,
( ( zero_n2684676970156552555ol_int @ $true )
= one_one_int ) ).
% of_bool_eq(2)
thf(fact_4075_of__bool__eq_I2_J,axiom,
( ( zero_n356916108424825756nteger @ $true )
= one_one_Code_integer ) ).
% of_bool_eq(2)
thf(fact_4076_mod__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= M ) ) ).
% mod_less
thf(fact_4077_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri8010041392384452111omplex @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n1201886186963655149omplex @ P ) ) ).
% of_nat_of_bool
thf(fact_4078_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri5074537144036343181t_real @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% of_nat_of_bool
thf(fact_4079_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri681578069525770553at_rat @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2052037380579107095ol_rat @ P ) ) ).
% of_nat_of_bool
thf(fact_4080_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri1316708129612266289at_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2687167440665602831ol_nat @ P ) ) ).
% of_nat_of_bool
thf(fact_4081_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri1314217659103216013at_int @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% of_nat_of_bool
thf(fact_4082_of__nat__of__bool,axiom,
! [P: $o] :
( ( semiri4939895301339042750nteger @ ( zero_n2687167440665602831ol_nat @ P ) )
= ( zero_n356916108424825756nteger @ P ) ) ).
% of_nat_of_bool
thf(fact_4083_mod__mult__self1__is__0,axiom,
! [B: nat,A: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
= zero_zero_nat ) ).
% mod_mult_self1_is_0
thf(fact_4084_mod__mult__self1__is__0,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
= zero_zero_int ) ).
% mod_mult_self1_is_0
thf(fact_4085_mod__mult__self1__is__0,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_mult_self1_is_0
thf(fact_4086_mod__mult__self2__is__0,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_mult_self2_is_0
thf(fact_4087_mod__mult__self2__is__0,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_mult_self2_is_0
thf(fact_4088_mod__mult__self2__is__0,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_mult_self2_is_0
thf(fact_4089_mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% mod_by_1
thf(fact_4090_mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% mod_by_1
thf(fact_4091_mod__by__1,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% mod_by_1
thf(fact_4092_bits__mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% bits_mod_by_1
thf(fact_4093_bits__mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% bits_mod_by_1
thf(fact_4094_bits__mod__by__1,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% bits_mod_by_1
thf(fact_4095_bits__mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% bits_mod_div_trivial
thf(fact_4096_bits__mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% bits_mod_div_trivial
thf(fact_4097_bits__mod__div__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% bits_mod_div_trivial
thf(fact_4098_mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_div_trivial
thf(fact_4099_mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_div_trivial
thf(fact_4100_mod__div__trivial,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
= zero_z3403309356797280102nteger ) ).
% mod_div_trivial
thf(fact_4101_mod__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self4
thf(fact_4102_mod__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self4
thf(fact_4103_mod__mult__self4,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self4
thf(fact_4104_mod__mult__self3,axiom,
! [C: nat,B: nat,A: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self3
thf(fact_4105_mod__mult__self3,axiom,
! [C: int,B: int,A: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self3
thf(fact_4106_mod__mult__self3,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self3
thf(fact_4107_mod__mult__self2,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self2
thf(fact_4108_mod__mult__self2,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self2
thf(fact_4109_mod__mult__self2,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self2
thf(fact_4110_mod__mult__self1,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mult_self1
thf(fact_4111_mod__mult__self1,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mult_self1
thf(fact_4112_mod__mult__self1,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% mod_mult_self1
thf(fact_4113_dvd__imp__mod__0,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( modulo_modulo_nat @ B @ A )
= zero_zero_nat ) ) ).
% dvd_imp_mod_0
thf(fact_4114_dvd__imp__mod__0,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( modulo_modulo_int @ B @ A )
= zero_zero_int ) ) ).
% dvd_imp_mod_0
thf(fact_4115_dvd__imp__mod__0,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ A @ B )
=> ( ( modulo364778990260209775nteger @ B @ A )
= zero_z3403309356797280102nteger ) ) ).
% dvd_imp_mod_0
thf(fact_4116_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4117_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4118_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4119_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4120_zero__less__of__bool__iff,axiom,
! [P: $o] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) )
= P ) ).
% zero_less_of_bool_iff
thf(fact_4121_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4122_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4123_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4124_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4125_of__bool__less__one__iff,axiom,
! [P: $o] :
( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer )
= ~ P ) ).
% of_bool_less_one_iff
thf(fact_4126_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n1201886186963655149omplex @ ~ P )
= ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4127_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n3304061248610475627l_real @ ~ P )
= ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4128_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n2052037380579107095ol_rat @ ~ P )
= ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4129_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n2684676970156552555ol_int @ ~ P )
= ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4130_of__bool__not__iff,axiom,
! [P: $o] :
( ( zero_n356916108424825756nteger @ ~ P )
= ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( zero_n356916108424825756nteger @ P ) ) ) ).
% of_bool_not_iff
thf(fact_4131_Suc__0__mod__eq,axiom,
! [N: nat] :
( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N )
= ( zero_n2687167440665602831ol_nat
@ ( N
!= ( suc @ zero_zero_nat ) ) ) ) ).
% Suc_0_mod_eq
thf(fact_4132_mod__by__Suc__0,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% mod_by_Suc_0
thf(fact_4133_pochhammer__0,axiom,
! [A: complex] :
( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
= one_one_complex ) ).
% pochhammer_0
thf(fact_4134_pochhammer__0,axiom,
! [A: real] :
( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
= one_one_real ) ).
% pochhammer_0
thf(fact_4135_pochhammer__0,axiom,
! [A: rat] :
( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% pochhammer_0
thf(fact_4136_pochhammer__0,axiom,
! [A: nat] :
( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% pochhammer_0
thf(fact_4137_pochhammer__0,axiom,
! [A: int] :
( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
= one_one_int ) ).
% pochhammer_0
thf(fact_4138_Suc__mod__mult__self1,axiom,
! [M: nat,K: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self1
thf(fact_4139_Suc__mod__mult__self2,axiom,
! [M: nat,N: nat,K: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ K ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self2
thf(fact_4140_Suc__mod__mult__self3,axiom,
! [K: nat,N: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self3
thf(fact_4141_Suc__mod__mult__self4,axiom,
! [N: nat,K: nat,M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N @ K ) @ M ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% Suc_mod_mult_self4
thf(fact_4142_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% bits_one_mod_two_eq_one
thf(fact_4143_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_one_mod_two_eq_one
thf(fact_4144_bits__one__mod__two__eq__one,axiom,
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% bits_one_mod_two_eq_one
thf(fact_4145_one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_mod_two_eq_one
thf(fact_4146_one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_mod_two_eq_one
thf(fact_4147_one__mod__two__eq__one,axiom,
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% one_mod_two_eq_one
thf(fact_4148_even__mod__2__iff,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_4149_even__mod__2__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_4150_even__mod__2__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_mod_2_iff
thf(fact_4151_odd__of__bool__self,axiom,
! [P5: $o] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( zero_n2687167440665602831ol_nat @ P5 ) ) )
= P5 ) ).
% odd_of_bool_self
thf(fact_4152_odd__of__bool__self,axiom,
! [P5: $o] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( zero_n2684676970156552555ol_int @ P5 ) ) )
= P5 ) ).
% odd_of_bool_self
thf(fact_4153_odd__of__bool__self,axiom,
! [P5: $o] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( zero_n356916108424825756nteger @ P5 ) ) )
= P5 ) ).
% odd_of_bool_self
thf(fact_4154_mod2__Suc__Suc,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% mod2_Suc_Suc
thf(fact_4155_Suc__times__numeral__mod__eq,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral_nat @ K )
!= one_one_nat )
=> ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N ) ) @ ( numeral_numeral_nat @ K ) )
= one_one_nat ) ) ).
% Suc_times_numeral_mod_eq
thf(fact_4156_not__mod__2__eq__1__eq__0,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_4157_not__mod__2__eq__1__eq__0,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_4158_not__mod__2__eq__1__eq__0,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_4159_not__mod__2__eq__0__eq__1,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_4160_not__mod__2__eq__0__eq__1,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_4161_not__mod__2__eq__0__eq__1,axiom,
! [A: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_4162_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% of_bool_half_eq_0
thf(fact_4163_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% of_bool_half_eq_0
thf(fact_4164_of__bool__half__eq__0,axiom,
! [B: $o] :
( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ).
% of_bool_half_eq_0
thf(fact_4165_not__mod2__eq__Suc__0__eq__0,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= ( suc @ zero_zero_nat ) )
= ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod2_eq_Suc_0_eq_0
thf(fact_4166_add__self__mod__2,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% add_self_mod_2
thf(fact_4167_Suc__mod__eq__add3__mod__numeral,axiom,
! [M: nat,V: num] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).
% Suc_mod_eq_add3_mod_numeral
thf(fact_4168_mod__Suc__eq__mod__add3,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
= ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).
% mod_Suc_eq_mod_add3
thf(fact_4169_mod2__gr__0,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% mod2_gr_0
thf(fact_4170_bits__1__div__exp,axiom,
! [N: nat] :
( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_4171_bits__1__div__exp,axiom,
! [N: nat] :
( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_4172_bits__1__div__exp,axiom,
! [N: nat] :
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).
% bits_1_div_exp
thf(fact_4173_one__div__2__pow__eq,axiom,
! [N: nat] :
( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_4174_one__div__2__pow__eq,axiom,
! [N: nat] :
( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_4175_one__div__2__pow__eq,axiom,
! [N: nat] :
( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).
% one_div_2_pow_eq
thf(fact_4176_one__mod__2__pow__eq,axiom,
! [N: nat] :
( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% one_mod_2_pow_eq
thf(fact_4177_one__mod__2__pow__eq,axiom,
! [N: nat] :
( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% one_mod_2_pow_eq
thf(fact_4178_one__mod__2__pow__eq,axiom,
! [N: nat] :
( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% one_mod_2_pow_eq
thf(fact_4179_even__succ__mod__exp,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_4180_even__succ__mod__exp,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_4181_even__succ__mod__exp,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).
% even_succ_mod_exp
thf(fact_4182_of__bool__eq__iff,axiom,
! [P5: $o,Q2: $o] :
( ( ( zero_n2687167440665602831ol_nat @ P5 )
= ( zero_n2687167440665602831ol_nat @ Q2 ) )
= ( P5 = Q2 ) ) ).
% of_bool_eq_iff
thf(fact_4183_of__bool__eq__iff,axiom,
! [P5: $o,Q2: $o] :
( ( ( zero_n2684676970156552555ol_int @ P5 )
= ( zero_n2684676970156552555ol_int @ Q2 ) )
= ( P5 = Q2 ) ) ).
% of_bool_eq_iff
thf(fact_4184_of__bool__eq__iff,axiom,
! [P5: $o,Q2: $o] :
( ( ( zero_n356916108424825756nteger @ P5 )
= ( zero_n356916108424825756nteger @ Q2 ) )
= ( P5 = Q2 ) ) ).
% of_bool_eq_iff
thf(fact_4185_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) ) ).
% of_nat_mod
thf(fact_4186_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mod
thf(fact_4187_of__nat__mod,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
= ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mod
thf(fact_4188_pochhammer__of__nat,axiom,
! [X: nat,N: nat] :
( ( comm_s2602460028002588243omplex @ ( semiri8010041392384452111omplex @ X ) @ N )
= ( semiri8010041392384452111omplex @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_4189_pochhammer__of__nat,axiom,
! [X: nat,N: nat] :
( ( comm_s7457072308508201937r_real @ ( semiri5074537144036343181t_real @ X ) @ N )
= ( semiri5074537144036343181t_real @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_4190_pochhammer__of__nat,axiom,
! [X: nat,N: nat] :
( ( comm_s4028243227959126397er_rat @ ( semiri681578069525770553at_rat @ X ) @ N )
= ( semiri681578069525770553at_rat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_4191_pochhammer__of__nat,axiom,
! [X: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ ( semiri1316708129612266289at_nat @ X ) @ N )
= ( semiri1316708129612266289at_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_4192_pochhammer__of__nat,axiom,
! [X: nat,N: nat] :
( ( comm_s4660882817536571857er_int @ ( semiri1314217659103216013at_int @ X ) @ N )
= ( semiri1314217659103216013at_int @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_of_nat
thf(fact_4193_mod__mult__right__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_4194_mod__mult__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_4195_mod__mult__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_right_eq
thf(fact_4196_mod__mult__left__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_4197_mod__mult__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_4198_mod__mult__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_left_eq
thf(fact_4199_mult__mod__right,axiom,
! [C: nat,A: nat,B: nat] :
( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
= ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_4200_mult__mod__right,axiom,
! [C: int,A: int,B: int] :
( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
= ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_4201_mult__mod__right,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).
% mult_mod_right
thf(fact_4202_mod__mult__mult2,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_4203_mod__mult__mult2,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_4204_mod__mult__mult2,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
= ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).
% mod_mult_mult2
thf(fact_4205_mod__mult__cong,axiom,
! [A: nat,C: nat,A6: nat,B: nat,B6: nat] :
( ( ( modulo_modulo_nat @ A @ C )
= ( modulo_modulo_nat @ A6 @ C ) )
=> ( ( ( modulo_modulo_nat @ B @ C )
= ( modulo_modulo_nat @ B6 @ C ) )
=> ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_4206_mod__mult__cong,axiom,
! [A: int,C: int,A6: int,B: int,B6: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A6 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B6 @ C ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_4207_mod__mult__cong,axiom,
! [A: code_integer,C: code_integer,A6: code_integer,B: code_integer,B6: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A6 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B6 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_mult_cong
thf(fact_4208_mod__mult__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_4209_mod__mult__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_4210_mod__mult__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).
% mod_mult_eq
thf(fact_4211_mod__add__right__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_4212_mod__add__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_4213_mod__add__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_right_eq
thf(fact_4214_mod__add__left__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_4215_mod__add__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_4216_mod__add__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_left_eq
thf(fact_4217_mod__add__cong,axiom,
! [A: nat,C: nat,A6: nat,B: nat,B6: nat] :
( ( ( modulo_modulo_nat @ A @ C )
= ( modulo_modulo_nat @ A6 @ C ) )
=> ( ( ( modulo_modulo_nat @ B @ C )
= ( modulo_modulo_nat @ B6 @ C ) )
=> ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_4218_mod__add__cong,axiom,
! [A: int,C: int,A6: int,B: int,B6: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A6 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B6 @ C ) )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_4219_mod__add__cong,axiom,
! [A: code_integer,C: code_integer,A6: code_integer,B: code_integer,B6: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A6 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B6 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_add_cong
thf(fact_4220_mod__add__eq,axiom,
! [A: nat,C: nat,B: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
= ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_4221_mod__add__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_4222_mod__add__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).
% mod_add_eq
thf(fact_4223_mod__diff__right__eq,axiom,
! [A: int,B: int,C: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_right_eq
thf(fact_4224_mod__diff__right__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_right_eq
thf(fact_4225_mod__diff__left__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_left_eq
thf(fact_4226_mod__diff__left__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_left_eq
thf(fact_4227_mod__diff__cong,axiom,
! [A: int,C: int,A6: int,B: int,B6: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ A6 @ C ) )
=> ( ( ( modulo_modulo_int @ B @ C )
= ( modulo_modulo_int @ B6 @ C ) )
=> ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_diff_cong
thf(fact_4228_mod__diff__cong,axiom,
! [A: code_integer,C: code_integer,A6: code_integer,B: code_integer,B6: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ A6 @ C ) )
=> ( ( ( modulo364778990260209775nteger @ B @ C )
= ( modulo364778990260209775nteger @ B6 @ C ) )
=> ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A6 @ B6 ) @ C ) ) ) ) ).
% mod_diff_cong
thf(fact_4229_mod__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
= ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% mod_diff_eq
thf(fact_4230_mod__diff__eq,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
= ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).
% mod_diff_eq
thf(fact_4231_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n3304061248610475627l_real
@ ( P
& Q ) )
= ( times_times_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) ) ) ).
% of_bool_conj
thf(fact_4232_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2052037380579107095ol_rat
@ ( P
& Q ) )
= ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) ) ) ).
% of_bool_conj
thf(fact_4233_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2687167440665602831ol_nat
@ ( P
& Q ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).
% of_bool_conj
thf(fact_4234_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n2684676970156552555ol_int
@ ( P
& Q ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).
% of_bool_conj
thf(fact_4235_of__bool__conj,axiom,
! [P: $o,Q: $o] :
( ( zero_n356916108424825756nteger
@ ( P
& Q ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).
% of_bool_conj
thf(fact_4236_power__mod,axiom,
! [A: nat,B: nat,N: nat] :
( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N ) @ B )
= ( modulo_modulo_nat @ ( power_power_nat @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_4237_power__mod,axiom,
! [A: int,B: int,N: nat] :
( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N ) @ B )
= ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_4238_power__mod,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N ) @ B )
= ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N ) @ B ) ) ).
% power_mod
thf(fact_4239_dvd__mod,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( modulo_modulo_nat @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4240_dvd__mod,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ K @ M )
=> ( ( dvd_dvd_int @ K @ N )
=> ( dvd_dvd_int @ K @ ( modulo_modulo_int @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4241_dvd__mod,axiom,
! [K: code_integer,M: code_integer,N: code_integer] :
( ( dvd_dvd_Code_integer @ K @ M )
=> ( ( dvd_dvd_Code_integer @ K @ N )
=> ( dvd_dvd_Code_integer @ K @ ( modulo364778990260209775nteger @ M @ N ) ) ) ) ).
% dvd_mod
thf(fact_4242_mod__mod__cancel,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
= ( modulo_modulo_nat @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4243_mod__mod__cancel,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
= ( modulo_modulo_int @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4244_mod__mod__cancel,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
= ( modulo364778990260209775nteger @ A @ C ) ) ) ).
% mod_mod_cancel
thf(fact_4245_dvd__mod__iff,axiom,
! [C: nat,B: nat,A: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
= ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4246_dvd__mod__iff,axiom,
! [C: int,B: int,A: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
= ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4247_dvd__mod__iff,axiom,
! [C: code_integer,B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ C @ B )
=> ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
= ( dvd_dvd_Code_integer @ C @ A ) ) ) ).
% dvd_mod_iff
thf(fact_4248_dvd__mod__imp__dvd,axiom,
! [C: nat,A: nat,B: nat] :
( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( dvd_dvd_nat @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4249_dvd__mod__imp__dvd,axiom,
! [C: int,A: int,B: int] :
( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
=> ( ( dvd_dvd_int @ C @ B )
=> ( dvd_dvd_int @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4250_dvd__mod__imp__dvd,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
=> ( ( dvd_dvd_Code_integer @ C @ B )
=> ( dvd_dvd_Code_integer @ C @ A ) ) ) ).
% dvd_mod_imp_dvd
thf(fact_4251_mod__Suc__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).
% mod_Suc_Suc_eq
thf(fact_4252_mod__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
= ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).
% mod_Suc_eq
thf(fact_4253_mod__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).
% mod_less_eq_dividend
thf(fact_4254_of__bool__odd__eq__mod__2,axiom,
! [A: nat] :
( ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% of_bool_odd_eq_mod_2
thf(fact_4255_of__bool__odd__eq__mod__2,axiom,
! [A: int] :
( ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% of_bool_odd_eq_mod_2
thf(fact_4256_of__bool__odd__eq__mod__2,axiom,
! [A: code_integer] :
( ( zero_n356916108424825756nteger
@ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
= ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% of_bool_odd_eq_mod_2
thf(fact_4257_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_4258_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_4259_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_4260_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_4261_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_4262_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_4263_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4264_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4265_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4266_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4267_zero__less__eq__of__bool,axiom,
! [P: $o] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) ) ).
% zero_less_eq_of_bool
thf(fact_4268_mod__eq__self__iff__div__eq__0,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= A )
= ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_4269_mod__eq__self__iff__div__eq__0,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= A )
= ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_4270_mod__eq__self__iff__div__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= A )
= ( ( divide6298287555418463151nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_4271_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_4272_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_4273_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_4274_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_4275_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_4276_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_4277_mod__eqE,axiom,
! [A: int,C: int,B: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ B @ C ) )
=> ~ ! [D2: int] :
( B
!= ( plus_plus_int @ A @ ( times_times_int @ C @ D2 ) ) ) ) ).
% mod_eqE
thf(fact_4278_mod__eqE,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ B @ C ) )
=> ~ ! [D2: code_integer] :
( B
!= ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D2 ) ) ) ) ).
% mod_eqE
thf(fact_4279_mod__eq__0__iff__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
= ( dvd_dvd_nat @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4280_mod__eq__0__iff__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
= ( dvd_dvd_int @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4281_mod__eq__0__iff__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( dvd_dvd_Code_integer @ B @ A ) ) ).
% mod_eq_0_iff_dvd
thf(fact_4282_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B2: nat] :
( ( modulo_modulo_nat @ B2 @ A3 )
= zero_zero_nat ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4283_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_int
= ( ^ [A3: int,B2: int] :
( ( modulo_modulo_int @ B2 @ A3 )
= zero_zero_int ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4284_dvd__eq__mod__eq__0,axiom,
( dvd_dvd_Code_integer
= ( ^ [A3: code_integer,B2: code_integer] :
( ( modulo364778990260209775nteger @ B2 @ A3 )
= zero_z3403309356797280102nteger ) ) ) ).
% dvd_eq_mod_eq_0
thf(fact_4285_mod__0__imp__dvd,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat )
=> ( dvd_dvd_nat @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4286_mod__0__imp__dvd,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( dvd_dvd_int @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4287_mod__0__imp__dvd,axiom,
! [A: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger )
=> ( dvd_dvd_Code_integer @ B @ A ) ) ).
% mod_0_imp_dvd
thf(fact_4288_div__add1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_4289_div__add1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_4290_div__add1__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).
% div_add1_eq
thf(fact_4291_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat ) ).
% of_bool_less_eq_one
thf(fact_4292_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real ) ).
% of_bool_less_eq_one
thf(fact_4293_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat ) ).
% of_bool_less_eq_one
thf(fact_4294_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int ) ).
% of_bool_less_eq_one
thf(fact_4295_of__bool__less__eq__one,axiom,
! [P: $o] : ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer ) ).
% of_bool_less_eq_one
thf(fact_4296_split__of__bool__asm,axiom,
! [P: complex > $o,P5: $o] :
( ( P @ ( zero_n1201886186963655149omplex @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_complex ) )
| ( ~ P5
& ~ ( P @ zero_zero_complex ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4297_split__of__bool__asm,axiom,
! [P: real > $o,P5: $o] :
( ( P @ ( zero_n3304061248610475627l_real @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_real ) )
| ( ~ P5
& ~ ( P @ zero_zero_real ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4298_split__of__bool__asm,axiom,
! [P: rat > $o,P5: $o] :
( ( P @ ( zero_n2052037380579107095ol_rat @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_rat ) )
| ( ~ P5
& ~ ( P @ zero_zero_rat ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4299_split__of__bool__asm,axiom,
! [P: nat > $o,P5: $o] :
( ( P @ ( zero_n2687167440665602831ol_nat @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_nat ) )
| ( ~ P5
& ~ ( P @ zero_zero_nat ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4300_split__of__bool__asm,axiom,
! [P: int > $o,P5: $o] :
( ( P @ ( zero_n2684676970156552555ol_int @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_int ) )
| ( ~ P5
& ~ ( P @ zero_zero_int ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4301_split__of__bool__asm,axiom,
! [P: code_integer > $o,P5: $o] :
( ( P @ ( zero_n356916108424825756nteger @ P5 ) )
= ( ~ ( ( P5
& ~ ( P @ one_one_Code_integer ) )
| ( ~ P5
& ~ ( P @ zero_z3403309356797280102nteger ) ) ) ) ) ).
% split_of_bool_asm
thf(fact_4302_split__of__bool,axiom,
! [P: complex > $o,P5: $o] :
( ( P @ ( zero_n1201886186963655149omplex @ P5 ) )
= ( ( P5
=> ( P @ one_one_complex ) )
& ( ~ P5
=> ( P @ zero_zero_complex ) ) ) ) ).
% split_of_bool
thf(fact_4303_split__of__bool,axiom,
! [P: real > $o,P5: $o] :
( ( P @ ( zero_n3304061248610475627l_real @ P5 ) )
= ( ( P5
=> ( P @ one_one_real ) )
& ( ~ P5
=> ( P @ zero_zero_real ) ) ) ) ).
% split_of_bool
thf(fact_4304_split__of__bool,axiom,
! [P: rat > $o,P5: $o] :
( ( P @ ( zero_n2052037380579107095ol_rat @ P5 ) )
= ( ( P5
=> ( P @ one_one_rat ) )
& ( ~ P5
=> ( P @ zero_zero_rat ) ) ) ) ).
% split_of_bool
thf(fact_4305_split__of__bool,axiom,
! [P: nat > $o,P5: $o] :
( ( P @ ( zero_n2687167440665602831ol_nat @ P5 ) )
= ( ( P5
=> ( P @ one_one_nat ) )
& ( ~ P5
=> ( P @ zero_zero_nat ) ) ) ) ).
% split_of_bool
thf(fact_4306_split__of__bool,axiom,
! [P: int > $o,P5: $o] :
( ( P @ ( zero_n2684676970156552555ol_int @ P5 ) )
= ( ( P5
=> ( P @ one_one_int ) )
& ( ~ P5
=> ( P @ zero_zero_int ) ) ) ) ).
% split_of_bool
thf(fact_4307_split__of__bool,axiom,
! [P: code_integer > $o,P5: $o] :
( ( P @ ( zero_n356916108424825756nteger @ P5 ) )
= ( ( P5
=> ( P @ one_one_Code_integer ) )
& ( ~ P5
=> ( P @ zero_z3403309356797280102nteger ) ) ) ) ).
% split_of_bool
thf(fact_4308_of__bool__def,axiom,
( zero_n1201886186963655149omplex
= ( ^ [P6: $o] : ( if_complex @ P6 @ one_one_complex @ zero_zero_complex ) ) ) ).
% of_bool_def
thf(fact_4309_of__bool__def,axiom,
( zero_n3304061248610475627l_real
= ( ^ [P6: $o] : ( if_real @ P6 @ one_one_real @ zero_zero_real ) ) ) ).
% of_bool_def
thf(fact_4310_of__bool__def,axiom,
( zero_n2052037380579107095ol_rat
= ( ^ [P6: $o] : ( if_rat @ P6 @ one_one_rat @ zero_zero_rat ) ) ) ).
% of_bool_def
thf(fact_4311_of__bool__def,axiom,
( zero_n2687167440665602831ol_nat
= ( ^ [P6: $o] : ( if_nat @ P6 @ one_one_nat @ zero_zero_nat ) ) ) ).
% of_bool_def
thf(fact_4312_of__bool__def,axiom,
( zero_n2684676970156552555ol_int
= ( ^ [P6: $o] : ( if_int @ P6 @ one_one_int @ zero_zero_int ) ) ) ).
% of_bool_def
thf(fact_4313_of__bool__def,axiom,
( zero_n356916108424825756nteger
= ( ^ [P6: $o] : ( if_Code_integer @ P6 @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) ) ).
% of_bool_def
thf(fact_4314_mod__eq__dvd__iff,axiom,
! [A: int,C: int,B: int] :
( ( ( modulo_modulo_int @ A @ C )
= ( modulo_modulo_int @ B @ C ) )
= ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).
% mod_eq_dvd_iff
thf(fact_4315_mod__eq__dvd__iff,axiom,
! [A: code_integer,C: code_integer,B: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ C )
= ( modulo364778990260209775nteger @ B @ C ) )
= ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% mod_eq_dvd_iff
thf(fact_4316_dvd__minus__mod,axiom,
! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4317_dvd__minus__mod,axiom,
! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4318_dvd__minus__mod,axiom,
! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% dvd_minus_mod
thf(fact_4319_mod__Suc,axiom,
! [M: nat,N: nat] :
( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
= N )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
= zero_zero_nat ) )
& ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
!= N )
=> ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
= ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).
% mod_Suc
thf(fact_4320_mod__induct,axiom,
! [P: nat > $o,N: nat,P5: nat,M: nat] :
( ( P @ N )
=> ( ( ord_less_nat @ N @ P5 )
=> ( ( ord_less_nat @ M @ P5 )
=> ( ! [N2: nat] :
( ( ord_less_nat @ N2 @ P5 )
=> ( ( P @ N2 )
=> ( P @ ( modulo_modulo_nat @ ( suc @ N2 ) @ P5 ) ) ) )
=> ( P @ M ) ) ) ) ) ).
% mod_induct
thf(fact_4321_mod__less__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_less_divisor
thf(fact_4322_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
=> ( ! [M4: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 @ ( modulo_modulo_nat @ M4 @ N2 ) )
=> ( P @ M4 @ N2 ) ) )
=> ( P @ M @ N ) ) ) ).
% gcd_nat_induct
thf(fact_4323_mod__Suc__le__divisor,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).
% mod_Suc_le_divisor
thf(fact_4324_mod__eq__0D,axiom,
! [M: nat,D: nat] :
( ( ( modulo_modulo_nat @ M @ D )
= zero_zero_nat )
=> ? [Q4: nat] :
( M
= ( times_times_nat @ D @ Q4 ) ) ) ).
% mod_eq_0D
thf(fact_4325_mod__if,axiom,
( modulo_modulo_nat
= ( ^ [M5: nat,N4: nat] : ( if_nat @ ( ord_less_nat @ M5 @ N4 ) @ M5 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M5 @ N4 ) @ N4 ) ) ) ) ).
% mod_if
thf(fact_4326_mod__geq,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).
% mod_geq
thf(fact_4327_le__mod__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( modulo_modulo_nat @ M @ N )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).
% le_mod_geq
thf(fact_4328_nat__mod__eq__iff,axiom,
! [X: nat,N: nat,Y4: nat] :
( ( ( modulo_modulo_nat @ X @ N )
= ( modulo_modulo_nat @ Y4 @ N ) )
= ( ? [Q1: nat,Q22: nat] :
( ( plus_plus_nat @ X @ ( times_times_nat @ N @ Q1 ) )
= ( plus_plus_nat @ Y4 @ ( times_times_nat @ N @ Q22 ) ) ) ) ) ).
% nat_mod_eq_iff
thf(fact_4329_pochhammer__pos,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_4330_pochhammer__pos,axiom,
! [X: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_4331_pochhammer__pos,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ X )
=> ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_4332_pochhammer__pos,axiom,
! [X: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).
% pochhammer_pos
thf(fact_4333_pochhammer__eq__0__mono,axiom,
! [A: complex,N: nat,M: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N )
= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ M )
= zero_zero_complex ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_4334_pochhammer__eq__0__mono,axiom,
! [A: real,N: nat,M: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N )
= zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ M )
= zero_zero_real ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_4335_pochhammer__eq__0__mono,axiom,
! [A: rat,N: nat,M: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N )
= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ M )
= zero_zero_rat ) ) ) ).
% pochhammer_eq_0_mono
thf(fact_4336_pochhammer__neq__0__mono,axiom,
! [A: complex,M: nat,N: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ M )
!= zero_zero_complex )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s2602460028002588243omplex @ A @ N )
!= zero_zero_complex ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_4337_pochhammer__neq__0__mono,axiom,
! [A: real,M: nat,N: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ M )
!= zero_zero_real )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s7457072308508201937r_real @ A @ N )
!= zero_zero_real ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_4338_pochhammer__neq__0__mono,axiom,
! [A: rat,M: nat,N: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ M )
!= zero_zero_rat )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( ( comm_s4028243227959126397er_rat @ A @ N )
!= zero_zero_rat ) ) ) ).
% pochhammer_neq_0_mono
thf(fact_4339_exp__mod__exp,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_4340_exp__mod__exp,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_4341_exp__mod__exp,axiom,
! [M: nat,N: nat] :
( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).
% exp_mod_exp
thf(fact_4342_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4343_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4344_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4345_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ A @ B )
=> ( ( modulo364778990260209775nteger @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4346_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ B )
=> ( ( modulo_modulo_nat @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4347_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ B )
=> ( ( modulo_modulo_int @ A @ B )
= A ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4348_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= zero_zero_nat )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(2)
thf(fact_4349_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= zero_zero_int )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(2)
thf(fact_4350_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= zero_z3403309356797280102nteger )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(2)
thf(fact_4351_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
= zero_zero_nat ) ).
% cong_exp_iff_simps(1)
thf(fact_4352_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
= zero_zero_int ) ).
% cong_exp_iff_simps(1)
thf(fact_4353_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) )
= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(1)
thf(fact_4354_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_4355_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_4356_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_4357_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_4358_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_4359_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_4360_div__mult1__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_4361_div__mult1__eq,axiom,
! [A: int,B: int,C: int] :
( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_4362_div__mult1__eq,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).
% div_mult1_eq
thf(fact_4363_mult__div__mod__eq,axiom,
! [B: nat,A: nat] :
( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_4364_mult__div__mod__eq,axiom,
! [B: int,A: int] :
( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_4365_mult__div__mod__eq,axiom,
! [B: code_integer,A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
= A ) ).
% mult_div_mod_eq
thf(fact_4366_mod__mult__div__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_4367_mod__mult__div__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_4368_mod__mult__div__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
= A ) ).
% mod_mult_div_eq
thf(fact_4369_mod__div__mult__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_4370_mod__div__mult__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_4371_mod__div__mult__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
= A ) ).
% mod_div_mult_eq
thf(fact_4372_div__mult__mod__eq,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_4373_div__mult__mod__eq,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_4374_div__mult__mod__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
= A ) ).
% div_mult_mod_eq
thf(fact_4375_mod__div__decomp,axiom,
! [A: nat,B: nat] :
( A
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_4376_mod__div__decomp,axiom,
! [A: int,B: int] :
( A
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_4377_mod__div__decomp,axiom,
! [A: code_integer,B: code_integer] :
( A
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% mod_div_decomp
thf(fact_4378_cancel__div__mod__rules_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_4379_cancel__div__mod__rules_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_4380_cancel__div__mod__rules_I1_J,axiom,
! [A: code_integer,B: code_integer,C: code_integer] :
( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
= ( plus_p5714425477246183910nteger @ A @ C ) ) ).
% cancel_div_mod_rules(1)
thf(fact_4381_cancel__div__mod__rules_I2_J,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
= ( plus_plus_nat @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_4382_cancel__div__mod__rules_I2_J,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
= ( plus_plus_int @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_4383_cancel__div__mod__rules_I2_J,axiom,
! [B: code_integer,A: code_integer,C: code_integer] :
( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
= ( plus_p5714425477246183910nteger @ A @ C ) ) ).
% cancel_div_mod_rules(2)
thf(fact_4384_unit__imp__mod__eq__0,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( modulo_modulo_nat @ A @ B )
= zero_zero_nat ) ) ).
% unit_imp_mod_eq_0
thf(fact_4385_unit__imp__mod__eq__0,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( modulo_modulo_int @ A @ B )
= zero_zero_int ) ) ).
% unit_imp_mod_eq_0
thf(fact_4386_unit__imp__mod__eq__0,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
=> ( ( modulo364778990260209775nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% unit_imp_mod_eq_0
thf(fact_4387_minus__mult__div__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_4388_minus__mult__div__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_4389_minus__mult__div__eq__mod,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_mult_div_eq_mod
thf(fact_4390_minus__mod__eq__mult__div,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_4391_minus__mod__eq__mult__div,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_4392_minus__mod__eq__mult__div,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).
% minus_mod_eq_mult_div
thf(fact_4393_minus__mod__eq__div__mult,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
= ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_4394_minus__mod__eq__div__mult,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
= ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_4395_minus__mod__eq__div__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).
% minus_mod_eq_div_mult
thf(fact_4396_minus__div__mult__eq__mod,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_4397_minus__div__mult__eq__mod,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_4398_minus__div__mult__eq__mod,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ).
% minus_div_mult_eq_mod
thf(fact_4399_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_4400_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_4401_cong__exp__iff__simps_I10_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(10)
thf(fact_4402_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_4403_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_4404_cong__exp__iff__simps_I12_J,axiom,
! [M: num,Q2: num,N: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(12)
thf(fact_4405_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_4406_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_4407_cong__exp__iff__simps_I13_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(13)
thf(fact_4408_mod__le__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_le_divisor
thf(fact_4409_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
= ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% mod_greater_zero_iff_not_dvd
thf(fact_4410_div__less__mono,axiom,
! [A2: nat,B4: nat,N: nat] :
( ( ord_less_nat @ A2 @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( modulo_modulo_nat @ A2 @ N )
= zero_zero_nat )
=> ( ( ( modulo_modulo_nat @ B4 @ N )
= zero_zero_nat )
=> ( ord_less_nat @ ( divide_divide_nat @ A2 @ N ) @ ( divide_divide_nat @ B4 @ N ) ) ) ) ) ) ).
% div_less_mono
thf(fact_4411_mod__eq__nat1E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N @ Q2 ) )
=> ( ( ord_less_eq_nat @ N @ M )
=> ~ ! [S3: nat] :
( M
!= ( plus_plus_nat @ N @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).
% mod_eq_nat1E
thf(fact_4412_mod__eq__nat2E,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N @ Q2 ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ~ ! [S3: nat] :
( N
!= ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).
% mod_eq_nat2E
thf(fact_4413_nat__mod__eq__lemma,axiom,
! [X: nat,N: nat,Y4: nat] :
( ( ( modulo_modulo_nat @ X @ N )
= ( modulo_modulo_nat @ Y4 @ N ) )
=> ( ( ord_less_eq_nat @ Y4 @ X )
=> ? [Q4: nat] :
( X
= ( plus_plus_nat @ Y4 @ ( times_times_nat @ N @ Q4 ) ) ) ) ) ).
% nat_mod_eq_lemma
thf(fact_4414_pochhammer__nonneg,axiom,
! [X: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_4415_pochhammer__nonneg,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ X )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_4416_pochhammer__nonneg,axiom,
! [X: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_4417_pochhammer__nonneg,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N ) ) ) ).
% pochhammer_nonneg
thf(fact_4418_mod__eq__dvd__iff__nat,axiom,
! [N: nat,M: nat,Q2: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( ( modulo_modulo_nat @ M @ Q2 )
= ( modulo_modulo_nat @ N @ Q2 ) )
= ( dvd_dvd_nat @ Q2 @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% mod_eq_dvd_iff_nat
thf(fact_4419_mod__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( modulo_modulo_nat @ M @ ( times_times_nat @ N @ Q2 ) )
= ( plus_plus_nat @ ( times_times_nat @ N @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N ) ) ) ).
% mod_mult2_eq
thf(fact_4420_div__mod__decomp,axiom,
! [A2: nat,N: nat] :
( A2
= ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N ) @ N ) @ ( modulo_modulo_nat @ A2 @ N ) ) ) ).
% div_mod_decomp
thf(fact_4421_modulo__nat__def,axiom,
( modulo_modulo_nat
= ( ^ [M5: nat,N4: nat] : ( minus_minus_nat @ M5 @ ( times_times_nat @ ( divide_divide_nat @ M5 @ N4 ) @ N4 ) ) ) ) ).
% modulo_nat_def
thf(fact_4422_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
= one_one_complex ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ) ).
% pochhammer_0_left
thf(fact_4423_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% pochhammer_0_left
thf(fact_4424_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
= one_one_rat ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
= zero_zero_rat ) ) ) ).
% pochhammer_0_left
thf(fact_4425_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% pochhammer_0_left
thf(fact_4426_pochhammer__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% pochhammer_0_left
thf(fact_4427_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q2: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= zero_zero_nat ) ).
% cong_exp_iff_simps(3)
thf(fact_4428_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q2: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= zero_zero_int ) ).
% cong_exp_iff_simps(3)
thf(fact_4429_cong__exp__iff__simps_I3_J,axiom,
! [N: num,Q2: num] :
( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
!= zero_z3403309356797280102nteger ) ).
% cong_exp_iff_simps(3)
thf(fact_4430_mod__mult2__eq_H,axiom,
! [A: code_integer,M: nat,N: nat] :
( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_4431_mod__mult2__eq_H,axiom,
! [A: nat,M: nat,N: nat] :
( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_4432_mod__mult2__eq_H,axiom,
! [A: int,M: nat,N: nat] :
( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% mod_mult2_eq'
thf(fact_4433_even__even__mod__4__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).
% even_even_mod_4_iff
thf(fact_4434_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_4435_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_4436_field__char__0__class_Oof__nat__div,axiom,
! [M: nat,N: nat] :
( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N ) )
= ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).
% field_char_0_class.of_nat_div
thf(fact_4437_split__mod,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( modulo_modulo_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ M ) )
& ( ( N != zero_zero_nat )
=> ! [I2: nat,J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I2 ) @ J3 ) )
=> ( P @ J3 ) ) ) ) ) ) ).
% split_mod
thf(fact_4438_mod__nat__eqI,axiom,
! [R2: nat,N: nat,M: nat] :
( ( ord_less_nat @ R2 @ N )
=> ( ( ord_less_eq_nat @ R2 @ M )
=> ( ( dvd_dvd_nat @ N @ ( minus_minus_nat @ M @ R2 ) )
=> ( ( modulo_modulo_nat @ M @ N )
= R2 ) ) ) ) ).
% mod_nat_eqI
thf(fact_4439_pochhammer__rec,axiom,
! [A: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
= ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_4440_pochhammer__rec,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_4441_pochhammer__rec,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_4442_pochhammer__rec,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_4443_pochhammer__rec,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N ) ) ) ).
% pochhammer_rec
thf(fact_4444_pochhammer__rec_H,axiom,
! [Z: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ Z @ ( suc @ N ) )
= ( times_times_complex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ N ) ) @ ( comm_s2602460028002588243omplex @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_4445_pochhammer__rec_H,axiom,
! [Z: real,N: nat] :
( ( comm_s7457072308508201937r_real @ Z @ ( suc @ N ) )
= ( times_times_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N ) ) @ ( comm_s7457072308508201937r_real @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_4446_pochhammer__rec_H,axiom,
! [Z: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N ) )
= ( times_times_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_4447_pochhammer__rec_H,axiom,
! [Z: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ Z @ ( suc @ N ) )
= ( times_times_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N ) ) @ ( comm_s4663373288045622133er_nat @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_4448_pochhammer__rec_H,axiom,
! [Z: int,N: nat] :
( ( comm_s4660882817536571857er_int @ Z @ ( suc @ N ) )
= ( times_times_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N ) ) @ ( comm_s4660882817536571857er_int @ Z @ N ) ) ) ).
% pochhammer_rec'
thf(fact_4449_pochhammer__Suc,axiom,
! [A: complex,N: nat] :
( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
= ( times_times_complex @ ( comm_s2602460028002588243omplex @ A @ N ) @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_4450_pochhammer__Suc,axiom,
! [A: real,N: nat] :
( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_4451_pochhammer__Suc,axiom,
! [A: rat,N: nat] :
( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_4452_pochhammer__Suc,axiom,
! [A: nat,N: nat] :
( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_4453_pochhammer__Suc,axiom,
! [A: int,N: nat] :
( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% pochhammer_Suc
thf(fact_4454_real__of__nat__div__aux,axiom,
! [X: nat,D: nat] :
( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ D ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X @ D ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X @ D ) ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).
% real_of_nat_div_aux
thf(fact_4455_pochhammer__product_H,axiom,
! [Z: complex,N: nat,M: nat] :
( ( comm_s2602460028002588243omplex @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ N ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_4456_pochhammer__product_H,axiom,
! [Z: real,N: nat,M: nat] :
( ( comm_s7457072308508201937r_real @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ N ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_4457_pochhammer__product_H,axiom,
! [Z: rat,N: nat,M: nat] :
( ( comm_s4028243227959126397er_rat @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ N ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_4458_pochhammer__product_H,axiom,
! [Z: nat,N: nat,M: nat] :
( ( comm_s4663373288045622133er_nat @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ N ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_4459_pochhammer__product_H,axiom,
! [Z: int,N: nat,M: nat] :
( ( comm_s4660882817536571857er_int @ Z @ ( plus_plus_nat @ N @ M ) )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ N ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N ) ) @ M ) ) ) ).
% pochhammer_product'
thf(fact_4460_binomial__maximum_H,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).
% binomial_maximum'
thf(fact_4461_binomial__mono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_eq_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).
% binomial_mono
thf(fact_4462_binomial__antimono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_eq_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
=> ( ( ord_less_eq_nat @ K6 @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_antimono
thf(fact_4463_binomial__maximum,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% binomial_maximum
thf(fact_4464_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: code_integer,A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
=> ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4465_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4466_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4467_even__iff__mod__2__eq__zero,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4468_even__iff__mod__2__eq__zero,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4469_even__iff__mod__2__eq__zero,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) ) ).
% even_iff_mod_2_eq_zero
thf(fact_4470_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(7)
thf(fact_4471_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(7)
thf(fact_4472_cong__exp__iff__simps_I7_J,axiom,
! [Q2: num,N: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(7)
thf(fact_4473_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(11)
thf(fact_4474_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(11)
thf(fact_4475_cong__exp__iff__simps_I11_J,axiom,
! [M: num,Q2: num] :
( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
= ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
= zero_z3403309356797280102nteger ) ) ).
% cong_exp_iff_simps(11)
thf(fact_4476_odd__iff__mod__2__eq__one,axiom,
! [A: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4477_odd__iff__mod__2__eq__one,axiom,
! [A: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4478_odd__iff__mod__2__eq__one,axiom,
! [A: code_integer] :
( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
= ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ).
% odd_iff_mod_2_eq_one
thf(fact_4479_Suc__mod__eq__add3__mod,axiom,
! [M: nat,N: nat] :
( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
= ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).
% Suc_mod_eq_add3_mod
thf(fact_4480_Suc__times__mod__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
= one_one_nat ) ) ).
% Suc_times_mod_eq
thf(fact_4481_pochhammer__product,axiom,
! [M: nat,N: nat,Z: complex] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s2602460028002588243omplex @ Z @ N )
= ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ M ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_4482_pochhammer__product,axiom,
! [M: nat,N: nat,Z: real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s7457072308508201937r_real @ Z @ N )
= ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_4483_pochhammer__product,axiom,
! [M: nat,N: nat,Z: rat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4028243227959126397er_rat @ Z @ N )
= ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_4484_pochhammer__product,axiom,
! [M: nat,N: nat,Z: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4663373288045622133er_nat @ Z @ N )
= ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_4485_pochhammer__product,axiom,
! [M: nat,N: nat,Z: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( comm_s4660882817536571857er_int @ Z @ N )
= ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% pochhammer_product
thf(fact_4486_binomial__strict__antimono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
=> ( ( ord_less_eq_nat @ K6 @ N )
=> ( ord_less_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).
% binomial_strict_antimono
thf(fact_4487_binomial__strict__mono,axiom,
! [K: nat,K6: nat,N: nat] :
( ( ord_less_nat @ K @ K6 )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
=> ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).
% binomial_strict_mono
thf(fact_4488_binomial__less__binomial__Suc,axiom,
! [K: nat,N: nat] :
( ( ord_less_nat @ K @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_less_binomial_Suc
thf(fact_4489_central__binomial__odd,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( binomial @ N @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% central_binomial_odd
thf(fact_4490_divmod__digit__0_I2_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_4491_divmod__digit__0_I2_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
= ( modulo_modulo_int @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_4492_divmod__digit__0_I2_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(2)
thf(fact_4493_bits__stable__imp__add__self,axiom,
! [A: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_nat ) ) ).
% bits_stable_imp_add_self
thf(fact_4494_bits__stable__imp__add__self,axiom,
! [A: int] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= zero_zero_int ) ) ).
% bits_stable_imp_add_self
thf(fact_4495_bits__stable__imp__add__self,axiom,
! [A: code_integer] :
( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A )
=> ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
= zero_z3403309356797280102nteger ) ) ).
% bits_stable_imp_add_self
thf(fact_4496_parity__cases,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat ) )
=> ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat ) ) ) ).
% parity_cases
thf(fact_4497_parity__cases,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int ) )
=> ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int ) ) ) ).
% parity_cases
thf(fact_4498_parity__cases,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= zero_z3403309356797280102nteger ) )
=> ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
!= one_one_Code_integer ) ) ) ).
% parity_cases
thf(fact_4499_mod2__eq__if,axiom,
! [A: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ) ).
% mod2_eq_if
thf(fact_4500_mod2__eq__if,axiom,
! [A: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ) ).
% mod2_eq_if
thf(fact_4501_mod2__eq__if,axiom,
! [A: code_integer] :
( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= zero_z3403309356797280102nteger ) )
& ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ) ) ).
% mod2_eq_if
thf(fact_4502_div__exp__mod__exp__eq,axiom,
! [A: nat,N: nat,M: nat] :
( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_4503_div__exp__mod__exp__eq,axiom,
! [A: int,N: nat,M: nat] :
( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_4504_div__exp__mod__exp__eq,axiom,
! [A: code_integer,N: nat,M: nat] :
( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).
% div_exp_mod_exp_eq
thf(fact_4505_bits__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [A4: nat] :
( ( ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: nat,B3: $o] :
( ( P @ A4 )
=> ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B3 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B3 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_4506_bits__induct,axiom,
! [P: int > $o,A: int] :
( ! [A4: int] :
( ( ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: int,B3: $o] :
( ( P @ A4 )
=> ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B3 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B3 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_4507_bits__induct,axiom,
! [P: code_integer > $o,A: code_integer] :
( ! [A4: code_integer] :
( ( ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ A4 ) )
=> ( ! [A4: code_integer,B3: $o] :
( ( P @ A4 )
=> ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B3 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A4 )
=> ( P @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B3 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 ) ) ) ) )
=> ( P @ A ) ) ) ).
% bits_induct
thf(fact_4508_verit__le__mono__div,axiom,
! [A2: nat,B4: nat,N: nat] :
( ( ord_less_nat @ A2 @ B4 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat
@ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N )
@ ( if_nat
@ ( ( modulo_modulo_nat @ B4 @ N )
= zero_zero_nat )
@ one_one_nat
@ zero_zero_nat ) )
@ ( divide_divide_nat @ B4 @ N ) ) ) ) ).
% verit_le_mono_div
thf(fact_4509_divmod__digit__0_I1_J,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_4510_divmod__digit__0_I1_J,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_4511_divmod__digit__0_I1_J,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
=> ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% divmod_digit_0(1)
thf(fact_4512_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_4513_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_4514_mult__exp__mod__exp__eq,axiom,
! [M: nat,N: nat,A: code_integer] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).
% mult_exp_mod_exp_eq
thf(fact_4515_mod__double__modulus,axiom,
! [M: code_integer,X: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
=> ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
=> ( ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( modulo364778990260209775nteger @ X @ M ) )
| ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_4516_mod__double__modulus,axiom,
! [M: nat,X: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_nat @ X @ M ) )
| ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_nat @ ( modulo_modulo_nat @ X @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_4517_mod__double__modulus,axiom,
! [M: int,X: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( modulo_modulo_int @ X @ M ) )
| ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
= ( plus_plus_int @ ( modulo_modulo_int @ X @ M ) @ M ) ) ) ) ) ).
% mod_double_modulus
thf(fact_4518_divmod__digit__1_I2_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_4519_divmod__digit__1_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_4520_divmod__digit__1_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(2)
thf(fact_4521_unset__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se4203085406695923979it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_4522_unset__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se4205575877204974255it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_4523_unset__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se8260200283734997820nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% unset_bit_Suc
thf(fact_4524_set__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se7879613467334960850it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_4525_set__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se7882103937844011126it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_4526_set__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se2793503036327961859nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% set_bit_Suc
thf(fact_4527_flip__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se2159334234014336723it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_4528_flip__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se2161824704523386999it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_4529_flip__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se1345352211410354436nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% flip_bit_Suc
thf(fact_4530_even__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suc @ zero_zero_nat ) )
=> ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_mod_4_div_2
thf(fact_4531_exp__div__exp__eq,axiom,
! [M: nat,N: nat] :
( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat )
& ( ord_less_eq_nat @ N @ M ) ) )
@ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% exp_div_exp_eq
thf(fact_4532_exp__div__exp__eq,axiom,
! [M: nat,N: nat] :
( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int
@ ( zero_n2684676970156552555ol_int
@ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int )
& ( ord_less_eq_nat @ N @ M ) ) )
@ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% exp_div_exp_eq
thf(fact_4533_exp__div__exp__eq,axiom,
! [M: nat,N: nat] :
( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger
@ ( zero_n356916108424825756nteger
@ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
!= zero_z3403309356797280102nteger )
& ( ord_less_eq_nat @ N @ M ) ) )
@ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% exp_div_exp_eq
thf(fact_4534_odd__mod__4__div__2,axiom,
! [N: nat] :
( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% odd_mod_4_div_2
thf(fact_4535_divmod__digit__1_I1_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
=> ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
= ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_4536_divmod__digit__1_I1_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
= ( divide_divide_nat @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_4537_divmod__digit__1_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
= ( divide_divide_int @ A @ B ) ) ) ) ) ).
% divmod_digit_1(1)
thf(fact_4538_zero__less__binomial__iff,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) )
= ( ord_less_eq_nat @ K @ N ) ) ).
% zero_less_binomial_iff
thf(fact_4539_choose__two,axiom,
! [N: nat] :
( ( binomial @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% choose_two
thf(fact_4540_binomial__n__0,axiom,
! [N: nat] :
( ( binomial @ N @ zero_zero_nat )
= one_one_nat ) ).
% binomial_n_0
thf(fact_4541_binomial__Suc__Suc,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).
% binomial_Suc_Suc
thf(fact_4542_binomial__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( binomial @ N @ K )
= zero_zero_nat )
= ( ord_less_nat @ N @ K ) ) ).
% binomial_eq_0_iff
thf(fact_4543_binomial__1,axiom,
! [N: nat] :
( ( binomial @ N @ ( suc @ zero_zero_nat ) )
= N ) ).
% binomial_1
thf(fact_4544_binomial__0__Suc,axiom,
! [K: nat] :
( ( binomial @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% binomial_0_Suc
thf(fact_4545_binomial__addition__formula,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( binomial @ N @ ( suc @ K ) )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ).
% binomial_addition_formula
thf(fact_4546_binomial__Suc__n,axiom,
! [N: nat] :
( ( binomial @ ( suc @ N ) @ N )
= ( suc @ N ) ) ).
% binomial_Suc_n
thf(fact_4547_mod__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_4548_mod__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_4549_zmod__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).
% zmod_numeral_Bit0
thf(fact_4550_zmod__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).
% zmod_numeral_Bit1
thf(fact_4551_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).
% zmod_le_nonneg_dividend
thf(fact_4552_neg__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_int @ L @ ( modulo_modulo_int @ K @ L ) ) ) ).
% neg_mod_bound
thf(fact_4553_Euclidean__Division_Opos__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_int @ ( modulo_modulo_int @ K @ L ) @ L ) ) ).
% Euclidean_Division.pos_mod_bound
thf(fact_4554_zmod__eq__0D,axiom,
! [M: int,D: int] :
( ( ( modulo_modulo_int @ M @ D )
= zero_zero_int )
=> ? [Q4: int] :
( M
= ( times_times_int @ D @ Q4 ) ) ) ).
% zmod_eq_0D
thf(fact_4555_zmod__eq__0__iff,axiom,
! [M: int,D: int] :
( ( ( modulo_modulo_int @ M @ D )
= zero_zero_int )
= ( ? [Q3: int] :
( M
= ( times_times_int @ D @ Q3 ) ) ) ) ).
% zmod_eq_0_iff
thf(fact_4556_zmod__int,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
= ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% zmod_int
thf(fact_4557_neg__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L ) @ zero_zero_int ) ) ).
% neg_mod_sign
thf(fact_4558_Euclidean__Division_Opos__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_4559_zmod__trivial__iff,axiom,
! [I: int,K: int] :
( ( ( modulo_modulo_int @ I @ K )
= I )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zmod_trivial_iff
thf(fact_4560_pos__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
& ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).
% pos_mod_conj
thf(fact_4561_neg__mod__conj,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
& ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% neg_mod_conj
thf(fact_4562_zdiv__mono__strict,axiom,
! [A2: int,B4: int,N: int] :
( ( ord_less_int @ A2 @ B4 )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ( ( modulo_modulo_int @ A2 @ N )
= zero_zero_int )
=> ( ( ( modulo_modulo_int @ B4 @ N )
= zero_zero_int )
=> ( ord_less_int @ ( divide_divide_int @ A2 @ N ) @ ( divide_divide_int @ B4 @ N ) ) ) ) ) ) ).
% zdiv_mono_strict
thf(fact_4563_div__mod__decomp__int,axiom,
! [A2: int,N: int] :
( A2
= ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N ) @ N ) @ ( modulo_modulo_int @ A2 @ N ) ) ) ).
% div_mod_decomp_int
thf(fact_4564_mod__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
= ( plus_plus_int @ K @ L ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_4565_mod__pos__geq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ L @ K )
=> ( ( modulo_modulo_int @ K @ L )
= ( modulo_modulo_int @ ( minus_minus_int @ K @ L ) @ L ) ) ) ) ).
% mod_pos_geq
thf(fact_4566_mod__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) )
= ( ( dvd_dvd_int @ L @ K )
| ( ( L = zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ K ) )
| ( ord_less_int @ zero_zero_int @ L ) ) ) ).
% mod_int_pos_iff
thf(fact_4567_split__zmod,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( modulo_modulo_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ N ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I2: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ J3 ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I2: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ J3 ) ) ) ) ) ).
% split_zmod
thf(fact_4568_int__mod__neg__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ R2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ R2 )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_neg_eq
thf(fact_4569_int__mod__pos__eq,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
=> ( ( ord_less_int @ R2 @ B )
=> ( ( modulo_modulo_int @ A @ B )
= R2 ) ) ) ) ).
% int_mod_pos_eq
thf(fact_4570_zmod__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).
% zmod_zmult2_eq
thf(fact_4571_verit__le__mono__div__int,axiom,
! [A2: int,B4: int,N: int] :
( ( ord_less_int @ A2 @ B4 )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int
@ ( plus_plus_int @ ( divide_divide_int @ A2 @ N )
@ ( if_int
@ ( ( modulo_modulo_int @ B4 @ N )
= zero_zero_int )
@ one_one_int
@ zero_zero_int ) )
@ ( divide_divide_int @ B4 @ N ) ) ) ) ).
% verit_le_mono_div_int
thf(fact_4572_split__neg__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
= ( ! [I2: int,J3: int] :
( ( ( ord_less_int @ K @ J3 )
& ( ord_less_eq_int @ J3 @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ I2 @ J3 ) ) ) ) ) ).
% split_neg_lemma
thf(fact_4573_split__pos__lemma,axiom,
! [K: int,P: int > int > $o,N: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
= ( ! [I2: int,J3: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
& ( ord_less_int @ J3 @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I2 ) @ J3 ) ) )
=> ( P @ I2 @ J3 ) ) ) ) ) ).
% split_pos_lemma
thf(fact_4574_pos__zmod__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).
% pos_zmod_mult_2
thf(fact_4575_neg__zmod__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).
% neg_zmod_mult_2
thf(fact_4576_binomial__eq__0,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( binomial @ N @ K )
= zero_zero_nat ) ) ).
% binomial_eq_0
thf(fact_4577_Suc__times__binomial__eq,axiom,
! [N: nat,K: nat] :
( ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) )
= ( times_times_nat @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).
% Suc_times_binomial_eq
thf(fact_4578_Suc__times__binomial,axiom,
! [K: nat,N: nat] :
( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) )
= ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) ) ).
% Suc_times_binomial
thf(fact_4579_binomial__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( binomial @ N @ K )
= ( binomial @ N @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% binomial_symmetric
thf(fact_4580_choose__mult__lemma,axiom,
! [M: nat,R2: nat,K: nat] :
( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
= ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R2 ) @ M ) ) ) ).
% choose_mult_lemma
thf(fact_4581_binomial__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq_nat @ R2 @ N )
=> ( ord_less_eq_nat @ ( binomial @ N @ R2 ) @ ( power_power_nat @ N @ R2 ) ) ) ).
% binomial_le_pow
thf(fact_4582_zero__less__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) ) ) ).
% zero_less_binomial
thf(fact_4583_Suc__times__binomial__add,axiom,
! [A: nat,B: nat] :
( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
= ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).
% Suc_times_binomial_add
thf(fact_4584_choose__mult,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
= ( times_times_nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).
% choose_mult
thf(fact_4585_binomial__Suc__Suc__eq__times,axiom,
! [N: nat,K: nat] :
( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
= ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) @ ( suc @ K ) ) ) ).
% binomial_Suc_Suc_eq_times
thf(fact_4586_binomial__absorb__comp,axiom,
! [N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ N @ K ) @ ( binomial @ N @ K ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).
% binomial_absorb_comp
thf(fact_4587_binomial__absorption,axiom,
! [K: nat,N: nat] :
( ( times_times_nat @ ( suc @ K ) @ ( binomial @ N @ ( suc @ K ) ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).
% binomial_absorption
thf(fact_4588_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_4589_binomial__ge__n__over__k__pow__k,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) ) ) ).
% binomial_ge_n_over_k_pow_k
thf(fact_4590_binomial__le__pow2,axiom,
! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% binomial_le_pow2
thf(fact_4591_choose__reduce__nat,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( binomial @ N @ K )
= ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ) ).
% choose_reduce_nat
thf(fact_4592_times__binomial__minus1__eq,axiom,
! [K: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( times_times_nat @ K @ ( binomial @ N @ K ) )
= ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% times_binomial_minus1_eq
thf(fact_4593_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= zero_zero_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= one_one_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).
% mod_exhaust_less_4
thf(fact_4594_artanh__def,axiom,
( artanh_real
= ( ^ [X3: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X3 ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% artanh_def
thf(fact_4595_signed__take__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_ri6519982836138164636nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_4596_signed__take__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% signed_take_bit_Suc
thf(fact_4597__C10_C,axiom,
! [L: nat] :
( ( foldr_real_real @ plus_plus_real @ ( replicate_real @ L @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ zero_zero_real )
= ( times_times_real @ ( semiri5074537144036343181t_real @ L ) @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% "10"
thf(fact_4598_add__scale__eq__noteq,axiom,
! [R2: complex,A: complex,B: complex,C: complex,D: complex] :
( ( R2 != zero_zero_complex )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_complex @ A @ ( times_times_complex @ R2 @ C ) )
!= ( plus_plus_complex @ B @ ( times_times_complex @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4599_add__scale__eq__noteq,axiom,
! [R2: real,A: real,B: real,C: real,D: real] :
( ( R2 != zero_zero_real )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_real @ A @ ( times_times_real @ R2 @ C ) )
!= ( plus_plus_real @ B @ ( times_times_real @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4600_add__scale__eq__noteq,axiom,
! [R2: rat,A: rat,B: rat,C: rat,D: rat] :
( ( R2 != zero_zero_rat )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_rat @ A @ ( times_times_rat @ R2 @ C ) )
!= ( plus_plus_rat @ B @ ( times_times_rat @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4601_add__scale__eq__noteq,axiom,
! [R2: nat,A: nat,B: nat,C: nat,D: nat] :
( ( R2 != zero_zero_nat )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_nat @ A @ ( times_times_nat @ R2 @ C ) )
!= ( plus_plus_nat @ B @ ( times_times_nat @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4602_add__scale__eq__noteq,axiom,
! [R2: int,A: int,B: int,C: int,D: int] :
( ( R2 != zero_zero_int )
=> ( ( ( A = B )
& ( C != D ) )
=> ( ( plus_plus_int @ A @ ( times_times_int @ R2 @ C ) )
!= ( plus_plus_int @ B @ ( times_times_int @ R2 @ D ) ) ) ) ) ).
% add_scale_eq_noteq
thf(fact_4603_fact__double,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_double
thf(fact_4604_fact__double,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_real @ ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s7457072308508201937r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_double
thf(fact_4605_fact__double,axiom,
! [N: nat] :
( ( semiri5044797733671781792omplex @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( comm_s2602460028002588243omplex @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ N ) ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).
% fact_double
thf(fact_4606_num_Osize__gen_I3_J,axiom,
! [X33: num] :
( ( size_num @ ( bit1 @ X33 ) )
= ( plus_plus_nat @ ( size_num @ X33 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(3)
thf(fact_4607_foldr0,axiom,
! [Xs: list_real,C: real,D: real] :
( ( foldr_real_real @ plus_plus_real @ Xs @ ( plus_plus_real @ C @ D ) )
= ( plus_plus_real @ ( foldr_real_real @ plus_plus_real @ Xs @ D ) @ C ) ) ).
% foldr0
thf(fact_4608_ln__less__cancel__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ) ) ).
% ln_less_cancel_iff
thf(fact_4609_ln__inj__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ( ln_ln_real @ X )
= ( ln_ln_real @ Y4 ) )
= ( X = Y4 ) ) ) ) ).
% ln_inj_iff
thf(fact_4610_of__nat__fact,axiom,
! [N: nat] :
( ( semiri681578069525770553at_rat @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri773545260158071498ct_rat @ N ) ) ).
% of_nat_fact
thf(fact_4611_of__nat__fact,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri1406184849735516958ct_int @ N ) ) ).
% of_nat_fact
thf(fact_4612_of__nat__fact,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% of_nat_fact
thf(fact_4613_of__nat__fact,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri2265585572941072030t_real @ N ) ) ).
% of_nat_fact
thf(fact_4614_of__nat__fact,axiom,
! [N: nat] :
( ( semiri8010041392384452111omplex @ ( semiri1408675320244567234ct_nat @ N ) )
= ( semiri5044797733671781792omplex @ N ) ) ).
% of_nat_fact
thf(fact_4615_signed__take__bit__of__0,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% signed_take_bit_of_0
thf(fact_4616_replicate__eq__replicate,axiom,
! [M: nat,X: real,N: nat,Y4: real] :
( ( ( replicate_real @ M @ X )
= ( replicate_real @ N @ Y4 ) )
= ( ( M = N )
& ( ( M != zero_zero_nat )
=> ( X = Y4 ) ) ) ) ).
% replicate_eq_replicate
thf(fact_4617_replicate__eq__replicate,axiom,
! [M: nat,X: vEBT_VEBT,N: nat,Y4: vEBT_VEBT] :
( ( ( replicate_VEBT_VEBT @ M @ X )
= ( replicate_VEBT_VEBT @ N @ Y4 ) )
= ( ( M = N )
& ( ( M != zero_zero_nat )
=> ( X = Y4 ) ) ) ) ).
% replicate_eq_replicate
thf(fact_4618_ln__le__cancel__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ) ).
% ln_le_cancel_iff
thf(fact_4619_ln__less__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ).
% ln_less_zero_iff
thf(fact_4620_ln__gt__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
= ( ord_less_real @ one_one_real @ X ) ) ) ).
% ln_gt_zero_iff
thf(fact_4621_ln__eq__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ln_ln_real @ X )
= zero_zero_real )
= ( X = one_one_real ) ) ) ).
% ln_eq_zero_iff
thf(fact_4622_ln__one,axiom,
( ( ln_ln_real @ one_one_real )
= zero_zero_real ) ).
% ln_one
thf(fact_4623_fact__0,axiom,
( ( semiri773545260158071498ct_rat @ zero_zero_nat )
= one_one_rat ) ).
% fact_0
thf(fact_4624_fact__0,axiom,
( ( semiri1406184849735516958ct_int @ zero_zero_nat )
= one_one_int ) ).
% fact_0
thf(fact_4625_fact__0,axiom,
( ( semiri1408675320244567234ct_nat @ zero_zero_nat )
= one_one_nat ) ).
% fact_0
thf(fact_4626_fact__0,axiom,
( ( semiri2265585572941072030t_real @ zero_zero_nat )
= one_one_real ) ).
% fact_0
thf(fact_4627_fact__0,axiom,
( ( semiri5044797733671781792omplex @ zero_zero_nat )
= one_one_complex ) ).
% fact_0
thf(fact_4628_signed__take__bit__Suc__1,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
= one_one_int ) ).
% signed_take_bit_Suc_1
thf(fact_4629_signed__take__bit__numeral__of__1,axiom,
! [K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
= one_one_int ) ).
% signed_take_bit_numeral_of_1
thf(fact_4630_ln__ge__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ) ).
% ln_ge_zero_iff
thf(fact_4631_ln__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ).
% ln_le_zero_iff
thf(fact_4632_fact__Suc__0,axiom,
( ( semiri773545260158071498ct_rat @ ( suc @ zero_zero_nat ) )
= one_one_rat ) ).
% fact_Suc_0
thf(fact_4633_fact__Suc__0,axiom,
( ( semiri1406184849735516958ct_int @ ( suc @ zero_zero_nat ) )
= one_one_int ) ).
% fact_Suc_0
thf(fact_4634_fact__Suc__0,axiom,
( ( semiri1408675320244567234ct_nat @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% fact_Suc_0
thf(fact_4635_fact__Suc__0,axiom,
( ( semiri2265585572941072030t_real @ ( suc @ zero_zero_nat ) )
= one_one_real ) ).
% fact_Suc_0
thf(fact_4636_fact__Suc__0,axiom,
( ( semiri5044797733671781792omplex @ ( suc @ zero_zero_nat ) )
= one_one_complex ) ).
% fact_Suc_0
thf(fact_4637_fact__Suc,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ ( suc @ N ) )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_Suc
thf(fact_4638_fact__Suc,axiom,
! [N: nat] :
( ( semiri1406184849735516958ct_int @ ( suc @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% fact_Suc
thf(fact_4639_fact__Suc,axiom,
! [N: nat] :
( ( semiri1408675320244567234ct_nat @ ( suc @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_Suc
thf(fact_4640_fact__Suc,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ ( suc @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_Suc
thf(fact_4641_fact__Suc,axiom,
! [N: nat] :
( ( semiri5044797733671781792omplex @ ( suc @ N ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N ) ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).
% fact_Suc
thf(fact_4642_fact__2,axiom,
( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_4643_fact__2,axiom,
( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_4644_fact__2,axiom,
( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_4645_fact__2,axiom,
( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_4646_fact__2,axiom,
( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% fact_2
thf(fact_4647_signed__take__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_Suc_bit0
thf(fact_4648_signed__take__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_Suc_bit1
thf(fact_4649_fact__mono__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_mono_nat
thf(fact_4650_fact__ge__self,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_self
thf(fact_4651_fact__nonzero,axiom,
! [N: nat] :
( ( semiri773545260158071498ct_rat @ N )
!= zero_zero_rat ) ).
% fact_nonzero
thf(fact_4652_fact__nonzero,axiom,
! [N: nat] :
( ( semiri1406184849735516958ct_int @ N )
!= zero_zero_int ) ).
% fact_nonzero
thf(fact_4653_fact__nonzero,axiom,
! [N: nat] :
( ( semiri1408675320244567234ct_nat @ N )
!= zero_zero_nat ) ).
% fact_nonzero
thf(fact_4654_fact__nonzero,axiom,
! [N: nat] :
( ( semiri2265585572941072030t_real @ N )
!= zero_zero_real ) ).
% fact_nonzero
thf(fact_4655_fact__nonzero,axiom,
! [N: nat] :
( ( semiri5044797733671781792omplex @ N )
!= zero_zero_complex ) ).
% fact_nonzero
thf(fact_4656_signed__take__bit__mult,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ K @ L ) ) ) ).
% signed_take_bit_mult
thf(fact_4657_signed__take__bit__add,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L ) ) ) ).
% signed_take_bit_add
thf(fact_4658_signed__take__bit__diff,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).
% signed_take_bit_diff
thf(fact_4659_ln__less__self,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ ( ln_ln_real @ X ) @ X ) ) ).
% ln_less_self
thf(fact_4660_fact__less__mono__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% fact_less_mono_nat
thf(fact_4661_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_ge_zero
thf(fact_4662_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_ge_zero
thf(fact_4663_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_zero
thf(fact_4664_fact__ge__zero,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_ge_zero
thf(fact_4665_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_gt_zero
thf(fact_4666_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_gt_zero
thf(fact_4667_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_gt_zero
thf(fact_4668_fact__gt__zero,axiom,
! [N: nat] : ( ord_less_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_gt_zero
thf(fact_4669_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_rat @ ( semiri773545260158071498ct_rat @ N ) @ zero_zero_rat ) ).
% fact_not_neg
thf(fact_4670_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_int @ ( semiri1406184849735516958ct_int @ N ) @ zero_zero_int ) ).
% fact_not_neg
thf(fact_4671_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ N ) @ zero_zero_nat ) ).
% fact_not_neg
thf(fact_4672_fact__not__neg,axiom,
! [N: nat] :
~ ( ord_less_real @ ( semiri2265585572941072030t_real @ N ) @ zero_zero_real ) ).
% fact_not_neg
thf(fact_4673_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_rat @ one_one_rat @ ( semiri773545260158071498ct_rat @ N ) ) ).
% fact_ge_1
thf(fact_4674_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_int @ one_one_int @ ( semiri1406184849735516958ct_int @ N ) ) ).
% fact_ge_1
thf(fact_4675_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_nat @ one_one_nat @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_1
thf(fact_4676_fact__ge__1,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( semiri2265585572941072030t_real @ N ) ) ).
% fact_ge_1
thf(fact_4677_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% fact_mono
thf(fact_4678_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% fact_mono
thf(fact_4679_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% fact_mono
thf(fact_4680_fact__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% fact_mono
thf(fact_4681_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) ) ) ).
% fact_dvd
thf(fact_4682_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_Code_integer @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) ) ) ).
% fact_dvd
thf(fact_4683_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) ) ) ).
% fact_dvd
thf(fact_4684_fact__dvd,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ M ) ) ) ).
% fact_dvd
thf(fact_4685_fact__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) )
= ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).
% fact_diff_Suc
thf(fact_4686_ln__bound,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).
% ln_bound
thf(fact_4687_ln__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).
% ln_gt_zero
thf(fact_4688_ln__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).
% ln_less_zero
thf(fact_4689_ln__gt__zero__imp__gt__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ one_one_real @ X ) ) ) ).
% ln_gt_zero_imp_gt_one
thf(fact_4690_ln__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).
% ln_ge_zero
thf(fact_4691_fact__ge__Suc__0__nat,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).
% fact_ge_Suc_0_nat
thf(fact_4692_dvd__fact,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% dvd_fact
thf(fact_4693_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ) ).
% fact_less_mono
thf(fact_4694_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ) ).
% fact_less_mono
thf(fact_4695_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).
% fact_less_mono
thf(fact_4696_fact__less__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ).
% fact_less_mono
thf(fact_4697_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ N ) ) @ ( semiri3624122377584611663nteger @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_4698_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ N ) ) @ ( semiri773545260158071498ct_rat @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_4699_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ N ) ) @ ( semiri1406184849735516958ct_int @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_4700_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ N ) ) @ ( semiri1408675320244567234ct_nat @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_4701_fact__fact__dvd__fact,axiom,
! [K: nat,N: nat] : ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ K @ N ) ) ) ).
% fact_fact_dvd_fact
thf(fact_4702_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1406184849735516958ct_int @ M ) )
= zero_zero_int ) ) ).
% fact_mod
thf(fact_4703_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo364778990260209775nteger @ ( semiri3624122377584611663nteger @ N ) @ ( semiri3624122377584611663nteger @ M ) )
= zero_z3403309356797280102nteger ) ) ).
% fact_mod
thf(fact_4704_fact__mod,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( modulo_modulo_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ M ) )
= zero_zero_nat ) ) ).
% fact_mod
thf(fact_4705_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri681578069525770553at_rat @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_4706_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ N ) @ ( semiri1314217659103216013at_int @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_4707_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1316708129612266289at_nat @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_4708_fact__le__power,axiom,
! [N: nat] : ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri5074537144036343181t_real @ ( power_power_nat @ N @ N ) ) ) ).
% fact_le_power
thf(fact_4709_ln__2__less__1,axiom,
ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).
% ln_2_less_1
thf(fact_4710_ln__ge__zero__imp__ge__one,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ one_one_real @ X ) ) ) ).
% ln_ge_zero_imp_ge_one
thf(fact_4711_ln__add__one__self__le__self,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).
% ln_add_one_self_le_self
thf(fact_4712_ln__mult,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ln_ln_real @ ( times_times_real @ X @ Y4 ) )
= ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y4 ) ) ) ) ) ).
% ln_mult
thf(fact_4713_ln__eq__minus__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ln_ln_real @ X )
= ( minus_minus_real @ X @ one_one_real ) )
=> ( X = one_one_real ) ) ) ).
% ln_eq_minus_one
thf(fact_4714_ln__div,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ln_ln_real @ ( divide_divide_real @ X @ Y4 ) )
= ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y4 ) ) ) ) ) ).
% ln_div
thf(fact_4715_fact__div__fact__le__pow,axiom,
! [R2: nat,N: nat] :
( ( ord_less_eq_nat @ R2 @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ R2 ) ) ) @ ( power_power_nat @ N @ R2 ) ) ) ).
% fact_div_fact_le_pow
thf(fact_4716_binomial__fact__lemma,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( binomial @ N @ K ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% binomial_fact_lemma
thf(fact_4717_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).
% choose_dvd
thf(fact_4718_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% choose_dvd
thf(fact_4719_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% choose_dvd
thf(fact_4720_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).
% choose_dvd
thf(fact_4721_choose__dvd,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% choose_dvd
thf(fact_4722_ln__le__minus__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).
% ln_le_minus_one
thf(fact_4723_ln__diff__le,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y4 ) ) @ ( divide_divide_real @ ( minus_minus_real @ X @ Y4 ) @ Y4 ) ) ) ) ).
% ln_diff_le
thf(fact_4724_ln__realpow,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ln_ln_real @ ( power_power_real @ X @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X ) ) ) ) ).
% ln_realpow
thf(fact_4725_binomial__altdef__nat,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( binomial @ N @ K )
= ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_altdef_nat
thf(fact_4726_signed__take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% signed_take_bit_int_less_exp
thf(fact_4727_num_Osize__gen_I1_J,axiom,
( ( size_num @ one )
= zero_zero_nat ) ).
% num.size_gen(1)
thf(fact_4728_even__signed__take__bit__iff,axiom,
! [M: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_signed_take_bit_iff
thf(fact_4729_even__signed__take__bit__iff,axiom,
! [M: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_signed_take_bit_iff
thf(fact_4730_square__fact__le__2__fact,axiom,
! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% square_fact_le_2_fact
thf(fact_4731_fact__num__eq__if,axiom,
( semiri773545260158071498ct_rat
= ( ^ [M5: nat] : ( if_rat @ ( M5 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ M5 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_4732_fact__num__eq__if,axiom,
( semiri1406184849735516958ct_int
= ( ^ [M5: nat] : ( if_int @ ( M5 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_4733_fact__num__eq__if,axiom,
( semiri1408675320244567234ct_nat
= ( ^ [M5: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M5 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_4734_fact__num__eq__if,axiom,
( semiri2265585572941072030t_real
= ( ^ [M5: nat] : ( if_real @ ( M5 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M5 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_4735_fact__num__eq__if,axiom,
( semiri5044797733671781792omplex
= ( ^ [M5: nat] : ( if_complex @ ( M5 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ M5 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ M5 @ one_one_nat ) ) ) ) ) ) ).
% fact_num_eq_if
thf(fact_4736_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri773545260158071498ct_rat @ N )
= ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_4737_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri1406184849735516958ct_int @ N )
= ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_4738_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri1408675320244567234ct_nat @ N )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_4739_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri2265585572941072030t_real @ N )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_4740_fact__reduce,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( semiri5044797733671781792omplex @ N )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).
% fact_reduce
thf(fact_4741_signed__take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).
% signed_take_bit_int_less_self_iff
thf(fact_4742_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% signed_take_bit_int_greater_eq_self_iff
thf(fact_4743_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) )
= ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_4744_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) )
= ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_4745_fact__binomial,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) ) )
= ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).
% fact_binomial
thf(fact_4746_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) )
= ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N ) @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_4747_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
= ( divide_divide_real @ ( semiri2265585572941072030t_real @ N ) @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_4748_binomial__fact,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) )
= ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N ) @ ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).
% binomial_fact
thf(fact_4749_add__0__iff,axiom,
! [B: complex,A: complex] :
( ( B
= ( plus_plus_complex @ B @ A ) )
= ( A = zero_zero_complex ) ) ).
% add_0_iff
thf(fact_4750_add__0__iff,axiom,
! [B: real,A: real] :
( ( B
= ( plus_plus_real @ B @ A ) )
= ( A = zero_zero_real ) ) ).
% add_0_iff
thf(fact_4751_add__0__iff,axiom,
! [B: rat,A: rat] :
( ( B
= ( plus_plus_rat @ B @ A ) )
= ( A = zero_zero_rat ) ) ).
% add_0_iff
thf(fact_4752_add__0__iff,axiom,
! [B: nat,A: nat] :
( ( B
= ( plus_plus_nat @ B @ A ) )
= ( A = zero_zero_nat ) ) ).
% add_0_iff
thf(fact_4753_add__0__iff,axiom,
! [B: int,A: int] :
( ( B
= ( plus_plus_int @ B @ A ) )
= ( A = zero_zero_int ) ) ).
% add_0_iff
thf(fact_4754_crossproduct__eq,axiom,
! [W: real,Y4: real,X: real,Z: real] :
( ( ( plus_plus_real @ ( times_times_real @ W @ Y4 ) @ ( times_times_real @ X @ Z ) )
= ( plus_plus_real @ ( times_times_real @ W @ Z ) @ ( times_times_real @ X @ Y4 ) ) )
= ( ( W = X )
| ( Y4 = Z ) ) ) ).
% crossproduct_eq
thf(fact_4755_crossproduct__eq,axiom,
! [W: rat,Y4: rat,X: rat,Z: rat] :
( ( ( plus_plus_rat @ ( times_times_rat @ W @ Y4 ) @ ( times_times_rat @ X @ Z ) )
= ( plus_plus_rat @ ( times_times_rat @ W @ Z ) @ ( times_times_rat @ X @ Y4 ) ) )
= ( ( W = X )
| ( Y4 = Z ) ) ) ).
% crossproduct_eq
thf(fact_4756_crossproduct__eq,axiom,
! [W: nat,Y4: nat,X: nat,Z: nat] :
( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y4 ) @ ( times_times_nat @ X @ Z ) )
= ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X @ Y4 ) ) )
= ( ( W = X )
| ( Y4 = Z ) ) ) ).
% crossproduct_eq
thf(fact_4757_crossproduct__eq,axiom,
! [W: int,Y4: int,X: int,Z: int] :
( ( ( plus_plus_int @ ( times_times_int @ W @ Y4 ) @ ( times_times_int @ X @ Z ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X @ Y4 ) ) )
= ( ( W = X )
| ( Y4 = Z ) ) ) ).
% crossproduct_eq
thf(fact_4758_crossproduct__noteq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
!= ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_4759_crossproduct__noteq,axiom,
! [A: rat,B: rat,C: rat,D: rat] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) )
!= ( plus_plus_rat @ ( times_times_rat @ A @ D ) @ ( times_times_rat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_4760_crossproduct__noteq,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
!= ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_4761_crossproduct__noteq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( A != B )
& ( C != D ) )
= ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
!= ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_4762_signed__take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
=> ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) ) ) ).
% signed_take_bit_int_less_eq
thf(fact_4763_eq__diff__eq_H,axiom,
! [X: real,Y4: real,Z: real] :
( ( X
= ( minus_minus_real @ Y4 @ Z ) )
= ( Y4
= ( plus_plus_real @ X @ Z ) ) ) ).
% eq_diff_eq'
thf(fact_4764_ln__one__plus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( minus_minus_real @ X @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) ) ) ) ).
% ln_one_plus_pos_lower_bound
thf(fact_4765_num_Osize__gen_I2_J,axiom,
! [X2: num] :
( ( size_num @ ( bit0 @ X2 ) )
= ( plus_plus_nat @ ( size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(2)
thf(fact_4766_binomial__code,axiom,
( binomial
= ( ^ [N4: nat,K3: nat] : ( if_nat @ ( ord_less_nat @ N4 @ K3 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N4 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K3 ) ) @ ( binomial @ N4 @ ( minus_minus_nat @ N4 @ K3 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N4 @ K3 ) @ one_one_nat ) @ N4 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K3 ) ) ) ) ) ) ).
% binomial_code
thf(fact_4767_tanh__ln__real,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( tanh_real @ ( ln_ln_real @ X ) )
= ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% tanh_ln_real
thf(fact_4768_ln__one__minus__pos__lower__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).
% ln_one_minus_pos_lower_bound
thf(fact_4769_signed__take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_Suc_minus_bit1
thf(fact_4770_signed__take__bit__rec,axiom,
( bit_ri6519982836138164636nteger
= ( ^ [N4: nat,A3: code_integer] : ( if_Code_integer @ ( N4 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_4771_signed__take__bit__rec,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N4: nat,A3: int] : ( if_int @ ( N4 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% signed_take_bit_rec
thf(fact_4772_map__cnt,axiom,
( ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ vEBT_VEBT_cnt @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ zero_zero_real )
= ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( suc @ ( suc @ ( divide_divide_nat @ va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% map_cnt
thf(fact_4773_abs__ln__one__plus__x__minus__x__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound
thf(fact_4774_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4775_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4776_add_Oinverse__inverse,axiom,
! [A: complex] :
( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4777_add_Oinverse__inverse,axiom,
! [A: code_integer] :
( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4778_add_Oinverse__inverse,axiom,
! [A: rat] :
( ( uminus_uminus_rat @ ( uminus_uminus_rat @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_4779_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4780_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4781_neg__equal__iff__equal,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= ( uminus1482373934393186551omplex @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4782_neg__equal__iff__equal,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= ( uminus1351360451143612070nteger @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4783_neg__equal__iff__equal,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= ( uminus_uminus_rat @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_4784_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4785_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4786_verit__minus__simplify_I4_J,axiom,
! [B: complex] :
( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4787_verit__minus__simplify_I4_J,axiom,
! [B: code_integer] :
( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4788_verit__minus__simplify_I4_J,axiom,
! [B: rat] :
( ( uminus_uminus_rat @ ( uminus_uminus_rat @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_4789_Compl__subset__Compl__iff,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( uminus1532241313380277803et_int @ B4 ) )
= ( ord_less_eq_set_int @ B4 @ A2 ) ) ).
% Compl_subset_Compl_iff
thf(fact_4790_Compl__anti__mono,axiom,
! [A2: set_int,B4: set_int] :
( ( ord_less_eq_set_int @ A2 @ B4 )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ B4 ) @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).
% Compl_anti_mono
thf(fact_4791_abs__idempotent,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_idempotent
thf(fact_4792_abs__idempotent,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_idempotent
thf(fact_4793_abs__idempotent,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_idempotent
thf(fact_4794_abs__idempotent,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_idempotent
thf(fact_4795_abs__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( abs_abs_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_abs
thf(fact_4796_abs__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( abs_abs_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_abs
thf(fact_4797_abs__abs,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_abs
thf(fact_4798_abs__abs,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_abs
thf(fact_4799_neg__le__iff__le,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4800_neg__le__iff__le,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4801_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4802_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_4803_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_4804_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_4805_neg__equal__zero,axiom,
! [A: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= A )
= ( A = zero_z3403309356797280102nteger ) ) ).
% neg_equal_zero
thf(fact_4806_neg__equal__zero,axiom,
! [A: rat] :
( ( ( uminus_uminus_rat @ A )
= A )
= ( A = zero_zero_rat ) ) ).
% neg_equal_zero
thf(fact_4807_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_4808_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_4809_equal__neg__zero,axiom,
! [A: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ A ) )
= ( A = zero_z3403309356797280102nteger ) ) ).
% equal_neg_zero
thf(fact_4810_equal__neg__zero,axiom,
! [A: rat] :
( ( A
= ( uminus_uminus_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% equal_neg_zero
thf(fact_4811_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_4812_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_4813_neg__equal__0__iff__equal,axiom,
! [A: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% neg_equal_0_iff_equal
thf(fact_4814_neg__equal__0__iff__equal,axiom,
! [A: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% neg_equal_0_iff_equal
thf(fact_4815_neg__equal__0__iff__equal,axiom,
! [A: rat] :
( ( ( uminus_uminus_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% neg_equal_0_iff_equal
thf(fact_4816_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4817_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4818_neg__0__equal__iff__equal,axiom,
! [A: complex] :
( ( zero_zero_complex
= ( uminus1482373934393186551omplex @ A ) )
= ( zero_zero_complex = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4819_neg__0__equal__iff__equal,axiom,
! [A: code_integer] :
( ( zero_z3403309356797280102nteger
= ( uminus1351360451143612070nteger @ A ) )
= ( zero_z3403309356797280102nteger = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4820_neg__0__equal__iff__equal,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( uminus_uminus_rat @ A ) )
= ( zero_zero_rat = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_4821_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_4822_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_4823_add_Oinverse__neutral,axiom,
( ( uminus1482373934393186551omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% add.inverse_neutral
thf(fact_4824_add_Oinverse__neutral,axiom,
( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% add.inverse_neutral
thf(fact_4825_add_Oinverse__neutral,axiom,
( ( uminus_uminus_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% add.inverse_neutral
thf(fact_4826_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4827_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4828_neg__less__iff__less,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4829_neg__less__iff__less,axiom,
! [B: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_4830_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4831_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4832_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4833_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4834_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_4835_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4836_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4837_mult__minus__left,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4838_mult__minus__left,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4839_mult__minus__left,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_4840_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4841_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4842_minus__mult__minus,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( times_times_complex @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4843_minus__mult__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( times_3573771949741848930nteger @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4844_minus__mult__minus,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( times_times_rat @ A @ B ) ) ).
% minus_mult_minus
thf(fact_4845_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4846_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4847_mult__minus__right,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4848_mult__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4849_mult__minus__right,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_4850_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4851_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4852_add__minus__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4853_add__minus__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4854_add__minus__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_4855_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4856_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4857_minus__add__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4858_minus__add__cancel,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4859_minus__add__cancel,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_4860_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_4861_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_4862_minus__add__distrib,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_add_distrib
thf(fact_4863_minus__add__distrib,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_add_distrib
thf(fact_4864_minus__add__distrib,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_add_distrib
thf(fact_4865_minus__diff__eq,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
= ( minus_minus_real @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4866_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4867_minus__diff__eq,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
= ( minus_minus_complex @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4868_minus__diff__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4869_minus__diff__eq,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
= ( minus_minus_rat @ B @ A ) ) ).
% minus_diff_eq
thf(fact_4870_div__minus__minus,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ A @ B ) ) ).
% div_minus_minus
thf(fact_4871_div__minus__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( divide6298287555418463151nteger @ A @ B ) ) ).
% div_minus_minus
thf(fact_4872_abs__0,axiom,
( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% abs_0
thf(fact_4873_abs__0,axiom,
( ( abs_abs_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% abs_0
thf(fact_4874_abs__0,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_0
thf(fact_4875_abs__0,axiom,
( ( abs_abs_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% abs_0
thf(fact_4876_abs__0,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_0
thf(fact_4877_abs__zero,axiom,
( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% abs_zero
thf(fact_4878_abs__zero,axiom,
( ( abs_abs_real @ zero_zero_real )
= zero_zero_real ) ).
% abs_zero
thf(fact_4879_abs__zero,axiom,
( ( abs_abs_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% abs_zero
thf(fact_4880_abs__zero,axiom,
( ( abs_abs_int @ zero_zero_int )
= zero_zero_int ) ).
% abs_zero
thf(fact_4881_abs__eq__0,axiom,
! [A: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_eq_0
thf(fact_4882_abs__eq__0,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0
thf(fact_4883_abs__eq__0,axiom,
! [A: rat] :
( ( ( abs_abs_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_eq_0
thf(fact_4884_abs__eq__0,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0
thf(fact_4885_abs__0__eq,axiom,
! [A: code_integer] :
( ( zero_z3403309356797280102nteger
= ( abs_abs_Code_integer @ A ) )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_0_eq
thf(fact_4886_abs__0__eq,axiom,
! [A: real] :
( ( zero_zero_real
= ( abs_abs_real @ A ) )
= ( A = zero_zero_real ) ) ).
% abs_0_eq
thf(fact_4887_abs__0__eq,axiom,
! [A: rat] :
( ( zero_zero_rat
= ( abs_abs_rat @ A ) )
= ( A = zero_zero_rat ) ) ).
% abs_0_eq
thf(fact_4888_abs__0__eq,axiom,
! [A: int] :
( ( zero_zero_int
= ( abs_abs_int @ A ) )
= ( A = zero_zero_int ) ) ).
% abs_0_eq
thf(fact_4889_minus__dvd__iff,axiom,
! [X: real,Y4: real] :
( ( dvd_dvd_real @ ( uminus_uminus_real @ X ) @ Y4 )
= ( dvd_dvd_real @ X @ Y4 ) ) ).
% minus_dvd_iff
thf(fact_4890_minus__dvd__iff,axiom,
! [X: int,Y4: int] :
( ( dvd_dvd_int @ ( uminus_uminus_int @ X ) @ Y4 )
= ( dvd_dvd_int @ X @ Y4 ) ) ).
% minus_dvd_iff
thf(fact_4891_minus__dvd__iff,axiom,
! [X: complex,Y4: complex] :
( ( dvd_dvd_complex @ ( uminus1482373934393186551omplex @ X ) @ Y4 )
= ( dvd_dvd_complex @ X @ Y4 ) ) ).
% minus_dvd_iff
thf(fact_4892_minus__dvd__iff,axiom,
! [X: code_integer,Y4: code_integer] :
( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X ) @ Y4 )
= ( dvd_dvd_Code_integer @ X @ Y4 ) ) ).
% minus_dvd_iff
thf(fact_4893_minus__dvd__iff,axiom,
! [X: rat,Y4: rat] :
( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X ) @ Y4 )
= ( dvd_dvd_rat @ X @ Y4 ) ) ).
% minus_dvd_iff
thf(fact_4894_dvd__minus__iff,axiom,
! [X: real,Y4: real] :
( ( dvd_dvd_real @ X @ ( uminus_uminus_real @ Y4 ) )
= ( dvd_dvd_real @ X @ Y4 ) ) ).
% dvd_minus_iff
thf(fact_4895_dvd__minus__iff,axiom,
! [X: int,Y4: int] :
( ( dvd_dvd_int @ X @ ( uminus_uminus_int @ Y4 ) )
= ( dvd_dvd_int @ X @ Y4 ) ) ).
% dvd_minus_iff
thf(fact_4896_dvd__minus__iff,axiom,
! [X: complex,Y4: complex] :
( ( dvd_dvd_complex @ X @ ( uminus1482373934393186551omplex @ Y4 ) )
= ( dvd_dvd_complex @ X @ Y4 ) ) ).
% dvd_minus_iff
thf(fact_4897_dvd__minus__iff,axiom,
! [X: code_integer,Y4: code_integer] :
( ( dvd_dvd_Code_integer @ X @ ( uminus1351360451143612070nteger @ Y4 ) )
= ( dvd_dvd_Code_integer @ X @ Y4 ) ) ).
% dvd_minus_iff
thf(fact_4898_dvd__minus__iff,axiom,
! [X: rat,Y4: rat] :
( ( dvd_dvd_rat @ X @ ( uminus_uminus_rat @ Y4 ) )
= ( dvd_dvd_rat @ X @ Y4 ) ) ).
% dvd_minus_iff
thf(fact_4899_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N ) )
= ( numera6620942414471956472nteger @ N ) ) ).
% abs_numeral
thf(fact_4900_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_numeral
thf(fact_4901_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_rat @ N ) ) ).
% abs_numeral
thf(fact_4902_abs__numeral,axiom,
! [N: num] :
( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% abs_numeral
thf(fact_4903_abs__mult__self__eq,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
= ( times_3573771949741848930nteger @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4904_abs__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
= ( times_times_real @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4905_abs__mult__self__eq,axiom,
! [A: rat] :
( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
= ( times_times_rat @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4906_abs__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
= ( times_times_int @ A @ A ) ) ).
% abs_mult_self_eq
thf(fact_4907_abs__add__abs,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
= ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_add_abs
thf(fact_4908_abs__add__abs,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
= ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_add_abs
thf(fact_4909_abs__add__abs,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
= ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_add_abs
thf(fact_4910_abs__add__abs,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
= ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_add_abs
thf(fact_4911_abs__1,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_1
thf(fact_4912_abs__1,axiom,
( ( abs_abs_complex @ one_one_complex )
= one_one_complex ) ).
% abs_1
thf(fact_4913_abs__1,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_1
thf(fact_4914_abs__1,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_1
thf(fact_4915_abs__1,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_1
thf(fact_4916_abs__divide,axiom,
! [A: complex,B: complex] :
( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).
% abs_divide
thf(fact_4917_abs__divide,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_divide
thf(fact_4918_abs__divide,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_divide
thf(fact_4919_abs__minus__cancel,axiom,
! [A: real] :
( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_minus_cancel
thf(fact_4920_abs__minus__cancel,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus_cancel
thf(fact_4921_abs__minus__cancel,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_minus_cancel
thf(fact_4922_abs__minus__cancel,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_minus_cancel
thf(fact_4923_abs__minus,axiom,
! [A: real] :
( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
= ( abs_abs_real @ A ) ) ).
% abs_minus
thf(fact_4924_abs__minus,axiom,
! [A: int] :
( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
= ( abs_abs_int @ A ) ) ).
% abs_minus
thf(fact_4925_abs__minus,axiom,
! [A: complex] :
( ( abs_abs_complex @ ( uminus1482373934393186551omplex @ A ) )
= ( abs_abs_complex @ A ) ) ).
% abs_minus
thf(fact_4926_abs__minus,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( abs_abs_Code_integer @ A ) ) ).
% abs_minus
thf(fact_4927_abs__minus,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
= ( abs_abs_rat @ A ) ) ).
% abs_minus
thf(fact_4928_mod__minus__minus,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_minus_minus
thf(fact_4929_mod__minus__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).
% mod_minus_minus
thf(fact_4930_dvd__abs__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
= ( dvd_dvd_real @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4931_dvd__abs__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
= ( dvd_dvd_int @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4932_dvd__abs__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4933_dvd__abs__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
= ( dvd_dvd_rat @ M @ K ) ) ).
% dvd_abs_iff
thf(fact_4934_abs__dvd__iff,axiom,
! [M: real,K: real] :
( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
= ( dvd_dvd_real @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4935_abs__dvd__iff,axiom,
! [M: int,K: int] :
( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
= ( dvd_dvd_int @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4936_abs__dvd__iff,axiom,
! [M: code_integer,K: code_integer] :
( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
= ( dvd_dvd_Code_integer @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4937_abs__dvd__iff,axiom,
! [M: rat,K: rat] :
( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
= ( dvd_dvd_rat @ M @ K ) ) ).
% abs_dvd_iff
thf(fact_4938_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
= ( semiri4939895301339042750nteger @ N ) ) ).
% abs_of_nat
thf(fact_4939_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% abs_of_nat
thf(fact_4940_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( semiri681578069525770553at_rat @ N ) ) ).
% abs_of_nat
thf(fact_4941_abs__of__nat,axiom,
! [N: nat] :
( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% abs_of_nat
thf(fact_4942_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_real @ ( zero_n3304061248610475627l_real @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% abs_bool_eq
thf(fact_4943_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
= ( zero_n2052037380579107095ol_rat @ P ) ) ).
% abs_bool_eq
thf(fact_4944_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_int @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% abs_bool_eq
thf(fact_4945_abs__bool__eq,axiom,
! [P: $o] :
( ( abs_abs_Code_integer @ ( zero_n356916108424825756nteger @ P ) )
= ( zero_n356916108424825756nteger @ P ) ) ).
% abs_bool_eq
thf(fact_4946_tanh__0,axiom,
( ( tanh_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% tanh_0
thf(fact_4947_tanh__0,axiom,
( ( tanh_real @ zero_zero_real )
= zero_zero_real ) ).
% tanh_0
thf(fact_4948_tanh__real__zero__iff,axiom,
! [X: real] :
( ( ( tanh_real @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% tanh_real_zero_iff
thf(fact_4949_tanh__real__le__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( tanh_real @ X ) @ ( tanh_real @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ).
% tanh_real_le_iff
thf(fact_4950_neg__less__eq__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4951_neg__less__eq__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4952_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4953_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_4954_less__eq__neg__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_eq_neg_nonpos
thf(fact_4955_less__eq__neg__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% less_eq_neg_nonpos
thf(fact_4956_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_4957_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_4958_neg__le__0__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4959_neg__le__0__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4960_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4961_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_4962_neg__0__le__iff__le,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_le_iff_le
thf(fact_4963_neg__0__le__iff__le,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% neg_0_le_iff_le
thf(fact_4964_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_4965_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_4966_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_4967_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_4968_less__neg__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% less_neg_neg
thf(fact_4969_less__neg__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% less_neg_neg
thf(fact_4970_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_4971_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_4972_neg__less__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_pos
thf(fact_4973_neg__less__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_pos
thf(fact_4974_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_4975_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_4976_neg__0__less__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% neg_0_less_iff_less
thf(fact_4977_neg__0__less__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% neg_0_less_iff_less
thf(fact_4978_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4979_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4980_neg__less__0__iff__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4981_neg__less__0__iff__less,axiom,
! [A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% neg_less_0_iff_less
thf(fact_4982_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_4983_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_4984_ab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_left_minus
thf(fact_4985_ab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_left_minus
thf(fact_4986_ab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_left_minus
thf(fact_4987_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_4988_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_4989_add_Oright__inverse,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
= zero_zero_complex ) ).
% add.right_inverse
thf(fact_4990_add_Oright__inverse,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
= zero_z3403309356797280102nteger ) ).
% add.right_inverse
thf(fact_4991_add_Oright__inverse,axiom,
! [A: rat] :
( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
= zero_zero_rat ) ).
% add.right_inverse
thf(fact_4992_verit__minus__simplify_I3_J,axiom,
! [B: real] :
( ( minus_minus_real @ zero_zero_real @ B )
= ( uminus_uminus_real @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4993_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4994_verit__minus__simplify_I3_J,axiom,
! [B: complex] :
( ( minus_minus_complex @ zero_zero_complex @ B )
= ( uminus1482373934393186551omplex @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4995_verit__minus__simplify_I3_J,axiom,
! [B: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4996_verit__minus__simplify_I3_J,axiom,
! [B: rat] :
( ( minus_minus_rat @ zero_zero_rat @ B )
= ( uminus_uminus_rat @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_4997_diff__0,axiom,
! [A: real] :
( ( minus_minus_real @ zero_zero_real @ A )
= ( uminus_uminus_real @ A ) ) ).
% diff_0
thf(fact_4998_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_4999_diff__0,axiom,
! [A: complex] :
( ( minus_minus_complex @ zero_zero_complex @ A )
= ( uminus1482373934393186551omplex @ A ) ) ).
% diff_0
thf(fact_5000_diff__0,axiom,
! [A: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
= ( uminus1351360451143612070nteger @ A ) ) ).
% diff_0
thf(fact_5001_diff__0,axiom,
! [A: rat] :
( ( minus_minus_rat @ zero_zero_rat @ A )
= ( uminus_uminus_rat @ A ) ) ).
% diff_0
thf(fact_5002_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5003_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5004_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5005_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5006_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_5007_mult__minus1__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1_right
thf(fact_5008_mult__minus1__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1_right
thf(fact_5009_mult__minus1__right,axiom,
! [Z: complex] :
( ( times_times_complex @ Z @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ Z ) ) ).
% mult_minus1_right
thf(fact_5010_mult__minus1__right,axiom,
! [Z: code_integer] :
( ( times_3573771949741848930nteger @ Z @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ Z ) ) ).
% mult_minus1_right
thf(fact_5011_mult__minus1__right,axiom,
! [Z: rat] :
( ( times_times_rat @ Z @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ Z ) ) ).
% mult_minus1_right
thf(fact_5012_mult__minus1,axiom,
! [Z: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1
thf(fact_5013_mult__minus1,axiom,
! [Z: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1
thf(fact_5014_mult__minus1,axiom,
! [Z: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z )
= ( uminus1482373934393186551omplex @ Z ) ) ).
% mult_minus1
thf(fact_5015_mult__minus1,axiom,
! [Z: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z )
= ( uminus1351360451143612070nteger @ Z ) ) ).
% mult_minus1
thf(fact_5016_mult__minus1,axiom,
! [Z: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z )
= ( uminus_uminus_rat @ Z ) ) ).
% mult_minus1
thf(fact_5017_abs__le__zero__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_le_zero_iff
thf(fact_5018_abs__le__zero__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_le_zero_iff
thf(fact_5019_abs__le__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_le_zero_iff
thf(fact_5020_abs__le__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_le_zero_iff
thf(fact_5021_abs__le__self__iff,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
= ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% abs_le_self_iff
thf(fact_5022_abs__le__self__iff,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% abs_le_self_iff
thf(fact_5023_abs__le__self__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% abs_le_self_iff
thf(fact_5024_abs__le__self__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% abs_le_self_iff
thf(fact_5025_abs__of__nonneg,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_5026_abs__of__nonneg,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_5027_abs__of__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_5028_abs__of__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_nonneg
thf(fact_5029_diff__minus__eq__add,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
= ( plus_plus_real @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5030_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5031_diff__minus__eq__add,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( plus_plus_complex @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5032_diff__minus__eq__add,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( plus_p5714425477246183910nteger @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5033_diff__minus__eq__add,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( plus_plus_rat @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_5034_uminus__add__conv__diff,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
= ( minus_minus_real @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5035_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5036_uminus__add__conv__diff,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( minus_minus_complex @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5037_uminus__add__conv__diff,axiom,
! [A: code_integer,B: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( minus_8373710615458151222nteger @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5038_uminus__add__conv__diff,axiom,
! [A: rat,B: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( minus_minus_rat @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_5039_zero__less__abs__iff,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
= ( A != zero_z3403309356797280102nteger ) ) ).
% zero_less_abs_iff
thf(fact_5040_zero__less__abs__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
= ( A != zero_zero_real ) ) ).
% zero_less_abs_iff
thf(fact_5041_zero__less__abs__iff,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
= ( A != zero_zero_rat ) ) ).
% zero_less_abs_iff
thf(fact_5042_zero__less__abs__iff,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
= ( A != zero_zero_int ) ) ).
% zero_less_abs_iff
thf(fact_5043_div__minus1__right,axiom,
! [A: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ A ) ) ).
% div_minus1_right
thf(fact_5044_div__minus1__right,axiom,
! [A: code_integer] :
( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ A ) ) ).
% div_minus1_right
thf(fact_5045_divide__minus1,axiom,
! [X: real] :
( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ X ) ) ).
% divide_minus1
thf(fact_5046_divide__minus1,axiom,
! [X: complex] :
( ( divide1717551699836669952omplex @ X @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ X ) ) ).
% divide_minus1
thf(fact_5047_divide__minus1,axiom,
! [X: rat] :
( ( divide_divide_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ X ) ) ).
% divide_minus1
thf(fact_5048_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ N ) ) ).
% abs_neg_numeral
thf(fact_5049_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ N ) ) ).
% abs_neg_numeral
thf(fact_5050_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ N ) ) ).
% abs_neg_numeral
thf(fact_5051_abs__neg__numeral,axiom,
! [N: num] :
( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ N ) ) ).
% abs_neg_numeral
thf(fact_5052_abs__neg__one,axiom,
( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
= one_one_real ) ).
% abs_neg_one
thf(fact_5053_abs__neg__one,axiom,
( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
= one_one_int ) ).
% abs_neg_one
thf(fact_5054_abs__neg__one,axiom,
( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= one_one_Code_integer ) ).
% abs_neg_one
thf(fact_5055_abs__neg__one,axiom,
( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= one_one_rat ) ).
% abs_neg_one
thf(fact_5056_minus__mod__self1,axiom,
! [B: int,A: int] :
( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_mod_self1
thf(fact_5057_minus__mod__self1,axiom,
! [B: code_integer,A: code_integer] :
( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% minus_mod_self1
thf(fact_5058_negative__eq__positive,axiom,
! [N: nat,M: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ M ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_5059_real__add__minus__iff,axiom,
! [X: real,A: real] :
( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X = A ) ) ).
% real_add_minus_iff
thf(fact_5060_signed__take__bit__of__minus__1,axiom,
! [N: nat] :
( ( bit_ri6519982836138164636nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% signed_take_bit_of_minus_1
thf(fact_5061_signed__take__bit__of__minus__1,axiom,
! [N: nat] :
( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% signed_take_bit_of_minus_1
thf(fact_5062_negative__zle,axiom,
! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zle
thf(fact_5063_tanh__real__neg__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( tanh_real @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% tanh_real_neg_iff
thf(fact_5064_tanh__real__pos__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( tanh_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% tanh_real_pos_iff
thf(fact_5065_tanh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( tanh_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% tanh_real_nonpos_iff
thf(fact_5066_tanh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% tanh_real_nonneg_iff
thf(fact_5067_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5068_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5069_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5070_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5071_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_5072_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_inc_simps(4)
thf(fact_5073_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_inc_simps(4)
thf(fact_5074_dbl__inc__simps_I4_J,axiom,
( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_inc_simps(4)
thf(fact_5075_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_inc_simps(4)
thf(fact_5076_dbl__inc__simps_I4_J,axiom,
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_inc_simps(4)
thf(fact_5077_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_5078_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_5079_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= zero_zero_complex ) ).
% add_neg_numeral_special(8)
thf(fact_5080_add__neg__numeral__special_I8_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(8)
thf(fact_5081_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= zero_zero_rat ) ).
% add_neg_numeral_special(8)
thf(fact_5082_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_5083_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_5084_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% add_neg_numeral_special(7)
thf(fact_5085_add__neg__numeral__special_I7_J,axiom,
( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% add_neg_numeral_special(7)
thf(fact_5086_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% add_neg_numeral_special(7)
thf(fact_5087_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_5088_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_5089_diff__numeral__special_I12_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% diff_numeral_special(12)
thf(fact_5090_diff__numeral__special_I12_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% diff_numeral_special(12)
thf(fact_5091_diff__numeral__special_I12_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= zero_zero_rat ) ).
% diff_numeral_special(12)
thf(fact_5092_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5093_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5094_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5095_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5096_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_rat @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_5097_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5098_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5099_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5100_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5101_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_5102_divide__le__0__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
= ( ( ord_less_eq_rat @ A @ zero_zero_rat )
| ( B = zero_zero_rat ) ) ) ).
% divide_le_0_abs_iff
thf(fact_5103_divide__le__0__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
= ( ( ord_less_eq_real @ A @ zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_le_0_abs_iff
thf(fact_5104_zero__le__divide__abs__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( B = zero_zero_rat ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_5105_zero__le__divide__abs__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( B = zero_zero_real ) ) ) ).
% zero_le_divide_abs_iff
thf(fact_5106_abs__of__nonpos,axiom,
! [A: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5107_abs__of__nonpos,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5108_abs__of__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5109_abs__of__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_nonpos
thf(fact_5110_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
= one_one_real ) ).
% minus_one_mult_self
thf(fact_5111_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_5112_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
= one_one_complex ) ).
% minus_one_mult_self
thf(fact_5113_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) )
= one_one_Code_integer ) ).
% minus_one_mult_self
thf(fact_5114_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) )
= one_one_rat ) ).
% minus_one_mult_self
thf(fact_5115_left__minus__one__mult__self,axiom,
! [N: nat,A: real] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5116_left__minus__one__mult__self,axiom,
! [N: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5117_left__minus__one__mult__self,axiom,
! [N: nat,A: complex] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5118_left__minus__one__mult__self,axiom,
! [N: nat,A: code_integer] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5119_left__minus__one__mult__self,axiom,
! [N: nat,A: rat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_5120_mod__minus1__right,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% mod_minus1_right
thf(fact_5121_mod__minus1__right,axiom,
! [A: code_integer] :
( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% mod_minus1_right
thf(fact_5122_norm__neg__numeral,axiom,
! [W: num] :
( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_neg_numeral
thf(fact_5123_norm__neg__numeral,axiom,
! [W: num] :
( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( numeral_numeral_real @ W ) ) ).
% norm_neg_numeral
thf(fact_5124_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y4: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y4 ) )
= ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(168)
thf(fact_5125_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y4: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y4 ) )
= ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(168)
thf(fact_5126_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y4: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y4 ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(168)
thf(fact_5127_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y4: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y4 ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(168)
thf(fact_5128_semiring__norm_I168_J,axiom,
! [V: num,W: num,Y4: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y4 ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(168)
thf(fact_5129_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5130_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5131_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5132_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5133_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_5134_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5135_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5136_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5137_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5138_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_5139_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y4: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y4 ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y4 ) ) ).
% semiring_norm(172)
thf(fact_5140_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y4: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y4 ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y4 ) ) ).
% semiring_norm(172)
thf(fact_5141_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y4: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y4 ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y4 ) ) ).
% semiring_norm(172)
thf(fact_5142_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y4: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y4 ) )
= ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y4 ) ) ).
% semiring_norm(172)
thf(fact_5143_semiring__norm_I172_J,axiom,
! [V: num,W: num,Y4: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y4 ) )
= ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y4 ) ) ).
% semiring_norm(172)
thf(fact_5144_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y4: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y4 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(171)
thf(fact_5145_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y4: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y4 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(171)
thf(fact_5146_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y4: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y4 ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(171)
thf(fact_5147_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y4: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y4 ) )
= ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(171)
thf(fact_5148_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y4: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y4 ) )
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(171)
thf(fact_5149_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y4: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y4 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(170)
thf(fact_5150_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y4: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y4 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(170)
thf(fact_5151_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y4: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y4 ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(170)
thf(fact_5152_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y4: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y4 ) )
= ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(170)
thf(fact_5153_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y4: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y4 ) )
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y4 ) ) ).
% semiring_norm(170)
thf(fact_5154_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5155_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5156_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5157_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5158_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_5159_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5160_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5161_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5162_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5163_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_5164_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5165_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5166_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5167_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5168_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_5169_negative__zless,axiom,
! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zless
thf(fact_5170_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5171_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5172_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5173_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_5174_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5175_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5176_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5177_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_5178_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5179_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5180_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5181_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_5182_divide__le__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_5183_divide__le__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_5184_le__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_5185_le__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_5186_divide__eq__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5187_divide__eq__eq__numeral1_I2_J,axiom,
! [B: complex,W: num,A: complex] :
( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= A )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
!= zero_zero_complex )
=> ( B
= ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5188_divide__eq__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
!= zero_zero_rat )
=> ( B
= ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_5189_eq__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5190_eq__divide__eq__numeral1_I2_J,axiom,
! [A: complex,B: complex,W: num] :
( ( A
= ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
= ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
!= zero_zero_complex )
=> ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= B ) )
& ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5191_eq__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( A
= ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
!= zero_zero_rat )
=> ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_5192_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5193_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5194_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5195_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_5196_divide__less__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_5197_divide__less__eq__numeral1_I2_J,axiom,
! [B: rat,W: num,A: rat] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_5198_less__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_5199_less__divide__eq__numeral1_I2_J,axiom,
! [A: rat,B: rat,W: num] :
( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
= ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_5200_power2__minus,axiom,
! [A: real] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5201_power2__minus,axiom,
! [A: int] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5202_power2__minus,axiom,
! [A: complex] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5203_power2__minus,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5204_power2__minus,axiom,
! [A: rat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_5205_zero__less__power__abs__iff,axiom,
! [A: code_integer,N: nat] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) )
= ( ( A != zero_z3403309356797280102nteger )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5206_zero__less__power__abs__iff,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
= ( ( A != zero_zero_real )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5207_zero__less__power__abs__iff,axiom,
! [A: rat,N: nat] :
( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) )
= ( ( A != zero_zero_rat )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5208_zero__less__power__abs__iff,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
= ( ( A != zero_zero_int )
| ( N = zero_zero_nat ) ) ) ).
% zero_less_power_abs_iff
thf(fact_5209_abs__power2,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5210_abs__power2,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5211_abs__power2,axiom,
! [A: int] :
( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5212_abs__power2,axiom,
! [A: real] :
( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% abs_power2
thf(fact_5213_power2__abs,axiom,
! [A: code_integer] :
( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5214_power2__abs,axiom,
! [A: rat] :
( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5215_power2__abs,axiom,
! [A: int] :
( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5216_power2__abs,axiom,
! [A: real] :
( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_abs
thf(fact_5217_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5218_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5219_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5220_add__neg__numeral__special_I9_J,axiom,
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5221_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_5222_diff__numeral__special_I11_J,axiom,
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5223_diff__numeral__special_I11_J,axiom,
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5224_diff__numeral__special_I11_J,axiom,
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5225_diff__numeral__special_I11_J,axiom,
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5226_diff__numeral__special_I11_J,axiom,
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).
% diff_numeral_special(11)
thf(fact_5227_diff__numeral__special_I10_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5228_diff__numeral__special_I10_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5229_diff__numeral__special_I10_J,axiom,
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5230_diff__numeral__special_I10_J,axiom,
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5231_diff__numeral__special_I10_J,axiom,
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% diff_numeral_special(10)
thf(fact_5232_minus__1__div__2__eq,axiom,
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_2_eq
thf(fact_5233_minus__1__div__2__eq,axiom,
( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% minus_1_div_2_eq
thf(fact_5234_minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% minus_1_mod_2_eq
thf(fact_5235_minus__1__mod__2__eq,axiom,
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% minus_1_mod_2_eq
thf(fact_5236_bits__minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_minus_1_mod_2_eq
thf(fact_5237_bits__minus__1__mod__2__eq,axiom,
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= one_one_Code_integer ) ).
% bits_minus_1_mod_2_eq
thf(fact_5238_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5239_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5240_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5241_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5242_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_5243_power__minus__odd,axiom,
! [N: nat,A: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5244_power__minus__odd,axiom,
! [N: nat,A: int] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5245_power__minus__odd,axiom,
! [N: nat,A: complex] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5246_power__minus__odd,axiom,
! [N: nat,A: code_integer] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5247_power__minus__odd,axiom,
! [N: nat,A: rat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ).
% power_minus_odd
thf(fact_5248_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5249_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5250_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: complex] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( power_power_complex @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5251_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5252_Parity_Oring__1__class_Opower__minus__even,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) ) ).
% Parity.ring_1_class.power_minus_even
thf(fact_5253_power__even__abs__numeral,axiom,
! [W: num,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5254_power__even__abs__numeral,axiom,
! [W: num,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5255_power__even__abs__numeral,axiom,
! [W: num,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5256_power__even__abs__numeral,axiom,
! [W: num,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
=> ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_even_abs_numeral
thf(fact_5257_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5258_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5259_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5260_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5261_diff__numeral__special_I3_J,axiom,
! [N: num] :
( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).
% diff_numeral_special(3)
thf(fact_5262_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5263_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5264_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5265_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5266_diff__numeral__special_I4_J,axiom,
! [M: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).
% diff_numeral_special(4)
thf(fact_5267_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5268_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5269_dbl__simps_I4_J,axiom,
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5270_dbl__simps_I4_J,axiom,
( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5271_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_5272_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_real ) ).
% power_minus1_even
thf(fact_5273_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_int ) ).
% power_minus1_even
thf(fact_5274_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_complex ) ).
% power_minus1_even
thf(fact_5275_power__minus1__even,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_Code_integer ) ).
% power_minus1_even
thf(fact_5276_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_rat ) ).
% power_minus1_even
thf(fact_5277_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= ( uminus_uminus_real @ one_one_real ) ) ) ).
% neg_one_odd_power
thf(fact_5278_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% neg_one_odd_power
thf(fact_5279_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).
% neg_one_odd_power
thf(fact_5280_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).
% neg_one_odd_power
thf(fact_5281_neg__one__odd__power,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ).
% neg_one_odd_power
thf(fact_5282_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= one_one_real ) ) ).
% neg_one_even_power
thf(fact_5283_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= one_one_int ) ) ).
% neg_one_even_power
thf(fact_5284_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= one_one_complex ) ) ).
% neg_one_even_power
thf(fact_5285_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= one_one_Code_integer ) ) ).
% neg_one_even_power
thf(fact_5286_neg__one__even__power,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= one_one_rat ) ) ).
% neg_one_even_power
thf(fact_5287_signed__take__bit__0,axiom,
! [A: code_integer] :
( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_5288_signed__take__bit__0,axiom,
! [A: int] :
( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% signed_take_bit_0
thf(fact_5289_signed__take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_Suc_minus_bit0
thf(fact_5290_signed__take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).
% signed_take_bit_minus
thf(fact_5291_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_5292_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_5293_equation__minus__iff,axiom,
! [A: complex,B: complex] :
( ( A
= ( uminus1482373934393186551omplex @ B ) )
= ( B
= ( uminus1482373934393186551omplex @ A ) ) ) ).
% equation_minus_iff
thf(fact_5294_equation__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ B ) )
= ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% equation_minus_iff
thf(fact_5295_equation__minus__iff,axiom,
! [A: rat,B: rat] :
( ( A
= ( uminus_uminus_rat @ B ) )
= ( B
= ( uminus_uminus_rat @ A ) ) ) ).
% equation_minus_iff
thf(fact_5296_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5297_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5298_minus__equation__iff,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= B )
= ( ( uminus1482373934393186551omplex @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5299_minus__equation__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= B )
= ( ( uminus1351360451143612070nteger @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5300_minus__equation__iff,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= B )
= ( ( uminus_uminus_rat @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_5301_abs__eq__iff,axiom,
! [X: real,Y4: real] :
( ( ( abs_abs_real @ X )
= ( abs_abs_real @ Y4 ) )
= ( ( X = Y4 )
| ( X
= ( uminus_uminus_real @ Y4 ) ) ) ) ).
% abs_eq_iff
thf(fact_5302_abs__eq__iff,axiom,
! [X: int,Y4: int] :
( ( ( abs_abs_int @ X )
= ( abs_abs_int @ Y4 ) )
= ( ( X = Y4 )
| ( X
= ( uminus_uminus_int @ Y4 ) ) ) ) ).
% abs_eq_iff
thf(fact_5303_abs__eq__iff,axiom,
! [X: code_integer,Y4: code_integer] :
( ( ( abs_abs_Code_integer @ X )
= ( abs_abs_Code_integer @ Y4 ) )
= ( ( X = Y4 )
| ( X
= ( uminus1351360451143612070nteger @ Y4 ) ) ) ) ).
% abs_eq_iff
thf(fact_5304_abs__eq__iff,axiom,
! [X: rat,Y4: rat] :
( ( ( abs_abs_rat @ X )
= ( abs_abs_rat @ Y4 ) )
= ( ( X = Y4 )
| ( X
= ( uminus_uminus_rat @ Y4 ) ) ) ) ).
% abs_eq_iff
thf(fact_5305_verit__negate__coefficient_I3_J,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_5306_verit__negate__coefficient_I3_J,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_5307_verit__negate__coefficient_I3_J,axiom,
! [A: code_integer,B: code_integer] :
( ( A = B )
=> ( ( uminus1351360451143612070nteger @ A )
= ( uminus1351360451143612070nteger @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_5308_verit__negate__coefficient_I3_J,axiom,
! [A: rat,B: rat] :
( ( A = B )
=> ( ( uminus_uminus_rat @ A )
= ( uminus_uminus_rat @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_5309_abs__ge__minus__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_minus_self
thf(fact_5310_abs__ge__minus__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).
% abs_ge_minus_self
thf(fact_5311_abs__ge__minus__self,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).
% abs_ge_minus_self
thf(fact_5312_abs__ge__minus__self,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).
% abs_ge_minus_self
thf(fact_5313_abs__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le3102999989581377725nteger @ A @ B )
& ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5314_abs__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_eq_rat @ A @ B )
& ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5315_abs__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_eq_int @ A @ B )
& ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5316_abs__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_eq_real @ A @ B )
& ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_le_iff
thf(fact_5317_abs__le__D2,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5318_abs__le__D2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5319_abs__le__D2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5320_abs__le__D2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% abs_le_D2
thf(fact_5321_abs__leI,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5322_abs__leI,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5323_abs__leI,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
=> ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5324_abs__leI,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
=> ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).
% abs_leI
thf(fact_5325_abs__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
= ( ( ord_less_real @ A @ B )
& ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5326_abs__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
= ( ( ord_less_int @ A @ B )
& ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5327_abs__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
= ( ( ord_le6747313008572928689nteger @ A @ B )
& ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5328_abs__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
= ( ( ord_less_rat @ A @ B )
& ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).
% abs_less_iff
thf(fact_5329_eq__abs__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( abs_abs_Code_integer @ B ) )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
& ( ( B = A )
| ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5330_eq__abs__iff_H,axiom,
! [A: rat,B: rat] :
( ( A
= ( abs_abs_rat @ B ) )
= ( ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_rat @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5331_eq__abs__iff_H,axiom,
! [A: int,B: int] :
( ( A
= ( abs_abs_int @ B ) )
= ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_int @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5332_eq__abs__iff_H,axiom,
! [A: real,B: real] :
( ( A
= ( abs_abs_real @ B ) )
= ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ( B = A )
| ( B
= ( uminus_uminus_real @ A ) ) ) ) ) ).
% eq_abs_iff'
thf(fact_5333_abs__eq__iff_H,axiom,
! [A: code_integer,B: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= B )
= ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
& ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5334_abs__eq__iff_H,axiom,
! [A: rat,B: rat] :
( ( ( abs_abs_rat @ A )
= B )
= ( ( ord_less_eq_rat @ zero_zero_rat @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5335_abs__eq__iff_H,axiom,
! [A: int,B: int] :
( ( ( abs_abs_int @ A )
= B )
= ( ( ord_less_eq_int @ zero_zero_int @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5336_abs__eq__iff_H,axiom,
! [A: real,B: real] :
( ( ( abs_abs_real @ A )
= B )
= ( ( ord_less_eq_real @ zero_zero_real @ B )
& ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ) ).
% abs_eq_iff'
thf(fact_5337_abs__minus__le__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).
% abs_minus_le_zero
thf(fact_5338_abs__minus__le__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).
% abs_minus_le_zero
thf(fact_5339_abs__minus__le__zero,axiom,
! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).
% abs_minus_le_zero
thf(fact_5340_abs__minus__le__zero,axiom,
! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).
% abs_minus_le_zero
thf(fact_5341_abs__if__raw,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5342_abs__if__raw,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5343_abs__if__raw,axiom,
( abs_abs_Code_integer
= ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5344_abs__if__raw,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_if_raw
thf(fact_5345_abs__of__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( abs_abs_real @ A )
= ( uminus_uminus_real @ A ) ) ) ).
% abs_of_neg
thf(fact_5346_abs__of__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( abs_abs_int @ A )
= ( uminus_uminus_int @ A ) ) ) ).
% abs_of_neg
thf(fact_5347_abs__of__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ A )
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% abs_of_neg
thf(fact_5348_abs__of__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( abs_abs_rat @ A )
= ( uminus_uminus_rat @ A ) ) ) ).
% abs_of_neg
thf(fact_5349_abs__if,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5350_abs__if,axiom,
( abs_abs_int
= ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5351_abs__if,axiom,
( abs_abs_Code_integer
= ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5352_abs__if,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_if
thf(fact_5353_abs__real__def,axiom,
( abs_abs_real
= ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).
% abs_real_def
thf(fact_5354_abs__le__D1,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
=> ( ord_le3102999989581377725nteger @ A @ B ) ) ).
% abs_le_D1
thf(fact_5355_abs__le__D1,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
=> ( ord_less_eq_rat @ A @ B ) ) ).
% abs_le_D1
thf(fact_5356_abs__le__D1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% abs_le_D1
thf(fact_5357_abs__le__D1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% abs_le_D1
thf(fact_5358_abs__ge__self,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_self
thf(fact_5359_abs__ge__self,axiom,
! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).
% abs_ge_self
thf(fact_5360_abs__ge__self,axiom,
! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).
% abs_ge_self
thf(fact_5361_abs__ge__self,axiom,
! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).
% abs_ge_self
thf(fact_5362_abs__eq__0__iff,axiom,
! [A: code_integer] :
( ( ( abs_abs_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% abs_eq_0_iff
thf(fact_5363_abs__eq__0__iff,axiom,
! [A: complex] :
( ( ( abs_abs_complex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% abs_eq_0_iff
thf(fact_5364_abs__eq__0__iff,axiom,
! [A: real] :
( ( ( abs_abs_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% abs_eq_0_iff
thf(fact_5365_abs__eq__0__iff,axiom,
! [A: rat] :
( ( ( abs_abs_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% abs_eq_0_iff
thf(fact_5366_abs__eq__0__iff,axiom,
! [A: int] :
( ( ( abs_abs_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% abs_eq_0_iff
thf(fact_5367_abs__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_mult
thf(fact_5368_abs__mult,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_mult
thf(fact_5369_abs__mult,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_mult
thf(fact_5370_abs__mult,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_mult
thf(fact_5371_abs__one,axiom,
( ( abs_abs_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% abs_one
thf(fact_5372_abs__one,axiom,
( ( abs_abs_real @ one_one_real )
= one_one_real ) ).
% abs_one
thf(fact_5373_abs__one,axiom,
( ( abs_abs_rat @ one_one_rat )
= one_one_rat ) ).
% abs_one
thf(fact_5374_abs__one,axiom,
( ( abs_abs_int @ one_one_int )
= one_one_int ) ).
% abs_one
thf(fact_5375_abs__minus__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
= ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5376_abs__minus__commute,axiom,
! [A: real,B: real] :
( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
= ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5377_abs__minus__commute,axiom,
! [A: rat,B: rat] :
( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
= ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5378_abs__minus__commute,axiom,
! [A: int,B: int] :
( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
= ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_minus_commute
thf(fact_5379_dvd__if__abs__eq,axiom,
! [L: real,K: real] :
( ( ( abs_abs_real @ L )
= ( abs_abs_real @ K ) )
=> ( dvd_dvd_real @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5380_dvd__if__abs__eq,axiom,
! [L: int,K: int] :
( ( ( abs_abs_int @ L )
= ( abs_abs_int @ K ) )
=> ( dvd_dvd_int @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5381_dvd__if__abs__eq,axiom,
! [L: code_integer,K: code_integer] :
( ( ( abs_abs_Code_integer @ L )
= ( abs_abs_Code_integer @ K ) )
=> ( dvd_dvd_Code_integer @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5382_dvd__if__abs__eq,axiom,
! [L: rat,K: rat] :
( ( ( abs_abs_rat @ L )
= ( abs_abs_rat @ K ) )
=> ( dvd_dvd_rat @ L @ K ) ) ).
% dvd_if_abs_eq
thf(fact_5383_le__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_minus_iff
thf(fact_5384_le__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% le_minus_iff
thf(fact_5385_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_5386_le__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% le_minus_iff
thf(fact_5387_minus__le__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5388_minus__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5389_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5390_minus__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_5391_le__imp__neg__le,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5392_le__imp__neg__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5393_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5394_le__imp__neg__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% le_imp_neg_le
thf(fact_5395_less__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% less_minus_iff
thf(fact_5396_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_5397_less__minus__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% less_minus_iff
thf(fact_5398_less__minus__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).
% less_minus_iff
thf(fact_5399_minus__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5400_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5401_minus__less__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5402_minus__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_5403_verit__negate__coefficient_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5404_verit__negate__coefficient_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5405_verit__negate__coefficient_I2_J,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ B )
=> ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5406_verit__negate__coefficient_I2_J,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_5407_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
!= ( numeral_numeral_real @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5408_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
!= ( numeral_numeral_int @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5409_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
!= ( numera6690914467698888265omplex @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5410_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
!= ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5411_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
!= ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_5412_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_real @ M )
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5413_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ M )
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5414_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numera6690914467698888265omplex @ M )
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5415_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numera6620942414471956472nteger @ M )
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5416_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_rat @ M )
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_5417_square__eq__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ A )
= ( times_times_real @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5418_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5419_square__eq__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ A )
= ( times_times_complex @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5420_square__eq__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( times_3573771949741848930nteger @ A @ A )
= ( times_3573771949741848930nteger @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus1351360451143612070nteger @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5421_square__eq__iff,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ A )
= ( times_times_rat @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% square_eq_iff
thf(fact_5422_minus__mult__commute,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_mult_commute
thf(fact_5423_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_5424_minus__mult__commute,axiom,
! [A: complex,B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_mult_commute
thf(fact_5425_minus__mult__commute,axiom,
! [A: code_integer,B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).
% minus_mult_commute
thf(fact_5426_minus__mult__commute,axiom,
! [A: rat,B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_mult_commute
thf(fact_5427_group__cancel_Oneg1,axiom,
! [A2: real,K: real,A: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( uminus_uminus_real @ A2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5428_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5429_group__cancel_Oneg1,axiom,
! [A2: complex,K: complex,A: complex] :
( ( A2
= ( plus_plus_complex @ K @ A ) )
=> ( ( uminus1482373934393186551omplex @ A2 )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5430_group__cancel_Oneg1,axiom,
! [A2: code_integer,K: code_integer,A: code_integer] :
( ( A2
= ( plus_p5714425477246183910nteger @ K @ A ) )
=> ( ( uminus1351360451143612070nteger @ A2 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5431_group__cancel_Oneg1,axiom,
! [A2: rat,K: rat,A: rat] :
( ( A2
= ( plus_plus_rat @ K @ A ) )
=> ( ( uminus_uminus_rat @ A2 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_5432_add_Oinverse__distrib__swap,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5433_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5434_add_Oinverse__distrib__swap,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5435_add_Oinverse__distrib__swap,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5436_add_Oinverse__distrib__swap,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_5437_is__num__normalize_I8_J,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5438_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5439_is__num__normalize_I8_J,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5440_is__num__normalize_I8_J,axiom,
! [A: code_integer,B: code_integer] :
( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5441_is__num__normalize_I8_J,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_5442_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_5443_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_5444_one__neq__neg__one,axiom,
( one_one_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% one_neq_neg_one
thf(fact_5445_one__neq__neg__one,axiom,
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% one_neq_neg_one
thf(fact_5446_one__neq__neg__one,axiom,
( one_one_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% one_neq_neg_one
thf(fact_5447_minus__diff__commute,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
= ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5448_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5449_minus__diff__commute,axiom,
! [B: complex,A: complex] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
= ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5450_minus__diff__commute,axiom,
! [B: code_integer,A: code_integer] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
= ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5451_minus__diff__commute,axiom,
! [B: rat,A: rat] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
= ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_5452_minus__diff__minus,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5453_minus__diff__minus,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5454_minus__diff__minus,axiom,
! [A: complex,B: complex] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5455_minus__diff__minus,axiom,
! [A: code_integer,B: code_integer] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5456_minus__diff__minus,axiom,
! [A: rat,B: rat] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% minus_diff_minus
thf(fact_5457_div__minus__right,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% div_minus_right
thf(fact_5458_div__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% div_minus_right
thf(fact_5459_minus__divide__right,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_divide_right
thf(fact_5460_minus__divide__right,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_divide_right
thf(fact_5461_minus__divide__right,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).
% minus_divide_right
thf(fact_5462_minus__divide__divide,axiom,
! [A: real,B: real] :
( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5463_minus__divide__divide,axiom,
! [A: complex,B: complex] :
( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5464_minus__divide__divide,axiom,
! [A: rat,B: rat] :
( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ).
% minus_divide_divide
thf(fact_5465_minus__divide__left,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5466_minus__divide__left,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5467_minus__divide__left,axiom,
! [A: rat,B: rat] :
( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).
% minus_divide_left
thf(fact_5468_mod__minus__eq,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% mod_minus_eq
thf(fact_5469_mod__minus__eq,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).
% mod_minus_eq
thf(fact_5470_mod__minus__cong,axiom,
! [A: int,B: int,A6: int] :
( ( ( modulo_modulo_int @ A @ B )
= ( modulo_modulo_int @ A6 @ B ) )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= ( modulo_modulo_int @ ( uminus_uminus_int @ A6 ) @ B ) ) ) ).
% mod_minus_cong
thf(fact_5471_mod__minus__cong,axiom,
! [A: code_integer,B: code_integer,A6: code_integer] :
( ( ( modulo364778990260209775nteger @ A @ B )
= ( modulo364778990260209775nteger @ A6 @ B ) )
=> ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A6 ) @ B ) ) ) ).
% mod_minus_cong
thf(fact_5472_mod__minus__right,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% mod_minus_right
thf(fact_5473_mod__minus__right,axiom,
! [A: code_integer,B: code_integer] :
( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).
% mod_minus_right
thf(fact_5474_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_5475_int__cases2,axiom,
! [Z: int] :
( ! [N2: nat] :
( Z
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% int_cases2
thf(fact_5476_uminus__dvd__conv_I1_J,axiom,
( dvd_dvd_int
= ( ^ [D4: int] : ( dvd_dvd_int @ ( uminus_uminus_int @ D4 ) ) ) ) ).
% uminus_dvd_conv(1)
thf(fact_5477_uminus__dvd__conv_I2_J,axiom,
( dvd_dvd_int
= ( ^ [D4: int,T2: int] : ( dvd_dvd_int @ D4 @ ( uminus_uminus_int @ T2 ) ) ) ) ).
% uminus_dvd_conv(2)
thf(fact_5478_abs__ge__zero,axiom,
! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).
% abs_ge_zero
thf(fact_5479_abs__ge__zero,axiom,
! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).
% abs_ge_zero
thf(fact_5480_abs__ge__zero,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).
% abs_ge_zero
thf(fact_5481_abs__ge__zero,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).
% abs_ge_zero
thf(fact_5482_abs__of__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( abs_abs_Code_integer @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5483_abs__of__pos,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( abs_abs_real @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5484_abs__of__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( abs_abs_rat @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5485_abs__of__pos,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( abs_abs_int @ A )
= A ) ) ).
% abs_of_pos
thf(fact_5486_abs__not__less__zero,axiom,
! [A: code_integer] :
~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).
% abs_not_less_zero
thf(fact_5487_abs__not__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).
% abs_not_less_zero
thf(fact_5488_abs__not__less__zero,axiom,
! [A: rat] :
~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).
% abs_not_less_zero
thf(fact_5489_abs__not__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).
% abs_not_less_zero
thf(fact_5490_abs__triangle__ineq,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5491_abs__triangle__ineq,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5492_abs__triangle__ineq,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5493_abs__triangle__ineq,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq
thf(fact_5494_abs__mult__less,axiom,
! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
=> ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D )
=> ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_5495_abs__mult__less,axiom,
! [A: real,C: real,B: real,D: real] :
( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
=> ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
=> ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_5496_abs__mult__less,axiom,
! [A: rat,C: rat,B: rat,D: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
=> ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D )
=> ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_5497_abs__mult__less,axiom,
! [A: int,C: int,B: int,D: int] :
( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
=> ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
=> ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).
% abs_mult_less
thf(fact_5498_abs__triangle__ineq2,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5499_abs__triangle__ineq2,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5500_abs__triangle__ineq2,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5501_abs__triangle__ineq2,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq2
thf(fact_5502_abs__triangle__ineq3,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5503_abs__triangle__ineq3,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5504_abs__triangle__ineq3,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5505_abs__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).
% abs_triangle_ineq3
thf(fact_5506_abs__triangle__ineq2__sym,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5507_abs__triangle__ineq2__sym,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5508_abs__triangle__ineq2__sym,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5509_abs__triangle__ineq2__sym,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% abs_triangle_ineq2_sym
thf(fact_5510_nonzero__abs__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_5511_nonzero__abs__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% nonzero_abs_divide
thf(fact_5512_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5513_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5514_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5515_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_5516_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5517_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5518_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5519_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_5520_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5521_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5522_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5523_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5524_zero__neq__neg__numeral,axiom,
! [N: num] :
( zero_zero_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% zero_neq_neg_numeral
thf(fact_5525_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5526_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5527_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5528_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_5529_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5530_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5531_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5532_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_5533_le__minus__one__simps_I2_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% le_minus_one_simps(2)
thf(fact_5534_le__minus__one__simps_I2_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% le_minus_one_simps(2)
thf(fact_5535_le__minus__one__simps_I2_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% le_minus_one_simps(2)
thf(fact_5536_le__minus__one__simps_I2_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% le_minus_one_simps(2)
thf(fact_5537_le__minus__one__simps_I4_J,axiom,
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(4)
thf(fact_5538_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(4)
thf(fact_5539_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(4)
thf(fact_5540_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(4)
thf(fact_5541_neg__eq__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5542_neg__eq__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5543_neg__eq__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= B )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5544_neg__eq__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( ( uminus1351360451143612070nteger @ A )
= B )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5545_neg__eq__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( ( uminus_uminus_rat @ A )
= B )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_5546_eq__neg__iff__add__eq__0,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( ( plus_plus_real @ A @ B )
= zero_zero_real ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5547_eq__neg__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5548_eq__neg__iff__add__eq__0,axiom,
! [A: complex,B: complex] :
( ( A
= ( uminus1482373934393186551omplex @ B ) )
= ( ( plus_plus_complex @ A @ B )
= zero_zero_complex ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5549_eq__neg__iff__add__eq__0,axiom,
! [A: code_integer,B: code_integer] :
( ( A
= ( uminus1351360451143612070nteger @ B ) )
= ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5550_eq__neg__iff__add__eq__0,axiom,
! [A: rat,B: rat] :
( ( A
= ( uminus_uminus_rat @ B ) )
= ( ( plus_plus_rat @ A @ B )
= zero_zero_rat ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_5551_add_Oinverse__unique,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
=> ( ( uminus_uminus_real @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5552_add_Oinverse__unique,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
=> ( ( uminus_uminus_int @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5553_add_Oinverse__unique,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5554_add_Oinverse__unique,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
=> ( ( uminus1351360451143612070nteger @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5555_add_Oinverse__unique,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
=> ( ( uminus_uminus_rat @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_5556_ab__group__add__class_Oab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5557_ab__group__add__class_Oab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5558_ab__group__add__class_Oab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5559_ab__group__add__class_Oab__left__minus,axiom,
! [A: code_integer] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
= zero_z3403309356797280102nteger ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5560_ab__group__add__class_Oab__left__minus,axiom,
! [A: rat] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
= zero_zero_rat ) ).
% ab_group_add_class.ab_left_minus
thf(fact_5561_add__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= zero_zero_real )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5562_add__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5563_add__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= zero_zero_complex )
= ( B
= ( uminus1482373934393186551omplex @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5564_add__eq__0__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( plus_p5714425477246183910nteger @ A @ B )
= zero_z3403309356797280102nteger )
= ( B
= ( uminus1351360451143612070nteger @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5565_add__eq__0__iff,axiom,
! [A: rat,B: rat] :
( ( ( plus_plus_rat @ A @ B )
= zero_zero_rat )
= ( B
= ( uminus_uminus_rat @ A ) ) ) ).
% add_eq_0_iff
thf(fact_5566_zero__neq__neg__one,axiom,
( zero_zero_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% zero_neq_neg_one
thf(fact_5567_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_5568_zero__neq__neg__one,axiom,
( zero_zero_complex
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% zero_neq_neg_one
thf(fact_5569_zero__neq__neg__one,axiom,
( zero_z3403309356797280102nteger
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% zero_neq_neg_one
thf(fact_5570_zero__neq__neg__one,axiom,
( zero_zero_rat
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% zero_neq_neg_one
thf(fact_5571_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_5572_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_5573_less__minus__one__simps_I4_J,axiom,
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(4)
thf(fact_5574_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(4)
thf(fact_5575_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_5576_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_5577_less__minus__one__simps_I2_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).
% less_minus_one_simps(2)
thf(fact_5578_less__minus__one__simps_I2_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).
% less_minus_one_simps(2)
thf(fact_5579_numeral__times__minus__swap,axiom,
! [W: num,X: real] :
( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X ) )
= ( times_times_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5580_numeral__times__minus__swap,axiom,
! [W: num,X: int] :
( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X ) )
= ( times_times_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5581_numeral__times__minus__swap,axiom,
! [W: num,X: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X ) )
= ( times_times_complex @ X @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5582_numeral__times__minus__swap,axiom,
! [W: num,X: code_integer] :
( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X ) )
= ( times_3573771949741848930nteger @ X @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5583_numeral__times__minus__swap,axiom,
! [W: num,X: rat] :
( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X ) )
= ( times_times_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_5584_nonzero__minus__divide__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5585_nonzero__minus__divide__right,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5586_nonzero__minus__divide__right,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).
% nonzero_minus_divide_right
thf(fact_5587_nonzero__minus__divide__divide,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5588_nonzero__minus__divide__divide,axiom,
! [B: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
= ( divide1717551699836669952omplex @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5589_nonzero__minus__divide__divide,axiom,
! [B: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
= ( divide_divide_rat @ A @ B ) ) ) ).
% nonzero_minus_divide_divide
thf(fact_5590_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5591_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5592_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_complex
!= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5593_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_Code_integer
!= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5594_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_rat
!= ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_5595_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_real @ N )
!= ( uminus_uminus_real @ one_one_real ) ) ).
% numeral_neq_neg_one
thf(fact_5596_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_int @ N )
!= ( uminus_uminus_int @ one_one_int ) ) ).
% numeral_neq_neg_one
thf(fact_5597_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ N )
!= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% numeral_neq_neg_one
thf(fact_5598_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numera6620942414471956472nteger @ N )
!= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% numeral_neq_neg_one
thf(fact_5599_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_rat @ N )
!= ( uminus_uminus_rat @ one_one_rat ) ) ).
% numeral_neq_neg_one
thf(fact_5600_square__eq__1__iff,axiom,
! [X: real] :
( ( ( times_times_real @ X @ X )
= one_one_real )
= ( ( X = one_one_real )
| ( X
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_5601_square__eq__1__iff,axiom,
! [X: int] :
( ( ( times_times_int @ X @ X )
= one_one_int )
= ( ( X = one_one_int )
| ( X
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_5602_square__eq__1__iff,axiom,
! [X: complex] :
( ( ( times_times_complex @ X @ X )
= one_one_complex )
= ( ( X = one_one_complex )
| ( X
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% square_eq_1_iff
thf(fact_5603_square__eq__1__iff,axiom,
! [X: code_integer] :
( ( ( times_3573771949741848930nteger @ X @ X )
= one_one_Code_integer )
= ( ( X = one_one_Code_integer )
| ( X
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% square_eq_1_iff
thf(fact_5604_square__eq__1__iff,axiom,
! [X: rat] :
( ( ( times_times_rat @ X @ X )
= one_one_rat )
= ( ( X = one_one_rat )
| ( X
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% square_eq_1_iff
thf(fact_5605_group__cancel_Osub2,axiom,
! [B4: real,K: real,B: real,A: real] :
( ( B4
= ( plus_plus_real @ K @ B ) )
=> ( ( minus_minus_real @ A @ B4 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5606_group__cancel_Osub2,axiom,
! [B4: int,K: int,B: int,A: int] :
( ( B4
= ( plus_plus_int @ K @ B ) )
=> ( ( minus_minus_int @ A @ B4 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5607_group__cancel_Osub2,axiom,
! [B4: complex,K: complex,B: complex,A: complex] :
( ( B4
= ( plus_plus_complex @ K @ B ) )
=> ( ( minus_minus_complex @ A @ B4 )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5608_group__cancel_Osub2,axiom,
! [B4: code_integer,K: code_integer,B: code_integer,A: code_integer] :
( ( B4
= ( plus_p5714425477246183910nteger @ K @ B ) )
=> ( ( minus_8373710615458151222nteger @ A @ B4 )
= ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5609_group__cancel_Osub2,axiom,
! [B4: rat,K: rat,B: rat,A: rat] :
( ( B4
= ( plus_plus_rat @ K @ B ) )
=> ( ( minus_minus_rat @ A @ B4 )
= ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_5610_diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5611_diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5612_diff__conv__add__uminus,axiom,
( minus_minus_complex
= ( ^ [A3: complex,B2: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5613_diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A3: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5614_diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_5615_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5616_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5617_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_complex
= ( ^ [A3: complex,B2: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5618_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_8373710615458151222nteger
= ( ^ [A3: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5619_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_rat
= ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5620_dvd__div__neg,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5621_dvd__div__neg,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5622_dvd__div__neg,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5623_dvd__div__neg,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5624_dvd__div__neg,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_div_neg
thf(fact_5625_dvd__neg__div,axiom,
! [B: real,A: real] :
( ( dvd_dvd_real @ B @ A )
=> ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5626_dvd__neg__div,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5627_dvd__neg__div,axiom,
! [B: complex,A: complex] :
( ( dvd_dvd_complex @ B @ A )
=> ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5628_dvd__neg__div,axiom,
! [B: code_integer,A: code_integer] :
( ( dvd_dvd_Code_integer @ B @ A )
=> ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
= ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5629_dvd__neg__div,axiom,
! [B: rat,A: rat] :
( ( dvd_dvd_rat @ B @ A )
=> ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).
% dvd_neg_div
thf(fact_5630_real__minus__mult__self__le,axiom,
! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).
% real_minus_mult_self_le
thf(fact_5631_int__of__nat__induct,axiom,
! [P: int > $o,Z: int] :
( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
=> ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
=> ( P @ Z ) ) ) ).
% int_of_nat_induct
thf(fact_5632_int__cases,axiom,
! [Z: int] :
( ! [N2: nat] :
( Z
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).
% int_cases
thf(fact_5633_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_5634_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_5635_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus_int @ zero_zero_int @ L )
= ( uminus_uminus_int @ L ) ) ).
% minus_int_code(2)
thf(fact_5636_not__int__zless__negative,axiom,
! [N: nat,M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% not_int_zless_negative
thf(fact_5637_zmod__zminus1__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
!= zero_zero_int ) ) ).
% zmod_zminus1_not_zero
thf(fact_5638_zmod__zminus2__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo_int @ K @ ( uminus_uminus_int @ L ) )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
!= zero_zero_int ) ) ).
% zmod_zminus2_not_zero
thf(fact_5639_minus__real__def,axiom,
( minus_minus_real
= ( ^ [X3: real,Y6: real] : ( plus_plus_real @ X3 @ ( uminus_uminus_real @ Y6 ) ) ) ) ).
% minus_real_def
thf(fact_5640_dense__eq0__I,axiom,
! [X: rat] :
( ! [E: rat] :
( ( ord_less_rat @ zero_zero_rat @ E )
=> ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ E ) )
=> ( X = zero_zero_rat ) ) ).
% dense_eq0_I
thf(fact_5641_dense__eq0__I,axiom,
! [X: real] :
( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ( ord_less_eq_real @ ( abs_abs_real @ X ) @ E ) )
=> ( X = zero_zero_real ) ) ).
% dense_eq0_I
thf(fact_5642_abs__mult__pos,axiom,
! [X: code_integer,Y4: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
=> ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y4 ) @ X )
= ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y4 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_5643_abs__mult__pos,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X )
=> ( ( times_times_rat @ ( abs_abs_rat @ Y4 ) @ X )
= ( abs_abs_rat @ ( times_times_rat @ Y4 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_5644_abs__mult__pos,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( times_times_int @ ( abs_abs_int @ Y4 ) @ X )
= ( abs_abs_int @ ( times_times_int @ Y4 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_5645_abs__mult__pos,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( times_times_real @ ( abs_abs_real @ Y4 ) @ X )
= ( abs_abs_real @ ( times_times_real @ Y4 @ X ) ) ) ) ).
% abs_mult_pos
thf(fact_5646_abs__eq__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
| ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
& ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
| ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
=> ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5647_abs__eq__mult,axiom,
! [A: rat,B: rat] :
( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
| ( ord_less_eq_rat @ A @ zero_zero_rat ) )
& ( ( ord_less_eq_rat @ zero_zero_rat @ B )
| ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
=> ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5648_abs__eq__mult,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
| ( ord_less_eq_int @ A @ zero_zero_int ) )
& ( ( ord_less_eq_int @ zero_zero_int @ B )
| ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5649_abs__eq__mult,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
| ( ord_less_eq_real @ A @ zero_zero_real ) )
& ( ( ord_less_eq_real @ zero_zero_real @ B )
| ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% abs_eq_mult
thf(fact_5650_zero__le__power__abs,axiom,
! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5651_zero__le__power__abs,axiom,
! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5652_zero__le__power__abs,axiom,
! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5653_zero__le__power__abs,axiom,
! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).
% zero_le_power_abs
thf(fact_5654_abs__div__pos,axiom,
! [Y4: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( divide_divide_real @ ( abs_abs_real @ X ) @ Y4 )
= ( abs_abs_real @ ( divide_divide_real @ X @ Y4 ) ) ) ) ).
% abs_div_pos
thf(fact_5655_abs__div__pos,axiom,
! [Y4: rat,X: rat] :
( ( ord_less_rat @ zero_zero_rat @ Y4 )
=> ( ( divide_divide_rat @ ( abs_abs_rat @ X ) @ Y4 )
= ( abs_abs_rat @ ( divide_divide_rat @ X @ Y4 ) ) ) ) ).
% abs_div_pos
thf(fact_5656_abs__diff__le__iff,axiom,
! [X: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R2 )
= ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X )
& ( ord_le3102999989581377725nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5657_abs__diff__le__iff,axiom,
! [X: rat,A: rat,R2: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R2 )
= ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R2 ) @ X )
& ( ord_less_eq_rat @ X @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5658_abs__diff__le__iff,axiom,
! [X: int,A: int,R2: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R2 )
= ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R2 ) @ X )
& ( ord_less_eq_int @ X @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5659_abs__diff__le__iff,axiom,
! [X: real,A: real,R2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R2 )
= ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R2 ) @ X )
& ( ord_less_eq_real @ X @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_le_iff
thf(fact_5660_abs__triangle__ineq4,axiom,
! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5661_abs__triangle__ineq4,axiom,
! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5662_abs__triangle__ineq4,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5663_abs__triangle__ineq4,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).
% abs_triangle_ineq4
thf(fact_5664_abs__diff__triangle__ineq,axiom,
! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5665_abs__diff__triangle__ineq,axiom,
! [A: rat,B: rat,C: rat,D: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5666_abs__diff__triangle__ineq,axiom,
! [A: int,B: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5667_abs__diff__triangle__ineq,axiom,
! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).
% abs_diff_triangle_ineq
thf(fact_5668_abs__diff__less__iff,axiom,
! [X: code_integer,A: code_integer,R2: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R2 )
= ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X )
& ( ord_le6747313008572928689nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5669_abs__diff__less__iff,axiom,
! [X: real,A: real,R2: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R2 )
= ( ( ord_less_real @ ( minus_minus_real @ A @ R2 ) @ X )
& ( ord_less_real @ X @ ( plus_plus_real @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5670_abs__diff__less__iff,axiom,
! [X: rat,A: rat,R2: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R2 )
= ( ( ord_less_rat @ ( minus_minus_rat @ A @ R2 ) @ X )
& ( ord_less_rat @ X @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5671_abs__diff__less__iff,axiom,
! [X: int,A: int,R2: int] :
( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R2 )
= ( ( ord_less_int @ ( minus_minus_int @ A @ R2 ) @ X )
& ( ord_less_int @ X @ ( plus_plus_int @ A @ R2 ) ) ) ) ).
% abs_diff_less_iff
thf(fact_5672_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_le_zero
thf(fact_5673_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).
% neg_numeral_le_zero
thf(fact_5674_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).
% neg_numeral_le_zero
thf(fact_5675_neg__numeral__le__zero,axiom,
! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).
% neg_numeral_le_zero
thf(fact_5676_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5677_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5678_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5679_not__zero__le__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_5680_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).
% neg_numeral_less_zero
thf(fact_5681_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).
% neg_numeral_less_zero
thf(fact_5682_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).
% neg_numeral_less_zero
thf(fact_5683_neg__numeral__less__zero,axiom,
! [N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).
% neg_numeral_less_zero
thf(fact_5684_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5685_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5686_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5687_not__zero__less__neg__numeral,axiom,
! [N: num] :
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).
% not_zero_less_neg_numeral
thf(fact_5688_le__minus__one__simps_I1_J,axiom,
ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% le_minus_one_simps(1)
thf(fact_5689_le__minus__one__simps_I1_J,axiom,
ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% le_minus_one_simps(1)
thf(fact_5690_le__minus__one__simps_I1_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% le_minus_one_simps(1)
thf(fact_5691_le__minus__one__simps_I1_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% le_minus_one_simps(1)
thf(fact_5692_le__minus__one__simps_I3_J,axiom,
~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% le_minus_one_simps(3)
thf(fact_5693_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% le_minus_one_simps(3)
thf(fact_5694_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(3)
thf(fact_5695_le__minus__one__simps_I3_J,axiom,
~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(3)
thf(fact_5696_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(3)
thf(fact_5697_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_5698_less__minus__one__simps_I3_J,axiom,
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% less_minus_one_simps(3)
thf(fact_5699_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% less_minus_one_simps(3)
thf(fact_5700_less__minus__one__simps_I1_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% less_minus_one_simps(1)
thf(fact_5701_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_5702_less__minus__one__simps_I1_J,axiom,
ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).
% less_minus_one_simps(1)
thf(fact_5703_less__minus__one__simps_I1_J,axiom,
ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).
% less_minus_one_simps(1)
thf(fact_5704_neg__numeral__le__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_le_one
thf(fact_5705_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_le_one
thf(fact_5706_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_le_one
thf(fact_5707_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_le_one
thf(fact_5708_neg__one__le__numeral,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_le_numeral
thf(fact_5709_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_le_numeral
thf(fact_5710_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_le_numeral
thf(fact_5711_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_le_numeral
thf(fact_5712_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% neg_numeral_le_neg_one
thf(fact_5713_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% neg_numeral_le_neg_one
thf(fact_5714_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% neg_numeral_le_neg_one
thf(fact_5715_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% neg_numeral_le_neg_one
thf(fact_5716_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_le_neg_one
thf(fact_5717_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_le_neg_one
thf(fact_5718_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_le_neg_one
thf(fact_5719_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_le_neg_one
thf(fact_5720_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5721_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5722_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5723_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_5724_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_less_one
thf(fact_5725_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_less_one
thf(fact_5726_neg__numeral__less__one,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).
% neg_numeral_less_one
thf(fact_5727_neg__numeral__less__one,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).
% neg_numeral_less_one
thf(fact_5728_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_less_numeral
thf(fact_5729_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_less_numeral
thf(fact_5730_neg__one__less__numeral,axiom,
! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).
% neg_one_less_numeral
thf(fact_5731_neg__one__less__numeral,axiom,
! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).
% neg_one_less_numeral
thf(fact_5732_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_less_neg_one
thf(fact_5733_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_less_neg_one
thf(fact_5734_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% not_numeral_less_neg_one
thf(fact_5735_not__numeral__less__neg__one,axiom,
! [M: num] :
~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).
% not_numeral_less_neg_one
thf(fact_5736_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5737_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5738_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5739_not__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_one_less_neg_numeral
thf(fact_5740_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5741_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5742_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5743_not__neg__one__less__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).
% not_neg_one_less_neg_numeral
thf(fact_5744_eq__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= ( uminus_uminus_real @ B ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5745_eq__minus__divide__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( A
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ A @ C )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5746_eq__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( A
= ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ A @ C )
= ( uminus_uminus_rat @ B ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% eq_minus_divide_eq
thf(fact_5747_minus__divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
= A )
= ( ( ( C != zero_zero_real )
=> ( ( uminus_uminus_real @ B )
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5748_minus__divide__eq__eq,axiom,
! [B: complex,C: complex,A: complex] :
( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
= A )
= ( ( ( C != zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ B )
= ( times_times_complex @ A @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( A = zero_zero_complex ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5749_minus__divide__eq__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
= A )
= ( ( ( C != zero_zero_rat )
=> ( ( uminus_uminus_rat @ B )
= ( times_times_rat @ A @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( A = zero_zero_rat ) ) ) ) ).
% minus_divide_eq_eq
thf(fact_5750_nonzero__neg__divide__eq__eq,axiom,
! [B: real,A: real,C: real] :
( ( B != zero_zero_real )
=> ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
= C )
= ( ( uminus_uminus_real @ A )
= ( times_times_real @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5751_nonzero__neg__divide__eq__eq,axiom,
! [B: complex,A: complex,C: complex] :
( ( B != zero_zero_complex )
=> ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= C )
= ( ( uminus1482373934393186551omplex @ A )
= ( times_times_complex @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5752_nonzero__neg__divide__eq__eq,axiom,
! [B: rat,A: rat,C: rat] :
( ( B != zero_zero_rat )
=> ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
= C )
= ( ( uminus_uminus_rat @ A )
= ( times_times_rat @ C @ B ) ) ) ) ).
% nonzero_neg_divide_eq_eq
thf(fact_5753_nonzero__neg__divide__eq__eq2,axiom,
! [B: real,C: real,A: real] :
( ( B != zero_zero_real )
=> ( ( C
= ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
= ( ( times_times_real @ C @ B )
= ( uminus_uminus_real @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5754_nonzero__neg__divide__eq__eq2,axiom,
! [B: complex,C: complex,A: complex] :
( ( B != zero_zero_complex )
=> ( ( C
= ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ( times_times_complex @ C @ B )
= ( uminus1482373934393186551omplex @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5755_nonzero__neg__divide__eq__eq2,axiom,
! [B: rat,C: rat,A: rat] :
( ( B != zero_zero_rat )
=> ( ( C
= ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
= ( ( times_times_rat @ C @ B )
= ( uminus_uminus_rat @ A ) ) ) ) ).
% nonzero_neg_divide_eq_eq2
thf(fact_5756_mult__1s__ring__1_I2_J,axiom,
! [B: real] :
( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5757_mult__1s__ring__1_I2_J,axiom,
! [B: int] :
( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5758_mult__1s__ring__1_I2_J,axiom,
! [B: complex] :
( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
= ( uminus1482373934393186551omplex @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5759_mult__1s__ring__1_I2_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5760_mult__1s__ring__1_I2_J,axiom,
! [B: rat] :
( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_5761_mult__1s__ring__1_I1_J,axiom,
! [B: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5762_mult__1s__ring__1_I1_J,axiom,
! [B: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5763_mult__1s__ring__1_I1_J,axiom,
! [B: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5764_mult__1s__ring__1_I1_J,axiom,
! [B: code_integer] :
( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
= ( uminus1351360451143612070nteger @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5765_mult__1s__ring__1_I1_J,axiom,
! [B: rat] :
( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
= ( uminus_uminus_rat @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_5766_divide__eq__minus__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= ( uminus_uminus_real @ one_one_real ) )
= ( ( B != zero_zero_real )
& ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5767_divide__eq__minus__1__iff,axiom,
! [A: complex,B: complex] :
( ( ( divide1717551699836669952omplex @ A @ B )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( ( B != zero_zero_complex )
& ( A
= ( uminus1482373934393186551omplex @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5768_divide__eq__minus__1__iff,axiom,
! [A: rat,B: rat] :
( ( ( divide_divide_rat @ A @ B )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( ( B != zero_zero_rat )
& ( A
= ( uminus_uminus_rat @ B ) ) ) ) ).
% divide_eq_minus_1_iff
thf(fact_5769_uminus__numeral__One,axiom,
( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% uminus_numeral_One
thf(fact_5770_uminus__numeral__One,axiom,
( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% uminus_numeral_One
thf(fact_5771_uminus__numeral__One,axiom,
( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% uminus_numeral_One
thf(fact_5772_uminus__numeral__One,axiom,
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% uminus_numeral_One
thf(fact_5773_uminus__numeral__One,axiom,
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% uminus_numeral_One
thf(fact_5774_power__minus,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).
% power_minus
thf(fact_5775_power__minus,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).
% power_minus
thf(fact_5776_power__minus,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ A @ N ) ) ) ).
% power_minus
thf(fact_5777_power__minus,axiom,
! [A: code_integer,N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_minus
thf(fact_5778_power__minus,axiom,
! [A: rat,N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ A @ N ) ) ) ).
% power_minus
thf(fact_5779_power__minus__Bit0,axiom,
! [X: real,K: num] :
( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5780_power__minus__Bit0,axiom,
! [X: int,K: num] :
( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5781_power__minus__Bit0,axiom,
! [X: complex,K: num] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5782_power__minus__Bit0,axiom,
! [X: code_integer,K: num] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5783_power__minus__Bit0,axiom,
! [X: rat,K: num] :
( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_5784_lemma__interval__lt,axiom,
! [A: real,X: real,B: real] :
( ( ord_less_real @ A @ X )
=> ( ( ord_less_real @ X @ B )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y3 ) ) @ D2 )
=> ( ( ord_less_real @ A @ Y3 )
& ( ord_less_real @ Y3 @ B ) ) ) ) ) ) ).
% lemma_interval_lt
thf(fact_5785_norm__uminus__minus,axiom,
! [X: real,Y4: real] :
( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ Y4 ) )
= ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y4 ) ) ) ).
% norm_uminus_minus
thf(fact_5786_norm__uminus__minus,axiom,
! [X: complex,Y4: complex] :
( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ Y4 ) )
= ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y4 ) ) ) ).
% norm_uminus_minus
thf(fact_5787_power__minus__Bit1,axiom,
! [X: real,K: num] :
( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5788_power__minus__Bit1,axiom,
! [X: int,K: num] :
( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5789_power__minus__Bit1,axiom,
! [X: complex,K: num] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5790_power__minus__Bit1,axiom,
! [X: code_integer,K: num] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5791_power__minus__Bit1,axiom,
! [X: rat,K: num] :
( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( uminus_uminus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).
% power_minus_Bit1
thf(fact_5792_sin__bound__lemma,axiom,
! [X: real,Y4: real,U: real,V: real] :
( ( X = Y4 )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X @ U ) @ Y4 ) ) @ V ) ) ) ).
% sin_bound_lemma
thf(fact_5793_int__cases4,axiom,
! [M: int] :
( ! [N2: nat] :
( M
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( M
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% int_cases4
thf(fact_5794_real__0__less__add__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y4 ) )
= ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y4 ) ) ).
% real_0_less_add_iff
thf(fact_5795_real__add__less__0__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y4 ) @ zero_zero_real )
= ( ord_less_real @ Y4 @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_5796_real__add__le__0__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y4 ) @ zero_zero_real )
= ( ord_less_eq_real @ Y4 @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_5797_real__0__le__add__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y4 ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y4 ) ) ).
% real_0_le_add_iff
thf(fact_5798_int__zle__neg,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_5799_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% nonpos_int_cases
thf(fact_5800_negative__zle__0,axiom,
! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_5801_zmod__zminus1__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% zmod_zminus1_eq_if
thf(fact_5802_zmod__zminus2__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).
% zmod_zminus2_eq_if
thf(fact_5803_abs__add__one__gt__zero,axiom,
! [X: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5804_abs__add__one__gt__zero,axiom,
! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5805_abs__add__one__gt__zero,axiom,
! [X: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5806_abs__add__one__gt__zero,axiom,
! [X: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ).
% abs_add_one_gt_zero
thf(fact_5807_less__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_5808_less__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% less_minus_divide_eq
thf(fact_5809_minus__divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_5810_minus__divide__less__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_less_eq
thf(fact_5811_neg__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_5812_neg__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_less_minus_divide_eq
thf(fact_5813_neg__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_5814_neg__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_less_eq
thf(fact_5815_pos__less__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_5816_pos__less__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_less_minus_divide_eq
thf(fact_5817_pos__minus__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_5818_pos__minus__divide__less__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_less_eq
thf(fact_5819_divide__eq__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5820_divide__eq__eq__numeral_I2_J,axiom,
! [B: complex,C: complex,W: num] :
( ( ( divide1717551699836669952omplex @ B @ C )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( ( C != zero_zero_complex )
=> ( B
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5821_divide__eq__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ( divide_divide_rat @ B @ C )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( C != zero_zero_rat )
=> ( B
= ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat ) ) ) ) ).
% divide_eq_eq_numeral(2)
thf(fact_5822_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5823_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: complex,C: complex] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= ( divide1717551699836669952omplex @ B @ C ) )
= ( ( ( C != zero_zero_complex )
=> ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_complex )
=> ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
= zero_zero_complex ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5824_eq__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= ( divide_divide_rat @ B @ C ) )
= ( ( ( C != zero_zero_rat )
=> ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
= B ) )
& ( ( C = zero_zero_rat )
=> ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
= zero_zero_rat ) ) ) ) ).
% eq_divide_eq_numeral(2)
thf(fact_5825_add__divide__eq__if__simps_I3_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= B ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5826_add__divide__eq__if__simps_I3_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= B ) )
& ( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5827_add__divide__eq__if__simps_I3_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= B ) )
& ( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(3)
thf(fact_5828_minus__divide__add__eq__iff,axiom,
! [Z: real,X: real,Y4: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z ) ) @ Y4 )
= ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y4 @ Z ) ) @ Z ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5829_minus__divide__add__eq__iff,axiom,
! [Z: complex,X: complex,Y4: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z ) ) @ Y4 )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y4 @ Z ) ) @ Z ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5830_minus__divide__add__eq__iff,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( Z != zero_zero_rat )
=> ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z ) ) @ Y4 )
= ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y4 @ Z ) ) @ Z ) ) ) ).
% minus_divide_add_eq_iff
thf(fact_5831_add__divide__eq__if__simps_I6_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_5832_add__divide__eq__if__simps_I6_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_5833_add__divide__eq__if__simps_I6_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(6)
thf(fact_5834_add__divide__eq__if__simps_I5_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( uminus_uminus_real @ B ) ) )
& ( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_5835_add__divide__eq__if__simps_I5_J,axiom,
! [Z: complex,A: complex,B: complex] :
( ( ( Z = zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= ( uminus1482373934393186551omplex @ B ) ) )
& ( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_5836_add__divide__eq__if__simps_I5_J,axiom,
! [Z: rat,A: rat,B: rat] :
( ( ( Z = zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= ( uminus_uminus_rat @ B ) ) )
& ( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
= ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(5)
thf(fact_5837_minus__divide__diff__eq__iff,axiom,
! [Z: real,X: real,Y4: real] :
( ( Z != zero_zero_real )
=> ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z ) ) @ Y4 )
= ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y4 @ Z ) ) @ Z ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_5838_minus__divide__diff__eq__iff,axiom,
! [Z: complex,X: complex,Y4: complex] :
( ( Z != zero_zero_complex )
=> ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z ) ) @ Y4 )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y4 @ Z ) ) @ Z ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_5839_minus__divide__diff__eq__iff,axiom,
! [Z: rat,X: rat,Y4: rat] :
( ( Z != zero_zero_rat )
=> ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z ) ) @ Y4 )
= ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y4 @ Z ) ) @ Z ) ) ) ).
% minus_divide_diff_eq_iff
thf(fact_5840_even__minus,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).
% even_minus
thf(fact_5841_even__minus,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).
% even_minus
thf(fact_5842_lemma__interval,axiom,
! [A: real,X: real,B: real] :
( ( ord_less_real @ A @ X )
=> ( ( ord_less_real @ X @ B )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [Y3: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y3 ) ) @ D2 )
=> ( ( ord_less_eq_real @ A @ Y3 )
& ( ord_less_eq_real @ Y3 @ B ) ) ) ) ) ) ).
% lemma_interval
thf(fact_5843_power2__eq__iff,axiom,
! [X: real,Y4: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y4 )
| ( X
= ( uminus_uminus_real @ Y4 ) ) ) ) ).
% power2_eq_iff
thf(fact_5844_power2__eq__iff,axiom,
! [X: int,Y4: int] :
( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y4 )
| ( X
= ( uminus_uminus_int @ Y4 ) ) ) ) ).
% power2_eq_iff
thf(fact_5845_power2__eq__iff,axiom,
! [X: complex,Y4: complex] :
( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y4 )
| ( X
= ( uminus1482373934393186551omplex @ Y4 ) ) ) ) ).
% power2_eq_iff
thf(fact_5846_power2__eq__iff,axiom,
! [X: code_integer,Y4: code_integer] :
( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_8256067586552552935nteger @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y4 )
| ( X
= ( uminus1351360451143612070nteger @ Y4 ) ) ) ) ).
% power2_eq_iff
thf(fact_5847_power2__eq__iff,axiom,
! [X: rat,Y4: rat] :
( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X = Y4 )
| ( X
= ( uminus_uminus_rat @ Y4 ) ) ) ) ).
% power2_eq_iff
thf(fact_5848_norm__triangle__ineq3,axiom,
! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).
% norm_triangle_ineq3
thf(fact_5849_norm__triangle__ineq3,axiom,
! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).
% norm_triangle_ineq3
thf(fact_5850_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).
% int_cases3
thf(fact_5851_pochhammer__eq__0__iff,axiom,
! [A: complex,N: nat] :
( ( ( comm_s2602460028002588243omplex @ A @ N )
= zero_zero_complex )
= ( ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ( A
= ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K3 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_5852_pochhammer__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( comm_s7457072308508201937r_real @ A @ N )
= zero_zero_real )
= ( ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ( A
= ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K3 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_5853_pochhammer__eq__0__iff,axiom,
! [A: rat,N: nat] :
( ( ( comm_s4028243227959126397er_rat @ A @ N )
= zero_zero_rat )
= ( ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ( A
= ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K3 ) ) ) ) ) ) ).
% pochhammer_eq_0_iff
thf(fact_5854_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
= zero_z3403309356797280102nteger )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_5855_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
= zero_zero_complex )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_5856_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
= zero_zero_real )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_5857_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
= zero_zero_rat )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_5858_pochhammer__of__nat__eq__0__iff,axiom,
! [N: nat,K: nat] :
( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
= zero_zero_int )
= ( ord_less_nat @ N @ K ) ) ).
% pochhammer_of_nat_eq_0_iff
thf(fact_5859_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_5860_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_5861_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_5862_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_5863_pochhammer__of__nat__eq__0__lemma,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ N @ K )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma
thf(fact_5864_ln__add__one__self__le__self2,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).
% ln_add_one_self_le_self2
thf(fact_5865_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
!= zero_z3403309356797280102nteger ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_5866_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
!= zero_zero_complex ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_5867_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
!= zero_zero_real ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_5868_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
!= zero_zero_rat ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_5869_pochhammer__of__nat__eq__0__lemma_H,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
!= zero_zero_int ) ) ).
% pochhammer_of_nat_eq_0_lemma'
thf(fact_5870_not__zle__0__negative,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).
% not_zle_0_negative
thf(fact_5871_negD,axiom,
! [X: int] :
( ( ord_less_int @ X @ zero_zero_int )
=> ? [N2: nat] :
( X
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).
% negD
thf(fact_5872_negative__zless__0,axiom,
! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).
% negative_zless_0
thf(fact_5873_verit__less__mono__div__int2,axiom,
! [A2: int,B4: int,N: int] :
( ( ord_less_eq_int @ A2 @ B4 )
=> ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
=> ( ord_less_eq_int @ ( divide_divide_int @ B4 @ N ) @ ( divide_divide_int @ A2 @ N ) ) ) ) ).
% verit_less_mono_div_int2
thf(fact_5874_div__eq__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% div_eq_minus1
thf(fact_5875_abs__le__square__iff,axiom,
! [X: code_integer,Y4: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ ( abs_abs_Code_integer @ Y4 ) )
= ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5876_abs__le__square__iff,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ ( abs_abs_rat @ Y4 ) )
= ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5877_abs__le__square__iff,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y4 ) )
= ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5878_abs__le__square__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y4 ) )
= ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_le_square_iff
thf(fact_5879_abs__square__eq__1,axiom,
! [X: code_integer] :
( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_Code_integer )
= ( ( abs_abs_Code_integer @ X )
= one_one_Code_integer ) ) ).
% abs_square_eq_1
thf(fact_5880_abs__square__eq__1,axiom,
! [X: rat] :
( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat )
= ( ( abs_abs_rat @ X )
= one_one_rat ) ) ).
% abs_square_eq_1
thf(fact_5881_abs__square__eq__1,axiom,
! [X: int] :
( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int )
= ( ( abs_abs_int @ X )
= one_one_int ) ) ).
% abs_square_eq_1
thf(fact_5882_abs__square__eq__1,axiom,
! [X: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
= ( ( abs_abs_real @ X )
= one_one_real ) ) ).
% abs_square_eq_1
thf(fact_5883_power__even__abs,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5884_power__even__abs,axiom,
! [N: nat,A: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5885_power__even__abs,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( abs_abs_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5886_power__even__abs,axiom,
! [N: nat,A: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( abs_abs_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) ) ).
% power_even_abs
thf(fact_5887_le__minus__divide__eq,axiom,
! [A: rat,B: rat,C: rat] :
( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_5888_le__minus__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_minus_divide_eq
thf(fact_5889_minus__divide__le__eq,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_5890_minus__divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% minus_divide_le_eq
thf(fact_5891_neg__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_5892_neg__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_minus_divide_eq
thf(fact_5893_neg__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_5894_neg__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divide_le_eq
thf(fact_5895_pos__le__minus__divide__eq,axiom,
! [C: rat,A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
= ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_5896_pos__le__minus__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_le_minus_divide_eq
thf(fact_5897_pos__minus__divide__le__eq,axiom,
! [C: rat,B: rat,A: rat] :
( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_5898_pos__minus__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_minus_divide_le_eq
thf(fact_5899_divide__less__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_5900_divide__less__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(2)
thf(fact_5901_less__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_5902_less__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% less_divide_eq_numeral(2)
thf(fact_5903_power2__eq__1__iff,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
= ( ( A = one_one_real )
| ( A
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5904_power2__eq__1__iff,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int )
= ( ( A = one_one_int )
| ( A
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5905_power2__eq__1__iff,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex )
= ( ( A = one_one_complex )
| ( A
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5906_power2__eq__1__iff,axiom,
! [A: code_integer] :
( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_Code_integer )
= ( ( A = one_one_Code_integer )
| ( A
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5907_power2__eq__1__iff,axiom,
! [A: rat] :
( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_rat )
= ( ( A = one_one_rat )
| ( A
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% power2_eq_1_iff
thf(fact_5908_uminus__power__if,axiom,
! [N: nat,A: real] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( power_power_real @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5909_uminus__power__if,axiom,
! [N: nat,A: int] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( power_power_int @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5910_uminus__power__if,axiom,
! [N: nat,A: complex] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( power_power_complex @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
= ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5911_uminus__power__if,axiom,
! [N: nat,A: code_integer] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( power_8256067586552552935nteger @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5912_uminus__power__if,axiom,
! [N: nat,A: rat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( power_power_rat @ A @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
= ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ) ).
% uminus_power_if
thf(fact_5913_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5914_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5915_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5916_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N @ K ) )
= ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5917_neg__one__power__add__eq__neg__one__power__diff,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N @ K ) )
= ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5918_realpow__square__minus__le,axiom,
! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% realpow_square_minus_le
thf(fact_5919_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% neg_int_cases
thf(fact_5920_ln__one__minus__pos__upper__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).
% ln_one_minus_pos_upper_bound
thf(fact_5921_signed__take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K ) ) ).
% signed_take_bit_int_less_eq_self_iff
thf(fact_5922_signed__take__bit__int__greater__eq__minus__exp,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ).
% signed_take_bit_int_greater_eq_minus_exp
thf(fact_5923_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_greater_self_iff
thf(fact_5924_minus__mod__int__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
= ( minus_minus_int @ ( minus_minus_int @ L @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L ) ) ) ) ).
% minus_mod_int_eq
thf(fact_5925_zmod__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( minus_minus_int @ B @ one_one_int ) ) ) ).
% zmod_minus1
thf(fact_5926_zdiv__zminus2__eq__if,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).
% zdiv_zminus2_eq_if
thf(fact_5927_zdiv__zminus1__eq__if,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).
% zdiv_zminus1_eq_if
thf(fact_5928_power2__le__iff__abs__le,axiom,
! [Y4: code_integer,X: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y4 )
=> ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ Y4 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5929_power2__le__iff__abs__le,axiom,
! [Y4: rat,X: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ Y4 )
=> ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ Y4 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5930_power2__le__iff__abs__le,axiom,
! [Y4: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ ( abs_abs_int @ X ) @ Y4 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5931_power2__le__iff__abs__le,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_real @ ( abs_abs_real @ X ) @ Y4 ) ) ) ).
% power2_le_iff_abs_le
thf(fact_5932_abs__square__le__1,axiom,
! [X: code_integer] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).
% abs_square_le_1
thf(fact_5933_abs__square__le__1,axiom,
! [X: rat] :
( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).
% abs_square_le_1
thf(fact_5934_abs__square__le__1,axiom,
! [X: int] :
( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_eq_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).
% abs_square_le_1
thf(fact_5935_abs__square__le__1,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).
% abs_square_le_1
thf(fact_5936_abs__square__less__1,axiom,
! [X: code_integer] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
= ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).
% abs_square_less_1
thf(fact_5937_abs__square__less__1,axiom,
! [X: real] :
( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
= ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).
% abs_square_less_1
thf(fact_5938_abs__square__less__1,axiom,
! [X: rat] :
( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
= ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).
% abs_square_less_1
thf(fact_5939_abs__square__less__1,axiom,
! [X: int] :
( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
= ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).
% abs_square_less_1
thf(fact_5940_power__mono__even,axiom,
! [N: nat,A: code_integer,B: code_integer] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5941_power__mono__even,axiom,
! [N: nat,A: rat,B: rat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
=> ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5942_power__mono__even,axiom,
! [N: nat,A: int,B: int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5943_power__mono__even,axiom,
! [N: nat,A: real,B: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono_even
thf(fact_5944_divide__le__eq__numeral_I2_J,axiom,
! [B: rat,C: rat,W: num] :
( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_5945_divide__le__eq__numeral_I2_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(2)
thf(fact_5946_le__divide__eq__numeral_I2_J,axiom,
! [W: num,B: rat,C: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ C )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_rat @ zero_zero_rat @ C )
=> ( ( ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
& ( ~ ( ord_less_rat @ C @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_5947_le__divide__eq__numeral_I2_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(2)
thf(fact_5948_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_5949_square__le__1,axiom,
! [X: code_integer] :
( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
=> ( ( ord_le3102999989581377725nteger @ X @ one_one_Code_integer )
=> ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).
% square_le_1
thf(fact_5950_square__le__1,axiom,
! [X: rat] :
( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X )
=> ( ( ord_less_eq_rat @ X @ one_one_rat )
=> ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).
% square_le_1
thf(fact_5951_square__le__1,axiom,
! [X: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X )
=> ( ( ord_less_eq_int @ X @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% square_le_1
thf(fact_5952_square__le__1,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).
% square_le_1
thf(fact_5953_minus__power__mult__self,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5954_minus__power__mult__self,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5955_minus__power__mult__self,axiom,
! [A: complex,N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) )
= ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5956_minus__power__mult__self,axiom,
! [A: code_integer,N: nat] :
( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
= ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5957_minus__power__mult__self,axiom,
! [A: rat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
= ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_5958_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= one_one_real ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% minus_one_power_iff
thf(fact_5959_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= one_one_int ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% minus_one_power_iff
thf(fact_5960_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= one_one_complex ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% minus_one_power_iff
thf(fact_5961_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= one_one_Code_integer ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% minus_one_power_iff
thf(fact_5962_minus__one__power__iff,axiom,
! [N: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= one_one_rat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).
% minus_one_power_iff
thf(fact_5963_pochhammer__absorb__comp,axiom,
! [R2: code_integer,K: nat] :
( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R2 @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R2 ) @ K ) )
= ( times_3573771949741848930nteger @ R2 @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R2 ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_5964_pochhammer__absorb__comp,axiom,
! [R2: complex,K: nat] :
( ( times_times_complex @ ( minus_minus_complex @ R2 @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R2 ) @ K ) )
= ( times_times_complex @ R2 @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R2 ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_5965_pochhammer__absorb__comp,axiom,
! [R2: real,K: nat] :
( ( times_times_real @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R2 ) @ K ) )
= ( times_times_real @ R2 @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R2 ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_5966_pochhammer__absorb__comp,axiom,
! [R2: rat,K: nat] :
( ( times_times_rat @ ( minus_minus_rat @ R2 @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R2 ) @ K ) )
= ( times_times_rat @ R2 @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R2 ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_5967_pochhammer__absorb__comp,axiom,
! [R2: int,K: nat] :
( ( times_times_int @ ( minus_minus_int @ R2 @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R2 ) @ K ) )
= ( times_times_int @ R2 @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R2 ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_absorb_comp
thf(fact_5968_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ N )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( semiri3624122377584611663nteger @ N ) ) ) ).
% pochhammer_same
thf(fact_5969_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ N )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( semiri773545260158071498ct_rat @ N ) ) ) ).
% pochhammer_same
thf(fact_5970_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( semiri1406184849735516958ct_int @ N ) ) ) ).
% pochhammer_same
thf(fact_5971_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ).
% pochhammer_same
thf(fact_5972_pochhammer__same,axiom,
! [N: nat] :
( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ N )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( semiri5044797733671781792omplex @ N ) ) ) ).
% pochhammer_same
thf(fact_5973_signed__take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_ri631733984087533419it_int @ N @ K )
= K )
= ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_eq_self_iff
thf(fact_5974_signed__take__bit__int__eq__self,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_ri631733984087533419it_int @ N @ K )
= K ) ) ) ).
% signed_take_bit_int_eq_self
thf(fact_5975_Bernoulli__inequality,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).
% Bernoulli_inequality
thf(fact_5976_minus__1__div__exp__eq__int,axiom,
! [N: nat] :
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_exp_eq_int
thf(fact_5977_div__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( divide_divide_int @ K @ L )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% div_pos_neg_trivial
thf(fact_5978_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% power_minus1_odd
thf(fact_5979_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% power_minus1_odd
thf(fact_5980_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% power_minus1_odd
thf(fact_5981_power__minus1__odd,axiom,
! [N: nat] :
( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% power_minus1_odd
thf(fact_5982_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% power_minus1_odd
thf(fact_5983_pochhammer__minus,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_5984_pochhammer__minus,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_5985_pochhammer__minus,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_5986_pochhammer__minus,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_5987_pochhammer__minus,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).
% pochhammer_minus
thf(fact_5988_pochhammer__minus_H,axiom,
! [B: code_integer,K: nat] :
( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
= ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_5989_pochhammer__minus_H,axiom,
! [B: complex,K: nat] :
( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_5990_pochhammer__minus_H,axiom,
! [B: real,K: nat] :
( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_5991_pochhammer__minus_H,axiom,
! [B: rat,K: nat] :
( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_5992_pochhammer__minus_H,axiom,
! [B: int,K: nat] :
( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).
% pochhammer_minus'
thf(fact_5993_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ zero_zero_int )
=> ( ( P @ ( uminus_uminus_int @ one_one_int ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2 != zero_zero_int )
=> ( P @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( uminus_uminus_int @ one_one_int ) )
=> ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_5994_signed__take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ) ).
% signed_take_bit_int_greater_eq
thf(fact_5995_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_5996_fact__code,axiom,
( semiri773545260158071498ct_rat
= ( ^ [N4: nat] : ( semiri681578069525770553at_rat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_5997_fact__code,axiom,
( semiri1406184849735516958ct_int
= ( ^ [N4: nat] : ( semiri1314217659103216013at_int @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_5998_fact__code,axiom,
( semiri1408675320244567234ct_nat
= ( ^ [N4: nat] : ( semiri1316708129612266289at_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_5999_fact__code,axiom,
( semiri2265585572941072030t_real
= ( ^ [N4: nat] : ( semiri5074537144036343181t_real @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_6000_fact__code,axiom,
( semiri5044797733671781792omplex
= ( ^ [N4: nat] : ( semiri8010041392384452111omplex @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 @ one_one_nat ) ) ) ) ).
% fact_code
thf(fact_6001_abs__sqrt__wlog,axiom,
! [P: code_integer > code_integer > $o,X: code_integer] :
( ! [X4: code_integer] :
( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X4 )
=> ( P @ X4 @ ( power_8256067586552552935nteger @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_Code_integer @ X ) @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6002_abs__sqrt__wlog,axiom,
! [P: rat > rat > $o,X: rat] :
( ! [X4: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ X4 )
=> ( P @ X4 @ ( power_power_rat @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_rat @ X ) @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6003_abs__sqrt__wlog,axiom,
! [P: int > int > $o,X: int] :
( ! [X4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X4 )
=> ( P @ X4 @ ( power_power_int @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_int @ X ) @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6004_abs__sqrt__wlog,axiom,
! [P: real > real > $o,X: real] :
( ! [X4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X4 )
=> ( P @ X4 @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ ( abs_abs_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% abs_sqrt_wlog
thf(fact_6005_sin__coeff__def,axiom,
( sin_coeff
= ( ^ [N4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N4 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N4 ) ) ) ) ) ).
% sin_coeff_def
thf(fact_6006_cos__coeff__def,axiom,
( cos_coeff
= ( ^ [N4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N4 ) ) @ zero_zero_real ) ) ) ).
% cos_coeff_def
thf(fact_6007_compl__le__compl__iff,axiom,
! [X: set_int,Y4: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ ( uminus1532241313380277803et_int @ Y4 ) )
= ( ord_less_eq_set_int @ Y4 @ X ) ) ).
% compl_le_compl_iff
thf(fact_6008_listsum__bound,axiom,
! [Xs: list_complex,F: complex > real,Y4: real] :
( ! [X4: complex] :
( ( member_complex @ X4 @ ( set_complex2 @ Xs ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ Y4 @ ( foldr_real_real @ plus_plus_real @ ( map_complex_real @ F @ Xs ) @ Y4 ) ) ) ).
% listsum_bound
thf(fact_6009_listsum__bound,axiom,
! [Xs: list_set_nat,F: set_nat > real,Y4: real] :
( ! [X4: set_nat] :
( ( member_set_nat @ X4 @ ( set_set_nat2 @ Xs ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ Y4 @ ( foldr_real_real @ plus_plus_real @ ( map_set_nat_real @ F @ Xs ) @ Y4 ) ) ) ).
% listsum_bound
thf(fact_6010_listsum__bound,axiom,
! [Xs: list_VEBT_VEBT,F: vEBT_VEBT > real,Y4: real] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ Y4 @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ F @ Xs ) @ Y4 ) ) ) ).
% listsum_bound
thf(fact_6011_listsum__bound,axiom,
! [Xs: list_nat,F: nat > real,Y4: real] :
( ! [X4: nat] :
( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ Y4 @ ( foldr_real_real @ plus_plus_real @ ( map_nat_real @ F @ Xs ) @ Y4 ) ) ) ).
% listsum_bound
thf(fact_6012_listsum__bound,axiom,
! [Xs: list_real,F: real > real,Y4: real] :
( ! [X4: real] :
( ( member_real @ X4 @ ( set_real2 @ Xs ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ Y4 @ ( foldr_real_real @ plus_plus_real @ ( map_real_real @ F @ Xs ) @ Y4 ) ) ) ).
% listsum_bound
thf(fact_6013_listsum__bound,axiom,
! [Xs: list_int,F: int > real,Y4: real] :
( ! [X4: int] :
( ( member_int @ X4 @ ( set_int2 @ Xs ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ord_less_eq_real @ Y4 @ ( foldr_real_real @ plus_plus_real @ ( map_int_real @ F @ Xs ) @ Y4 ) ) ) ).
% listsum_bound
thf(fact_6014_signed__take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_numeral_minus_bit1
thf(fact_6015_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6016_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6017_dbl__dec__simps_I4_J,axiom,
( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6018_dbl__dec__simps_I4_J,axiom,
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6019_dbl__dec__simps_I4_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).
% dbl_dec_simps(4)
thf(fact_6020_ComplI,axiom,
! [C: complex,A2: set_complex] :
( ~ ( member_complex @ C @ A2 )
=> ( member_complex @ C @ ( uminus8566677241136511917omplex @ A2 ) ) ) ).
% ComplI
thf(fact_6021_ComplI,axiom,
! [C: real,A2: set_real] :
( ~ ( member_real @ C @ A2 )
=> ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) ) ) ).
% ComplI
thf(fact_6022_ComplI,axiom,
! [C: set_nat,A2: set_set_nat] :
( ~ ( member_set_nat @ C @ A2 )
=> ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) ) ) ).
% ComplI
thf(fact_6023_ComplI,axiom,
! [C: nat,A2: set_nat] :
( ~ ( member_nat @ C @ A2 )
=> ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) ) ) ).
% ComplI
thf(fact_6024_ComplI,axiom,
! [C: int,A2: set_int] :
( ~ ( member_int @ C @ A2 )
=> ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).
% ComplI
thf(fact_6025_Compl__iff,axiom,
! [C: complex,A2: set_complex] :
( ( member_complex @ C @ ( uminus8566677241136511917omplex @ A2 ) )
= ( ~ ( member_complex @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_6026_Compl__iff,axiom,
! [C: real,A2: set_real] :
( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
= ( ~ ( member_real @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_6027_Compl__iff,axiom,
! [C: set_nat,A2: set_set_nat] :
( ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) )
= ( ~ ( member_set_nat @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_6028_Compl__iff,axiom,
! [C: nat,A2: set_nat] :
( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
= ( ~ ( member_nat @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_6029_Compl__iff,axiom,
! [C: int,A2: set_int] :
( ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) )
= ( ~ ( member_int @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_6030_zdvd1__eq,axiom,
! [X: int] :
( ( dvd_dvd_int @ X @ one_one_int )
= ( ( abs_abs_int @ X )
= one_one_int ) ) ).
% zdvd1_eq
thf(fact_6031_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6511756317524482435omplex @ one_one_complex )
= one_one_complex ) ).
% dbl_dec_simps(3)
thf(fact_6032_dbl__dec__simps_I3_J,axiom,
( ( neg_nu6075765906172075777c_real @ one_one_real )
= one_one_real ) ).
% dbl_dec_simps(3)
thf(fact_6033_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
= one_one_rat ) ).
% dbl_dec_simps(3)
thf(fact_6034_dbl__dec__simps_I3_J,axiom,
( ( neg_nu3811975205180677377ec_int @ one_one_int )
= one_one_int ) ).
% dbl_dec_simps(3)
thf(fact_6035_zabs__less__one__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
= ( Z = zero_zero_int ) ) ).
% zabs_less_one_iff
thf(fact_6036_in__set__replicate,axiom,
! [X: complex,N: nat,Y4: complex] :
( ( member_complex @ X @ ( set_complex2 @ ( replicate_complex @ N @ Y4 ) ) )
= ( ( X = Y4 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_6037_in__set__replicate,axiom,
! [X: set_nat,N: nat,Y4: set_nat] :
( ( member_set_nat @ X @ ( set_set_nat2 @ ( replicate_set_nat @ N @ Y4 ) ) )
= ( ( X = Y4 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_6038_in__set__replicate,axiom,
! [X: nat,N: nat,Y4: nat] :
( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N @ Y4 ) ) )
= ( ( X = Y4 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_6039_in__set__replicate,axiom,
! [X: int,N: nat,Y4: int] :
( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ Y4 ) ) )
= ( ( X = Y4 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_6040_in__set__replicate,axiom,
! [X: real,N: nat,Y4: real] :
( ( member_real @ X @ ( set_real2 @ ( replicate_real @ N @ Y4 ) ) )
= ( ( X = Y4 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_6041_in__set__replicate,axiom,
! [X: vEBT_VEBT,N: nat,Y4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ Y4 ) ) )
= ( ( X = Y4 )
& ( N != zero_zero_nat ) ) ) ).
% in_set_replicate
thf(fact_6042_Bex__set__replicate,axiom,
! [N: nat,A: nat,P: nat > $o] :
( ( ? [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
& ( P @ X3 ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_6043_Bex__set__replicate,axiom,
! [N: nat,A: int,P: int > $o] :
( ( ? [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
& ( P @ X3 ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_6044_Bex__set__replicate,axiom,
! [N: nat,A: real,P: real > $o] :
( ( ? [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ ( replicate_real @ N @ A ) ) )
& ( P @ X3 ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_6045_Bex__set__replicate,axiom,
! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ? [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
& ( P @ X3 ) ) )
= ( ( P @ A )
& ( N != zero_zero_nat ) ) ) ).
% Bex_set_replicate
thf(fact_6046_Ball__set__replicate,axiom,
! [N: nat,A: nat,P: nat > $o] :
( ( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
=> ( P @ X3 ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_6047_Ball__set__replicate,axiom,
! [N: nat,A: int,P: int > $o] :
( ( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
=> ( P @ X3 ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_6048_Ball__set__replicate,axiom,
! [N: nat,A: real,P: real > $o] :
( ( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ ( replicate_real @ N @ A ) ) )
=> ( P @ X3 ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_6049_Ball__set__replicate,axiom,
! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
( ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
=> ( P @ X3 ) ) )
= ( ( P @ A )
| ( N = zero_zero_nat ) ) ) ).
% Ball_set_replicate
thf(fact_6050_pred__numeral__simps_I1_J,axiom,
( ( pred_numeral @ one )
= zero_zero_nat ) ).
% pred_numeral_simps(1)
thf(fact_6051_eq__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ( numeral_numeral_nat @ K )
= ( suc @ N ) )
= ( ( pred_numeral @ K )
= N ) ) ).
% eq_numeral_Suc
thf(fact_6052_Suc__eq__numeral,axiom,
! [N: nat,K: num] :
( ( ( suc @ N )
= ( numeral_numeral_nat @ K ) )
= ( N
= ( pred_numeral @ K ) ) ) ).
% Suc_eq_numeral
thf(fact_6053_sin__coeff__0,axiom,
( ( sin_coeff @ zero_zero_nat )
= zero_zero_real ) ).
% sin_coeff_0
thf(fact_6054_cos__coeff__0,axiom,
( ( cos_coeff @ zero_zero_nat )
= one_one_real ) ).
% cos_coeff_0
thf(fact_6055_pred__numeral__simps_I3_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit1 @ K ) )
= ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).
% pred_numeral_simps(3)
thf(fact_6056_less__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( ord_less_nat @ ( pred_numeral @ K ) @ N ) ) ).
% less_numeral_Suc
thf(fact_6057_less__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_nat @ N @ ( pred_numeral @ K ) ) ) ).
% less_Suc_numeral
thf(fact_6058_le__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N ) ) ).
% le_numeral_Suc
thf(fact_6059_le__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( ord_less_eq_nat @ N @ ( pred_numeral @ K ) ) ) ).
% le_Suc_numeral
thf(fact_6060_diff__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( minus_minus_nat @ ( pred_numeral @ K ) @ N ) ) ).
% diff_numeral_Suc
thf(fact_6061_diff__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( minus_minus_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( minus_minus_nat @ N @ ( pred_numeral @ K ) ) ) ).
% diff_Suc_numeral
thf(fact_6062_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6075765906172075777c_real @ zero_zero_real )
= ( uminus_uminus_real @ one_one_real ) ) ).
% dbl_dec_simps(2)
thf(fact_6063_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% dbl_dec_simps(2)
thf(fact_6064_dbl__dec__simps_I2_J,axiom,
( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% dbl_dec_simps(2)
thf(fact_6065_dbl__dec__simps_I2_J,axiom,
( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% dbl_dec_simps(2)
thf(fact_6066_dbl__dec__simps_I2_J,axiom,
( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% dbl_dec_simps(2)
thf(fact_6067_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6068_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6069_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6070_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6071_dbl__inc__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_inc_simps(1)
thf(fact_6072_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6073_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6074_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6075_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6076_dbl__dec__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).
% dbl_dec_simps(1)
thf(fact_6077_signed__take__bit__numeral__bit0,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_numeral_bit0
thf(fact_6078_signed__take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% signed_take_bit_numeral_minus_bit0
thf(fact_6079_signed__take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% signed_take_bit_numeral_bit1
thf(fact_6080_ComplD,axiom,
! [C: complex,A2: set_complex] :
( ( member_complex @ C @ ( uminus8566677241136511917omplex @ A2 ) )
=> ~ ( member_complex @ C @ A2 ) ) ).
% ComplD
thf(fact_6081_ComplD,axiom,
! [C: real,A2: set_real] :
( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
=> ~ ( member_real @ C @ A2 ) ) ).
% ComplD
thf(fact_6082_ComplD,axiom,
! [C: set_nat,A2: set_set_nat] :
( ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) )
=> ~ ( member_set_nat @ C @ A2 ) ) ).
% ComplD
thf(fact_6083_ComplD,axiom,
! [C: nat,A2: set_nat] :
( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
=> ~ ( member_nat @ C @ A2 ) ) ).
% ComplD
thf(fact_6084_ComplD,axiom,
! [C: int,A2: set_int] :
( ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) )
=> ~ ( member_int @ C @ A2 ) ) ).
% ComplD
thf(fact_6085_subset__code_I1_J,axiom,
! [Xs: list_complex,B4: set_complex] :
( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ B4 )
= ( ! [X3: complex] :
( ( member_complex @ X3 @ ( set_complex2 @ Xs ) )
=> ( member_complex @ X3 @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_6086_subset__code_I1_J,axiom,
! [Xs: list_set_nat,B4: set_set_nat] :
( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs ) @ B4 )
= ( ! [X3: set_nat] :
( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs ) )
=> ( member_set_nat @ X3 @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_6087_subset__code_I1_J,axiom,
! [Xs: list_VEBT_VEBT,B4: set_VEBT_VEBT] :
( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ B4 )
= ( ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( member_VEBT_VEBT @ X3 @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_6088_subset__code_I1_J,axiom,
! [Xs: list_nat,B4: set_nat] :
( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ B4 )
= ( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_nat2 @ Xs ) )
=> ( member_nat @ X3 @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_6089_subset__code_I1_J,axiom,
! [Xs: list_real,B4: set_real] :
( ( ord_less_eq_set_real @ ( set_real2 @ Xs ) @ B4 )
= ( ! [X3: real] :
( ( member_real @ X3 @ ( set_real2 @ Xs ) )
=> ( member_real @ X3 @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_6090_subset__code_I1_J,axiom,
! [Xs: list_int,B4: set_int] :
( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ B4 )
= ( ! [X3: int] :
( ( member_int @ X3 @ ( set_int2 @ Xs ) )
=> ( member_int @ X3 @ B4 ) ) ) ) ).
% subset_code(1)
thf(fact_6091_zdvd__antisym__abs,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ A @ B )
=> ( ( dvd_dvd_int @ B @ A )
=> ( ( abs_abs_int @ A )
= ( abs_abs_int @ B ) ) ) ) ).
% zdvd_antisym_abs
thf(fact_6092_abs__zmult__eq__1,axiom,
! [M: int,N: int] :
( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
= one_one_int )
=> ( ( abs_abs_int @ M )
= one_one_int ) ) ).
% abs_zmult_eq_1
thf(fact_6093_abs__div,axiom,
! [Y4: int,X: int] :
( ( dvd_dvd_int @ Y4 @ X )
=> ( ( abs_abs_int @ ( divide_divide_int @ X @ Y4 ) )
= ( divide_divide_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y4 ) ) ) ) ).
% abs_div
thf(fact_6094_numeral__eq__Suc,axiom,
( numeral_numeral_nat
= ( ^ [K3: num] : ( suc @ ( pred_numeral @ K3 ) ) ) ) ).
% numeral_eq_Suc
thf(fact_6095_sin__coeff__Suc,axiom,
! [N: nat] :
( ( sin_coeff @ ( suc @ N ) )
= ( divide_divide_real @ ( cos_coeff @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).
% sin_coeff_Suc
thf(fact_6096_zabs__def,axiom,
( abs_abs_int
= ( ^ [I2: int] : ( if_int @ ( ord_less_int @ I2 @ zero_zero_int ) @ ( uminus_uminus_int @ I2 ) @ I2 ) ) ) ).
% zabs_def
thf(fact_6097_dvd__imp__le__int,axiom,
! [I: int,D: int] :
( ( I != zero_zero_int )
=> ( ( dvd_dvd_int @ D @ I )
=> ( ord_less_eq_int @ ( abs_abs_int @ D ) @ ( abs_abs_int @ I ) ) ) ) ).
% dvd_imp_le_int
thf(fact_6098_abs__mod__less,axiom,
! [L: int,K: int] :
( ( L != zero_zero_int )
=> ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L ) ) @ ( abs_abs_int @ L ) ) ) ).
% abs_mod_less
thf(fact_6099_cos__coeff__Suc,axiom,
! [N: nat] :
( ( cos_coeff @ ( suc @ N ) )
= ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).
% cos_coeff_Suc
thf(fact_6100_pred__numeral__def,axiom,
( pred_numeral
= ( ^ [K3: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K3 ) @ one_one_nat ) ) ) ).
% pred_numeral_def
thf(fact_6101_zdvd__mult__cancel1,axiom,
! [M: int,N: int] :
( ( M != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ M @ N ) @ M )
= ( ( abs_abs_int @ N )
= one_one_int ) ) ) ).
% zdvd_mult_cancel1
thf(fact_6102_fact__numeral,axiom,
! [K: num] :
( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ K ) )
= ( times_times_rat @ ( numeral_numeral_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_6103_fact__numeral,axiom,
! [K: num] :
( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ K ) )
= ( times_times_int @ ( numeral_numeral_int @ K ) @ ( semiri1406184849735516958ct_int @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_6104_fact__numeral,axiom,
! [K: num] :
( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ K ) )
= ( times_times_nat @ ( numeral_numeral_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_6105_fact__numeral,axiom,
! [K: num] :
( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ K ) )
= ( times_times_real @ ( numeral_numeral_real @ K ) @ ( semiri2265585572941072030t_real @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_6106_fact__numeral,axiom,
! [K: num] :
( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ K ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ K ) @ ( semiri5044797733671781792omplex @ ( pred_numeral @ K ) ) ) ) ).
% fact_numeral
thf(fact_6107_even__abs__add__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_abs_add_iff
thf(fact_6108_even__add__abs__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L ) ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_add_abs_iff
thf(fact_6109_nat__intermed__int__val,axiom,
! [M: nat,N: nat,F: nat > int,K: int] :
( ! [I3: nat] :
( ( ( ord_less_eq_nat @ M @ I3 )
& ( ord_less_nat @ I3 @ N ) )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_int @ ( F @ M ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I3: nat] :
( ( ord_less_eq_nat @ M @ I3 )
& ( ord_less_eq_nat @ I3 @ N )
& ( ( F @ I3 )
= K ) ) ) ) ) ) ).
% nat_intermed_int_val
thf(fact_6110_dbl__dec__def,axiom,
( neg_nu6511756317524482435omplex
= ( ^ [X3: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X3 @ X3 ) @ one_one_complex ) ) ) ).
% dbl_dec_def
thf(fact_6111_dbl__dec__def,axiom,
( neg_nu6075765906172075777c_real
= ( ^ [X3: real] : ( minus_minus_real @ ( plus_plus_real @ X3 @ X3 ) @ one_one_real ) ) ) ).
% dbl_dec_def
thf(fact_6112_dbl__dec__def,axiom,
( neg_nu3179335615603231917ec_rat
= ( ^ [X3: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X3 @ X3 ) @ one_one_rat ) ) ) ).
% dbl_dec_def
thf(fact_6113_dbl__dec__def,axiom,
( neg_nu3811975205180677377ec_int
= ( ^ [X3: int] : ( minus_minus_int @ ( plus_plus_int @ X3 @ X3 ) @ one_one_int ) ) ) ).
% dbl_dec_def
thf(fact_6114_incr__lemma,axiom,
! [D: int,Z: int,X: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ Z @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z ) ) @ one_one_int ) @ D ) ) ) ) ).
% incr_lemma
thf(fact_6115_decr__lemma,axiom,
! [D: int,X: int,Z: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z ) ) @ one_one_int ) @ D ) ) @ Z ) ) ).
% decr_lemma
thf(fact_6116_compl__mono,axiom,
! [X: set_int,Y4: set_int] :
( ( ord_less_eq_set_int @ X @ Y4 )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y4 ) @ ( uminus1532241313380277803et_int @ X ) ) ) ).
% compl_mono
thf(fact_6117_compl__le__swap1,axiom,
! [Y4: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y4 @ ( uminus1532241313380277803et_int @ X ) )
=> ( ord_less_eq_set_int @ X @ ( uminus1532241313380277803et_int @ Y4 ) ) ) ).
% compl_le_swap1
thf(fact_6118_compl__le__swap2,axiom,
! [Y4: set_int,X: set_int] :
( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y4 ) @ X )
=> ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ Y4 ) ) ).
% compl_le_swap2
thf(fact_6119_nat__ivt__aux,axiom,
! [N: nat,F: nat > int,K: int] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
& ( ( F @ I3 )
= K ) ) ) ) ) ).
% nat_ivt_aux
thf(fact_6120_complex__mod__minus__le__complex__mod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% complex_mod_minus_le_complex_mod
thf(fact_6121_complex__mod__triangle__ineq2,axiom,
! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).
% complex_mod_triangle_ineq2
thf(fact_6122_nat0__intermed__int__val,axiom,
! [N: nat,F: nat > int,K: int] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I3: nat] :
( ( ord_less_eq_nat @ I3 @ N )
& ( ( F @ I3 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_6123_set__n__deg__not__0,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,M: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X4 @ N ) )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ord_less_eq_nat @ one_one_nat @ N ) ) ) ).
% set_n_deg_not_0
thf(fact_6124_arctan__double,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X ) )
= ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% arctan_double
thf(fact_6125_concat__bit__Suc,axiom,
! [N: nat,K: int,L: int] :
( ( bit_concat_bit @ ( suc @ N ) @ K @ L )
= ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L ) ) ) ) ).
% concat_bit_Suc
thf(fact_6126_modulo__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
& ( ~ ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( times_times_int @ ( sgn_sgn_int @ L )
@ ( minus_minus_int
@ ( semiri1314217659103216013at_int
@ ( times_times_nat @ N
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N @ M ) ) ) )
@ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ) ) ) ) ).
% modulo_int_unfold
thf(fact_6127_mask__numeral,axiom,
! [N: num] :
( ( bit_se2002935070580805687sk_nat @ ( numeral_numeral_nat @ N ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ ( pred_numeral @ N ) ) ) ) ) ).
% mask_numeral
thf(fact_6128_mask__numeral,axiom,
! [N: num] :
( ( bit_se2000444600071755411sk_int @ ( numeral_numeral_nat @ N ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ ( pred_numeral @ N ) ) ) ) ) ).
% mask_numeral
thf(fact_6129_sgn__sgn,axiom,
! [A: int] :
( ( sgn_sgn_int @ ( sgn_sgn_int @ A ) )
= ( sgn_sgn_int @ A ) ) ).
% sgn_sgn
thf(fact_6130_sgn__sgn,axiom,
! [A: real] :
( ( sgn_sgn_real @ ( sgn_sgn_real @ A ) )
= ( sgn_sgn_real @ A ) ) ).
% sgn_sgn
thf(fact_6131_sgn__sgn,axiom,
! [A: complex] :
( ( sgn_sgn_complex @ ( sgn_sgn_complex @ A ) )
= ( sgn_sgn_complex @ A ) ) ).
% sgn_sgn
thf(fact_6132_sgn__sgn,axiom,
! [A: code_integer] :
( ( sgn_sgn_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= ( sgn_sgn_Code_integer @ A ) ) ).
% sgn_sgn
thf(fact_6133_sgn__sgn,axiom,
! [A: rat] :
( ( sgn_sgn_rat @ ( sgn_sgn_rat @ A ) )
= ( sgn_sgn_rat @ A ) ) ).
% sgn_sgn
thf(fact_6134_mask__nat__positive__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% mask_nat_positive_iff
thf(fact_6135_sgn__zero,axiom,
( ( sgn_sgn_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% sgn_zero
thf(fact_6136_sgn__zero,axiom,
( ( sgn_sgn_real @ zero_zero_real )
= zero_zero_real ) ).
% sgn_zero
thf(fact_6137_sgn__0,axiom,
( ( sgn_sgn_Code_integer @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% sgn_0
thf(fact_6138_sgn__0,axiom,
( ( sgn_sgn_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% sgn_0
thf(fact_6139_sgn__0,axiom,
( ( sgn_sgn_real @ zero_zero_real )
= zero_zero_real ) ).
% sgn_0
thf(fact_6140_sgn__0,axiom,
( ( sgn_sgn_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% sgn_0
thf(fact_6141_sgn__0,axiom,
( ( sgn_sgn_int @ zero_zero_int )
= zero_zero_int ) ).
% sgn_0
thf(fact_6142_sgn__1,axiom,
( ( sgn_sgn_int @ one_one_int )
= one_one_int ) ).
% sgn_1
thf(fact_6143_sgn__1,axiom,
( ( sgn_sgn_real @ one_one_real )
= one_one_real ) ).
% sgn_1
thf(fact_6144_sgn__1,axiom,
( ( sgn_sgn_complex @ one_one_complex )
= one_one_complex ) ).
% sgn_1
thf(fact_6145_sgn__1,axiom,
( ( sgn_sgn_Code_integer @ one_one_Code_integer )
= one_one_Code_integer ) ).
% sgn_1
thf(fact_6146_sgn__1,axiom,
( ( sgn_sgn_rat @ one_one_rat )
= one_one_rat ) ).
% sgn_1
thf(fact_6147_sgn__divide,axiom,
! [A: complex,B: complex] :
( ( sgn_sgn_complex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).
% sgn_divide
thf(fact_6148_sgn__divide,axiom,
! [A: real,B: real] :
( ( sgn_sgn_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).
% sgn_divide
thf(fact_6149_sgn__divide,axiom,
! [A: rat,B: rat] :
( ( sgn_sgn_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).
% sgn_divide
thf(fact_6150_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: real] :
( ( sgn_sgn_real @ ( uminus_uminus_real @ A ) )
= ( uminus_uminus_real @ ( sgn_sgn_real @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_6151_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: int] :
( ( sgn_sgn_int @ ( uminus_uminus_int @ A ) )
= ( uminus_uminus_int @ ( sgn_sgn_int @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_6152_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: complex] :
( ( sgn_sgn_complex @ ( uminus1482373934393186551omplex @ A ) )
= ( uminus1482373934393186551omplex @ ( sgn_sgn_complex @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_6153_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: code_integer] :
( ( sgn_sgn_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
= ( uminus1351360451143612070nteger @ ( sgn_sgn_Code_integer @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_6154_idom__abs__sgn__class_Osgn__minus,axiom,
! [A: rat] :
( ( sgn_sgn_rat @ ( uminus_uminus_rat @ A ) )
= ( uminus_uminus_rat @ ( sgn_sgn_rat @ A ) ) ) ).
% idom_abs_sgn_class.sgn_minus
thf(fact_6155_arctan__eq__zero__iff,axiom,
! [X: real] :
( ( ( arctan @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% arctan_eq_zero_iff
thf(fact_6156_arctan__zero__zero,axiom,
( ( arctan @ zero_zero_real )
= zero_zero_real ) ).
% arctan_zero_zero
thf(fact_6157_concat__bit__0,axiom,
! [K: int,L: int] :
( ( bit_concat_bit @ zero_zero_nat @ K @ L )
= L ) ).
% concat_bit_0
thf(fact_6158_sgn__less,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ ( sgn_sgn_Code_integer @ A ) @ zero_z3403309356797280102nteger )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% sgn_less
thf(fact_6159_sgn__less,axiom,
! [A: real] :
( ( ord_less_real @ ( sgn_sgn_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% sgn_less
thf(fact_6160_sgn__less,axiom,
! [A: rat] :
( ( ord_less_rat @ ( sgn_sgn_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% sgn_less
thf(fact_6161_sgn__less,axiom,
! [A: int] :
( ( ord_less_int @ ( sgn_sgn_int @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% sgn_less
thf(fact_6162_sgn__greater,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( sgn_sgn_Code_integer @ A ) )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% sgn_greater
thf(fact_6163_sgn__greater,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( sgn_sgn_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% sgn_greater
thf(fact_6164_sgn__greater,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( sgn_sgn_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% sgn_greater
thf(fact_6165_sgn__greater,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( sgn_sgn_int @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% sgn_greater
thf(fact_6166_divide__sgn,axiom,
! [A: real,B: real] :
( ( divide_divide_real @ A @ ( sgn_sgn_real @ B ) )
= ( times_times_real @ A @ ( sgn_sgn_real @ B ) ) ) ).
% divide_sgn
thf(fact_6167_divide__sgn,axiom,
! [A: rat,B: rat] :
( ( divide_divide_rat @ A @ ( sgn_sgn_rat @ B ) )
= ( times_times_rat @ A @ ( sgn_sgn_rat @ B ) ) ) ).
% divide_sgn
thf(fact_6168_mask__0,axiom,
( ( bit_se2002935070580805687sk_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% mask_0
thf(fact_6169_mask__0,axiom,
( ( bit_se2000444600071755411sk_int @ zero_zero_nat )
= zero_zero_int ) ).
% mask_0
thf(fact_6170_mask__eq__0__iff,axiom,
! [N: nat] :
( ( ( bit_se2002935070580805687sk_nat @ N )
= zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% mask_eq_0_iff
thf(fact_6171_mask__eq__0__iff,axiom,
! [N: nat] :
( ( ( bit_se2000444600071755411sk_int @ N )
= zero_zero_int )
= ( N = zero_zero_nat ) ) ).
% mask_eq_0_iff
thf(fact_6172_arctan__less__zero__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( arctan @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% arctan_less_zero_iff
thf(fact_6173_zero__less__arctan__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( arctan @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% zero_less_arctan_iff
thf(fact_6174_zero__le__arctan__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% zero_le_arctan_iff
thf(fact_6175_arctan__le__zero__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( arctan @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% arctan_le_zero_iff
thf(fact_6176_concat__bit__nonnegative__iff,axiom,
! [N: nat,K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N @ K @ L ) )
= ( ord_less_eq_int @ zero_zero_int @ L ) ) ).
% concat_bit_nonnegative_iff
thf(fact_6177_concat__bit__negative__iff,axiom,
! [N: nat,K: int,L: int] :
( ( ord_less_int @ ( bit_concat_bit @ N @ K @ L ) @ zero_zero_int )
= ( ord_less_int @ L @ zero_zero_int ) ) ).
% concat_bit_negative_iff
thf(fact_6178_sgn__pos,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
=> ( ( sgn_sgn_Code_integer @ A )
= one_one_Code_integer ) ) ).
% sgn_pos
thf(fact_6179_sgn__pos,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( sgn_sgn_real @ A )
= one_one_real ) ) ).
% sgn_pos
thf(fact_6180_sgn__pos,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( sgn_sgn_rat @ A )
= one_one_rat ) ) ).
% sgn_pos
thf(fact_6181_sgn__pos,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( sgn_sgn_int @ A )
= one_one_int ) ) ).
% sgn_pos
thf(fact_6182_abs__sgn__eq__1,axiom,
! [A: code_integer] :
( ( A != zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= one_one_Code_integer ) ) ).
% abs_sgn_eq_1
thf(fact_6183_abs__sgn__eq__1,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
= one_one_real ) ) ).
% abs_sgn_eq_1
thf(fact_6184_abs__sgn__eq__1,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
= one_one_rat ) ) ).
% abs_sgn_eq_1
thf(fact_6185_abs__sgn__eq__1,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
= one_one_int ) ) ).
% abs_sgn_eq_1
thf(fact_6186_sgn__mult__self__eq,axiom,
! [A: real] :
( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ A ) )
= ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).
% sgn_mult_self_eq
thf(fact_6187_sgn__mult__self__eq,axiom,
! [A: rat] :
( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ A ) )
= ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).
% sgn_mult_self_eq
thf(fact_6188_sgn__mult__self__eq,axiom,
! [A: int] :
( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ A ) )
= ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).
% sgn_mult_self_eq
thf(fact_6189_sgn__mult__self__eq,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
= ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).
% sgn_mult_self_eq
thf(fact_6190_mask__Suc__0,axiom,
( ( bit_se2002935070580805687sk_nat @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% mask_Suc_0
thf(fact_6191_mask__Suc__0,axiom,
( ( bit_se2000444600071755411sk_int @ ( suc @ zero_zero_nat ) )
= one_one_int ) ).
% mask_Suc_0
thf(fact_6192_sgn__abs,axiom,
! [A: complex] :
( ( abs_abs_complex @ ( sgn_sgn_complex @ A ) )
= ( zero_n1201886186963655149omplex @ ( A != zero_zero_complex ) ) ) ).
% sgn_abs
thf(fact_6193_sgn__abs,axiom,
! [A: real] :
( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
= ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).
% sgn_abs
thf(fact_6194_sgn__abs,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
= ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).
% sgn_abs
thf(fact_6195_sgn__abs,axiom,
! [A: int] :
( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
= ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).
% sgn_abs
thf(fact_6196_sgn__abs,axiom,
! [A: code_integer] :
( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).
% sgn_abs
thf(fact_6197_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: complex] :
( ( sgn_sgn_complex @ ( abs_abs_complex @ A ) )
= ( zero_n1201886186963655149omplex @ ( A != zero_zero_complex ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_6198_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: real] :
( ( sgn_sgn_real @ ( abs_abs_real @ A ) )
= ( zero_n3304061248610475627l_real @ ( A != zero_zero_real ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_6199_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: rat] :
( ( sgn_sgn_rat @ ( abs_abs_rat @ A ) )
= ( zero_n2052037380579107095ol_rat @ ( A != zero_zero_rat ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_6200_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: int] :
( ( sgn_sgn_int @ ( abs_abs_int @ A ) )
= ( zero_n2684676970156552555ol_int @ ( A != zero_zero_int ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_6201_idom__abs__sgn__class_Oabs__sgn,axiom,
! [A: code_integer] :
( ( sgn_sgn_Code_integer @ ( abs_abs_Code_integer @ A ) )
= ( zero_n356916108424825756nteger @ ( A != zero_z3403309356797280102nteger ) ) ) ).
% idom_abs_sgn_class.abs_sgn
thf(fact_6202_sgn__mult__dvd__iff,axiom,
! [R2: int,L: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ L ) @ K )
= ( ( dvd_dvd_int @ L @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% sgn_mult_dvd_iff
thf(fact_6203_mult__sgn__dvd__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd_int @ ( times_times_int @ L @ ( sgn_sgn_int @ R2 ) ) @ K )
= ( ( dvd_dvd_int @ L @ K )
& ( ( R2 = zero_zero_int )
=> ( K = zero_zero_int ) ) ) ) ).
% mult_sgn_dvd_iff
thf(fact_6204_dvd__sgn__mult__iff,axiom,
! [L: int,R2: int,K: int] :
( ( dvd_dvd_int @ L @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ K ) )
= ( ( dvd_dvd_int @ L @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_sgn_mult_iff
thf(fact_6205_dvd__mult__sgn__iff,axiom,
! [L: int,K: int,R2: int] :
( ( dvd_dvd_int @ L @ ( times_times_int @ K @ ( sgn_sgn_int @ R2 ) ) )
= ( ( dvd_dvd_int @ L @ K )
| ( R2 = zero_zero_int ) ) ) ).
% dvd_mult_sgn_iff
thf(fact_6206_sgn__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( sgn_sgn_real @ A )
= ( uminus_uminus_real @ one_one_real ) ) ) ).
% sgn_neg
thf(fact_6207_sgn__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( sgn_sgn_int @ A )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% sgn_neg
thf(fact_6208_sgn__neg,axiom,
! [A: code_integer] :
( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
=> ( ( sgn_sgn_Code_integer @ A )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).
% sgn_neg
thf(fact_6209_sgn__neg,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( sgn_sgn_rat @ A )
= ( uminus_uminus_rat @ one_one_rat ) ) ) ).
% sgn_neg
thf(fact_6210_sgn__of__nat,axiom,
! [N: nat] :
( ( sgn_sgn_real @ ( semiri5074537144036343181t_real @ N ) )
= ( zero_n3304061248610475627l_real @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% sgn_of_nat
thf(fact_6211_sgn__of__nat,axiom,
! [N: nat] :
( ( sgn_sgn_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( zero_n2052037380579107095ol_rat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% sgn_of_nat
thf(fact_6212_sgn__of__nat,axiom,
! [N: nat] :
( ( sgn_sgn_int @ ( semiri1314217659103216013at_int @ N ) )
= ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% sgn_of_nat
thf(fact_6213_sgn__of__nat,axiom,
! [N: nat] :
( ( sgn_sgn_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
= ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% sgn_of_nat
thf(fact_6214_of__nat__mask__eq,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( bit_se2002935070580805687sk_nat @ N ) ) ).
% of_nat_mask_eq
thf(fact_6215_of__nat__mask__eq,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( bit_se2000444600071755411sk_int @ N ) ) ).
% of_nat_mask_eq
thf(fact_6216_size__neq__size__imp__neq,axiom,
! [X: list_real,Y4: list_real] :
( ( ( size_size_list_real @ X )
!= ( size_size_list_real @ Y4 ) )
=> ( X != Y4 ) ) ).
% size_neq_size_imp_neq
thf(fact_6217_size__neq__size__imp__neq,axiom,
! [X: list_o,Y4: list_o] :
( ( ( size_size_list_o @ X )
!= ( size_size_list_o @ Y4 ) )
=> ( X != Y4 ) ) ).
% size_neq_size_imp_neq
thf(fact_6218_size__neq__size__imp__neq,axiom,
! [X: list_nat,Y4: list_nat] :
( ( ( size_size_list_nat @ X )
!= ( size_size_list_nat @ Y4 ) )
=> ( X != Y4 ) ) ).
% size_neq_size_imp_neq
thf(fact_6219_size__neq__size__imp__neq,axiom,
! [X: list_int,Y4: list_int] :
( ( ( size_size_list_int @ X )
!= ( size_size_list_int @ Y4 ) )
=> ( X != Y4 ) ) ).
% size_neq_size_imp_neq
thf(fact_6220_size__neq__size__imp__neq,axiom,
! [X: num,Y4: num] :
( ( ( size_size_num @ X )
!= ( size_size_num @ Y4 ) )
=> ( X != Y4 ) ) ).
% size_neq_size_imp_neq
thf(fact_6221_sgn__zero__iff,axiom,
! [X: complex] :
( ( ( sgn_sgn_complex @ X )
= zero_zero_complex )
= ( X = zero_zero_complex ) ) ).
% sgn_zero_iff
thf(fact_6222_sgn__zero__iff,axiom,
! [X: real] :
( ( ( sgn_sgn_real @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% sgn_zero_iff
thf(fact_6223_sgn__0__0,axiom,
! [A: code_integer] :
( ( ( sgn_sgn_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% sgn_0_0
thf(fact_6224_sgn__0__0,axiom,
! [A: real] :
( ( ( sgn_sgn_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% sgn_0_0
thf(fact_6225_sgn__0__0,axiom,
! [A: rat] :
( ( ( sgn_sgn_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% sgn_0_0
thf(fact_6226_sgn__0__0,axiom,
! [A: int] :
( ( ( sgn_sgn_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% sgn_0_0
thf(fact_6227_sgn__eq__0__iff,axiom,
! [A: code_integer] :
( ( ( sgn_sgn_Code_integer @ A )
= zero_z3403309356797280102nteger )
= ( A = zero_z3403309356797280102nteger ) ) ).
% sgn_eq_0_iff
thf(fact_6228_sgn__eq__0__iff,axiom,
! [A: complex] :
( ( ( sgn_sgn_complex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% sgn_eq_0_iff
thf(fact_6229_sgn__eq__0__iff,axiom,
! [A: real] :
( ( ( sgn_sgn_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% sgn_eq_0_iff
thf(fact_6230_sgn__eq__0__iff,axiom,
! [A: rat] :
( ( ( sgn_sgn_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% sgn_eq_0_iff
thf(fact_6231_sgn__eq__0__iff,axiom,
! [A: int] :
( ( ( sgn_sgn_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% sgn_eq_0_iff
thf(fact_6232_Real__Vector__Spaces_Osgn__mult,axiom,
! [X: complex,Y4: complex] :
( ( sgn_sgn_complex @ ( times_times_complex @ X @ Y4 ) )
= ( times_times_complex @ ( sgn_sgn_complex @ X ) @ ( sgn_sgn_complex @ Y4 ) ) ) ).
% Real_Vector_Spaces.sgn_mult
thf(fact_6233_Real__Vector__Spaces_Osgn__mult,axiom,
! [X: real,Y4: real] :
( ( sgn_sgn_real @ ( times_times_real @ X @ Y4 ) )
= ( times_times_real @ ( sgn_sgn_real @ X ) @ ( sgn_sgn_real @ Y4 ) ) ) ).
% Real_Vector_Spaces.sgn_mult
thf(fact_6234_sgn__mult,axiom,
! [A: complex,B: complex] :
( ( sgn_sgn_complex @ ( times_times_complex @ A @ B ) )
= ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( sgn_sgn_complex @ B ) ) ) ).
% sgn_mult
thf(fact_6235_sgn__mult,axiom,
! [A: code_integer,B: code_integer] :
( ( sgn_sgn_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
= ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ B ) ) ) ).
% sgn_mult
thf(fact_6236_sgn__mult,axiom,
! [A: real,B: real] :
( ( sgn_sgn_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( sgn_sgn_real @ A ) @ ( sgn_sgn_real @ B ) ) ) ).
% sgn_mult
thf(fact_6237_sgn__mult,axiom,
! [A: rat,B: rat] :
( ( sgn_sgn_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( sgn_sgn_rat @ B ) ) ) ).
% sgn_mult
thf(fact_6238_sgn__mult,axiom,
! [A: int,B: int] :
( ( sgn_sgn_int @ ( times_times_int @ A @ B ) )
= ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ).
% sgn_mult
thf(fact_6239_same__sgn__sgn__add,axiom,
! [B: code_integer,A: code_integer] :
( ( ( sgn_sgn_Code_integer @ B )
= ( sgn_sgn_Code_integer @ A ) )
=> ( ( sgn_sgn_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( sgn_sgn_Code_integer @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_6240_same__sgn__sgn__add,axiom,
! [B: real,A: real] :
( ( ( sgn_sgn_real @ B )
= ( sgn_sgn_real @ A ) )
=> ( ( sgn_sgn_real @ ( plus_plus_real @ A @ B ) )
= ( sgn_sgn_real @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_6241_same__sgn__sgn__add,axiom,
! [B: rat,A: rat] :
( ( ( sgn_sgn_rat @ B )
= ( sgn_sgn_rat @ A ) )
=> ( ( sgn_sgn_rat @ ( plus_plus_rat @ A @ B ) )
= ( sgn_sgn_rat @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_6242_same__sgn__sgn__add,axiom,
! [B: int,A: int] :
( ( ( sgn_sgn_int @ B )
= ( sgn_sgn_int @ A ) )
=> ( ( sgn_sgn_int @ ( plus_plus_int @ A @ B ) )
= ( sgn_sgn_int @ A ) ) ) ).
% same_sgn_sgn_add
thf(fact_6243_div__eq__sgn__abs,axiom,
! [K: int,L: int] :
( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ K @ L )
= ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).
% div_eq_sgn_abs
thf(fact_6244_arctan__monotone_H,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y4 ) ) ) ).
% arctan_monotone'
thf(fact_6245_arctan__le__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ).
% arctan_le_iff
thf(fact_6246_less__eq__mask,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).
% less_eq_mask
thf(fact_6247_concat__bit__assoc,axiom,
! [N: nat,K: int,M: nat,L: int,R2: int] :
( ( bit_concat_bit @ N @ K @ ( bit_concat_bit @ M @ L @ R2 ) )
= ( bit_concat_bit @ ( plus_plus_nat @ M @ N ) @ ( bit_concat_bit @ N @ K @ L ) @ R2 ) ) ).
% concat_bit_assoc
thf(fact_6248_sgn__not__eq__imp,axiom,
! [B: real,A: real] :
( ( ( sgn_sgn_real @ B )
!= ( sgn_sgn_real @ A ) )
=> ( ( ( sgn_sgn_real @ A )
!= zero_zero_real )
=> ( ( ( sgn_sgn_real @ B )
!= zero_zero_real )
=> ( ( sgn_sgn_real @ A )
= ( uminus_uminus_real @ ( sgn_sgn_real @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_6249_sgn__not__eq__imp,axiom,
! [B: int,A: int] :
( ( ( sgn_sgn_int @ B )
!= ( sgn_sgn_int @ A ) )
=> ( ( ( sgn_sgn_int @ A )
!= zero_zero_int )
=> ( ( ( sgn_sgn_int @ B )
!= zero_zero_int )
=> ( ( sgn_sgn_int @ A )
= ( uminus_uminus_int @ ( sgn_sgn_int @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_6250_sgn__not__eq__imp,axiom,
! [B: code_integer,A: code_integer] :
( ( ( sgn_sgn_Code_integer @ B )
!= ( sgn_sgn_Code_integer @ A ) )
=> ( ( ( sgn_sgn_Code_integer @ A )
!= zero_z3403309356797280102nteger )
=> ( ( ( sgn_sgn_Code_integer @ B )
!= zero_z3403309356797280102nteger )
=> ( ( sgn_sgn_Code_integer @ A )
= ( uminus1351360451143612070nteger @ ( sgn_sgn_Code_integer @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_6251_sgn__not__eq__imp,axiom,
! [B: rat,A: rat] :
( ( ( sgn_sgn_rat @ B )
!= ( sgn_sgn_rat @ A ) )
=> ( ( ( sgn_sgn_rat @ A )
!= zero_zero_rat )
=> ( ( ( sgn_sgn_rat @ B )
!= zero_zero_rat )
=> ( ( sgn_sgn_rat @ A )
= ( uminus_uminus_rat @ ( sgn_sgn_rat @ B ) ) ) ) ) ) ).
% sgn_not_eq_imp
thf(fact_6252_sgn__minus__1,axiom,
( ( sgn_sgn_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% sgn_minus_1
thf(fact_6253_sgn__minus__1,axiom,
( ( sgn_sgn_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% sgn_minus_1
thf(fact_6254_sgn__minus__1,axiom,
( ( sgn_sgn_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% sgn_minus_1
thf(fact_6255_sgn__minus__1,axiom,
( ( sgn_sgn_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% sgn_minus_1
thf(fact_6256_sgn__minus__1,axiom,
( ( sgn_sgn_rat @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ one_one_rat ) ) ).
% sgn_minus_1
thf(fact_6257_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_Code_integer
= ( ^ [K3: code_integer] : ( times_3573771949741848930nteger @ K3 @ ( sgn_sgn_Code_integer @ K3 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_6258_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_real
= ( ^ [K3: real] : ( times_times_real @ K3 @ ( sgn_sgn_real @ K3 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_6259_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_rat
= ( ^ [K3: rat] : ( times_times_rat @ K3 @ ( sgn_sgn_rat @ K3 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_6260_linordered__idom__class_Oabs__sgn,axiom,
( abs_abs_int
= ( ^ [K3: int] : ( times_times_int @ K3 @ ( sgn_sgn_int @ K3 ) ) ) ) ).
% linordered_idom_class.abs_sgn
thf(fact_6261_abs__mult__sgn,axiom,
! [A: complex] :
( ( times_times_complex @ ( abs_abs_complex @ A ) @ ( sgn_sgn_complex @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_6262_abs__mult__sgn,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( sgn_sgn_Code_integer @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_6263_abs__mult__sgn,axiom,
! [A: real] :
( ( times_times_real @ ( abs_abs_real @ A ) @ ( sgn_sgn_real @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_6264_abs__mult__sgn,axiom,
! [A: rat] :
( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( sgn_sgn_rat @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_6265_abs__mult__sgn,axiom,
! [A: int] :
( ( times_times_int @ ( abs_abs_int @ A ) @ ( sgn_sgn_int @ A ) )
= A ) ).
% abs_mult_sgn
thf(fact_6266_sgn__mult__abs,axiom,
! [A: complex] :
( ( times_times_complex @ ( sgn_sgn_complex @ A ) @ ( abs_abs_complex @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_6267_sgn__mult__abs,axiom,
! [A: code_integer] :
( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_6268_sgn__mult__abs,axiom,
! [A: real] :
( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( abs_abs_real @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_6269_sgn__mult__abs,axiom,
! [A: rat] :
( ( times_times_rat @ ( sgn_sgn_rat @ A ) @ ( abs_abs_rat @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_6270_sgn__mult__abs,axiom,
! [A: int] :
( ( times_times_int @ ( sgn_sgn_int @ A ) @ ( abs_abs_int @ A ) )
= A ) ).
% sgn_mult_abs
thf(fact_6271_mult__sgn__abs,axiom,
! [X: code_integer] :
( ( times_3573771949741848930nteger @ ( sgn_sgn_Code_integer @ X ) @ ( abs_abs_Code_integer @ X ) )
= X ) ).
% mult_sgn_abs
thf(fact_6272_mult__sgn__abs,axiom,
! [X: real] :
( ( times_times_real @ ( sgn_sgn_real @ X ) @ ( abs_abs_real @ X ) )
= X ) ).
% mult_sgn_abs
thf(fact_6273_mult__sgn__abs,axiom,
! [X: rat] :
( ( times_times_rat @ ( sgn_sgn_rat @ X ) @ ( abs_abs_rat @ X ) )
= X ) ).
% mult_sgn_abs
thf(fact_6274_mult__sgn__abs,axiom,
! [X: int] :
( ( times_times_int @ ( sgn_sgn_int @ X ) @ ( abs_abs_int @ X ) )
= X ) ).
% mult_sgn_abs
thf(fact_6275_int__sgnE,axiom,
! [K: int] :
~ ! [N2: nat,L2: int] :
( K
!= ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% int_sgnE
thf(fact_6276_same__sgn__abs__add,axiom,
! [B: code_integer,A: code_integer] :
( ( ( sgn_sgn_Code_integer @ B )
= ( sgn_sgn_Code_integer @ A ) )
=> ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) )
= ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).
% same_sgn_abs_add
thf(fact_6277_same__sgn__abs__add,axiom,
! [B: real,A: real] :
( ( ( sgn_sgn_real @ B )
= ( sgn_sgn_real @ A ) )
=> ( ( abs_abs_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).
% same_sgn_abs_add
thf(fact_6278_same__sgn__abs__add,axiom,
! [B: rat,A: rat] :
( ( ( sgn_sgn_rat @ B )
= ( sgn_sgn_rat @ A ) )
=> ( ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) )
= ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).
% same_sgn_abs_add
thf(fact_6279_same__sgn__abs__add,axiom,
! [B: int,A: int] :
( ( ( sgn_sgn_int @ B )
= ( sgn_sgn_int @ A ) )
=> ( ( abs_abs_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).
% same_sgn_abs_add
thf(fact_6280_mask__nonnegative__int,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).
% mask_nonnegative_int
thf(fact_6281_not__mask__negative__int,axiom,
! [N: nat] :
~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).
% not_mask_negative_int
thf(fact_6282_sgn__1__pos,axiom,
! [A: code_integer] :
( ( ( sgn_sgn_Code_integer @ A )
= one_one_Code_integer )
= ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).
% sgn_1_pos
thf(fact_6283_sgn__1__pos,axiom,
! [A: real] :
( ( ( sgn_sgn_real @ A )
= one_one_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% sgn_1_pos
thf(fact_6284_sgn__1__pos,axiom,
! [A: rat] :
( ( ( sgn_sgn_rat @ A )
= one_one_rat )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% sgn_1_pos
thf(fact_6285_sgn__1__pos,axiom,
! [A: int] :
( ( ( sgn_sgn_int @ A )
= one_one_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% sgn_1_pos
thf(fact_6286_abs__sgn__eq,axiom,
! [A: code_integer] :
( ( ( A = zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= zero_z3403309356797280102nteger ) )
& ( ( A != zero_z3403309356797280102nteger )
=> ( ( abs_abs_Code_integer @ ( sgn_sgn_Code_integer @ A ) )
= one_one_Code_integer ) ) ) ).
% abs_sgn_eq
thf(fact_6287_abs__sgn__eq,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( abs_abs_real @ ( sgn_sgn_real @ A ) )
= one_one_real ) ) ) ).
% abs_sgn_eq
thf(fact_6288_abs__sgn__eq,axiom,
! [A: rat] :
( ( ( A = zero_zero_rat )
=> ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
= zero_zero_rat ) )
& ( ( A != zero_zero_rat )
=> ( ( abs_abs_rat @ ( sgn_sgn_rat @ A ) )
= one_one_rat ) ) ) ).
% abs_sgn_eq
thf(fact_6289_abs__sgn__eq,axiom,
! [A: int] :
( ( ( A = zero_zero_int )
=> ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
= zero_zero_int ) )
& ( ( A != zero_zero_int )
=> ( ( abs_abs_int @ ( sgn_sgn_int @ A ) )
= one_one_int ) ) ) ).
% abs_sgn_eq
thf(fact_6290_div__sgn__abs__cancel,axiom,
! [V: int,K: int,L: int] :
( ( V != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L ) ) )
= ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).
% div_sgn_abs_cancel
thf(fact_6291_div__dvd__sgn__abs,axiom,
! [L: int,K: int] :
( ( dvd_dvd_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( sgn_sgn_int @ L ) ) @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ) ).
% div_dvd_sgn_abs
thf(fact_6292_sgn__mod,axiom,
! [L: int,K: int] :
( ( L != zero_zero_int )
=> ( ~ ( dvd_dvd_int @ L @ K )
=> ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L ) )
= ( sgn_sgn_int @ L ) ) ) ) ).
% sgn_mod
thf(fact_6293_length__pos__if__in__set,axiom,
! [X: complex,Xs: list_complex] :
( ( member_complex @ X @ ( set_complex2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_6294_length__pos__if__in__set,axiom,
! [X: set_nat,Xs: list_set_nat] :
( ( member_set_nat @ X @ ( set_set_nat2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_6295_length__pos__if__in__set,axiom,
! [X: vEBT_VEBT,Xs: list_VEBT_VEBT] :
( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_6296_length__pos__if__in__set,axiom,
! [X: real,Xs: list_real] :
( ( member_real @ X @ ( set_real2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_6297_length__pos__if__in__set,axiom,
! [X: $o,Xs: list_o] :
( ( member_o @ X @ ( set_o2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_6298_length__pos__if__in__set,axiom,
! [X: nat,Xs: list_nat] :
( ( member_nat @ X @ ( set_nat2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_6299_length__pos__if__in__set,axiom,
! [X: int,Xs: list_int] :
( ( member_int @ X @ ( set_int2 @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs ) ) ) ).
% length_pos_if_in_set
thf(fact_6300_less__mask,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).
% less_mask
thf(fact_6301_sgn__if,axiom,
( sgn_sgn_real
= ( ^ [X3: real] : ( if_real @ ( X3 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ X3 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).
% sgn_if
thf(fact_6302_sgn__if,axiom,
( sgn_sgn_int
= ( ^ [X3: int] : ( if_int @ ( X3 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ X3 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% sgn_if
thf(fact_6303_sgn__if,axiom,
( sgn_sgn_Code_integer
= ( ^ [X3: code_integer] : ( if_Code_integer @ ( X3 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ X3 ) @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ) ).
% sgn_if
thf(fact_6304_sgn__if,axiom,
( sgn_sgn_rat
= ( ^ [X3: rat] : ( if_rat @ ( X3 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ X3 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).
% sgn_if
thf(fact_6305_sgn__1__neg,axiom,
! [A: real] :
( ( ( sgn_sgn_real @ A )
= ( uminus_uminus_real @ one_one_real ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% sgn_1_neg
thf(fact_6306_sgn__1__neg,axiom,
! [A: int] :
( ( ( sgn_sgn_int @ A )
= ( uminus_uminus_int @ one_one_int ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% sgn_1_neg
thf(fact_6307_sgn__1__neg,axiom,
! [A: code_integer] :
( ( ( sgn_sgn_Code_integer @ A )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).
% sgn_1_neg
thf(fact_6308_sgn__1__neg,axiom,
! [A: rat] :
( ( ( sgn_sgn_rat @ A )
= ( uminus_uminus_rat @ one_one_rat ) )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% sgn_1_neg
thf(fact_6309_zsgn__def,axiom,
( sgn_sgn_int
= ( ^ [I2: int] : ( if_int @ ( I2 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I2 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zsgn_def
thf(fact_6310_norm__sgn,axiom,
! [X: real] :
( ( ( X = zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( sgn_sgn_real @ X ) )
= zero_zero_real ) )
& ( ( X != zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( sgn_sgn_real @ X ) )
= one_one_real ) ) ) ).
% norm_sgn
thf(fact_6311_norm__sgn,axiom,
! [X: complex] :
( ( ( X = zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( sgn_sgn_complex @ X ) )
= zero_zero_real ) )
& ( ( X != zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( sgn_sgn_complex @ X ) )
= one_one_real ) ) ) ).
% norm_sgn
thf(fact_6312_div__noneq__sgn__abs,axiom,
! [L: int,K: int] :
( ( L != zero_zero_int )
=> ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ K @ L )
= ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ L @ K ) ) ) ) ) ) ).
% div_noneq_sgn_abs
thf(fact_6313_Suc__mask__eq__exp,axiom,
! [N: nat] :
( ( suc @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_mask_eq_exp
thf(fact_6314_mask__nat__less__exp,axiom,
! [N: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% mask_nat_less_exp
thf(fact_6315_semiring__bit__operations__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2119862282449309892nteger @ N ) )
= ( N = zero_zero_nat ) ) ).
% semiring_bit_operations_class.even_mask_iff
thf(fact_6316_semiring__bit__operations__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% semiring_bit_operations_class.even_mask_iff
thf(fact_6317_semiring__bit__operations__class_Oeven__mask__iff,axiom,
! [N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N ) )
= ( N = zero_zero_nat ) ) ).
% semiring_bit_operations_class.even_mask_iff
thf(fact_6318_mask__nat__def,axiom,
( bit_se2002935070580805687sk_nat
= ( ^ [N4: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ one_one_nat ) ) ) ).
% mask_nat_def
thf(fact_6319_mask__half__int,axiom,
! [N: nat] :
( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% mask_half_int
thf(fact_6320_mask__int__def,axiom,
( bit_se2000444600071755411sk_int
= ( ^ [N4: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) @ one_one_int ) ) ) ).
% mask_int_def
thf(fact_6321_mask__eq__exp__minus__1,axiom,
( bit_se2002935070580805687sk_nat
= ( ^ [N4: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ one_one_nat ) ) ) ).
% mask_eq_exp_minus_1
thf(fact_6322_mask__eq__exp__minus__1,axiom,
( bit_se2000444600071755411sk_int
= ( ^ [N4: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) @ one_one_int ) ) ) ).
% mask_eq_exp_minus_1
thf(fact_6323_arctan__add,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( plus_plus_real @ ( arctan @ X ) @ ( arctan @ Y4 ) )
= ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X @ Y4 ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X @ Y4 ) ) ) ) ) ) ) ).
% arctan_add
thf(fact_6324_divide__int__unfold,axiom,
! [L: int,K: int,N: nat,M: nat] :
( ( ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= zero_zero_int ) )
& ( ~ ( ( ( sgn_sgn_int @ L )
= zero_zero_int )
| ( ( sgn_sgn_int @ K )
= zero_zero_int )
| ( N = zero_zero_nat ) )
=> ( ( ( ( sgn_sgn_int @ K )
= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) )
& ( ( ( sgn_sgn_int @ K )
!= ( sgn_sgn_int @ L ) )
=> ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
= ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ M @ N )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).
% divide_int_unfold
thf(fact_6325_divide__int__def,axiom,
( divide_divide_int
= ( ^ [K3: int,L3: int] :
( if_int @ ( L3 = zero_zero_int ) @ zero_zero_int
@ ( if_int
@ ( ( sgn_sgn_int @ K3 )
= ( sgn_sgn_int @ L3 ) )
@ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) ) )
@ ( uminus_uminus_int
@ ( semiri1314217659103216013at_int
@ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_int @ L3 @ K3 ) ) ) ) ) ) ) ) ) ).
% divide_int_def
thf(fact_6326_take__bit__rec,axiom,
( bit_se1745604003318907178nteger
= ( ^ [N4: nat,A3: code_integer] : ( if_Code_integer @ ( N4 = zero_zero_nat ) @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_6327_take__bit__rec,axiom,
( bit_se2923211474154528505it_int
= ( ^ [N4: nat,A3: int] : ( if_int @ ( N4 = zero_zero_nat ) @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_6328_take__bit__rec,axiom,
( bit_se2925701944663578781it_nat
= ( ^ [N4: nat,A3: nat] : ( if_nat @ ( N4 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% take_bit_rec
thf(fact_6329_tanh__real__altdef,axiom,
( tanh_real
= ( ^ [X3: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ) ) ).
% tanh_real_altdef
thf(fact_6330_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_complex @ ( numera6690914467698888265omplex @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numera6690914467698888265omplex @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_6331_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_6332_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_rat @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_6333_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_6334_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_6335_and__int__unfold,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K3: int,L3: int] :
( if_int
@ ( ( K3 = zero_zero_int )
| ( L3 = zero_zero_int ) )
@ zero_zero_int
@ ( if_int
@ ( K3
= ( uminus_uminus_int @ one_one_int ) )
@ L3
@ ( if_int
@ ( L3
= ( uminus_uminus_int @ one_one_int ) )
@ K3
@ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% and_int_unfold
thf(fact_6336_arctan__half,axiom,
( arctan
= ( ^ [X3: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X3 @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% arctan_half
thf(fact_6337_and_Oright__idem,axiom,
! [A: int,B: int] :
( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ B )
= ( bit_se725231765392027082nd_int @ A @ B ) ) ).
% and.right_idem
thf(fact_6338_and_Oright__idem,axiom,
! [A: nat,B: nat] :
( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ B )
= ( bit_se727722235901077358nd_nat @ A @ B ) ) ).
% and.right_idem
thf(fact_6339_and_Oleft__idem,axiom,
! [A: int,B: int] :
( ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ A @ B ) )
= ( bit_se725231765392027082nd_int @ A @ B ) ) ).
% and.left_idem
thf(fact_6340_and_Oleft__idem,axiom,
! [A: nat,B: nat] :
( ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ A @ B ) )
= ( bit_se727722235901077358nd_nat @ A @ B ) ) ).
% and.left_idem
thf(fact_6341_and_Oidem,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ A @ A )
= A ) ).
% and.idem
thf(fact_6342_and_Oidem,axiom,
! [A: nat] :
( ( bit_se727722235901077358nd_nat @ A @ A )
= A ) ).
% and.idem
thf(fact_6343_real__sqrt__eq__iff,axiom,
! [X: real,Y4: real] :
( ( ( sqrt @ X )
= ( sqrt @ Y4 ) )
= ( X = Y4 ) ) ).
% real_sqrt_eq_iff
thf(fact_6344_sgn__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sgn_sgn_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% sgn_le_0_iff
thf(fact_6345_zero__le__sgn__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% zero_le_sgn_iff
thf(fact_6346_take__bit__of__0,axiom,
! [N: nat] :
( ( bit_se2923211474154528505it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% take_bit_of_0
thf(fact_6347_take__bit__of__0,axiom,
! [N: nat] :
( ( bit_se2925701944663578781it_nat @ N @ zero_zero_nat )
= zero_zero_nat ) ).
% take_bit_of_0
thf(fact_6348_bit_Oconj__zero__right,axiom,
! [X: int] :
( ( bit_se725231765392027082nd_int @ X @ zero_zero_int )
= zero_zero_int ) ).
% bit.conj_zero_right
thf(fact_6349_bit_Oconj__zero__left,axiom,
! [X: int] :
( ( bit_se725231765392027082nd_int @ zero_zero_int @ X )
= zero_zero_int ) ).
% bit.conj_zero_left
thf(fact_6350_zero__and__eq,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% zero_and_eq
thf(fact_6351_zero__and__eq,axiom,
! [A: nat] :
( ( bit_se727722235901077358nd_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_and_eq
thf(fact_6352_and__zero__eq,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% and_zero_eq
thf(fact_6353_and__zero__eq,axiom,
! [A: nat] :
( ( bit_se727722235901077358nd_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% and_zero_eq
thf(fact_6354_real__sqrt__eq__zero__cancel__iff,axiom,
! [X: real] :
( ( ( sqrt @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% real_sqrt_eq_zero_cancel_iff
thf(fact_6355_real__sqrt__zero,axiom,
( ( sqrt @ zero_zero_real )
= zero_zero_real ) ).
% real_sqrt_zero
thf(fact_6356_real__sqrt__less__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ).
% real_sqrt_less_iff
thf(fact_6357_real__sqrt__le__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ).
% real_sqrt_le_iff
thf(fact_6358_real__sqrt__eq__1__iff,axiom,
! [X: real] :
( ( ( sqrt @ X )
= one_one_real )
= ( X = one_one_real ) ) ).
% real_sqrt_eq_1_iff
thf(fact_6359_real__sqrt__one,axiom,
( ( sqrt @ one_one_real )
= one_one_real ) ).
% real_sqrt_one
thf(fact_6360_nat__int,axiom,
! [N: nat] :
( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
= N ) ).
% nat_int
thf(fact_6361_take__bit__and,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se2923211474154528505it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
= ( bit_se725231765392027082nd_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).
% take_bit_and
thf(fact_6362_take__bit__and,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
= ( bit_se727722235901077358nd_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).
% take_bit_and
thf(fact_6363_exp__le__cancel__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( exp_real @ X ) @ ( exp_real @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ).
% exp_le_cancel_iff
thf(fact_6364_concat__bit__of__zero__2,axiom,
! [N: nat,K: int] :
( ( bit_concat_bit @ N @ K @ zero_zero_int )
= ( bit_se2923211474154528505it_int @ N @ K ) ) ).
% concat_bit_of_zero_2
thf(fact_6365_exp__zero,axiom,
( ( exp_complex @ zero_zero_complex )
= one_one_complex ) ).
% exp_zero
thf(fact_6366_exp__zero,axiom,
( ( exp_real @ zero_zero_real )
= one_one_real ) ).
% exp_zero
thf(fact_6367_take__bit__0,axiom,
! [A: int] :
( ( bit_se2923211474154528505it_int @ zero_zero_nat @ A )
= zero_zero_int ) ).
% take_bit_0
thf(fact_6368_take__bit__0,axiom,
! [A: nat] :
( ( bit_se2925701944663578781it_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% take_bit_0
thf(fact_6369_take__bit__Suc__1,axiom,
! [N: nat] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ one_one_int )
= one_one_int ) ).
% take_bit_Suc_1
thf(fact_6370_take__bit__Suc__1,axiom,
! [N: nat] :
( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ one_one_nat )
= one_one_nat ) ).
% take_bit_Suc_1
thf(fact_6371_bit_Oconj__one__right,axiom,
! [X: code_integer] :
( ( bit_se3949692690581998587nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= X ) ).
% bit.conj_one_right
thf(fact_6372_bit_Oconj__one__right,axiom,
! [X: int] :
( ( bit_se725231765392027082nd_int @ X @ ( uminus_uminus_int @ one_one_int ) )
= X ) ).
% bit.conj_one_right
thf(fact_6373_and_Oright__neutral,axiom,
! [A: code_integer] :
( ( bit_se3949692690581998587nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= A ) ).
% and.right_neutral
thf(fact_6374_and_Oright__neutral,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= A ) ).
% and.right_neutral
thf(fact_6375_and_Oleft__neutral,axiom,
! [A: code_integer] :
( ( bit_se3949692690581998587nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ A )
= A ) ).
% and.left_neutral
thf(fact_6376_and_Oleft__neutral,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ one_one_int ) @ A )
= A ) ).
% and.left_neutral
thf(fact_6377_take__bit__numeral__1,axiom,
! [L: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ one_one_int )
= one_one_int ) ).
% take_bit_numeral_1
thf(fact_6378_take__bit__numeral__1,axiom,
! [L: num] :
( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ one_one_nat )
= one_one_nat ) ).
% take_bit_numeral_1
thf(fact_6379_nat__numeral,axiom,
! [K: num] :
( ( nat2 @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% nat_numeral
thf(fact_6380_real__sqrt__lt__0__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( sqrt @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% real_sqrt_lt_0_iff
thf(fact_6381_real__sqrt__gt__0__iff,axiom,
! [Y4: real] :
( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y4 ) )
= ( ord_less_real @ zero_zero_real @ Y4 ) ) ).
% real_sqrt_gt_0_iff
thf(fact_6382_real__sqrt__ge__0__iff,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y4 ) )
= ( ord_less_eq_real @ zero_zero_real @ Y4 ) ) ).
% real_sqrt_ge_0_iff
thf(fact_6383_real__sqrt__le__0__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% real_sqrt_le_0_iff
thf(fact_6384_real__sqrt__lt__1__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( sqrt @ X ) @ one_one_real )
= ( ord_less_real @ X @ one_one_real ) ) ).
% real_sqrt_lt_1_iff
thf(fact_6385_real__sqrt__gt__1__iff,axiom,
! [Y4: real] :
( ( ord_less_real @ one_one_real @ ( sqrt @ Y4 ) )
= ( ord_less_real @ one_one_real @ Y4 ) ) ).
% real_sqrt_gt_1_iff
thf(fact_6386_real__sqrt__ge__1__iff,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y4 ) )
= ( ord_less_eq_real @ one_one_real @ Y4 ) ) ).
% real_sqrt_ge_1_iff
thf(fact_6387_real__sqrt__le__1__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ).
% real_sqrt_le_1_iff
thf(fact_6388_exp__eq__one__iff,axiom,
! [X: real] :
( ( ( exp_real @ X )
= one_one_real )
= ( X = zero_zero_real ) ) ).
% exp_eq_one_iff
thf(fact_6389_and__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
| ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% and_nonnegative_int_iff
thf(fact_6390_and__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% and_negative_int_iff
thf(fact_6391_real__sqrt__mult__self,axiom,
! [A: real] :
( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
= ( abs_abs_real @ A ) ) ).
% real_sqrt_mult_self
thf(fact_6392_real__sqrt__abs2,axiom,
! [X: real] :
( ( sqrt @ ( times_times_real @ X @ X ) )
= ( abs_abs_real @ X ) ) ).
% real_sqrt_abs2
thf(fact_6393_nat__of__bool,axiom,
! [P: $o] :
( ( nat2 @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2687167440665602831ol_nat @ P ) ) ).
% nat_of_bool
thf(fact_6394_take__bit__of__1__eq__0__iff,axiom,
! [N: nat] :
( ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
= zero_zero_int )
= ( N = zero_zero_nat ) ) ).
% take_bit_of_1_eq_0_iff
thf(fact_6395_take__bit__of__1__eq__0__iff,axiom,
! [N: nat] :
( ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
= zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% take_bit_of_1_eq_0_iff
thf(fact_6396_and__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= one_one_int ) ).
% and_numerals(2)
thf(fact_6397_and__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= one_one_nat ) ).
% and_numerals(2)
thf(fact_6398_and__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
= one_one_int ) ).
% and_numerals(8)
thf(fact_6399_and__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
= one_one_nat ) ).
% and_numerals(8)
thf(fact_6400_real__sqrt__four,axiom,
( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% real_sqrt_four
thf(fact_6401_nat__1,axiom,
( ( nat2 @ one_one_int )
= ( suc @ zero_zero_nat ) ) ).
% nat_1
thf(fact_6402_nat__0__iff,axiom,
! [I: int] :
( ( ( nat2 @ I )
= zero_zero_nat )
= ( ord_less_eq_int @ I @ zero_zero_int ) ) ).
% nat_0_iff
thf(fact_6403_nat__le__0,axiom,
! [Z: int] :
( ( ord_less_eq_int @ Z @ zero_zero_int )
=> ( ( nat2 @ Z )
= zero_zero_nat ) ) ).
% nat_le_0
thf(fact_6404_zless__nat__conj,axiom,
! [W: int,Z: int] :
( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ( ord_less_int @ zero_zero_int @ Z )
& ( ord_less_int @ W @ Z ) ) ) ).
% zless_nat_conj
thf(fact_6405_nat__neg__numeral,axiom,
! [K: num] :
( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= zero_zero_nat ) ).
% nat_neg_numeral
thf(fact_6406_one__less__exp__iff,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ ( exp_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% one_less_exp_iff
thf(fact_6407_exp__less__one__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( exp_real @ X ) @ one_one_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% exp_less_one_iff
thf(fact_6408_exp__le__one__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( exp_real @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% exp_le_one_iff
thf(fact_6409_one__le__exp__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% one_le_exp_iff
thf(fact_6410_nat__zminus__int,axiom,
! [N: nat] :
( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
= zero_zero_nat ) ).
% nat_zminus_int
thf(fact_6411_int__nat__eq,axiom,
! [Z: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
= Z ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
= zero_zero_int ) ) ) ).
% int_nat_eq
thf(fact_6412_take__bit__minus__one__eq__mask,axiom,
! [N: nat] :
( ( bit_se1745604003318907178nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( bit_se2119862282449309892nteger @ N ) ) ).
% take_bit_minus_one_eq_mask
thf(fact_6413_take__bit__minus__one__eq__mask,axiom,
! [N: nat] :
( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( bit_se2000444600071755411sk_int @ N ) ) ).
% take_bit_minus_one_eq_mask
thf(fact_6414_exp__ln,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( exp_real @ ( ln_ln_real @ X ) )
= X ) ) ).
% exp_ln
thf(fact_6415_exp__ln__iff,axiom,
! [X: real] :
( ( ( exp_real @ ( ln_ln_real @ X ) )
= X )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% exp_ln_iff
thf(fact_6416_take__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% take_bit_of_Suc_0
thf(fact_6417_and__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= zero_zero_int ) ).
% and_numerals(1)
thf(fact_6418_and__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= zero_zero_nat ) ).
% and_numerals(1)
thf(fact_6419_and__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
= zero_zero_int ) ).
% and_numerals(5)
thf(fact_6420_and__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
= zero_zero_nat ) ).
% and_numerals(5)
thf(fact_6421_and__numerals_I3_J,axiom,
! [X: num,Y4: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ).
% and_numerals(3)
thf(fact_6422_and__numerals_I3_J,axiom,
! [X: num,Y4: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ).
% and_numerals(3)
thf(fact_6423_zero__less__nat__eq,axiom,
! [Z: int] :
( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% zero_less_nat_eq
thf(fact_6424_take__bit__of__1,axiom,
! [N: nat] :
( ( bit_se1745604003318907178nteger @ N @ one_one_Code_integer )
= ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% take_bit_of_1
thf(fact_6425_take__bit__of__1,axiom,
! [N: nat] :
( ( bit_se2923211474154528505it_int @ N @ one_one_int )
= ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% take_bit_of_1
thf(fact_6426_take__bit__of__1,axiom,
! [N: nat] :
( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
= ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% take_bit_of_1
thf(fact_6427_diff__nat__numeral,axiom,
! [V: num,V2: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V2 ) )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V2 ) ) ) ) ).
% diff_nat_numeral
thf(fact_6428_and__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
= one_one_int ) ).
% and_minus_numerals(6)
thf(fact_6429_and__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= one_one_int ) ).
% and_minus_numerals(2)
thf(fact_6430_nat__eq__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( nat2 @ Y4 )
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( Y4
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% nat_eq_numeral_power_cancel_iff
thf(fact_6431_numeral__power__eq__nat__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= ( nat2 @ Y4 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_nat_cancel_iff
thf(fact_6432_dvd__nat__abs__iff,axiom,
! [N: nat,K: int] :
( ( dvd_dvd_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
= ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ).
% dvd_nat_abs_iff
thf(fact_6433_nat__abs__dvd__iff,axiom,
! [K: int,N: nat] :
( ( dvd_dvd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
= ( dvd_dvd_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% nat_abs_dvd_iff
thf(fact_6434_and__numerals_I4_J,axiom,
! [X: num,Y4: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ).
% and_numerals(4)
thf(fact_6435_and__numerals_I4_J,axiom,
! [X: num,Y4: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ).
% and_numerals(4)
thf(fact_6436_and__numerals_I6_J,axiom,
! [X: num,Y4: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ).
% and_numerals(6)
thf(fact_6437_and__numerals_I6_J,axiom,
! [X: num,Y4: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ).
% and_numerals(6)
thf(fact_6438_even__take__bit__eq,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1745604003318907178nteger @ N @ A ) )
= ( ( N = zero_zero_nat )
| ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_take_bit_eq
thf(fact_6439_even__take__bit__eq,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2923211474154528505it_int @ N @ A ) )
= ( ( N = zero_zero_nat )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_take_bit_eq
thf(fact_6440_even__take__bit__eq,axiom,
! [N: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2925701944663578781it_nat @ N @ A ) )
= ( ( N = zero_zero_nat )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_take_bit_eq
thf(fact_6441_one__less__nat__eq,axiom,
! [Z: int] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% one_less_nat_eq
thf(fact_6442_real__sqrt__abs,axiom,
! [X: real] :
( ( sqrt @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( abs_abs_real @ X ) ) ).
% real_sqrt_abs
thf(fact_6443_and__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
= zero_zero_int ) ).
% and_minus_numerals(5)
thf(fact_6444_and__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= zero_zero_int ) ).
% and_minus_numerals(1)
thf(fact_6445_take__bit__Suc__0,axiom,
! [A: code_integer] :
( ( bit_se1745604003318907178nteger @ ( suc @ zero_zero_nat ) @ A )
= ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_0
thf(fact_6446_take__bit__Suc__0,axiom,
! [A: int] :
( ( bit_se2923211474154528505it_int @ ( suc @ zero_zero_nat ) @ A )
= ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_0
thf(fact_6447_take__bit__Suc__0,axiom,
! [A: nat] :
( ( bit_se2925701944663578781it_nat @ ( suc @ zero_zero_nat ) @ A )
= ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_0
thf(fact_6448_real__sqrt__pow2__iff,axiom,
! [X: real] :
( ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% real_sqrt_pow2_iff
thf(fact_6449_real__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X ) ) ).
% real_sqrt_pow2
thf(fact_6450_real__sqrt__sum__squares__mult__squared__eq,axiom,
! [X: real,Y4: real,Xa: real,Ya: real] :
( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_squared_eq
thf(fact_6451_nat__numeral__diff__1,axiom,
! [V: num] :
( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
= ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).
% nat_numeral_diff_1
thf(fact_6452_numeral__power__less__nat__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_less_nat_cancel_iff
thf(fact_6453_nat__less__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% nat_less_numeral_power_cancel_iff
thf(fact_6454_nat__le__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% nat_le_numeral_power_cancel_iff
thf(fact_6455_numeral__power__le__nat__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) @ ( nat2 @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_le_nat_cancel_iff
thf(fact_6456_and__numerals_I7_J,axiom,
! [X: num,Y4: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ) ).
% and_numerals(7)
thf(fact_6457_and__numerals_I7_J,axiom,
! [X: num,Y4: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ) ).
% and_numerals(7)
thf(fact_6458_take__bit__of__exp,axiom,
! [M: nat,N: nat] :
( ( bit_se1745604003318907178nteger @ M @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ N @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_of_exp
thf(fact_6459_take__bit__of__exp,axiom,
! [M: nat,N: nat] :
( ( bit_se2923211474154528505it_int @ M @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ N @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_of_exp
thf(fact_6460_take__bit__of__exp,axiom,
! [M: nat,N: nat] :
( ( bit_se2925701944663578781it_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ N @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_of_exp
thf(fact_6461_take__bit__of__2,axiom,
! [N: nat] :
( ( bit_se1745604003318907178nteger @ N @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% take_bit_of_2
thf(fact_6462_take__bit__of__2,axiom,
! [N: nat] :
( ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_of_2
thf(fact_6463_take__bit__of__2,axiom,
! [N: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% take_bit_of_2
thf(fact_6464_take__bit__eq__mask,axiom,
( bit_se2923211474154528505it_int
= ( ^ [N4: nat,A3: int] : ( bit_se725231765392027082nd_int @ A3 @ ( bit_se2000444600071755411sk_int @ N4 ) ) ) ) ).
% take_bit_eq_mask
thf(fact_6465_take__bit__eq__mask,axiom,
( bit_se2925701944663578781it_nat
= ( ^ [N4: nat,A3: nat] : ( bit_se727722235901077358nd_nat @ A3 @ ( bit_se2002935070580805687sk_nat @ N4 ) ) ) ) ).
% take_bit_eq_mask
thf(fact_6466_nat__mask__eq,axiom,
! [N: nat] :
( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
= ( bit_se2002935070580805687sk_nat @ N ) ) ).
% nat_mask_eq
thf(fact_6467_and_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( bit_se725231765392027082nd_int @ B @ ( bit_se725231765392027082nd_int @ A @ C ) )
= ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).
% and.left_commute
thf(fact_6468_and_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( bit_se727722235901077358nd_nat @ B @ ( bit_se727722235901077358nd_nat @ A @ C ) )
= ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).
% and.left_commute
thf(fact_6469_and_Ocommute,axiom,
( bit_se725231765392027082nd_int
= ( ^ [A3: int,B2: int] : ( bit_se725231765392027082nd_int @ B2 @ A3 ) ) ) ).
% and.commute
thf(fact_6470_and_Ocommute,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [A3: nat,B2: nat] : ( bit_se727722235901077358nd_nat @ B2 @ A3 ) ) ) ).
% and.commute
thf(fact_6471_and_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ C )
= ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).
% and.assoc
thf(fact_6472_and_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ C )
= ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).
% and.assoc
thf(fact_6473_of__nat__and__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se727722235901077358nd_nat @ M @ N ) )
= ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_and_eq
thf(fact_6474_of__nat__and__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( bit_se727722235901077358nd_nat @ M @ N ) )
= ( bit_se727722235901077358nd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_and_eq
thf(fact_6475_take__bit__of__nat,axiom,
! [N: nat,M: nat] :
( ( bit_se2923211474154528505it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
= ( semiri1314217659103216013at_int @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).
% take_bit_of_nat
thf(fact_6476_take__bit__of__nat,axiom,
! [N: nat,M: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
= ( semiri1316708129612266289at_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).
% take_bit_of_nat
thf(fact_6477_nat__take__bit__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) ) ) ) ).
% nat_take_bit_eq
thf(fact_6478_take__bit__nat__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).
% take_bit_nat_eq
thf(fact_6479_norm__exp,axiom,
! [X: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ X ) ) @ ( exp_real @ ( real_V7735802525324610683m_real @ X ) ) ) ).
% norm_exp
thf(fact_6480_norm__exp,axiom,
! [X: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ X ) ) @ ( exp_real @ ( real_V1022390504157884413omplex @ X ) ) ) ).
% norm_exp
thf(fact_6481_take__bit__add,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ A @ B ) ) ) ).
% take_bit_add
thf(fact_6482_take__bit__add,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) )
= ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ A @ B ) ) ) ).
% take_bit_add
thf(fact_6483_take__bit__tightened,axiom,
! [N: nat,A: int,B: int,M: nat] :
( ( ( bit_se2923211474154528505it_int @ N @ A )
= ( bit_se2923211474154528505it_int @ N @ B ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( bit_se2923211474154528505it_int @ M @ A )
= ( bit_se2923211474154528505it_int @ M @ B ) ) ) ) ).
% take_bit_tightened
thf(fact_6484_take__bit__tightened,axiom,
! [N: nat,A: nat,B: nat,M: nat] :
( ( ( bit_se2925701944663578781it_nat @ N @ A )
= ( bit_se2925701944663578781it_nat @ N @ B ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( bit_se2925701944663578781it_nat @ M @ A )
= ( bit_se2925701944663578781it_nat @ M @ B ) ) ) ) ).
% take_bit_tightened
thf(fact_6485_take__bit__nat__less__eq__self,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M ) ).
% take_bit_nat_less_eq_self
thf(fact_6486_take__bit__tightened__less__eq__nat,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q2 ) @ ( bit_se2925701944663578781it_nat @ N @ Q2 ) ) ) ).
% take_bit_tightened_less_eq_nat
thf(fact_6487_real__sqrt__less__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y4 ) ) ) ).
% real_sqrt_less_mono
thf(fact_6488_real__sqrt__le__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y4 ) ) ) ).
% real_sqrt_le_mono
thf(fact_6489_real__sqrt__divide,axiom,
! [X: real,Y4: real] :
( ( sqrt @ ( divide_divide_real @ X @ Y4 ) )
= ( divide_divide_real @ ( sqrt @ X ) @ ( sqrt @ Y4 ) ) ) ).
% real_sqrt_divide
thf(fact_6490_real__sqrt__mult,axiom,
! [X: real,Y4: real] :
( ( sqrt @ ( times_times_real @ X @ Y4 ) )
= ( times_times_real @ ( sqrt @ X ) @ ( sqrt @ Y4 ) ) ) ).
% real_sqrt_mult
thf(fact_6491_real__sqrt__power,axiom,
! [X: real,K: nat] :
( ( sqrt @ ( power_power_real @ X @ K ) )
= ( power_power_real @ ( sqrt @ X ) @ K ) ) ).
% real_sqrt_power
thf(fact_6492_real__sqrt__minus,axiom,
! [X: real] :
( ( sqrt @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_minus
thf(fact_6493_exp__not__eq__zero,axiom,
! [X: complex] :
( ( exp_complex @ X )
!= zero_zero_complex ) ).
% exp_not_eq_zero
thf(fact_6494_exp__not__eq__zero,axiom,
! [X: real] :
( ( exp_real @ X )
!= zero_zero_real ) ).
% exp_not_eq_zero
thf(fact_6495_take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).
% take_bit_minus
thf(fact_6496_exp__times__arg__commute,axiom,
! [A2: complex] :
( ( times_times_complex @ ( exp_complex @ A2 ) @ A2 )
= ( times_times_complex @ A2 @ ( exp_complex @ A2 ) ) ) ).
% exp_times_arg_commute
thf(fact_6497_exp__times__arg__commute,axiom,
! [A2: real] :
( ( times_times_real @ ( exp_real @ A2 ) @ A2 )
= ( times_times_real @ A2 @ ( exp_real @ A2 ) ) ) ).
% exp_times_arg_commute
thf(fact_6498_take__bit__mult,axiom,
! [N: nat,K: int,L: int] :
( ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ K @ L ) ) ) ).
% take_bit_mult
thf(fact_6499_take__bit__diff,axiom,
! [N: nat,K: int,L: int] :
( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).
% take_bit_diff
thf(fact_6500_concat__bit__take__bit__eq,axiom,
! [N: nat,B: int] :
( ( bit_concat_bit @ N @ ( bit_se2923211474154528505it_int @ N @ B ) )
= ( bit_concat_bit @ N @ B ) ) ).
% concat_bit_take_bit_eq
thf(fact_6501_concat__bit__eq__iff,axiom,
! [N: nat,K: int,L: int,R2: int,S2: int] :
( ( ( bit_concat_bit @ N @ K @ L )
= ( bit_concat_bit @ N @ R2 @ S2 ) )
= ( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2923211474154528505it_int @ N @ R2 ) )
& ( L = S2 ) ) ) ).
% concat_bit_eq_iff
thf(fact_6502_and__eq__minus__1__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( ( bit_se3949692690581998587nteger @ A @ B )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( ( A
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
& ( B
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).
% and_eq_minus_1_iff
thf(fact_6503_and__eq__minus__1__iff,axiom,
! [A: int,B: int] :
( ( ( bit_se725231765392027082nd_int @ A @ B )
= ( uminus_uminus_int @ one_one_int ) )
= ( ( A
= ( uminus_uminus_int @ one_one_int ) )
& ( B
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% and_eq_minus_1_iff
thf(fact_6504_real__sqrt__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_gt_zero
thf(fact_6505_exp__total,axiom,
! [Y4: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ? [X4: real] :
( ( exp_real @ X4 )
= Y4 ) ) ).
% exp_total
thf(fact_6506_exp__gt__zero,axiom,
! [X: real] : ( ord_less_real @ zero_zero_real @ ( exp_real @ X ) ) ).
% exp_gt_zero
thf(fact_6507_not__exp__less__zero,axiom,
! [X: real] :
~ ( ord_less_real @ ( exp_real @ X ) @ zero_zero_real ) ).
% not_exp_less_zero
thf(fact_6508_real__sqrt__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_ge_zero
thf(fact_6509_real__sqrt__eq__zero__cancel,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ( sqrt @ X )
= zero_zero_real )
=> ( X = zero_zero_real ) ) ) ).
% real_sqrt_eq_zero_cancel
thf(fact_6510_exp__ge__zero,axiom,
! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X ) ) ).
% exp_ge_zero
thf(fact_6511_not__exp__le__zero,axiom,
! [X: real] :
~ ( ord_less_eq_real @ ( exp_real @ X ) @ zero_zero_real ) ).
% not_exp_le_zero
thf(fact_6512_real__sqrt__ge__one,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ one_one_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_ge_one
thf(fact_6513_nat__zero__as__int,axiom,
( zero_zero_nat
= ( nat2 @ zero_zero_int ) ) ).
% nat_zero_as_int
thf(fact_6514_AND__upper2_H,axiom,
! [Y4: int,Z: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ord_less_eq_int @ Y4 @ Z )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) @ Z ) ) ) ).
% AND_upper2'
thf(fact_6515_AND__upper1_H,axiom,
! [Y4: int,Z: int,Ya: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ord_less_eq_int @ Y4 @ Z )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y4 @ Ya ) @ Z ) ) ) ).
% AND_upper1'
thf(fact_6516_AND__upper2,axiom,
! [Y4: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) @ Y4 ) ) ).
% AND_upper2
thf(fact_6517_AND__upper1,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) @ X ) ) ).
% AND_upper1
thf(fact_6518_AND__lower,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) ) ) ).
% AND_lower
thf(fact_6519_take__bit__tightened__less__eq__int,axiom,
! [M: nat,N: nat,K: int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_tightened_less_eq_int
thf(fact_6520_nat__numeral__as__int,axiom,
( numeral_numeral_nat
= ( ^ [I2: num] : ( nat2 @ ( numeral_numeral_int @ I2 ) ) ) ) ).
% nat_numeral_as_int
thf(fact_6521_take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% take_bit_int_less_eq_self_iff
thf(fact_6522_take__bit__nonnegative,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ).
% take_bit_nonnegative
thf(fact_6523_take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% take_bit_int_greater_self_iff
thf(fact_6524_not__take__bit__negative,axiom,
! [N: nat,K: int] :
~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ zero_zero_int ) ).
% not_take_bit_negative
thf(fact_6525_signed__take__bit__eq__iff__take__bit__eq,axiom,
! [N: nat,A: int,B: int] :
( ( ( bit_ri631733984087533419it_int @ N @ A )
= ( bit_ri631733984087533419it_int @ N @ B ) )
= ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
= ( bit_se2923211474154528505it_int @ ( suc @ N ) @ B ) ) ) ).
% signed_take_bit_eq_iff_take_bit_eq
thf(fact_6526_real__sgn__eq,axiom,
( sgn_sgn_real
= ( ^ [X3: real] : ( divide_divide_real @ X3 @ ( abs_abs_real @ X3 ) ) ) ) ).
% real_sgn_eq
thf(fact_6527_nat__mono,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
=> ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y4 ) ) ) ).
% nat_mono
thf(fact_6528_signed__take__bit__take__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_ri631733984087533419it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
= ( if_int_int @ ( ord_less_eq_nat @ N @ M ) @ ( bit_se2923211474154528505it_int @ N ) @ ( bit_ri631733984087533419it_int @ M ) @ A ) ) ).
% signed_take_bit_take_bit
thf(fact_6529_eq__nat__nat__iff,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
=> ( ( ( nat2 @ Z )
= ( nat2 @ Z6 ) )
= ( Z = Z6 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_6530_all__nat,axiom,
( ( ^ [P2: nat > $o] :
! [X6: nat] : ( P2 @ X6 ) )
= ( ^ [P3: nat > $o] :
! [X3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( P3 @ ( nat2 @ X3 ) ) ) ) ) ).
% all_nat
thf(fact_6531_ex__nat,axiom,
( ( ^ [P2: nat > $o] :
? [X6: nat] : ( P2 @ X6 ) )
= ( ^ [P3: nat > $o] :
? [X3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
& ( P3 @ ( nat2 @ X3 ) ) ) ) ) ).
% ex_nat
thf(fact_6532_mult__exp__exp,axiom,
! [X: complex,Y4: complex] :
( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y4 ) )
= ( exp_complex @ ( plus_plus_complex @ X @ Y4 ) ) ) ).
% mult_exp_exp
thf(fact_6533_mult__exp__exp,axiom,
! [X: real,Y4: real] :
( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y4 ) )
= ( exp_real @ ( plus_plus_real @ X @ Y4 ) ) ) ).
% mult_exp_exp
thf(fact_6534_exp__add__commuting,axiom,
! [X: complex,Y4: complex] :
( ( ( times_times_complex @ X @ Y4 )
= ( times_times_complex @ Y4 @ X ) )
=> ( ( exp_complex @ ( plus_plus_complex @ X @ Y4 ) )
= ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y4 ) ) ) ) ).
% exp_add_commuting
thf(fact_6535_exp__add__commuting,axiom,
! [X: real,Y4: real] :
( ( ( times_times_real @ X @ Y4 )
= ( times_times_real @ Y4 @ X ) )
=> ( ( exp_real @ ( plus_plus_real @ X @ Y4 ) )
= ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y4 ) ) ) ) ).
% exp_add_commuting
thf(fact_6536_exp__diff,axiom,
! [X: complex,Y4: complex] :
( ( exp_complex @ ( minus_minus_complex @ X @ Y4 ) )
= ( divide1717551699836669952omplex @ ( exp_complex @ X ) @ ( exp_complex @ Y4 ) ) ) ).
% exp_diff
thf(fact_6537_exp__diff,axiom,
! [X: real,Y4: real] :
( ( exp_real @ ( minus_minus_real @ X @ Y4 ) )
= ( divide_divide_real @ ( exp_real @ X ) @ ( exp_real @ Y4 ) ) ) ).
% exp_diff
thf(fact_6538_nat__one__as__int,axiom,
( one_one_nat
= ( nat2 @ one_one_int ) ) ).
% nat_one_as_int
thf(fact_6539_take__bit__unset__bit__eq,axiom,
! [N: nat,M: nat,A: int] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( bit_se2923211474154528505it_int @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
= ( bit_se4203085406695923979it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).
% take_bit_unset_bit_eq
thf(fact_6540_take__bit__unset__bit__eq,axiom,
! [N: nat,M: nat,A: nat] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( bit_se2925701944663578781it_nat @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
= ( bit_se4205575877204974255it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).
% take_bit_unset_bit_eq
thf(fact_6541_take__bit__unset__bit__eq,axiom,
! [N: nat,M: nat,A: code_integer] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se1745604003318907178nteger @ N @ ( bit_se8260200283734997820nteger @ M @ A ) )
= ( bit_se1745604003318907178nteger @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se1745604003318907178nteger @ N @ ( bit_se8260200283734997820nteger @ M @ A ) )
= ( bit_se8260200283734997820nteger @ M @ ( bit_se1745604003318907178nteger @ N @ A ) ) ) ) ) ).
% take_bit_unset_bit_eq
thf(fact_6542_take__bit__set__bit__eq,axiom,
! [N: nat,M: nat,A: code_integer] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se1745604003318907178nteger @ N @ ( bit_se2793503036327961859nteger @ M @ A ) )
= ( bit_se1745604003318907178nteger @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se1745604003318907178nteger @ N @ ( bit_se2793503036327961859nteger @ M @ A ) )
= ( bit_se2793503036327961859nteger @ M @ ( bit_se1745604003318907178nteger @ N @ A ) ) ) ) ) ).
% take_bit_set_bit_eq
thf(fact_6543_take__bit__set__bit__eq,axiom,
! [N: nat,M: nat,A: int] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( bit_se2923211474154528505it_int @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
= ( bit_se7879613467334960850it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).
% take_bit_set_bit_eq
thf(fact_6544_take__bit__set__bit__eq,axiom,
! [N: nat,M: nat,A: nat] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( bit_se2925701944663578781it_nat @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
= ( bit_se7882103937844011126it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).
% take_bit_set_bit_eq
thf(fact_6545_take__bit__flip__bit__eq,axiom,
! [N: nat,M: nat,A: code_integer] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se1745604003318907178nteger @ N @ ( bit_se1345352211410354436nteger @ M @ A ) )
= ( bit_se1745604003318907178nteger @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se1745604003318907178nteger @ N @ ( bit_se1345352211410354436nteger @ M @ A ) )
= ( bit_se1345352211410354436nteger @ M @ ( bit_se1745604003318907178nteger @ N @ A ) ) ) ) ) ).
% take_bit_flip_bit_eq
thf(fact_6546_take__bit__flip__bit__eq,axiom,
! [N: nat,M: nat,A: int] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( bit_se2923211474154528505it_int @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
= ( bit_se2159334234014336723it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).
% take_bit_flip_bit_eq
thf(fact_6547_take__bit__flip__bit__eq,axiom,
! [N: nat,M: nat,A: nat] :
( ( ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( bit_se2925701944663578781it_nat @ N @ A ) ) )
& ( ~ ( ord_less_eq_nat @ N @ M )
=> ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
= ( bit_se2161824704523386999it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).
% take_bit_flip_bit_eq
thf(fact_6548_unset__bit__nat__def,axiom,
( bit_se4205575877204974255it_nat
= ( ^ [M5: nat,N4: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M5 @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% unset_bit_nat_def
thf(fact_6549_pow_Osimps_I1_J,axiom,
! [X: num] :
( ( pow @ X @ one )
= X ) ).
% pow.simps(1)
thf(fact_6550_exp__gt__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ one_one_real @ ( exp_real @ X ) ) ) ).
% exp_gt_one
thf(fact_6551_real__div__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( divide_divide_real @ X @ ( sqrt @ X ) )
= ( sqrt @ X ) ) ) ).
% real_div_sqrt
thf(fact_6552_sqrt__add__le__add__sqrt,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X @ Y4 ) ) @ ( plus_plus_real @ ( sqrt @ X ) @ ( sqrt @ Y4 ) ) ) ) ) ).
% sqrt_add_le_add_sqrt
thf(fact_6553_take__bit__signed__take__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri631733984087533419it_int @ N @ A ) )
= ( bit_se2923211474154528505it_int @ M @ A ) ) ) ).
% take_bit_signed_take_bit
thf(fact_6554_exp__ge__add__one__self,axiom,
! [X: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ).
% exp_ge_add_one_self
thf(fact_6555_le__real__sqrt__sumsq,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y4 @ Y4 ) ) ) ) ).
% le_real_sqrt_sumsq
thf(fact_6556_and__less__eq,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ K ) ) ).
% and_less_eq
thf(fact_6557_AND__upper1_H_H,axiom,
! [Y4: int,Z: int,Ya: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ord_less_int @ Y4 @ Z )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y4 @ Ya ) @ Z ) ) ) ).
% AND_upper1''
thf(fact_6558_AND__upper2_H_H,axiom,
! [Y4: int,Z: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( ord_less_int @ Y4 @ Z )
=> ( ord_less_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) @ Z ) ) ) ).
% AND_upper2''
thf(fact_6559_nat__mono__iff,axiom,
! [Z: int,W: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ord_less_int @ W @ Z ) ) ) ).
% nat_mono_iff
thf(fact_6560_take__bit__eq__mask__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2000444600071755411sk_int @ N ) )
= ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
= zero_zero_int ) ) ).
% take_bit_eq_mask_iff
thf(fact_6561_exp__minus__inverse,axiom,
! [X: real] :
( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) )
= one_one_real ) ).
% exp_minus_inverse
thf(fact_6562_exp__minus__inverse,axiom,
! [X: complex] :
( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) )
= one_one_complex ) ).
% exp_minus_inverse
thf(fact_6563_take__bit__decr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
!= zero_zero_int )
=> ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ one_one_int ) )
= ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ one_one_int ) ) ) ).
% take_bit_decr_eq
thf(fact_6564_zless__nat__eq__int__zless,axiom,
! [M: nat,Z: int] :
( ( ord_less_nat @ M @ ( nat2 @ Z ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).
% zless_nat_eq_int_zless
thf(fact_6565_nat__le__iff,axiom,
! [X: int,N: nat] :
( ( ord_less_eq_nat @ ( nat2 @ X ) @ N )
= ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% nat_le_iff
thf(fact_6566_nat__0__le,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
= Z ) ) ).
% nat_0_le
thf(fact_6567_int__eq__iff,axiom,
! [M: nat,Z: int] :
( ( ( semiri1314217659103216013at_int @ M )
= Z )
= ( ( M
= ( nat2 @ Z ) )
& ( ord_less_eq_int @ zero_zero_int @ Z ) ) ) ).
% int_eq_iff
thf(fact_6568_nat__int__add,axiom,
! [A: nat,B: nat] :
( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
= ( plus_plus_nat @ A @ B ) ) ).
% nat_int_add
thf(fact_6569_exp__of__nat2__mult,axiom,
! [X: complex,N: nat] :
( ( exp_complex @ ( times_times_complex @ X @ ( semiri8010041392384452111omplex @ N ) ) )
= ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).
% exp_of_nat2_mult
thf(fact_6570_exp__of__nat2__mult,axiom,
! [X: real,N: nat] :
( ( exp_real @ ( times_times_real @ X @ ( semiri5074537144036343181t_real @ N ) ) )
= ( power_power_real @ ( exp_real @ X ) @ N ) ) ).
% exp_of_nat2_mult
thf(fact_6571_exp__of__nat__mult,axiom,
! [N: nat,X: complex] :
( ( exp_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ X ) )
= ( power_power_complex @ ( exp_complex @ X ) @ N ) ) ).
% exp_of_nat_mult
thf(fact_6572_exp__of__nat__mult,axiom,
! [N: nat,X: real] :
( ( exp_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) )
= ( power_power_real @ ( exp_real @ X ) @ N ) ) ).
% exp_of_nat_mult
thf(fact_6573_int__minus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
= ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).
% int_minus
thf(fact_6574_nat__abs__mult__distrib,axiom,
! [W: int,Z: int] :
( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z ) ) )
= ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z ) ) ) ) ).
% nat_abs_mult_distrib
thf(fact_6575_even__and__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3949692690581998587nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_and_iff
thf(fact_6576_even__and__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_and_iff
thf(fact_6577_even__and__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_and_iff
thf(fact_6578_sqrt2__less__2,axiom,
ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% sqrt2_less_2
thf(fact_6579_sgn__real__def,axiom,
( sgn_sgn_real
= ( ^ [A3: real] : ( if_real @ ( A3 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A3 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).
% sgn_real_def
thf(fact_6580_exp__ge__add__one__self__aux,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ) ).
% exp_ge_add_one_self_aux
thf(fact_6581_even__and__iff__int,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ).
% even_and_iff_int
thf(fact_6582_lemma__exp__total,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ one_one_real @ Y4 )
=> ? [X4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X4 )
& ( ord_less_eq_real @ X4 @ ( minus_minus_real @ Y4 @ one_one_real ) )
& ( ( exp_real @ X4 )
= Y4 ) ) ) ).
% lemma_exp_total
thf(fact_6583_ln__ge__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y4 @ ( ln_ln_real @ X ) )
= ( ord_less_eq_real @ ( exp_real @ Y4 ) @ X ) ) ) ).
% ln_ge_iff
thf(fact_6584_ln__x__over__x__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y4 ) @ Y4 ) @ ( divide_divide_real @ ( ln_ln_real @ X ) @ X ) ) ) ) ).
% ln_x_over_x_mono
thf(fact_6585_nat__less__eq__zless,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ord_less_int @ W @ Z ) ) ) ).
% nat_less_eq_zless
thf(fact_6586_nat__le__eq__zle,axiom,
! [W: int,Z: int] :
( ( ( ord_less_int @ zero_zero_int @ W )
| ( ord_less_eq_int @ zero_zero_int @ Z ) )
=> ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ) ).
% nat_le_eq_zle
thf(fact_6587_nat__eq__iff2,axiom,
! [M: nat,W: int] :
( ( M
= ( nat2 @ W ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( W
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff2
thf(fact_6588_nat__eq__iff,axiom,
! [W: int,M: nat] :
( ( ( nat2 @ W )
= M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( W
= ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_eq_iff
thf(fact_6589_split__nat,axiom,
! [P: nat > $o,I: int] :
( ( P @ ( nat2 @ I ) )
= ( ! [N4: nat] :
( ( I
= ( semiri1314217659103216013at_int @ N4 ) )
=> ( P @ N4 ) )
& ( ( ord_less_int @ I @ zero_zero_int )
=> ( P @ zero_zero_nat ) ) ) ) ).
% split_nat
thf(fact_6590_le__nat__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
= ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).
% le_nat_iff
thf(fact_6591_nat__add__distrib,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
=> ( ( nat2 @ ( plus_plus_int @ Z @ Z6 ) )
= ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).
% nat_add_distrib
thf(fact_6592_nat__mult__distrib,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( nat2 @ ( times_times_int @ Z @ Z6 ) )
= ( times_times_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ).
% nat_mult_distrib
thf(fact_6593_Suc__as__int,axiom,
( suc
= ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).
% Suc_as_int
thf(fact_6594_nat__diff__distrib,axiom,
! [Z6: int,Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z6 )
=> ( ( ord_less_eq_int @ Z6 @ Z )
=> ( ( nat2 @ ( minus_minus_int @ Z @ Z6 ) )
= ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) ) ) ) ) ).
% nat_diff_distrib
thf(fact_6595_nat__diff__distrib_H,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( nat2 @ ( minus_minus_int @ X @ Y4 ) )
= ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y4 ) ) ) ) ) ).
% nat_diff_distrib'
thf(fact_6596_nat__abs__triangle__ineq,axiom,
! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).
% nat_abs_triangle_ineq
thf(fact_6597_nat__div__distrib,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( nat2 @ ( divide_divide_int @ X @ Y4 ) )
= ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y4 ) ) ) ) ).
% nat_div_distrib
thf(fact_6598_nat__div__distrib_H,axiom,
! [Y4: int,X: int] :
( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( nat2 @ ( divide_divide_int @ X @ Y4 ) )
= ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y4 ) ) ) ) ).
% nat_div_distrib'
thf(fact_6599_nat__power__eq,axiom,
! [Z: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( nat2 @ ( power_power_int @ Z @ N ) )
= ( power_power_nat @ ( nat2 @ Z ) @ N ) ) ) ).
% nat_power_eq
thf(fact_6600_nat__mod__distrib,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ( nat2 @ ( modulo_modulo_int @ X @ Y4 ) )
= ( modulo_modulo_nat @ ( nat2 @ X ) @ ( nat2 @ Y4 ) ) ) ) ) ).
% nat_mod_distrib
thf(fact_6601_div__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).
% div_abs_eq_div_nat
thf(fact_6602_num_Osize_I4_J,axiom,
( ( size_size_num @ one )
= zero_zero_nat ) ).
% num.size(4)
thf(fact_6603_mod__abs__eq__div__nat,axiom,
! [K: int,L: int] :
( ( modulo_modulo_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
= ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).
% mod_abs_eq_div_nat
thf(fact_6604_take__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_bit0
thf(fact_6605_take__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_bit0
thf(fact_6606_take__bit__eq__mod,axiom,
( bit_se1745604003318907178nteger
= ( ^ [N4: nat,A3: code_integer] : ( modulo364778990260209775nteger @ A3 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% take_bit_eq_mod
thf(fact_6607_take__bit__eq__mod,axiom,
( bit_se2923211474154528505it_int
= ( ^ [N4: nat,A3: int] : ( modulo_modulo_int @ A3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% take_bit_eq_mod
thf(fact_6608_take__bit__eq__mod,axiom,
( bit_se2925701944663578781it_nat
= ( ^ [N4: nat,A3: nat] : ( modulo_modulo_nat @ A3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% take_bit_eq_mod
thf(fact_6609_one__and__eq,axiom,
! [A: code_integer] :
( ( bit_se3949692690581998587nteger @ one_one_Code_integer @ A )
= ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% one_and_eq
thf(fact_6610_one__and__eq,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ one_one_int @ A )
= ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% one_and_eq
thf(fact_6611_one__and__eq,axiom,
! [A: nat] :
( ( bit_se727722235901077358nd_nat @ one_one_nat @ A )
= ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% one_and_eq
thf(fact_6612_and__one__eq,axiom,
! [A: code_integer] :
( ( bit_se3949692690581998587nteger @ A @ one_one_Code_integer )
= ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% and_one_eq
thf(fact_6613_and__one__eq,axiom,
! [A: int] :
( ( bit_se725231765392027082nd_int @ A @ one_one_int )
= ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% and_one_eq
thf(fact_6614_and__one__eq,axiom,
! [A: nat] :
( ( bit_se727722235901077358nd_nat @ A @ one_one_nat )
= ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% and_one_eq
thf(fact_6615_take__bit__nat__eq__self__iff,axiom,
! [N: nat,M: nat] :
( ( ( bit_se2925701944663578781it_nat @ N @ M )
= M )
= ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_nat_eq_self_iff
thf(fact_6616_take__bit__nat__less__exp,axiom,
! [N: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% take_bit_nat_less_exp
thf(fact_6617_take__bit__nat__eq__self,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2925701944663578781it_nat @ N @ M )
= M ) ) ).
% take_bit_nat_eq_self
thf(fact_6618_real__less__rsqrt,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y4 )
=> ( ord_less_real @ X @ ( sqrt @ Y4 ) ) ) ).
% real_less_rsqrt
thf(fact_6619_real__le__rsqrt,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y4 )
=> ( ord_less_eq_real @ X @ ( sqrt @ Y4 ) ) ) ).
% real_le_rsqrt
thf(fact_6620_sqrt__le__D,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( sqrt @ X ) @ Y4 )
=> ( ord_less_eq_real @ X @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sqrt_le_D
thf(fact_6621_exp__le,axiom,
ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).
% exp_le
thf(fact_6622_take__bit__nat__def,axiom,
( bit_se2925701944663578781it_nat
= ( ^ [N4: nat,M5: nat] : ( modulo_modulo_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% take_bit_nat_def
thf(fact_6623_nat__2,axiom,
( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% nat_2
thf(fact_6624_sgn__power__injE,axiom,
! [A: real,N: nat,X: real,B: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
= X )
=> ( ( X
= ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N ) ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ).
% sgn_power_injE
thf(fact_6625_take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% take_bit_int_less_exp
thf(fact_6626_Suc__nat__eq__nat__zadd1,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( suc @ ( nat2 @ Z ) )
= ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).
% Suc_nat_eq_nat_zadd1
thf(fact_6627_nat__less__iff,axiom,
! [W: int,M: nat] :
( ( ord_less_eq_int @ zero_zero_int @ W )
=> ( ( ord_less_nat @ ( nat2 @ W ) @ M )
= ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).
% nat_less_iff
thf(fact_6628_take__bit__int__def,axiom,
( bit_se2923211474154528505it_int
= ( ^ [N4: nat,K3: int] : ( modulo_modulo_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% take_bit_int_def
thf(fact_6629_nat__mult__distrib__neg,axiom,
! [Z: int,Z6: int] :
( ( ord_less_eq_int @ Z @ zero_zero_int )
=> ( ( nat2 @ ( times_times_int @ Z @ Z6 ) )
= ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z ) ) @ ( nat2 @ ( uminus_uminus_int @ Z6 ) ) ) ) ) ).
% nat_mult_distrib_neg
thf(fact_6630_exp__divide__power__eq,axiom,
! [N: nat,X: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_complex @ ( exp_complex @ ( divide1717551699836669952omplex @ X @ ( semiri8010041392384452111omplex @ N ) ) ) @ N )
= ( exp_complex @ X ) ) ) ).
% exp_divide_power_eq
thf(fact_6631_exp__divide__power__eq,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ ( exp_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N )
= ( exp_real @ X ) ) ) ).
% exp_divide_power_eq
thf(fact_6632_nat__abs__int__diff,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ B @ A ) ) )
& ( ~ ( ord_less_eq_nat @ A @ B )
=> ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
= ( minus_minus_nat @ A @ B ) ) ) ) ).
% nat_abs_int_diff
thf(fact_6633_tanh__altdef,axiom,
( tanh_real
= ( ^ [X3: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) @ ( plus_plus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_6634_tanh__altdef,axiom,
( tanh_complex
= ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) ) ) ) ).
% tanh_altdef
thf(fact_6635_take__bit__eq__0__iff,axiom,
! [N: nat,A: code_integer] :
( ( ( bit_se1745604003318907178nteger @ N @ A )
= zero_z3403309356797280102nteger )
= ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ A ) ) ).
% take_bit_eq_0_iff
thf(fact_6636_take__bit__eq__0__iff,axiom,
! [N: nat,A: int] :
( ( ( bit_se2923211474154528505it_int @ N @ A )
= zero_zero_int )
= ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ A ) ) ).
% take_bit_eq_0_iff
thf(fact_6637_take__bit__eq__0__iff,axiom,
! [N: nat,A: nat] :
( ( ( bit_se2925701944663578781it_nat @ N @ A )
= zero_zero_nat )
= ( dvd_dvd_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ A ) ) ).
% take_bit_eq_0_iff
thf(fact_6638_take__bit__numeral__bit0,axiom,
! [L: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_numeral_bit0
thf(fact_6639_take__bit__numeral__bit0,axiom,
! [L: num,K: num] :
( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% take_bit_numeral_bit0
thf(fact_6640_take__bit__nat__less__self__iff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M ) ) ).
% take_bit_nat_less_self_iff
thf(fact_6641_real__sqrt__unique,axiom,
! [Y4: real,X: real] :
( ( ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( sqrt @ X )
= Y4 ) ) ) ).
% real_sqrt_unique
thf(fact_6642_real__le__lsqrt,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ X @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( sqrt @ X ) @ Y4 ) ) ) ) ).
% real_le_lsqrt
thf(fact_6643_lemma__real__divide__sqrt__less,axiom,
! [U: real] :
( ( ord_less_real @ zero_zero_real @ U )
=> ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).
% lemma_real_divide_sqrt_less
thf(fact_6644_real__sqrt__sum__squares__eq__cancel2,axiom,
! [X: real,Y4: real] :
( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= Y4 )
=> ( X = zero_zero_real ) ) ).
% real_sqrt_sum_squares_eq_cancel2
thf(fact_6645_real__sqrt__sum__squares__eq__cancel,axiom,
! [X: real,Y4: real] :
( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= X )
=> ( Y4 = zero_zero_real ) ) ).
% real_sqrt_sum_squares_eq_cancel
thf(fact_6646_real__sqrt__sum__squares__triangle__ineq,axiom,
! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_triangle_ineq
thf(fact_6647_real__sqrt__sum__squares__ge2,axiom,
! [Y4: real,X: real] : ( ord_less_eq_real @ Y4 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge2
thf(fact_6648_real__sqrt__sum__squares__ge1,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_sum_squares_ge1
thf(fact_6649_exp__half__le2,axiom,
ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% exp_half_le2
thf(fact_6650_sqrt__ge__absD,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ Y4 ) )
=> ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y4 ) ) ).
% sqrt_ge_absD
thf(fact_6651_take__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_Suc_minus_bit0
thf(fact_6652_take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% take_bit_int_greater_eq_self_iff
thf(fact_6653_take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).
% take_bit_int_less_self_iff
thf(fact_6654_exp__double,axiom,
! [Z: complex] :
( ( exp_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) )
= ( power_power_complex @ ( exp_complex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% exp_double
thf(fact_6655_exp__double,axiom,
! [Z: real] :
( ( exp_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) )
= ( power_power_real @ ( exp_real @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% exp_double
thf(fact_6656_nat__dvd__iff,axiom,
! [Z: int,M: nat] :
( ( dvd_dvd_nat @ ( nat2 @ Z ) @ M )
= ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( dvd_dvd_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( M = zero_zero_nat ) ) ) ) ).
% nat_dvd_iff
thf(fact_6657_real__less__lsqrt,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ X @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sqrt @ X ) @ Y4 ) ) ) ) ).
% real_less_lsqrt
thf(fact_6658_sqrt__sum__squares__le__sum,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X @ Y4 ) ) ) ) ).
% sqrt_sum_squares_le_sum
thf(fact_6659_sqrt__sum__squares__le__sum__abs,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y4 ) ) ) ).
% sqrt_sum_squares_le_sum_abs
thf(fact_6660_real__sqrt__ge__abs2,axiom,
! [Y4: real,X: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_ge_abs2
thf(fact_6661_real__sqrt__ge__abs1,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% real_sqrt_ge_abs1
thf(fact_6662_sqrt__even__pow2,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% sqrt_even_pow2
thf(fact_6663_ln__sqrt,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ln_ln_real @ ( sqrt @ X ) )
= ( divide_divide_real @ ( ln_ln_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% ln_sqrt
thf(fact_6664_arsinh__real__def,axiom,
( arsinh_real
= ( ^ [X3: real] : ( ln_ln_real @ ( plus_plus_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).
% arsinh_real_def
thf(fact_6665_take__bit__int__eq__self,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2923211474154528505it_int @ N @ K )
= K ) ) ) ).
% take_bit_int_eq_self
thf(fact_6666_take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= K )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% take_bit_int_eq_self_iff
thf(fact_6667_and__int__rec,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K3: int,L3: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% and_int_rec
thf(fact_6668_take__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% take_bit_numeral_minus_bit0
thf(fact_6669_take__bit__incr__eq,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
!= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
=> ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
= ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).
% take_bit_incr_eq
thf(fact_6670_take__bit__eq__mask__iff__exp__dvd,axiom,
! [N: nat,K: int] :
( ( ( bit_se2923211474154528505it_int @ N @ K )
= ( bit_se2000444600071755411sk_int @ N ) )
= ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).
% take_bit_eq_mask_iff_exp_dvd
thf(fact_6671_exp__bound__half,axiom,
! [Z: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% exp_bound_half
thf(fact_6672_exp__bound__half,axiom,
! [Z: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% exp_bound_half
thf(fact_6673_take__bit__Suc__minus__1__eq,axiom,
! [N: nat] :
( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_Code_integer ) ) ).
% take_bit_Suc_minus_1_eq
thf(fact_6674_take__bit__Suc__minus__1__eq,axiom,
! [N: nat] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ one_one_int ) )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_int ) ) ).
% take_bit_Suc_minus_1_eq
thf(fact_6675_take__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_Suc_bit1
thf(fact_6676_take__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).
% take_bit_Suc_bit1
thf(fact_6677_take__bit__numeral__minus__1__eq,axiom,
! [K: num] :
( ( bit_se1745604003318907178nteger @ ( numeral_numeral_nat @ K ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K ) ) @ one_one_Code_integer ) ) ).
% take_bit_numeral_minus_1_eq
thf(fact_6678_take__bit__numeral__minus__1__eq,axiom,
! [K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ K ) @ ( uminus_uminus_int @ one_one_int ) )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K ) ) @ one_one_int ) ) ).
% take_bit_numeral_minus_1_eq
thf(fact_6679_take__bit__Suc,axiom,
! [N: nat,A: code_integer] :
( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ A )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).
% take_bit_Suc
thf(fact_6680_take__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% take_bit_Suc
thf(fact_6681_take__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ A )
= ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% take_bit_Suc
thf(fact_6682_arsinh__real__aux,axiom,
! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).
% arsinh_real_aux
thf(fact_6683_exp__bound,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% exp_bound
thf(fact_6684_real__sqrt__sum__squares__mult__ge__zero,axiom,
! [X: real,Y4: real,Xa: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_sum_squares_mult_ge_zero
thf(fact_6685_real__sqrt__power__even,axiom,
! [N: nat,X: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( sqrt @ X ) @ N )
= ( power_power_real @ X @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% real_sqrt_power_even
thf(fact_6686_arith__geo__mean__sqrt,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X @ Y4 ) ) @ ( divide_divide_real @ ( plus_plus_real @ X @ Y4 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arith_geo_mean_sqrt
thf(fact_6687_take__bit__int__less__eq,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% take_bit_int_less_eq
thf(fact_6688_take__bit__int__greater__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_int_greater_eq
thf(fact_6689_even__nat__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).
% even_nat_iff
thf(fact_6690_signed__take__bit__eq__take__bit__shift,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N4: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N4 ) @ ( plus_plus_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% signed_take_bit_eq_take_bit_shift
thf(fact_6691_num_Osize_I5_J,axiom,
! [X2: num] :
( ( size_size_num @ ( bit0 @ X2 ) )
= ( plus_plus_nat @ ( size_size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(5)
thf(fact_6692_stable__imp__take__bit__eq,axiom,
! [A: code_integer,N: nat] :
( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A )
=> ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1745604003318907178nteger @ N @ A )
= zero_z3403309356797280102nteger ) )
& ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1745604003318907178nteger @ N @ A )
= ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_6693_stable__imp__take__bit__eq,axiom,
! [A: int,N: nat] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2923211474154528505it_int @ N @ A )
= zero_zero_int ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2923211474154528505it_int @ N @ A )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_6694_stable__imp__take__bit__eq,axiom,
! [A: nat,N: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2925701944663578781it_nat @ N @ A )
= zero_zero_nat ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se2925701944663578781it_nat @ N @ A )
= ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ).
% stable_imp_take_bit_eq
thf(fact_6695_num_Osize_I6_J,axiom,
! [X33: num] :
( ( size_size_num @ ( bit1 @ X33 ) )
= ( plus_plus_nat @ ( size_size_num @ X33 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(6)
thf(fact_6696_take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_numeral_bit1
thf(fact_6697_take__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).
% take_bit_numeral_bit1
thf(fact_6698_real__exp__bound__lemma,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ) ) ) ).
% real_exp_bound_lemma
thf(fact_6699_cos__x__y__le__one,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).
% cos_x_y_le_one
thf(fact_6700_real__sqrt__sum__squares__less,axiom,
! [X: real,U: real,Y4: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ord_less_real @ ( abs_abs_real @ Y4 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).
% real_sqrt_sum_squares_less
thf(fact_6701_arcosh__real__def,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( arcosh_real @ X )
= ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).
% arcosh_real_def
thf(fact_6702_exp__ge__one__plus__x__over__n__power__n,axiom,
! [N: nat,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ X )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ X ) ) ) ) ).
% exp_ge_one_plus_x_over_n_power_n
thf(fact_6703_exp__ge__one__minus__x__over__n__power__n,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ) ).
% exp_ge_one_minus_x_over_n_power_n
thf(fact_6704_take__bit__minus__small__eq,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) )
= ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ) ) ).
% take_bit_minus_small_eq
thf(fact_6705_exp__bound__lemma,axiom,
! [Z: real] :
( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V7735802525324610683m_real @ Z ) ) ) ) ) ).
% exp_bound_lemma
thf(fact_6706_exp__bound__lemma,axiom,
! [Z: complex] :
( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ) ).
% exp_bound_lemma
thf(fact_6707_modulo__int__def,axiom,
( modulo_modulo_int
= ( ^ [K3: int,L3: int] :
( if_int @ ( L3 = zero_zero_int ) @ K3
@ ( if_int
@ ( ( sgn_sgn_int @ K3 )
= ( sgn_sgn_int @ L3 ) )
@ ( times_times_int @ ( sgn_sgn_int @ L3 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) ) ) )
@ ( times_times_int @ ( sgn_sgn_int @ L3 )
@ ( minus_minus_int
@ ( times_times_int @ ( abs_abs_int @ L3 )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ L3 @ K3 ) ) )
@ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L3 ) ) ) ) ) ) ) ) ) ) ).
% modulo_int_def
thf(fact_6708_sqrt__sum__squares__half__less,axiom,
! [X: real,U: real,Y4: real] :
( ( ord_less_real @ X @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y4 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).
% sqrt_sum_squares_half_less
thf(fact_6709_exp__lower__Taylor__quadratic,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( divide_divide_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X ) ) ) ).
% exp_lower_Taylor_quadratic
thf(fact_6710_take__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_numeral_minus_bit1
thf(fact_6711_take__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).
% take_bit_Suc_minus_bit1
thf(fact_6712_foldr__same__int,axiom,
! [Xs: list_nat,Y4: nat] :
( ! [X4: nat,Y: nat] :
( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
=> ( ( member_nat @ Y @ ( set_nat2 @ Xs ) )
=> ( X4 = Y ) ) )
=> ( ! [X4: nat] :
( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
=> ( X4 = Y4 ) )
=> ( ( foldr_nat_nat @ plus_plus_nat @ Xs @ zero_zero_nat )
= ( times_times_nat @ ( size_size_list_nat @ Xs ) @ Y4 ) ) ) ) ).
% foldr_same_int
thf(fact_6713_log__base__10__eq1,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X ) ) ) ) ).
% log_base_10_eq1
thf(fact_6714_log__base__10__eq2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
= ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X ) ) ) ) ).
% log_base_10_eq2
thf(fact_6715_machin,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% machin
thf(fact_6716_foldr__one,axiom,
! [D: nat,Ys: list_nat] : ( ord_less_eq_nat @ D @ ( foldr_nat_nat @ plus_plus_nat @ Ys @ D ) ) ).
% foldr_one
thf(fact_6717_log__one,axiom,
! [A: real] :
( ( log @ A @ one_one_real )
= zero_zero_real ) ).
% log_one
thf(fact_6718_pred__numeral__inc,axiom,
! [K: num] :
( ( pred_numeral @ ( inc @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% pred_numeral_inc
thf(fact_6719_log__eq__one,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ A )
= one_one_real ) ) ) ).
% log_eq_one
thf(fact_6720_log__less__cancel__iff,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ ( log @ A @ X ) @ ( log @ A @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ) ) ) ).
% log_less_cancel_iff
thf(fact_6721_log__less__one__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ A @ X ) @ one_one_real )
= ( ord_less_real @ X @ A ) ) ) ) ).
% log_less_one_cancel_iff
thf(fact_6722_one__less__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ ( log @ A @ X ) )
= ( ord_less_real @ A @ X ) ) ) ) ).
% one_less_log_cancel_iff
thf(fact_6723_log__less__zero__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ A @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ) ).
% log_less_zero_cancel_iff
thf(fact_6724_zero__less__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X ) )
= ( ord_less_real @ one_one_real @ X ) ) ) ) ).
% zero_less_log_cancel_iff
thf(fact_6725_log__le__cancel__iff,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ ( log @ A @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ) ) ).
% log_le_cancel_iff
thf(fact_6726_log__le__one__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ A ) ) ) ) ).
% log_le_one_cancel_iff
thf(fact_6727_one__le__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X ) )
= ( ord_less_eq_real @ A @ X ) ) ) ) ).
% one_le_log_cancel_iff
thf(fact_6728_log__le__zero__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ A @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ) ).
% log_le_zero_cancel_iff
thf(fact_6729_zero__le__log__cancel__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ) ) ).
% zero_le_log_cancel_iff
thf(fact_6730_add__neg__numeral__special_I6_J,axiom,
! [M: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ M ) ) ) ) ).
% add_neg_numeral_special(6)
thf(fact_6731_add__neg__numeral__special_I6_J,axiom,
! [M: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ M ) ) ) ) ).
% add_neg_numeral_special(6)
thf(fact_6732_add__neg__numeral__special_I6_J,axiom,
! [M: num] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ) ).
% add_neg_numeral_special(6)
thf(fact_6733_add__neg__numeral__special_I6_J,axiom,
! [M: num] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ) ).
% add_neg_numeral_special(6)
thf(fact_6734_add__neg__numeral__special_I6_J,axiom,
! [M: num] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ M ) ) ) ) ).
% add_neg_numeral_special(6)
thf(fact_6735_add__neg__numeral__special_I5_J,axiom,
! [N: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).
% add_neg_numeral_special(5)
thf(fact_6736_add__neg__numeral__special_I5_J,axiom,
! [N: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).
% add_neg_numeral_special(5)
thf(fact_6737_add__neg__numeral__special_I5_J,axiom,
! [N: num] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).
% add_neg_numeral_special(5)
thf(fact_6738_add__neg__numeral__special_I5_J,axiom,
! [N: num] :
( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).
% add_neg_numeral_special(5)
thf(fact_6739_add__neg__numeral__special_I5_J,axiom,
! [N: num] :
( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).
% add_neg_numeral_special(5)
thf(fact_6740_diff__numeral__special_I6_J,axiom,
! [M: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) )
= ( numeral_numeral_real @ ( inc @ M ) ) ) ).
% diff_numeral_special(6)
thf(fact_6741_diff__numeral__special_I6_J,axiom,
! [M: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) )
= ( numeral_numeral_int @ ( inc @ M ) ) ) ).
% diff_numeral_special(6)
thf(fact_6742_diff__numeral__special_I6_J,axiom,
! [M: num] :
( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ).
% diff_numeral_special(6)
thf(fact_6743_diff__numeral__special_I6_J,axiom,
! [M: num] :
( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ).
% diff_numeral_special(6)
thf(fact_6744_diff__numeral__special_I6_J,axiom,
! [M: num] :
( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) )
= ( numeral_numeral_rat @ ( inc @ M ) ) ) ).
% diff_numeral_special(6)
thf(fact_6745_diff__numeral__special_I5_J,axiom,
! [N: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).
% diff_numeral_special(5)
thf(fact_6746_diff__numeral__special_I5_J,axiom,
! [N: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).
% diff_numeral_special(5)
thf(fact_6747_diff__numeral__special_I5_J,axiom,
! [N: num] :
( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).
% diff_numeral_special(5)
thf(fact_6748_diff__numeral__special_I5_J,axiom,
! [N: num] :
( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ N ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).
% diff_numeral_special(5)
thf(fact_6749_diff__numeral__special_I5_J,axiom,
! [N: num] :
( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ N ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).
% diff_numeral_special(5)
thf(fact_6750_and__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% and_nat_numerals(3)
thf(fact_6751_and__nat__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= zero_zero_nat ) ).
% and_nat_numerals(1)
thf(fact_6752_log__pow__cancel,axiom,
! [A: real,B: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( power_power_real @ A @ B ) )
= ( semiri5074537144036343181t_real @ B ) ) ) ) ).
% log_pow_cancel
thf(fact_6753_and__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% and_nat_numerals(4)
thf(fact_6754_and__nat__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= one_one_nat ) ).
% and_nat_numerals(2)
thf(fact_6755_Suc__0__and__eq,axiom,
! [N: nat] :
( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N )
= ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Suc_0_and_eq
thf(fact_6756_and__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se727722235901077358nd_nat @ N @ ( suc @ zero_zero_nat ) )
= ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% and_Suc_0_eq
thf(fact_6757_pi__neq__zero,axiom,
pi != zero_zero_real ).
% pi_neq_zero
thf(fact_6758_num__induct,axiom,
! [P: num > $o,X: num] :
( ( P @ one )
=> ( ! [X4: num] :
( ( P @ X4 )
=> ( P @ ( inc @ X4 ) ) )
=> ( P @ X ) ) ) ).
% num_induct
thf(fact_6759_add__inc,axiom,
! [X: num,Y4: num] :
( ( plus_plus_num @ X @ ( inc @ Y4 ) )
= ( inc @ ( plus_plus_num @ X @ Y4 ) ) ) ).
% add_inc
thf(fact_6760_log__def,axiom,
( log
= ( ^ [A3: real,X3: real] : ( divide_divide_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ A3 ) ) ) ) ).
% log_def
thf(fact_6761_pi__gt__zero,axiom,
ord_less_real @ zero_zero_real @ pi ).
% pi_gt_zero
thf(fact_6762_pi__not__less__zero,axiom,
~ ( ord_less_real @ pi @ zero_zero_real ) ).
% pi_not_less_zero
thf(fact_6763_pi__ge__zero,axiom,
ord_less_eq_real @ zero_zero_real @ pi ).
% pi_ge_zero
thf(fact_6764_inc_Osimps_I1_J,axiom,
( ( inc @ one )
= ( bit0 @ one ) ) ).
% inc.simps(1)
thf(fact_6765_inc_Osimps_I3_J,axiom,
! [X: num] :
( ( inc @ ( bit1 @ X ) )
= ( bit0 @ ( inc @ X ) ) ) ).
% inc.simps(3)
thf(fact_6766_inc_Osimps_I2_J,axiom,
! [X: num] :
( ( inc @ ( bit0 @ X ) )
= ( bit1 @ X ) ) ).
% inc.simps(2)
thf(fact_6767_add__One,axiom,
! [X: num] :
( ( plus_plus_num @ X @ one )
= ( inc @ X ) ) ).
% add_One
thf(fact_6768_and__nat__def,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M5: nat,N4: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% and_nat_def
thf(fact_6769_mult__inc,axiom,
! [X: num,Y4: num] :
( ( times_times_num @ X @ ( inc @ Y4 ) )
= ( plus_plus_num @ ( times_times_num @ X @ Y4 ) @ X ) ) ).
% mult_inc
thf(fact_6770_log__base__change,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ B @ X )
= ( divide_divide_real @ ( log @ A @ X ) @ ( log @ A @ B ) ) ) ) ) ).
% log_base_change
thf(fact_6771_log__of__power__eq,axiom,
! [M: nat,B: real,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( semiri5074537144036343181t_real @ N )
= ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).
% log_of_power_eq
thf(fact_6772_less__log__of__power,axiom,
! [B: real,N: nat,M: real] :
( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).
% less_log_of_power
thf(fact_6773_numeral__inc,axiom,
! [X: num] :
( ( numera6690914467698888265omplex @ ( inc @ X ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).
% numeral_inc
thf(fact_6774_numeral__inc,axiom,
! [X: num] :
( ( numeral_numeral_real @ ( inc @ X ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).
% numeral_inc
thf(fact_6775_numeral__inc,axiom,
! [X: num] :
( ( numeral_numeral_rat @ ( inc @ X ) )
= ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).
% numeral_inc
thf(fact_6776_numeral__inc,axiom,
! [X: num] :
( ( numeral_numeral_nat @ ( inc @ X ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).
% numeral_inc
thf(fact_6777_numeral__inc,axiom,
! [X: num] :
( ( numeral_numeral_int @ ( inc @ X ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).
% numeral_inc
thf(fact_6778_pi__less__4,axiom,
ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).
% pi_less_4
thf(fact_6779_pi__ge__two,axiom,
ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).
% pi_ge_two
thf(fact_6780_pi__half__neq__two,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_neq_two
thf(fact_6781_log__mult,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( log @ A @ ( times_times_real @ X @ Y4 ) )
= ( plus_plus_real @ ( log @ A @ X ) @ ( log @ A @ Y4 ) ) ) ) ) ) ) ).
% log_mult
thf(fact_6782_log__divide,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ( log @ A @ ( divide_divide_real @ X @ Y4 ) )
= ( minus_minus_real @ ( log @ A @ X ) @ ( log @ A @ Y4 ) ) ) ) ) ) ) ).
% log_divide
thf(fact_6783_le__log__of__power,axiom,
! [B: real,N: nat,M: real] :
( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).
% le_log_of_power
thf(fact_6784_log__base__pow,axiom,
! [A: real,N: nat,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ ( power_power_real @ A @ N ) @ X )
= ( divide_divide_real @ ( log @ A @ X ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log_base_pow
thf(fact_6785_log__nat__power,axiom,
! [X: real,B: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ B @ ( power_power_real @ X @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X ) ) ) ) ).
% log_nat_power
thf(fact_6786_pi__half__neq__zero,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= zero_zero_real ) ).
% pi_half_neq_zero
thf(fact_6787_pi__half__less__two,axiom,
ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% pi_half_less_two
thf(fact_6788_pi__half__le__two,axiom,
ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).
% pi_half_le_two
thf(fact_6789_log2__of__power__eq,axiom,
! [M: nat,N: nat] :
( ( M
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( semiri5074537144036343181t_real @ N )
= ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% log2_of_power_eq
thf(fact_6790_log__of__power__less,axiom,
! [M: nat,B: real,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_of_power_less
thf(fact_6791_log__eq__div__ln__mult__log,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ A @ X )
= ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X ) ) ) ) ) ) ) ) ).
% log_eq_div_ln_mult_log
thf(fact_6792_pi__half__gt__zero,axiom,
ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_gt_zero
thf(fact_6793_pi__half__ge__zero,axiom,
ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% pi_half_ge_zero
thf(fact_6794_m2pi__less__pi,axiom,
ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).
% m2pi_less_pi
thf(fact_6795_arctan__ubound,axiom,
! [Y4: real] : ( ord_less_real @ ( arctan @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arctan_ubound
thf(fact_6796_arctan__one,axiom,
( ( arctan @ one_one_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% arctan_one
thf(fact_6797_log__of__power__le,axiom,
! [M: nat,B: real,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_of_power_le
thf(fact_6798_minus__pi__half__less__zero,axiom,
ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).
% minus_pi_half_less_zero
thf(fact_6799_arctan__lbound,axiom,
! [Y4: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y4 ) ) ).
% arctan_lbound
thf(fact_6800_arctan__bounded,axiom,
! [Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y4 ) )
& ( ord_less_real @ ( arctan @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% arctan_bounded
thf(fact_6801_and__nat__unfold,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M5: nat,N4: nat] :
( if_nat
@ ( ( M5 = zero_zero_nat )
| ( N4 = zero_zero_nat ) )
@ zero_zero_nat
@ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_nat_unfold
thf(fact_6802_less__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% less_log2_of_power
thf(fact_6803_le__log2__of__power,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).
% le_log2_of_power
thf(fact_6804_and__nat__rec,axiom,
( bit_se727722235901077358nd_nat
= ( ^ [M5: nat,N4: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 )
& ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% and_nat_rec
thf(fact_6805_log2__of__power__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log2_of_power_less
thf(fact_6806_log2__of__power__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% log2_of_power_le
thf(fact_6807_machin__Euler,axiom,
( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% machin_Euler
thf(fact_6808_arctan__inverse,axiom,
! [X: real] :
( ( X != zero_zero_real )
=> ( ( arctan @ ( divide_divide_real @ one_one_real @ X ) )
= ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X ) ) ) ) ).
% arctan_inverse
thf(fact_6809_sin__cos__npi,axiom,
! [N: nat] :
( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% sin_cos_npi
thf(fact_6810_ceiling__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) )
= ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).
% ceiling_log_nat_eq_powr_iff
thf(fact_6811_cos__pi__eq__zero,axiom,
! [M: nat] :
( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_pi_eq_zero
thf(fact_6812_ceiling__log__nat__eq__if,axiom,
! [B: nat,N: nat,K: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
=> ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ) ) ).
% ceiling_log_nat_eq_if
thf(fact_6813_ceiling__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).
% ceiling_log2_div2
thf(fact_6814_floor__log__nat__eq__powr__iff,axiom,
! [B: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N ) )
= ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).
% floor_log_nat_eq_powr_iff
thf(fact_6815_sin__zero,axiom,
( ( sin_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% sin_zero
thf(fact_6816_sin__zero,axiom,
( ( sin_real @ zero_zero_real )
= zero_zero_real ) ).
% sin_zero
thf(fact_6817_cos__zero,axiom,
( ( cos_complex @ zero_zero_complex )
= one_one_complex ) ).
% cos_zero
thf(fact_6818_cos__zero,axiom,
( ( cos_real @ zero_zero_real )
= one_one_real ) ).
% cos_zero
thf(fact_6819_floor__zero,axiom,
( ( archim6058952711729229775r_real @ zero_zero_real )
= zero_zero_int ) ).
% floor_zero
thf(fact_6820_floor__zero,axiom,
( ( archim3151403230148437115or_rat @ zero_zero_rat )
= zero_zero_int ) ).
% floor_zero
thf(fact_6821_floor__numeral,axiom,
! [V: num] :
( ( archim6058952711729229775r_real @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% floor_numeral
thf(fact_6822_floor__numeral,axiom,
! [V: num] :
( ( archim3151403230148437115or_rat @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% floor_numeral
thf(fact_6823_ceiling__zero,axiom,
( ( archim2889992004027027881ng_rat @ zero_zero_rat )
= zero_zero_int ) ).
% ceiling_zero
thf(fact_6824_ceiling__zero,axiom,
( ( archim7802044766580827645g_real @ zero_zero_real )
= zero_zero_int ) ).
% ceiling_zero
thf(fact_6825_ceiling__numeral,axiom,
! [V: num] :
( ( archim7802044766580827645g_real @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% ceiling_numeral
thf(fact_6826_ceiling__numeral,axiom,
! [V: num] :
( ( archim2889992004027027881ng_rat @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_int @ V ) ) ).
% ceiling_numeral
thf(fact_6827_sin__pi,axiom,
( ( sin_real @ pi )
= zero_zero_real ) ).
% sin_pi
thf(fact_6828_floor__of__nat,axiom,
! [N: nat] :
( ( archim6058952711729229775r_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% floor_of_nat
thf(fact_6829_floor__of__nat,axiom,
! [N: nat] :
( ( archim3151403230148437115or_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% floor_of_nat
thf(fact_6830_ceiling__of__nat,axiom,
! [N: nat] :
( ( archim7802044766580827645g_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% ceiling_of_nat
thf(fact_6831_ceiling__of__nat,axiom,
! [N: nat] :
( ( archim2889992004027027881ng_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% ceiling_of_nat
thf(fact_6832_sin__pi__minus,axiom,
! [X: real] :
( ( sin_real @ ( minus_minus_real @ pi @ X ) )
= ( sin_real @ X ) ) ).
% sin_pi_minus
thf(fact_6833_cos__minus__pi,axiom,
! [X: real] :
( ( cos_real @ ( minus_minus_real @ X @ pi ) )
= ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).
% cos_minus_pi
thf(fact_6834_cos__pi__minus,axiom,
! [X: real] :
( ( cos_real @ ( minus_minus_real @ pi @ X ) )
= ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).
% cos_pi_minus
thf(fact_6835_sin__minus__pi,axiom,
! [X: real] :
( ( sin_real @ ( minus_minus_real @ X @ pi ) )
= ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).
% sin_minus_pi
thf(fact_6836_zero__le__floor,axiom,
! [X: real] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% zero_le_floor
thf(fact_6837_zero__le__floor,axiom,
! [X: rat] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ zero_zero_rat @ X ) ) ).
% zero_le_floor
thf(fact_6838_sin__cos__squared__add3,axiom,
! [X: complex] :
( ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ X ) ) @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ X ) ) )
= one_one_complex ) ).
% sin_cos_squared_add3
thf(fact_6839_sin__cos__squared__add3,axiom,
! [X: real] :
( ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ X ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ X ) ) )
= one_one_real ) ).
% sin_cos_squared_add3
thf(fact_6840_floor__less__zero,axiom,
! [X: real] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% floor_less_zero
thf(fact_6841_floor__less__zero,axiom,
! [X: rat] :
( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ zero_zero_int )
= ( ord_less_rat @ X @ zero_zero_rat ) ) ).
% floor_less_zero
thf(fact_6842_numeral__le__floor,axiom,
! [V: num,X: real] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( numeral_numeral_real @ V ) @ X ) ) ).
% numeral_le_floor
thf(fact_6843_numeral__le__floor,axiom,
! [V: num,X: rat] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ ( numeral_numeral_rat @ V ) @ X ) ) ).
% numeral_le_floor
thf(fact_6844_zero__less__floor,axiom,
! [X: real] :
( ( ord_less_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ).
% zero_less_floor
thf(fact_6845_zero__less__floor,axiom,
! [X: rat] :
( ( ord_less_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ one_one_rat @ X ) ) ).
% zero_less_floor
thf(fact_6846_floor__le__zero,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ zero_zero_int )
= ( ord_less_real @ X @ one_one_real ) ) ).
% floor_le_zero
thf(fact_6847_floor__le__zero,axiom,
! [X: rat] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ zero_zero_int )
= ( ord_less_rat @ X @ one_one_rat ) ) ).
% floor_le_zero
thf(fact_6848_ceiling__le__zero,axiom,
! [X: rat] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ zero_zero_int )
= ( ord_less_eq_rat @ X @ zero_zero_rat ) ) ).
% ceiling_le_zero
thf(fact_6849_ceiling__le__zero,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% ceiling_le_zero
thf(fact_6850_floor__less__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_real @ X @ ( numeral_numeral_real @ V ) ) ) ).
% floor_less_numeral
thf(fact_6851_floor__less__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_rat @ X @ ( numeral_numeral_rat @ V ) ) ) ).
% floor_less_numeral
thf(fact_6852_zero__less__ceiling,axiom,
! [X: rat] :
( ( ord_less_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ zero_zero_rat @ X ) ) ).
% zero_less_ceiling
thf(fact_6853_zero__less__ceiling,axiom,
! [X: real] :
( ( ord_less_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% zero_less_ceiling
thf(fact_6854_one__le__floor,axiom,
! [X: real] :
( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ one_one_real @ X ) ) ).
% one_le_floor
thf(fact_6855_one__le__floor,axiom,
! [X: rat] :
( ( ord_less_eq_int @ one_one_int @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ one_one_rat @ X ) ) ).
% one_le_floor
thf(fact_6856_ceiling__le__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_rat @ X @ ( numeral_numeral_rat @ V ) ) ) ).
% ceiling_le_numeral
thf(fact_6857_ceiling__le__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_real @ X @ ( numeral_numeral_real @ V ) ) ) ).
% ceiling_le_numeral
thf(fact_6858_ceiling__less__one,axiom,
! [X: rat] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int )
= ( ord_less_eq_rat @ X @ zero_zero_rat ) ) ).
% ceiling_less_one
thf(fact_6859_ceiling__less__one,axiom,
! [X: real] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% ceiling_less_one
thf(fact_6860_one__le__ceiling,axiom,
! [X: rat] :
( ( ord_less_eq_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ zero_zero_rat @ X ) ) ).
% one_le_ceiling
thf(fact_6861_one__le__ceiling,axiom,
! [X: real] :
( ( ord_less_eq_int @ one_one_int @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% one_le_ceiling
thf(fact_6862_numeral__less__ceiling,axiom,
! [V: num,X: real] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( numeral_numeral_real @ V ) @ X ) ) ).
% numeral_less_ceiling
thf(fact_6863_numeral__less__ceiling,axiom,
! [V: num,X: rat] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ ( numeral_numeral_rat @ V ) @ X ) ) ).
% numeral_less_ceiling
thf(fact_6864_floor__neg__numeral,axiom,
! [V: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% floor_neg_numeral
thf(fact_6865_floor__neg__numeral,axiom,
! [V: num] :
( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% floor_neg_numeral
thf(fact_6866_ceiling__le__one,axiom,
! [X: rat] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int )
= ( ord_less_eq_rat @ X @ one_one_rat ) ) ).
% ceiling_le_one
thf(fact_6867_ceiling__le__one,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int )
= ( ord_less_eq_real @ X @ one_one_real ) ) ).
% ceiling_le_one
thf(fact_6868_ceiling__add__numeral,axiom,
! [X: real,V: num] :
( ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ V ) ) )
= ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_add_numeral
thf(fact_6869_ceiling__add__numeral,axiom,
! [X: rat,V: num] :
( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
= ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_add_numeral
thf(fact_6870_floor__diff__numeral,axiom,
! [X: real,V: num] :
( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ ( numeral_numeral_real @ V ) ) )
= ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).
% floor_diff_numeral
thf(fact_6871_floor__diff__numeral,axiom,
! [X: rat,V: num] :
( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
= ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).
% floor_diff_numeral
thf(fact_6872_ceiling__neg__numeral,axiom,
! [V: num] :
( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_neg_numeral
thf(fact_6873_ceiling__neg__numeral,axiom,
! [V: num] :
( ( archim2889992004027027881ng_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_neg_numeral
thf(fact_6874_floor__diff__one,axiom,
! [X: real] :
( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ one_one_real ) )
= ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ).
% floor_diff_one
thf(fact_6875_floor__diff__one,axiom,
! [X: rat] :
( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ one_one_rat ) )
= ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ).
% floor_diff_one
thf(fact_6876_ceiling__diff__numeral,axiom,
! [X: real,V: num] :
( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ ( numeral_numeral_real @ V ) ) )
= ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_diff_numeral
thf(fact_6877_ceiling__diff__numeral,axiom,
! [X: rat,V: num] :
( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ ( numeral_numeral_rat @ V ) ) )
= ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) ) ) ).
% ceiling_diff_numeral
thf(fact_6878_ceiling__diff__one,axiom,
! [X: rat] :
( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ one_one_rat ) )
= ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ one_one_int ) ) ).
% ceiling_diff_one
thf(fact_6879_ceiling__diff__one,axiom,
! [X: real] :
( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ one_one_real ) )
= ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ one_one_int ) ) ).
% ceiling_diff_one
thf(fact_6880_floor__numeral__power,axiom,
! [X: num,N: nat] :
( ( archim6058952711729229775r_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).
% floor_numeral_power
thf(fact_6881_floor__numeral__power,axiom,
! [X: num,N: nat] :
( ( archim3151403230148437115or_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).
% floor_numeral_power
thf(fact_6882_ceiling__numeral__power,axiom,
! [X: num,N: nat] :
( ( archim7802044766580827645g_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).
% ceiling_numeral_power
thf(fact_6883_ceiling__numeral__power,axiom,
! [X: num,N: nat] :
( ( archim2889992004027027881ng_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ).
% ceiling_numeral_power
thf(fact_6884_sin__npi2,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
= zero_zero_real ) ).
% sin_npi2
thf(fact_6885_sin__npi,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% sin_npi
thf(fact_6886_floor__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_divide_eq_div_numeral
thf(fact_6887_nat__ceiling__le__eq,axiom,
! [X: real,A: nat] :
( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A )
= ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A ) ) ) ).
% nat_ceiling_le_eq
thf(fact_6888_ceiling__less__zero,axiom,
! [X: rat] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ zero_zero_int )
= ( ord_less_eq_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) ) ) ).
% ceiling_less_zero
thf(fact_6889_ceiling__less__zero,axiom,
! [X: real] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ zero_zero_int )
= ( ord_less_eq_real @ X @ ( uminus_uminus_real @ one_one_real ) ) ) ).
% ceiling_less_zero
thf(fact_6890_zero__le__ceiling,axiom,
! [X: real] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X ) ) ).
% zero_le_ceiling
thf(fact_6891_zero__le__ceiling,axiom,
! [X: rat] :
( ( ord_less_eq_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X ) ) ).
% zero_le_ceiling
thf(fact_6892_ceiling__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).
% ceiling_divide_eq_div_numeral
thf(fact_6893_numeral__less__floor,axiom,
! [V: num,X: real] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).
% numeral_less_floor
thf(fact_6894_numeral__less__floor,axiom,
! [V: num,X: rat] :
( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X ) ) ).
% numeral_less_floor
thf(fact_6895_floor__le__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_real @ X @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).
% floor_le_numeral
thf(fact_6896_floor__le__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_rat @ X @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).
% floor_le_numeral
thf(fact_6897_one__less__floor,axiom,
! [X: real] :
( ( ord_less_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ).
% one_less_floor
thf(fact_6898_one__less__floor,axiom,
! [X: rat] :
( ( ord_less_int @ one_one_int @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) ) ).
% one_less_floor
thf(fact_6899_floor__le__one,axiom,
! [X: real] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
= ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% floor_le_one
thf(fact_6900_floor__le__one,axiom,
! [X: rat] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int )
= ( ord_less_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% floor_le_one
thf(fact_6901_ceiling__less__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).
% ceiling_less_numeral
thf(fact_6902_ceiling__less__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( numeral_numeral_int @ V ) )
= ( ord_less_eq_real @ X @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).
% ceiling_less_numeral
thf(fact_6903_numeral__le__ceiling,axiom,
! [V: num,X: real] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).
% numeral_le_ceiling
thf(fact_6904_numeral__le__ceiling,axiom,
! [V: num,X: rat] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X ) ) ).
% numeral_le_ceiling
thf(fact_6905_neg__numeral__le__floor,axiom,
! [V: num,X: real] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X ) ) ).
% neg_numeral_le_floor
thf(fact_6906_neg__numeral__le__floor,axiom,
! [V: num,X: rat] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X ) ) ).
% neg_numeral_le_floor
thf(fact_6907_floor__less__neg__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).
% floor_less_neg_numeral
thf(fact_6908_floor__less__neg__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_int @ ( archim3151403230148437115or_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).
% floor_less_neg_numeral
thf(fact_6909_ceiling__le__neg__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).
% ceiling_le_neg_numeral
thf(fact_6910_ceiling__le__neg__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).
% ceiling_le_neg_numeral
thf(fact_6911_neg__numeral__less__ceiling,axiom,
! [V: num,X: real] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X ) ) ).
% neg_numeral_less_ceiling
thf(fact_6912_neg__numeral__less__ceiling,axiom,
! [V: num,X: rat] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X ) ) ).
% neg_numeral_less_ceiling
thf(fact_6913_cos__pi__half,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_pi_half
thf(fact_6914_sin__two__pi,axiom,
( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= zero_zero_real ) ).
% sin_two_pi
thf(fact_6915_sin__pi__half,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_pi_half
thf(fact_6916_cos__two__pi,axiom,
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= one_one_real ) ).
% cos_two_pi
thf(fact_6917_cos__periodic,axiom,
! [X: real] :
( ( cos_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( cos_real @ X ) ) ).
% cos_periodic
thf(fact_6918_sin__periodic,axiom,
! [X: real] :
( ( sin_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( sin_real @ X ) ) ).
% sin_periodic
thf(fact_6919_cos__2pi__minus,axiom,
! [X: real] :
( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
= ( cos_real @ X ) ) ).
% cos_2pi_minus
thf(fact_6920_cos__npi2,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% cos_npi2
thf(fact_6921_cos__npi,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).
% cos_npi
thf(fact_6922_floor__one__divide__eq__div__numeral,axiom,
! [B: num] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
= ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).
% floor_one_divide_eq_div_numeral
thf(fact_6923_floor__minus__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
= ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_minus_divide_eq_div_numeral
thf(fact_6924_ceiling__minus__divide__eq__div__numeral,axiom,
! [A: num,B: num] :
( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).
% ceiling_minus_divide_eq_div_numeral
thf(fact_6925_sin__cos__squared__add2,axiom,
! [X: real] :
( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_cos_squared_add2
thf(fact_6926_sin__cos__squared__add2,axiom,
! [X: complex] :
( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_cos_squared_add2
thf(fact_6927_sin__cos__squared__add,axiom,
! [X: real] :
( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_cos_squared_add
thf(fact_6928_sin__cos__squared__add,axiom,
! [X: complex] :
( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_cos_squared_add
thf(fact_6929_sin__2npi,axiom,
! [N: nat] :
( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
= zero_zero_real ) ).
% sin_2npi
thf(fact_6930_cos__2npi,axiom,
! [N: nat] :
( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
= one_one_real ) ).
% cos_2npi
thf(fact_6931_sin__2pi__minus,axiom,
! [X: real] :
( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
= ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).
% sin_2pi_minus
thf(fact_6932_neg__numeral__less__floor,axiom,
! [V: num,X: real] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X ) ) ).
% neg_numeral_less_floor
thf(fact_6933_neg__numeral__less__floor,axiom,
! [V: num,X: rat] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X ) ) ).
% neg_numeral_less_floor
thf(fact_6934_floor__le__neg__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_real @ X @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).
% floor_le_neg_numeral
thf(fact_6935_floor__le__neg__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_rat @ X @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).
% floor_le_neg_numeral
thf(fact_6936_ceiling__less__neg__numeral,axiom,
! [X: rat,V: num] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).
% ceiling_less_neg_numeral
thf(fact_6937_ceiling__less__neg__numeral,axiom,
! [X: real,V: num] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( ord_less_eq_real @ X @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).
% ceiling_less_neg_numeral
thf(fact_6938_neg__numeral__le__ceiling,axiom,
! [V: num,X: real] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X ) ) ).
% neg_numeral_le_ceiling
thf(fact_6939_neg__numeral__le__ceiling,axiom,
! [V: num,X: rat] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X ) ) ).
% neg_numeral_le_ceiling
thf(fact_6940_cos__3over2__pi,axiom,
( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
= zero_zero_real ) ).
% cos_3over2_pi
thf(fact_6941_floor__minus__one__divide__eq__div__numeral,axiom,
! [B: num] :
( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
= ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).
% floor_minus_one_divide_eq_div_numeral
thf(fact_6942_sin__3over2__pi,axiom,
( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% sin_3over2_pi
thf(fact_6943_sin__add,axiom,
! [X: real,Y4: real] :
( ( sin_real @ ( plus_plus_real @ X @ Y4 ) )
= ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y4 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y4 ) ) ) ) ).
% sin_add
thf(fact_6944_floor__le__ceiling,axiom,
! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).
% floor_le_ceiling
thf(fact_6945_floor__le__ceiling,axiom,
! [X: rat] : ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim2889992004027027881ng_rat @ X ) ) ).
% floor_le_ceiling
thf(fact_6946_polar__Ex,axiom,
! [X: real,Y4: real] :
? [R3: real,A4: real] :
( ( X
= ( times_times_real @ R3 @ ( cos_real @ A4 ) ) )
& ( Y4
= ( times_times_real @ R3 @ ( sin_real @ A4 ) ) ) ) ).
% polar_Ex
thf(fact_6947_sin__diff,axiom,
! [X: real,Y4: real] :
( ( sin_real @ ( minus_minus_real @ X @ Y4 ) )
= ( minus_minus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y4 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y4 ) ) ) ) ).
% sin_diff
thf(fact_6948_cos__one__sin__zero,axiom,
! [X: complex] :
( ( ( cos_complex @ X )
= one_one_complex )
=> ( ( sin_complex @ X )
= zero_zero_complex ) ) ).
% cos_one_sin_zero
thf(fact_6949_cos__one__sin__zero,axiom,
! [X: real] :
( ( ( cos_real @ X )
= one_one_real )
=> ( ( sin_real @ X )
= zero_zero_real ) ) ).
% cos_one_sin_zero
thf(fact_6950_cos__add,axiom,
! [X: real,Y4: real] :
( ( cos_real @ ( plus_plus_real @ X @ Y4 ) )
= ( minus_minus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y4 ) ) ) ) ).
% cos_add
thf(fact_6951_cos__diff,axiom,
! [X: real,Y4: real] :
( ( cos_real @ ( minus_minus_real @ X @ Y4 ) )
= ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y4 ) ) ) ) ).
% cos_diff
thf(fact_6952_sin__zero__norm__cos__one,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( cos_real @ X ) )
= one_one_real ) ) ).
% sin_zero_norm_cos_one
thf(fact_6953_sin__zero__norm__cos__one,axiom,
! [X: complex] :
( ( ( sin_complex @ X )
= zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( cos_complex @ X ) )
= one_one_real ) ) ).
% sin_zero_norm_cos_one
thf(fact_6954_ceiling__diff__floor__le__1,axiom,
! [X: real] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ ( archim6058952711729229775r_real @ X ) ) @ one_one_int ) ).
% ceiling_diff_floor_le_1
thf(fact_6955_ceiling__diff__floor__le__1,axiom,
! [X: rat] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim3151403230148437115or_rat @ X ) ) @ one_one_int ) ).
% ceiling_diff_floor_le_1
thf(fact_6956_sin__zero__abs__cos__one,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
=> ( ( abs_abs_real @ ( cos_real @ X ) )
= one_one_real ) ) ).
% sin_zero_abs_cos_one
thf(fact_6957_sin__double,axiom,
! [X: complex] :
( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X ) ) @ ( cos_complex @ X ) ) ) ).
% sin_double
thf(fact_6958_sin__double,axiom,
! [X: real] :
( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X ) ) @ ( cos_real @ X ) ) ) ).
% sin_double
thf(fact_6959_sincos__principal__value,axiom,
! [X: real] :
? [Y: real] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y )
& ( ord_less_eq_real @ Y @ pi )
& ( ( sin_real @ Y )
= ( sin_real @ X ) )
& ( ( cos_real @ Y )
= ( cos_real @ X ) ) ) ).
% sincos_principal_value
thf(fact_6960_floor__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y4 ) ) ) ).
% floor_mono
thf(fact_6961_floor__mono,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y4 ) ) ) ).
% floor_mono
thf(fact_6962_ceiling__mono,axiom,
! [Y4: rat,X: rat] :
( ( ord_less_eq_rat @ Y4 @ X )
=> ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ Y4 ) @ ( archim2889992004027027881ng_rat @ X ) ) ) ).
% ceiling_mono
thf(fact_6963_ceiling__mono,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ Y4 @ X )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ Y4 ) @ ( archim7802044766580827645g_real @ X ) ) ) ).
% ceiling_mono
thf(fact_6964_sin__x__le__x,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( sin_real @ X ) @ X ) ) ).
% sin_x_le_x
thf(fact_6965_sin__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( sin_real @ X ) @ one_one_real ) ).
% sin_le_one
thf(fact_6966_cos__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( cos_real @ X ) @ one_one_real ) ).
% cos_le_one
thf(fact_6967_abs__sin__x__le__abs__x,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ ( abs_abs_real @ X ) ) ).
% abs_sin_x_le_abs_x
thf(fact_6968_cos__arctan__not__zero,axiom,
! [X: real] :
( ( cos_real @ ( arctan @ X ) )
!= zero_zero_real ) ).
% cos_arctan_not_zero
thf(fact_6969_sin__cos__le1,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y4 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) ) ) ) @ one_one_real ) ).
% sin_cos_le1
thf(fact_6970_sin__squared__eq,axiom,
! [X: complex] :
( ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sin_squared_eq
thf(fact_6971_sin__squared__eq,axiom,
! [X: real] :
( ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sin_squared_eq
thf(fact_6972_cos__squared__eq,axiom,
! [X: complex] :
( ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_squared_eq
thf(fact_6973_cos__squared__eq,axiom,
! [X: real] :
( ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_squared_eq
thf(fact_6974_le__floor__add,axiom,
! [X: real,Y4: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y4 ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y4 ) ) ) ).
% le_floor_add
thf(fact_6975_le__floor__add,axiom,
! [X: rat,Y4: rat] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim3151403230148437115or_rat @ Y4 ) ) @ ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ Y4 ) ) ) ).
% le_floor_add
thf(fact_6976_of__nat__ceiling,axiom,
! [R2: rat] : ( ord_less_eq_rat @ R2 @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim2889992004027027881ng_rat @ R2 ) ) ) ) ).
% of_nat_ceiling
thf(fact_6977_of__nat__ceiling,axiom,
! [R2: real] : ( ord_less_eq_real @ R2 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ R2 ) ) ) ) ).
% of_nat_ceiling
thf(fact_6978_sin__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ pi )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).
% sin_gt_zero
thf(fact_6979_sin__x__ge__neg__x,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ ( sin_real @ X ) ) ) ).
% sin_x_ge_neg_x
thf(fact_6980_sin__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).
% sin_ge_zero
thf(fact_6981_real__nat__ceiling__ge,axiom,
! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).
% real_nat_ceiling_ge
thf(fact_6982_ceiling__add__le,axiom,
! [X: rat,Y4: rat] : ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X @ Y4 ) ) @ ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X ) @ ( archim2889992004027027881ng_rat @ Y4 ) ) ) ).
% ceiling_add_le
thf(fact_6983_ceiling__add__le,axiom,
! [X: real,Y4: real] : ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( plus_plus_real @ X @ Y4 ) ) @ ( plus_plus_int @ ( archim7802044766580827645g_real @ X ) @ ( archim7802044766580827645g_real @ Y4 ) ) ) ).
% ceiling_add_le
thf(fact_6984_sin__ge__minus__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X ) ) ).
% sin_ge_minus_one
thf(fact_6985_cos__monotone__0__pi__le,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) ) ) ) ) ).
% cos_monotone_0_pi_le
thf(fact_6986_cos__mono__le__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ pi )
=> ( ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) )
= ( ord_less_eq_real @ Y4 @ X ) ) ) ) ) ) ).
% cos_mono_le_eq
thf(fact_6987_cos__inj__pi,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ pi )
=> ( ( ( cos_real @ X )
= ( cos_real @ Y4 ) )
=> ( X = Y4 ) ) ) ) ) ) ).
% cos_inj_pi
thf(fact_6988_cos__ge__minus__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X ) ) ).
% cos_ge_minus_one
thf(fact_6989_abs__sin__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ one_one_real ) ).
% abs_sin_le_one
thf(fact_6990_abs__cos__le__one,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X ) ) @ one_one_real ) ).
% abs_cos_le_one
thf(fact_6991_sin__times__sin,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% sin_times_sin
thf(fact_6992_sin__times__sin,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_times_sin
thf(fact_6993_sin__times__cos,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% sin_times_cos
thf(fact_6994_sin__times__cos,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_times_cos
thf(fact_6995_cos__times__sin,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% cos_times_sin
thf(fact_6996_cos__times__sin,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z ) )
= ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_times_sin
thf(fact_6997_sin__plus__sin,axiom,
! [W: complex,Z: complex] :
( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_6998_sin__plus__sin,axiom,
! [W: real,Z: real] :
( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_plus_sin
thf(fact_6999_sin__diff__sin,axiom,
! [W: complex,Z: complex] :
( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_7000_sin__diff__sin,axiom,
! [W: real,Z: real] :
( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_diff_sin
thf(fact_7001_cos__diff__cos,axiom,
! [W: complex,Z: complex] :
( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_7002_cos__diff__cos,axiom,
! [W: real,Z: real] :
( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_diff_cos
thf(fact_7003_cos__double,axiom,
! [X: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_double
thf(fact_7004_cos__double,axiom,
! [X: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( minus_minus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cos_double
thf(fact_7005_cos__double__sin,axiom,
! [W: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_7006_cos__double__sin,axiom,
! [W: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_double_sin
thf(fact_7007_of__nat__floor,axiom,
! [R2: real] :
( ( ord_less_eq_real @ zero_zero_real @ R2 )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim6058952711729229775r_real @ R2 ) ) ) @ R2 ) ) ).
% of_nat_floor
thf(fact_7008_of__nat__floor,axiom,
! [R2: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
=> ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim3151403230148437115or_rat @ R2 ) ) ) @ R2 ) ) ).
% of_nat_floor
thf(fact_7009_le__mult__nat__floor,axiom,
! [A: real,B: real] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ B ) ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ).
% le_mult_nat_floor
thf(fact_7010_le__mult__nat__floor,axiom,
! [A: rat,B: rat] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim3151403230148437115or_rat @ A ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ).
% le_mult_nat_floor
thf(fact_7011_floor__divide__of__nat__eq,axiom,
! [M: nat,N: nat] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).
% floor_divide_of_nat_eq
thf(fact_7012_floor__divide__of__nat__eq,axiom,
! [M: nat,N: nat] :
( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) )
= ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).
% floor_divide_of_nat_eq
thf(fact_7013_nat__floor__neg,axiom,
! [X: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
= zero_zero_nat ) ) ).
% nat_floor_neg
thf(fact_7014_cos__two__neq__zero,axiom,
( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
!= zero_zero_real ) ).
% cos_two_neq_zero
thf(fact_7015_floor__eq3,axiom,
! [N: nat,X: real] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
= N ) ) ) ).
% floor_eq3
thf(fact_7016_le__nat__floor,axiom,
! [X: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ A )
=> ( ord_less_eq_nat @ X @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).
% le_nat_floor
thf(fact_7017_cos__monotone__0__pi,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ Y4 @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) ) ) ) ) ).
% cos_monotone_0_pi
thf(fact_7018_cos__mono__less__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ pi )
=> ( ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) )
= ( ord_less_real @ Y4 @ X ) ) ) ) ) ) ).
% cos_mono_less_eq
thf(fact_7019_sin__eq__0__pi,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X )
=> ( ( ord_less_real @ X @ pi )
=> ( ( ( sin_real @ X )
= zero_zero_real )
=> ( X = zero_zero_real ) ) ) ) ).
% sin_eq_0_pi
thf(fact_7020_sin__zero__pi__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ pi )
=> ( ( ( sin_real @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ) ).
% sin_zero_pi_iff
thf(fact_7021_cos__monotone__minus__pi__0_H,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ X )
=> ( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ord_less_eq_real @ ( cos_real @ Y4 ) @ ( cos_real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0'
thf(fact_7022_sincos__total__pi,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T3: real] :
( ( ord_less_eq_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ pi )
& ( X
= ( cos_real @ T3 ) )
& ( Y4
= ( sin_real @ T3 ) ) ) ) ) ).
% sincos_total_pi
thf(fact_7023_sin__cos__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) )
=> ( ( sin_real @ X )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_cos_sqrt
thf(fact_7024_sin__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% sin_expansion_lemma
thf(fact_7025_le__mult__floor,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ).
% le_mult_floor
thf(fact_7026_le__mult__floor,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ).
% le_mult_floor
thf(fact_7027_cos__expansion__lemma,axiom,
! [X: real,M: nat] :
( ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% cos_expansion_lemma
thf(fact_7028_sin__gt__zero__02,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).
% sin_gt_zero_02
thf(fact_7029_mult__ceiling__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ B )
=> ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ).
% mult_ceiling_le
thf(fact_7030_mult__ceiling__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ).
% mult_ceiling_le
thf(fact_7031_floor__eq4,axiom,
! [N: nat,X: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
=> ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
= N ) ) ) ).
% floor_eq4
thf(fact_7032_cos__two__less__zero,axiom,
ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).
% cos_two_less_zero
thf(fact_7033_cos__two__le__zero,axiom,
ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).
% cos_two_le_zero
thf(fact_7034_cos__is__zero,axiom,
? [X4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X4 )
& ( ord_less_eq_real @ X4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X4 )
= zero_zero_real )
& ! [Y3: real] :
( ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
& ( ord_less_eq_real @ Y3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ Y3 )
= zero_zero_real ) )
=> ( Y3 = X4 ) ) ) ).
% cos_is_zero
thf(fact_7035_cos__monotone__minus__pi__0,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ X )
=> ( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( cos_real @ Y4 ) @ ( cos_real @ X ) ) ) ) ) ).
% cos_monotone_minus_pi_0
thf(fact_7036_cos__total,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ? [X4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X4 )
& ( ord_less_eq_real @ X4 @ pi )
& ( ( cos_real @ X4 )
= Y4 )
& ! [Y3: real] :
( ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
& ( ord_less_eq_real @ Y3 @ pi )
& ( ( cos_real @ Y3 )
= Y4 ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% cos_total
thf(fact_7037_sincos__total__pi__half,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T3: real] :
( ( ord_less_eq_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( X
= ( cos_real @ T3 ) )
& ( Y4
= ( sin_real @ T3 ) ) ) ) ) ) ).
% sincos_total_pi_half
thf(fact_7038_sincos__total__2pi__le,axiom,
! [X: real,Y4: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ? [T3: real] :
( ( ord_less_eq_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
& ( X
= ( cos_real @ T3 ) )
& ( Y4
= ( sin_real @ T3 ) ) ) ) ).
% sincos_total_2pi_le
thf(fact_7039_sincos__total__2pi,axiom,
! [X: real,Y4: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real )
=> ~ ! [T3: real] :
( ( ord_less_eq_real @ zero_zero_real @ T3 )
=> ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ( X
= ( cos_real @ T3 ) )
=> ( Y4
!= ( sin_real @ T3 ) ) ) ) ) ) ).
% sincos_total_2pi
thf(fact_7040_sin__pi__divide__n__ge__0,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% sin_pi_divide_n_ge_0
thf(fact_7041_sin__45,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_45
thf(fact_7042_cos__45,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_45
thf(fact_7043_cos__times__cos,axiom,
! [W: complex,Z: complex] :
( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% cos_times_cos
thf(fact_7044_cos__times__cos,axiom,
! [W: real,Z: real] :
( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_times_cos
thf(fact_7045_cos__plus__cos,axiom,
! [W: complex,Z: complex] :
( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_7046_cos__plus__cos,axiom,
! [W: real,Z: real] :
( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% cos_plus_cos
thf(fact_7047_sin__gt__zero2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).
% sin_gt_zero2
thf(fact_7048_sin__lt__zero,axiom,
! [X: real] :
( ( ord_less_real @ pi @ X )
=> ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).
% sin_lt_zero
thf(fact_7049_cos__double__less__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ).
% cos_double_less_one
thf(fact_7050_sin__30,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_30
thf(fact_7051_cos__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).
% cos_gt_zero
thf(fact_7052_sin__monotone__2pi__le,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( sin_real @ Y4 ) @ ( sin_real @ X ) ) ) ) ) ).
% sin_monotone_2pi_le
thf(fact_7053_sin__mono__le__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( sin_real @ X ) @ ( sin_real @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ) ) ) ).
% sin_mono_le_eq
thf(fact_7054_sin__inj__pi,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ( sin_real @ X )
= ( sin_real @ Y4 ) )
=> ( X = Y4 ) ) ) ) ) ) ).
% sin_inj_pi
thf(fact_7055_cos__60,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_60
thf(fact_7056_sin__60,axiom,
( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% sin_60
thf(fact_7057_cos__30,axiom,
( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% cos_30
thf(fact_7058_cos__double__cos,axiom,
! [W: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).
% cos_double_cos
thf(fact_7059_cos__double__cos,axiom,
! [W: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).
% cos_double_cos
thf(fact_7060_cos__treble__cos,axiom,
! [X: complex] :
( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X ) )
= ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X ) ) ) ) ).
% cos_treble_cos
thf(fact_7061_cos__treble__cos,axiom,
! [X: real] :
( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X ) ) ) ) ).
% cos_treble_cos
thf(fact_7062_sin__le__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ pi @ X )
=> ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( ord_less_eq_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).
% sin_le_zero
thf(fact_7063_sin__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).
% sin_less_zero
thf(fact_7064_sin__monotone__2pi,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( sin_real @ Y4 ) @ ( sin_real @ X ) ) ) ) ) ).
% sin_monotone_2pi
thf(fact_7065_sin__mono__less__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( sin_real @ X ) @ ( sin_real @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ) ) ) ) ).
% sin_mono_less_eq
thf(fact_7066_sin__total,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ? [X4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
& ( ord_less_eq_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ X4 )
= Y4 )
& ! [Y3: real] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
& ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ Y3 )
= Y4 ) )
=> ( Y3 = X4 ) ) ) ) ) ).
% sin_total
thf(fact_7067_cos__gt__zero__pi,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).
% cos_gt_zero_pi
thf(fact_7068_cos__ge__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).
% cos_ge_zero
thf(fact_7069_cos__one__2pi,axiom,
! [X: real] :
( ( ( cos_real @ X )
= one_one_real )
= ( ? [X3: nat] :
( X
= ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
| ? [X3: nat] :
( X
= ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).
% cos_one_2pi
thf(fact_7070_sin__pi__divide__n__gt__0,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% sin_pi_divide_n_gt_0
thf(fact_7071_sin__arctan,axiom,
! [X: real] :
( ( sin_real @ ( arctan @ X ) )
= ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_arctan
thf(fact_7072_cos__arctan,axiom,
! [X: real] :
( ( cos_real @ ( arctan @ X ) )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% cos_arctan
thf(fact_7073_floor__log2__div2,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
= ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).
% floor_log2_div2
thf(fact_7074_floor__log__nat__eq__if,axiom,
! [B: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
=> ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
= ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).
% floor_log_nat_eq_if
thf(fact_7075_sin__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ( sin_real @ X )
= zero_zero_real )
=> ? [N2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_zero_lemma
thf(fact_7076_sin__zero__iff,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
= ( ? [N4: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
| ? [N4: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 )
& ( X
= ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% sin_zero_iff
thf(fact_7077_cos__zero__lemma,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ( cos_real @ X )
= zero_zero_real )
=> ? [N2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_zero_lemma
thf(fact_7078_cos__zero__iff,axiom,
! [X: real] :
( ( ( cos_real @ X )
= zero_zero_real )
= ( ? [N4: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 )
& ( X
= ( times_times_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
| ? [N4: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 )
& ( X
= ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% cos_zero_iff
thf(fact_7079_tan__double,axiom,
! [X: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_7080_tan__double,axiom,
! [X: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
!= zero_zero_real )
=> ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% tan_double
thf(fact_7081_sin__tan,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( sin_real @ X )
= ( divide_divide_real @ ( tan_real @ X ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_tan
thf(fact_7082_cos__tan,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( cos_real @ X )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_tan
thf(fact_7083_complex__unimodular__polar,axiom,
! [Z: complex] :
( ( ( real_V1022390504157884413omplex @ Z )
= one_one_real )
=> ~ ! [T3: real] :
( ( ord_less_eq_real @ zero_zero_real @ T3 )
=> ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
=> ( Z
!= ( complex2 @ ( cos_real @ T3 ) @ ( sin_real @ T3 ) ) ) ) ) ) ).
% complex_unimodular_polar
thf(fact_7084_ceiling__log__eq__powr__iff,axiom,
! [X: real,B: real,K: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim7802044766580827645g_real @ ( log @ B @ X ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
= ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X )
& ( ord_less_eq_real @ X @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).
% ceiling_log_eq_powr_iff
thf(fact_7085_cos__arcsin,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( cos_real @ ( arcsin @ X ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_arcsin
thf(fact_7086_powr__eq__0__iff,axiom,
! [W: real,Z: real] :
( ( ( powr_real @ W @ Z )
= zero_zero_real )
= ( W = zero_zero_real ) ) ).
% powr_eq_0_iff
thf(fact_7087_powr__0,axiom,
! [Z: real] :
( ( powr_real @ zero_zero_real @ Z )
= zero_zero_real ) ).
% powr_0
thf(fact_7088_tan__zero,axiom,
( ( tan_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% tan_zero
thf(fact_7089_tan__zero,axiom,
( ( tan_real @ zero_zero_real )
= zero_zero_real ) ).
% tan_zero
thf(fact_7090_arcsin__0,axiom,
( ( arcsin @ zero_zero_real )
= zero_zero_real ) ).
% arcsin_0
thf(fact_7091_powr__zero__eq__one,axiom,
! [X: real] :
( ( ( X = zero_zero_real )
=> ( ( powr_real @ X @ zero_zero_real )
= zero_zero_real ) )
& ( ( X != zero_zero_real )
=> ( ( powr_real @ X @ zero_zero_real )
= one_one_real ) ) ) ).
% powr_zero_eq_one
thf(fact_7092_powr__gt__zero,axiom,
! [X: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( powr_real @ X @ A ) )
= ( X != zero_zero_real ) ) ).
% powr_gt_zero
thf(fact_7093_powr__nonneg__iff,axiom,
! [A: real,X: real] :
( ( ord_less_eq_real @ ( powr_real @ A @ X ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% powr_nonneg_iff
thf(fact_7094_tan__pi,axiom,
( ( tan_real @ pi )
= zero_zero_real ) ).
% tan_pi
thf(fact_7095_powr__eq__one__iff,axiom,
! [A: real,X: real] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( powr_real @ A @ X )
= one_one_real )
= ( X = zero_zero_real ) ) ) ).
% powr_eq_one_iff
thf(fact_7096_powr__one__gt__zero__iff,axiom,
! [X: real] :
( ( ( powr_real @ X @ one_one_real )
= X )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% powr_one_gt_zero_iff
thf(fact_7097_powr__one,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ one_one_real )
= X ) ) ).
% powr_one
thf(fact_7098_powr__le__cancel__iff,axiom,
! [X: real,A: real,B: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% powr_le_cancel_iff
thf(fact_7099_numeral__powr__numeral__real,axiom,
! [M: num,N: num] :
( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_powr_numeral_real
thf(fact_7100_powr__log__cancel,axiom,
! [A: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ A @ ( log @ A @ X ) )
= X ) ) ) ) ).
% powr_log_cancel
thf(fact_7101_log__powr__cancel,axiom,
! [A: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( log @ A @ ( powr_real @ A @ Y4 ) )
= Y4 ) ) ) ).
% log_powr_cancel
thf(fact_7102_tan__npi,axiom,
! [N: nat] :
( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% tan_npi
thf(fact_7103_tan__periodic__n,axiom,
! [X: real,N: num] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ N ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic_n
thf(fact_7104_tan__periodic__nat,axiom,
! [X: real,N: nat] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic_nat
thf(fact_7105_sin__arcsin,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ( sin_real @ ( arcsin @ Y4 ) )
= Y4 ) ) ) ).
% sin_arcsin
thf(fact_7106_powr__numeral,axiom,
! [X: real,N: num] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( numeral_numeral_real @ N ) )
= ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ).
% powr_numeral
thf(fact_7107_arcsin__1,axiom,
( ( arcsin @ one_one_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arcsin_1
thf(fact_7108_tan__periodic,axiom,
! [X: real] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic
thf(fact_7109_arcsin__minus__1,axiom,
( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% arcsin_minus_1
thf(fact_7110_square__powr__half,axiom,
! [X: real] :
( ( powr_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( abs_abs_real @ X ) ) ).
% square_powr_half
thf(fact_7111_powr__powr,axiom,
! [X: real,A: real,B: real] :
( ( powr_real @ ( powr_real @ X @ A ) @ B )
= ( powr_real @ X @ ( times_times_real @ A @ B ) ) ) ).
% powr_powr
thf(fact_7112_Complex__eq__0,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_real )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_0
thf(fact_7113_zero__complex_Ocode,axiom,
( zero_zero_complex
= ( complex2 @ zero_zero_real @ zero_zero_real ) ) ).
% zero_complex.code
thf(fact_7114_complex__diff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( minus_minus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
= ( complex2 @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ).
% complex_diff
thf(fact_7115_powr__less__mono2__neg,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ ( powr_real @ Y4 @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).
% powr_less_mono2_neg
thf(fact_7116_powr__non__neg,axiom,
! [A: real,X: real] :
~ ( ord_less_real @ ( powr_real @ A @ X ) @ zero_zero_real ) ).
% powr_non_neg
thf(fact_7117_powr__ge__pzero,axiom,
! [X: real,Y4: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X @ Y4 ) ) ).
% powr_ge_pzero
thf(fact_7118_powr__mono2,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y4 @ A ) ) ) ) ) ).
% powr_mono2
thf(fact_7119_powr__mono,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).
% powr_mono
thf(fact_7120_Complex__eq__1,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= one_one_complex )
= ( ( A = one_one_real )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_1
thf(fact_7121_one__complex_Ocode,axiom,
( one_one_complex
= ( complex2 @ one_one_real @ zero_zero_real ) ) ).
% one_complex.code
thf(fact_7122_Complex__eq__numeral,axiom,
! [A: real,B: real,W: num] :
( ( ( complex2 @ A @ B )
= ( numera6690914467698888265omplex @ W ) )
= ( ( A
= ( numeral_numeral_real @ W ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_numeral
thf(fact_7123_powr__less__mono2,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y4 @ A ) ) ) ) ) ).
% powr_less_mono2
thf(fact_7124_powr__mono2_H,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ ( powr_real @ Y4 @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).
% powr_mono2'
thf(fact_7125_gr__one__powr,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y4 )
=> ( ord_less_real @ one_one_real @ ( powr_real @ X @ Y4 ) ) ) ) ).
% gr_one_powr
thf(fact_7126_powr__inj,axiom,
! [A: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ( powr_real @ A @ X )
= ( powr_real @ A @ Y4 ) )
= ( X = Y4 ) ) ) ) ).
% powr_inj
thf(fact_7127_ge__one__powr__ge__zero,axiom,
! [X: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ) ).
% ge_one_powr_ge_zero
thf(fact_7128_powr__mono__both,axiom,
! [A: real,B: real,X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y4 @ B ) ) ) ) ) ) ).
% powr_mono_both
thf(fact_7129_powr__le1,axiom,
! [A: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( powr_real @ X @ A ) @ one_one_real ) ) ) ) ).
% powr_le1
thf(fact_7130_powr__divide,axiom,
! [X: real,Y4: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( powr_real @ ( divide_divide_real @ X @ Y4 ) @ A )
= ( divide_divide_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y4 @ A ) ) ) ) ) ).
% powr_divide
thf(fact_7131_powr__mult,axiom,
! [X: real,Y4: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( powr_real @ ( times_times_real @ X @ Y4 ) @ A )
= ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y4 @ A ) ) ) ) ) ).
% powr_mult
thf(fact_7132_divide__powr__uminus,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
= ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).
% divide_powr_uminus
thf(fact_7133_ln__powr,axiom,
! [X: real,Y4: real] :
( ( X != zero_zero_real )
=> ( ( ln_ln_real @ ( powr_real @ X @ Y4 ) )
= ( times_times_real @ Y4 @ ( ln_ln_real @ X ) ) ) ) ).
% ln_powr
thf(fact_7134_log__base__powr,axiom,
! [A: real,B: real,X: real] :
( ( A != zero_zero_real )
=> ( ( log @ ( powr_real @ A @ B ) @ X )
= ( divide_divide_real @ ( log @ A @ X ) @ B ) ) ) ).
% log_base_powr
thf(fact_7135_log__powr,axiom,
! [X: real,B: real,Y4: real] :
( ( X != zero_zero_real )
=> ( ( log @ B @ ( powr_real @ X @ Y4 ) )
= ( times_times_real @ Y4 @ ( log @ B @ X ) ) ) ) ).
% log_powr
thf(fact_7136_Complex__eq__neg__1,axiom,
! [A: real,B: real] :
( ( ( complex2 @ A @ B )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( ( A
= ( uminus_uminus_real @ one_one_real ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_neg_1
thf(fact_7137_Complex__eq__neg__numeral,axiom,
! [A: real,B: real,W: num] :
( ( ( complex2 @ A @ B )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( ( A
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
& ( B = zero_zero_real ) ) ) ).
% Complex_eq_neg_numeral
thf(fact_7138_powr__add,axiom,
! [X: real,A: real,B: real] :
( ( powr_real @ X @ ( plus_plus_real @ A @ B ) )
= ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ).
% powr_add
thf(fact_7139_powr__diff,axiom,
! [W: real,Z1: real,Z22: real] :
( ( powr_real @ W @ ( minus_minus_real @ Z1 @ Z22 ) )
= ( divide_divide_real @ ( powr_real @ W @ Z1 ) @ ( powr_real @ W @ Z22 ) ) ) ).
% powr_diff
thf(fact_7140_complex__mult,axiom,
! [A: real,B: real,C: real,D: real] :
( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
= ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).
% complex_mult
thf(fact_7141_arcsin__le__arcsin,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y4 ) ) ) ) ) ).
% arcsin_le_arcsin
thf(fact_7142_arcsin__minus,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( arcsin @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( arcsin @ X ) ) ) ) ) ).
% arcsin_minus
thf(fact_7143_arcsin__le__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ) ).
% arcsin_le_mono
thf(fact_7144_arcsin__eq__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( ( arcsin @ X )
= ( arcsin @ Y4 ) )
= ( X = Y4 ) ) ) ) ).
% arcsin_eq_iff
thf(fact_7145_tan__def,axiom,
( tan_complex
= ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ X3 ) @ ( cos_complex @ X3 ) ) ) ) ).
% tan_def
thf(fact_7146_tan__def,axiom,
( tan_real
= ( ^ [X3: real] : ( divide_divide_real @ ( sin_real @ X3 ) @ ( cos_real @ X3 ) ) ) ) ).
% tan_def
thf(fact_7147_powr__realpow,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( semiri5074537144036343181t_real @ N ) )
= ( power_power_real @ X @ N ) ) ) ).
% powr_realpow
thf(fact_7148_powr__less__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( powr_real @ B @ Y4 ) @ X )
= ( ord_less_real @ Y4 @ ( log @ B @ X ) ) ) ) ) ).
% powr_less_iff
thf(fact_7149_less__powr__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( powr_real @ B @ Y4 ) )
= ( ord_less_real @ ( log @ B @ X ) @ Y4 ) ) ) ) ).
% less_powr_iff
thf(fact_7150_log__less__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ ( log @ B @ X ) @ Y4 )
= ( ord_less_real @ X @ ( powr_real @ B @ Y4 ) ) ) ) ) ).
% log_less_iff
thf(fact_7151_less__log__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y4 @ ( log @ B @ X ) )
= ( ord_less_real @ ( powr_real @ B @ Y4 ) @ X ) ) ) ) ).
% less_log_iff
thf(fact_7152_powr__minus__divide,axiom,
! [X: real,A: real] :
( ( powr_real @ X @ ( uminus_uminus_real @ A ) )
= ( divide_divide_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ).
% powr_minus_divide
thf(fact_7153_powr__neg__one,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( uminus_uminus_real @ one_one_real ) )
= ( divide_divide_real @ one_one_real @ X ) ) ) ).
% powr_neg_one
thf(fact_7154_arcsin__less__arcsin,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y4 ) ) ) ) ) ).
% arcsin_less_arcsin
thf(fact_7155_powr__mult__base,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( times_times_real @ X @ ( powr_real @ X @ Y4 ) )
= ( powr_real @ X @ ( plus_plus_real @ one_one_real @ Y4 ) ) ) ) ).
% powr_mult_base
thf(fact_7156_arcsin__less__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ) ) ).
% arcsin_less_mono
thf(fact_7157_le__log__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y4 @ ( log @ B @ X ) )
= ( ord_less_eq_real @ ( powr_real @ B @ Y4 ) @ X ) ) ) ) ).
% le_log_iff
thf(fact_7158_log__le__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( log @ B @ X ) @ Y4 )
= ( ord_less_eq_real @ X @ ( powr_real @ B @ Y4 ) ) ) ) ) ).
% log_le_iff
thf(fact_7159_le__powr__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ ( powr_real @ B @ Y4 ) )
= ( ord_less_eq_real @ ( log @ B @ X ) @ Y4 ) ) ) ) ).
% le_powr_iff
thf(fact_7160_powr__le__iff,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ ( powr_real @ B @ Y4 ) @ X )
= ( ord_less_eq_real @ Y4 @ ( log @ B @ X ) ) ) ) ) ).
% powr_le_iff
thf(fact_7161_ln__powr__bound,axiom,
! [X: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( divide_divide_real @ ( powr_real @ X @ A ) @ A ) ) ) ) ).
% ln_powr_bound
thf(fact_7162_ln__powr__bound2,axiom,
! [X: real,A: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X ) ) ) ) ).
% ln_powr_bound2
thf(fact_7163_tan__45,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
= one_one_real ) ).
% tan_45
thf(fact_7164_log__add__eq__powr,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( plus_plus_real @ ( log @ B @ X ) @ Y4 )
= ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ Y4 ) ) ) ) ) ) ) ).
% log_add_eq_powr
thf(fact_7165_add__log__eq__powr,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( plus_plus_real @ Y4 @ ( log @ B @ X ) )
= ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y4 ) @ X ) ) ) ) ) ) ).
% add_log_eq_powr
thf(fact_7166_minus__log__eq__powr,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( minus_minus_real @ Y4 @ ( log @ B @ X ) )
= ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y4 ) @ X ) ) ) ) ) ) ).
% minus_log_eq_powr
thf(fact_7167_tan__60,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
= ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).
% tan_60
thf(fact_7168_cos__arcsin__nonzero,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ( cos_real @ ( arcsin @ X ) )
!= zero_zero_real ) ) ) ).
% cos_arcsin_nonzero
thf(fact_7169_powr__def,axiom,
( powr_real
= ( ^ [X3: real,A3: real] : ( if_real @ ( X3 = zero_zero_real ) @ zero_zero_real @ ( exp_real @ ( times_times_real @ A3 @ ( ln_ln_real @ X3 ) ) ) ) ) ) ).
% powr_def
thf(fact_7170_lemma__tan__total,axiom,
! [Y4: real] :
( ( ord_less_real @ zero_zero_real @ Y4 )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ord_less_real @ Y4 @ ( tan_real @ X4 ) ) ) ) ).
% lemma_tan_total
thf(fact_7171_tan__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).
% tan_gt_zero
thf(fact_7172_lemma__tan__total1,axiom,
! [Y4: real] :
? [X4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X4 )
= Y4 ) ) ).
% lemma_tan_total1
thf(fact_7173_tan__mono__lt__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ) ) ) ) ).
% tan_mono_lt_eq
thf(fact_7174_tan__monotone_H,axiom,
! [Y4: real,X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ Y4 @ X )
= ( ord_less_real @ ( tan_real @ Y4 ) @ ( tan_real @ X ) ) ) ) ) ) ) ).
% tan_monotone'
thf(fact_7175_tan__monotone,axiom,
! [Y4: real,X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ ( tan_real @ Y4 ) @ ( tan_real @ X ) ) ) ) ) ).
% tan_monotone
thf(fact_7176_tan__total,axiom,
! [Y4: real] :
? [X4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X4 )
= Y4 )
& ! [Y3: real] :
( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
& ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ Y3 )
= Y4 ) )
=> ( Y3 = X4 ) ) ) ).
% tan_total
thf(fact_7177_tan__minus__45,axiom,
( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% tan_minus_45
thf(fact_7178_tan__inverse,axiom,
! [Y4: real] :
( ( divide_divide_real @ one_one_real @ ( tan_real @ Y4 ) )
= ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y4 ) ) ) ).
% tan_inverse
thf(fact_7179_log__minus__eq__powr,axiom,
! [B: real,X: real,Y4: real] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( B != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( minus_minus_real @ ( log @ B @ X ) @ Y4 )
= ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ ( uminus_uminus_real @ Y4 ) ) ) ) ) ) ) ) ).
% log_minus_eq_powr
thf(fact_7180_complex__norm,axiom,
! [X: real,Y4: real] :
( ( real_V1022390504157884413omplex @ ( complex2 @ X @ Y4 ) )
= ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% complex_norm
thf(fact_7181_add__tan__eq,axiom,
! [X: complex,Y4: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y4 )
!= zero_zero_complex )
=> ( ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y4 ) )
= ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X @ Y4 ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y4 ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_7182_add__tan__eq,axiom,
! [X: real,Y4: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y4 )
!= zero_zero_real )
=> ( ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) )
= ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X @ Y4 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) ) ) ) ) ) ).
% add_tan_eq
thf(fact_7183_powr__half__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( sqrt @ X ) ) ) ).
% powr_half_sqrt
thf(fact_7184_powr__neg__numeral,axiom,
! [X: real,N: num] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( powr_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ) ).
% powr_neg_numeral
thf(fact_7185_tan__total__pos,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ? [X4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X4 )
& ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X4 )
= Y4 ) ) ) ).
% tan_total_pos
thf(fact_7186_tan__pos__pi2__le,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).
% tan_pos_pi2_le
thf(fact_7187_tan__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( tan_real @ X ) @ zero_zero_real ) ) ) ).
% tan_less_zero
thf(fact_7188_tan__mono__le,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) ) ) ) ) ).
% tan_mono_le
thf(fact_7189_tan__mono__le__eq,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ) ) ) ).
% tan_mono_le_eq
thf(fact_7190_tan__bound__pi2,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X ) ) @ one_one_real ) ) ).
% tan_bound_pi2
thf(fact_7191_tan__30,axiom,
( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
= ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).
% tan_30
thf(fact_7192_arctan__unique,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ( tan_real @ X )
= Y4 )
=> ( ( arctan @ Y4 )
= X ) ) ) ) ).
% arctan_unique
thf(fact_7193_arctan__tan,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( arctan @ ( tan_real @ X ) )
= X ) ) ) ).
% arctan_tan
thf(fact_7194_arctan,axiom,
! [Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y4 ) )
& ( ord_less_real @ ( arctan @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ ( arctan @ Y4 ) )
= Y4 ) ) ).
% arctan
thf(fact_7195_lemma__tan__add1,axiom,
! [X: complex,Y4: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y4 )
!= zero_zero_complex )
=> ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y4 ) ) )
= ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X @ Y4 ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y4 ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_7196_lemma__tan__add1,axiom,
! [X: real,Y4: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y4 )
!= zero_zero_real )
=> ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) ) )
= ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X @ Y4 ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y4 ) ) ) ) ) ) ).
% lemma_tan_add1
thf(fact_7197_tan__diff,axiom,
! [X: complex,Y4: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y4 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( minus_minus_complex @ X @ Y4 ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( minus_minus_complex @ X @ Y4 ) )
= ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y4 ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y4 ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_7198_tan__diff,axiom,
! [X: real,Y4: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y4 )
!= zero_zero_real )
=> ( ( ( cos_real @ ( minus_minus_real @ X @ Y4 ) )
!= zero_zero_real )
=> ( ( tan_real @ ( minus_minus_real @ X @ Y4 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) ) ) ) ) ) ) ) ).
% tan_diff
thf(fact_7199_tan__add,axiom,
! [X: complex,Y4: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( ( cos_complex @ Y4 )
!= zero_zero_complex )
=> ( ( ( cos_complex @ ( plus_plus_complex @ X @ Y4 ) )
!= zero_zero_complex )
=> ( ( tan_complex @ ( plus_plus_complex @ X @ Y4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y4 ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y4 ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_7200_tan__add,axiom,
! [X: real,Y4: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( ( cos_real @ Y4 )
!= zero_zero_real )
=> ( ( ( cos_real @ ( plus_plus_real @ X @ Y4 ) )
!= zero_zero_real )
=> ( ( tan_real @ ( plus_plus_real @ X @ Y4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y4 ) ) ) ) ) ) ) ) ).
% tan_add
thf(fact_7201_tan__total__pi4,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ? [Z2: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z2 )
& ( ord_less_real @ Z2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
& ( ( tan_real @ Z2 )
= X ) ) ) ).
% tan_total_pi4
thf(fact_7202_arcsin__lt__bounded,axiom,
! [Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ one_one_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y4 ) )
& ( ord_less_real @ ( arcsin @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arcsin_lt_bounded
thf(fact_7203_arcsin__lbound,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y4 ) ) ) ) ).
% arcsin_lbound
thf(fact_7204_arcsin__ubound,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( arcsin @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arcsin_ubound
thf(fact_7205_arcsin__bounded,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y4 ) )
& ( ord_less_eq_real @ ( arcsin @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arcsin_bounded
thf(fact_7206_arcsin__sin,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
=> ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( arcsin @ ( sin_real @ X ) )
= X ) ) ) ).
% arcsin_sin
thf(fact_7207_tan__half,axiom,
( tan_complex
= ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_complex ) ) ) ) ).
% tan_half
thf(fact_7208_tan__half,axiom,
( tan_real
= ( ^ [X3: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_real ) ) ) ) ).
% tan_half
thf(fact_7209_arcsin,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y4 ) )
& ( ord_less_eq_real @ ( arcsin @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ ( arcsin @ Y4 ) )
= Y4 ) ) ) ) ).
% arcsin
thf(fact_7210_arcsin__pi,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y4 ) )
& ( ord_less_eq_real @ ( arcsin @ Y4 ) @ pi )
& ( ( sin_real @ ( arcsin @ Y4 ) )
= Y4 ) ) ) ) ).
% arcsin_pi
thf(fact_7211_arcsin__le__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ ( arcsin @ X ) @ Y4 )
= ( ord_less_eq_real @ X @ ( sin_real @ Y4 ) ) ) ) ) ) ) ).
% arcsin_le_iff
thf(fact_7212_le__arcsin__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ Y4 @ ( arcsin @ X ) )
= ( ord_less_eq_real @ ( sin_real @ Y4 ) @ X ) ) ) ) ) ) ).
% le_arcsin_iff
thf(fact_7213_arcosh__def,axiom,
( arcosh_real
= ( ^ [X3: real] : ( ln_ln_real @ ( plus_plus_real @ X3 @ ( powr_real @ ( minus_minus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% arcosh_def
thf(fact_7214_sin__arccos__abs,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( sin_real @ ( arccos @ Y4 ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% sin_arccos_abs
thf(fact_7215_sin__arccos,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( sin_real @ ( arccos @ X ) )
= ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_arccos
thf(fact_7216_arsinh__def,axiom,
( arsinh_real
= ( ^ [X3: real] : ( ln_ln_real @ ( plus_plus_real @ X3 @ ( powr_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% arsinh_def
thf(fact_7217_cos__npi__int,axiom,
! [N: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= one_one_real ) )
& ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
=> ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% cos_npi_int
thf(fact_7218_of__int__eq__iff,axiom,
! [W: int,Z: int] :
( ( ( ring_1_of_int_real @ W )
= ( ring_1_of_int_real @ Z ) )
= ( W = Z ) ) ).
% of_int_eq_iff
thf(fact_7219_of__int__eq__iff,axiom,
! [W: int,Z: int] :
( ( ( ring_17405671764205052669omplex @ W )
= ( ring_17405671764205052669omplex @ Z ) )
= ( W = Z ) ) ).
% of_int_eq_iff
thf(fact_7220_of__int__eq__iff,axiom,
! [W: int,Z: int] :
( ( ( ring_1_of_int_rat @ W )
= ( ring_1_of_int_rat @ Z ) )
= ( W = Z ) ) ).
% of_int_eq_iff
thf(fact_7221_of__int__floor__cancel,axiom,
! [X: real] :
( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) )
= X )
= ( ? [N4: int] :
( X
= ( ring_1_of_int_real @ N4 ) ) ) ) ).
% of_int_floor_cancel
thf(fact_7222_of__int__floor__cancel,axiom,
! [X: rat] :
( ( ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) )
= X )
= ( ? [N4: int] :
( X
= ( ring_1_of_int_rat @ N4 ) ) ) ) ).
% of_int_floor_cancel
thf(fact_7223_of__int__ceiling__cancel,axiom,
! [X: rat] :
( ( ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) )
= X )
= ( ? [N4: int] :
( X
= ( ring_1_of_int_rat @ N4 ) ) ) ) ).
% of_int_ceiling_cancel
thf(fact_7224_of__int__ceiling__cancel,axiom,
! [X: real] :
( ( ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) )
= X )
= ( ? [N4: int] :
( X
= ( ring_1_of_int_real @ N4 ) ) ) ) ).
% of_int_ceiling_cancel
thf(fact_7225_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_int @ Z )
= zero_zero_int )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_7226_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_real @ Z )
= zero_zero_real )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_7227_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_17405671764205052669omplex @ Z )
= zero_zero_complex )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_7228_of__int__eq__0__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_rat @ Z )
= zero_zero_rat )
= ( Z = zero_zero_int ) ) ).
% of_int_eq_0_iff
thf(fact_7229_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_int
= ( ring_1_of_int_int @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_7230_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_real
= ( ring_1_of_int_real @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_7231_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_complex
= ( ring_17405671764205052669omplex @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_7232_of__int__0__eq__iff,axiom,
! [Z: int] :
( ( zero_zero_rat
= ( ring_1_of_int_rat @ Z ) )
= ( Z = zero_zero_int ) ) ).
% of_int_0_eq_iff
thf(fact_7233_of__int__0,axiom,
( ( ring_1_of_int_int @ zero_zero_int )
= zero_zero_int ) ).
% of_int_0
thf(fact_7234_of__int__0,axiom,
( ( ring_1_of_int_real @ zero_zero_int )
= zero_zero_real ) ).
% of_int_0
thf(fact_7235_of__int__0,axiom,
( ( ring_17405671764205052669omplex @ zero_zero_int )
= zero_zero_complex ) ).
% of_int_0
thf(fact_7236_of__int__0,axiom,
( ( ring_1_of_int_rat @ zero_zero_int )
= zero_zero_rat ) ).
% of_int_0
thf(fact_7237_of__real__0,axiom,
( ( real_V1803761363581548252l_real @ zero_zero_real )
= zero_zero_real ) ).
% of_real_0
thf(fact_7238_of__real__0,axiom,
( ( real_V4546457046886955230omplex @ zero_zero_real )
= zero_zero_complex ) ).
% of_real_0
thf(fact_7239_of__real__eq__0__iff,axiom,
! [X: real] :
( ( ( real_V1803761363581548252l_real @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% of_real_eq_0_iff
thf(fact_7240_of__real__eq__0__iff,axiom,
! [X: real] :
( ( ( real_V4546457046886955230omplex @ X )
= zero_zero_complex )
= ( X = zero_zero_real ) ) ).
% of_real_eq_0_iff
thf(fact_7241_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_7242_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_7243_of__int__le__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% of_int_le_iff
thf(fact_7244_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_17405671764205052669omplex @ Z )
= ( numera6690914467698888265omplex @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_7245_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_real @ Z )
= ( numeral_numeral_real @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_7246_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_rat @ Z )
= ( numeral_numeral_rat @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_7247_of__int__eq__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ( ring_1_of_int_int @ Z )
= ( numeral_numeral_int @ N ) )
= ( Z
= ( numeral_numeral_int @ N ) ) ) ).
% of_int_eq_numeral_iff
thf(fact_7248_of__int__numeral,axiom,
! [K: num] :
( ( ring_17405671764205052669omplex @ ( numeral_numeral_int @ K ) )
= ( numera6690914467698888265omplex @ K ) ) ).
% of_int_numeral
thf(fact_7249_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_real @ K ) ) ).
% of_int_numeral
thf(fact_7250_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_rat @ K ) ) ).
% of_int_numeral
thf(fact_7251_of__int__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ K ) ) ).
% of_int_numeral
thf(fact_7252_of__int__less__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ W @ Z ) ) ).
% of_int_less_iff
thf(fact_7253_of__int__less__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_int @ W @ Z ) ) ).
% of_int_less_iff
thf(fact_7254_of__int__less__iff,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ W @ Z ) ) ).
% of_int_less_iff
thf(fact_7255_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_int @ Z )
= one_one_int )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_7256_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_real @ Z )
= one_one_real )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_7257_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_17405671764205052669omplex @ Z )
= one_one_complex )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_7258_of__int__eq__1__iff,axiom,
! [Z: int] :
( ( ( ring_1_of_int_rat @ Z )
= one_one_rat )
= ( Z = one_one_int ) ) ).
% of_int_eq_1_iff
thf(fact_7259_of__int__1,axiom,
( ( ring_1_of_int_int @ one_one_int )
= one_one_int ) ).
% of_int_1
thf(fact_7260_of__int__1,axiom,
( ( ring_1_of_int_real @ one_one_int )
= one_one_real ) ).
% of_int_1
thf(fact_7261_of__int__1,axiom,
( ( ring_17405671764205052669omplex @ one_one_int )
= one_one_complex ) ).
% of_int_1
thf(fact_7262_of__int__1,axiom,
( ( ring_1_of_int_rat @ one_one_int )
= one_one_rat ) ).
% of_int_1
thf(fact_7263_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_17405671764205052669omplex @ ( times_times_int @ W @ Z ) )
= ( times_times_complex @ ( ring_17405671764205052669omplex @ W ) @ ( ring_17405671764205052669omplex @ Z ) ) ) ).
% of_int_mult
thf(fact_7264_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_real @ ( times_times_int @ W @ Z ) )
= ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_mult
thf(fact_7265_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_rat @ ( times_times_int @ W @ Z ) )
= ( times_times_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_mult
thf(fact_7266_of__int__mult,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_int @ ( times_times_int @ W @ Z ) )
= ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_mult
thf(fact_7267_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_add
thf(fact_7268_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_add
thf(fact_7269_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_17405671764205052669omplex @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_complex @ ( ring_17405671764205052669omplex @ W ) @ ( ring_17405671764205052669omplex @ Z ) ) ) ).
% of_int_add
thf(fact_7270_of__int__add,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_rat @ ( plus_plus_int @ W @ Z ) )
= ( plus_plus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_add
thf(fact_7271_of__int__minus,axiom,
! [Z: int] :
( ( ring_1_of_int_real @ ( uminus_uminus_int @ Z ) )
= ( uminus_uminus_real @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_minus
thf(fact_7272_of__int__minus,axiom,
! [Z: int] :
( ( ring_1_of_int_int @ ( uminus_uminus_int @ Z ) )
= ( uminus_uminus_int @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_minus
thf(fact_7273_of__int__minus,axiom,
! [Z: int] :
( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ Z ) )
= ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ Z ) ) ) ).
% of_int_minus
thf(fact_7274_of__int__minus,axiom,
! [Z: int] :
( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ Z ) )
= ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ Z ) ) ) ).
% of_int_minus
thf(fact_7275_of__int__minus,axiom,
! [Z: int] :
( ( ring_1_of_int_rat @ ( uminus_uminus_int @ Z ) )
= ( uminus_uminus_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_minus
thf(fact_7276_of__real__mult,axiom,
! [X: real,Y4: real] :
( ( real_V1803761363581548252l_real @ ( times_times_real @ X @ Y4 ) )
= ( times_times_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y4 ) ) ) ).
% of_real_mult
thf(fact_7277_of__real__mult,axiom,
! [X: real,Y4: real] :
( ( real_V4546457046886955230omplex @ ( times_times_real @ X @ Y4 ) )
= ( times_times_complex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y4 ) ) ) ).
% of_real_mult
thf(fact_7278_of__real__numeral,axiom,
! [W: num] :
( ( real_V1803761363581548252l_real @ ( numeral_numeral_real @ W ) )
= ( numeral_numeral_real @ W ) ) ).
% of_real_numeral
thf(fact_7279_of__real__numeral,axiom,
! [W: num] :
( ( real_V4546457046886955230omplex @ ( numeral_numeral_real @ W ) )
= ( numera6690914467698888265omplex @ W ) ) ).
% of_real_numeral
thf(fact_7280_of__real__divide,axiom,
! [X: real,Y4: real] :
( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X @ Y4 ) )
= ( divide_divide_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y4 ) ) ) ).
% of_real_divide
thf(fact_7281_of__real__divide,axiom,
! [X: real,Y4: real] :
( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X @ Y4 ) )
= ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y4 ) ) ) ).
% of_real_divide
thf(fact_7282_of__int__diff,axiom,
! [W: int,Z: int] :
( ( ring_17405671764205052669omplex @ ( minus_minus_int @ W @ Z ) )
= ( minus_minus_complex @ ( ring_17405671764205052669omplex @ W ) @ ( ring_17405671764205052669omplex @ Z ) ) ) ).
% of_int_diff
thf(fact_7283_of__int__diff,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_real @ ( minus_minus_int @ W @ Z ) )
= ( minus_minus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_diff
thf(fact_7284_of__int__diff,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_rat @ ( minus_minus_int @ W @ Z ) )
= ( minus_minus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_diff
thf(fact_7285_of__int__diff,axiom,
! [W: int,Z: int] :
( ( ring_1_of_int_int @ ( minus_minus_int @ W @ Z ) )
= ( minus_minus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_diff
thf(fact_7286_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_17405671764205052669omplex @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri8010041392384452111omplex @ N ) ) ).
% of_int_of_nat_eq
thf(fact_7287_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% of_int_of_nat_eq
thf(fact_7288_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_rat @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri681578069525770553at_rat @ N ) ) ).
% of_int_of_nat_eq
thf(fact_7289_of__int__of__nat__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% of_int_of_nat_eq
thf(fact_7290_of__real__diff,axiom,
! [X: real,Y4: real] :
( ( real_V1803761363581548252l_real @ ( minus_minus_real @ X @ Y4 ) )
= ( minus_minus_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y4 ) ) ) ).
% of_real_diff
thf(fact_7291_of__real__diff,axiom,
! [X: real,Y4: real] :
( ( real_V4546457046886955230omplex @ ( minus_minus_real @ X @ Y4 ) )
= ( minus_minus_complex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y4 ) ) ) ).
% of_real_diff
thf(fact_7292_of__real__of__nat__eq,axiom,
! [N: nat] :
( ( real_V4546457046886955230omplex @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri8010041392384452111omplex @ N ) ) ).
% of_real_of_nat_eq
thf(fact_7293_of__real__of__nat__eq,axiom,
! [N: nat] :
( ( real_V1803761363581548252l_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% of_real_of_nat_eq
thf(fact_7294_of__int__abs,axiom,
! [X: int] :
( ( ring_1_of_int_int @ ( abs_abs_int @ X ) )
= ( abs_abs_int @ ( ring_1_of_int_int @ X ) ) ) ).
% of_int_abs
thf(fact_7295_of__int__abs,axiom,
! [X: int] :
( ( ring_18347121197199848620nteger @ ( abs_abs_int @ X ) )
= ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ X ) ) ) ).
% of_int_abs
thf(fact_7296_of__int__abs,axiom,
! [X: int] :
( ( ring_1_of_int_real @ ( abs_abs_int @ X ) )
= ( abs_abs_real @ ( ring_1_of_int_real @ X ) ) ) ).
% of_int_abs
thf(fact_7297_of__int__abs,axiom,
! [X: int] :
( ( ring_1_of_int_rat @ ( abs_abs_int @ X ) )
= ( abs_abs_rat @ ( ring_1_of_int_rat @ X ) ) ) ).
% of_int_abs
thf(fact_7298_of__int__power__eq__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ( ring_1_of_int_rat @ X )
= ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
= ( X
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_7299_of__int__power__eq__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ( ring_1_of_int_int @ X )
= ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
= ( X
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_7300_of__int__power__eq__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ( ring_1_of_int_real @ X )
= ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
= ( X
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_7301_of__int__power__eq__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ( ring_17405671764205052669omplex @ X )
= ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W ) )
= ( X
= ( power_power_int @ B @ W ) ) ) ).
% of_int_power_eq_of_int_cancel_iff
thf(fact_7302_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W )
= ( ring_1_of_int_rat @ X ) )
= ( ( power_power_int @ B @ W )
= X ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_7303_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W )
= ( ring_1_of_int_int @ X ) )
= ( ( power_power_int @ B @ W )
= X ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_7304_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W )
= ( ring_1_of_int_real @ X ) )
= ( ( power_power_int @ B @ W )
= X ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_7305_of__int__eq__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W )
= ( ring_17405671764205052669omplex @ X ) )
= ( ( power_power_int @ B @ W )
= X ) ) ).
% of_int_eq_of_int_power_cancel_iff
thf(fact_7306_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_1_of_int_rat @ ( power_power_int @ Z @ N ) )
= ( power_power_rat @ ( ring_1_of_int_rat @ Z ) @ N ) ) ).
% of_int_power
thf(fact_7307_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_1_of_int_int @ ( power_power_int @ Z @ N ) )
= ( power_power_int @ ( ring_1_of_int_int @ Z ) @ N ) ) ).
% of_int_power
thf(fact_7308_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_1_of_int_real @ ( power_power_int @ Z @ N ) )
= ( power_power_real @ ( ring_1_of_int_real @ Z ) @ N ) ) ).
% of_int_power
thf(fact_7309_of__int__power,axiom,
! [Z: int,N: nat] :
( ( ring_17405671764205052669omplex @ ( power_power_int @ Z @ N ) )
= ( power_power_complex @ ( ring_17405671764205052669omplex @ Z ) @ N ) ) ).
% of_int_power
thf(fact_7310_arccos__1,axiom,
( ( arccos @ one_one_real )
= zero_zero_real ) ).
% arccos_1
thf(fact_7311_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_1_of_int_real @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n3304061248610475627l_real @ P ) ) ).
% of_int_of_bool
thf(fact_7312_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_17405671764205052669omplex @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n1201886186963655149omplex @ P ) ) ).
% of_int_of_bool
thf(fact_7313_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_1_of_int_rat @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2052037380579107095ol_rat @ P ) ) ).
% of_int_of_bool
thf(fact_7314_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_1_of_int_int @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n2684676970156552555ol_int @ P ) ) ).
% of_int_of_bool
thf(fact_7315_of__int__of__bool,axiom,
! [P: $o] :
( ( ring_18347121197199848620nteger @ ( zero_n2684676970156552555ol_int @ P ) )
= ( zero_n356916108424825756nteger @ P ) ) ).
% of_int_of_bool
thf(fact_7316_sin__of__real__pi,axiom,
( ( sin_real @ ( real_V1803761363581548252l_real @ pi ) )
= zero_zero_real ) ).
% sin_of_real_pi
thf(fact_7317_sin__of__real__pi,axiom,
( ( sin_complex @ ( real_V4546457046886955230omplex @ pi ) )
= zero_zero_complex ) ).
% sin_of_real_pi
thf(fact_7318_floor__diff__of__int,axiom,
! [X: real,Z: int] :
( ( archim6058952711729229775r_real @ ( minus_minus_real @ X @ ( ring_1_of_int_real @ Z ) ) )
= ( minus_minus_int @ ( archim6058952711729229775r_real @ X ) @ Z ) ) ).
% floor_diff_of_int
thf(fact_7319_floor__diff__of__int,axiom,
! [X: rat,Z: int] :
( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ Z ) ) )
= ( minus_minus_int @ ( archim3151403230148437115or_rat @ X ) @ Z ) ) ).
% floor_diff_of_int
thf(fact_7320_ceiling__diff__of__int,axiom,
! [X: rat,Z: int] :
( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ Z ) ) )
= ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X ) @ Z ) ) ).
% ceiling_diff_of_int
thf(fact_7321_ceiling__diff__of__int,axiom,
! [X: real,Z: int] :
( ( archim7802044766580827645g_real @ ( minus_minus_real @ X @ ( ring_1_of_int_real @ Z ) ) )
= ( minus_minus_int @ ( archim7802044766580827645g_real @ X ) @ Z ) ) ).
% ceiling_diff_of_int
thf(fact_7322_of__nat__nat__take__bit__eq,axiom,
! [N: nat,K: int] :
( ( semiri8010041392384452111omplex @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
= ( ring_17405671764205052669omplex @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% of_nat_nat_take_bit_eq
thf(fact_7323_of__nat__nat__take__bit__eq,axiom,
! [N: nat,K: int] :
( ( semiri5074537144036343181t_real @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
= ( ring_1_of_int_real @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% of_nat_nat_take_bit_eq
thf(fact_7324_of__nat__nat__take__bit__eq,axiom,
! [N: nat,K: int] :
( ( semiri681578069525770553at_rat @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
= ( ring_1_of_int_rat @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% of_nat_nat_take_bit_eq
thf(fact_7325_of__nat__nat__take__bit__eq,axiom,
! [N: nat,K: int] :
( ( semiri1314217659103216013at_int @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
= ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% of_nat_nat_take_bit_eq
thf(fact_7326_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_7327_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_7328_of__int__le__0__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
= ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).
% of_int_le_0_iff
thf(fact_7329_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_7330_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_7331_of__int__0__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).
% of_int_0_le_iff
thf(fact_7332_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_7333_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_7334_of__int__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% of_int_less_0_iff
thf(fact_7335_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_7336_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_7337_of__int__0__less__iff,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% of_int_0_less_iff
thf(fact_7338_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_7339_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_7340_of__int__numeral__le__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_le_iff
thf(fact_7341_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_7342_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_7343_of__int__le__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_le_numeral_iff
thf(fact_7344_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_7345_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_7346_of__int__less__numeral__iff,axiom,
! [Z: int,N: num] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).
% of_int_less_numeral_iff
thf(fact_7347_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_7348_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_7349_of__int__numeral__less__iff,axiom,
! [N: num,Z: int] :
( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).
% of_int_numeral_less_iff
thf(fact_7350_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_7351_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_7352_of__int__le__1__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
= ( ord_less_eq_int @ Z @ one_one_int ) ) ).
% of_int_le_1_iff
thf(fact_7353_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_7354_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_7355_of__int__1__le__iff,axiom,
! [Z: int] :
( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_eq_int @ one_one_int @ Z ) ) ).
% of_int_1_le_iff
thf(fact_7356_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_7357_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_7358_of__int__less__1__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
= ( ord_less_int @ Z @ one_one_int ) ) ).
% of_int_less_1_iff
thf(fact_7359_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_7360_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_7361_of__int__1__less__iff,axiom,
! [Z: int] :
( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
= ( ord_less_int @ one_one_int @ Z ) ) ).
% of_int_1_less_iff
thf(fact_7362_of__real__neg__numeral,axiom,
! [W: num] :
( ( real_V1803761363581548252l_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ).
% of_real_neg_numeral
thf(fact_7363_of__real__neg__numeral,axiom,
! [W: num] :
( ( real_V4546457046886955230omplex @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).
% of_real_neg_numeral
thf(fact_7364_of__int__power__le__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
= ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_7365_of__int__power__le__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ X ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
= ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_7366_of__int__power__le__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ X ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
= ( ord_less_eq_int @ X @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_le_of_int_cancel_iff
thf(fact_7367_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_7368_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_7369_of__int__le__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X ) )
= ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X ) ) ).
% of_int_le_of_int_power_cancel_iff
thf(fact_7370_numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
= ( ring_17405671764205052669omplex @ Y4 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_7371_numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
= ( ring_1_of_int_real @ Y4 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_7372_numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N )
= ( ring_1_of_int_rat @ Y4 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_7373_numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= ( ring_1_of_int_int @ Y4 ) )
= ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= Y4 ) ) ).
% numeral_power_eq_of_int_cancel_iff
thf(fact_7374_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_17405671764205052669omplex @ Y4 )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
= ( Y4
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_7375_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_1_of_int_real @ Y4 )
= ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( Y4
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_7376_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_1_of_int_rat @ Y4 )
= ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
= ( Y4
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_7377_of__int__eq__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_1_of_int_int @ Y4 )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
= ( Y4
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_eq_numeral_power_cancel_iff
thf(fact_7378_of__int__power__less__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ X ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
= ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_7379_of__int__power__less__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ X ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
= ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_7380_of__int__power__less__of__int__cancel__iff,axiom,
! [X: int,B: int,W: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ X ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
= ( ord_less_int @ X @ ( power_power_int @ B @ W ) ) ) ).
% of_int_power_less_of_int_cancel_iff
thf(fact_7381_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X ) )
= ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_7382_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X ) )
= ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_7383_of__int__less__of__int__power__cancel__iff,axiom,
! [B: int,W: nat,X: int] :
( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X ) )
= ( ord_less_int @ ( power_power_int @ B @ W ) @ X ) ) ).
% of_int_less_of_int_power_cancel_iff
thf(fact_7384_of__nat__nat,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri8010041392384452111omplex @ ( nat2 @ Z ) )
= ( ring_17405671764205052669omplex @ Z ) ) ) ).
% of_nat_nat
thf(fact_7385_of__nat__nat,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri5074537144036343181t_real @ ( nat2 @ Z ) )
= ( ring_1_of_int_real @ Z ) ) ) ).
% of_nat_nat
thf(fact_7386_of__nat__nat,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri681578069525770553at_rat @ ( nat2 @ Z ) )
= ( ring_1_of_int_rat @ Z ) ) ) ).
% of_nat_nat
thf(fact_7387_of__nat__nat,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
= ( ring_1_of_int_int @ Z ) ) ) ).
% of_nat_nat
thf(fact_7388_sin__npi__int,axiom,
! [N: int] :
( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
= zero_zero_real ) ).
% sin_npi_int
thf(fact_7389_cos__arccos,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ( cos_real @ ( arccos @ Y4 ) )
= Y4 ) ) ) ).
% cos_arccos
thf(fact_7390_tan__periodic__int,axiom,
! [X: real,I: int] :
( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( ring_1_of_int_real @ I ) @ pi ) ) )
= ( tan_real @ X ) ) ).
% tan_periodic_int
thf(fact_7391_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_7392_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_7393_of__int__le__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_le_numeral_power_cancel_iff
thf(fact_7394_numeral__power__le__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_7395_numeral__power__le__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_7396_numeral__power__le__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_le_of_int_cancel_iff
thf(fact_7397_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_7398_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_7399_of__int__less__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) ) ) ).
% of_int_less_numeral_power_cancel_iff
thf(fact_7400_numeral__power__less__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_7401_numeral__power__less__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_7402_numeral__power__less__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) @ A ) ) ).
% numeral_power_less_of_int_cancel_iff
thf(fact_7403_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_1_of_int_real @ Y4 )
= ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
= ( Y4
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7404_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_1_of_int_int @ Y4 )
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
= ( Y4
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7405_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_17405671764205052669omplex @ Y4 )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X ) ) @ N ) )
= ( Y4
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7406_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_18347121197199848620nteger @ Y4 )
= ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
= ( Y4
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7407_of__int__eq__neg__numeral__power__cancel__iff,axiom,
! [Y4: int,X: num,N: nat] :
( ( ( ring_1_of_int_rat @ Y4 )
= ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
= ( Y4
= ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7408_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N )
= ( ring_1_of_int_real @ Y4 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
= Y4 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7409_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
= ( ring_1_of_int_int @ Y4 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
= Y4 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7410_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X ) ) @ N )
= ( ring_17405671764205052669omplex @ Y4 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
= Y4 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7411_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N )
= ( ring_18347121197199848620nteger @ Y4 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
= Y4 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7412_neg__numeral__power__eq__of__int__cancel__iff,axiom,
! [X: num,N: nat,Y4: int] :
( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N )
= ( ring_1_of_int_rat @ Y4 ) )
= ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N )
= Y4 ) ) ).
% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7413_norm__of__real__addn,axiom,
! [X: real,B: num] :
( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X ) @ ( numeral_numeral_real @ B ) ) )
= ( abs_abs_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ B ) ) ) ) ).
% norm_of_real_addn
thf(fact_7414_norm__of__real__addn,axiom,
! [X: real,B: num] :
( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X ) @ ( numera6690914467698888265omplex @ B ) ) )
= ( abs_abs_real @ ( plus_plus_real @ X @ ( numeral_numeral_real @ B ) ) ) ) ).
% norm_of_real_addn
thf(fact_7415_arccos__0,axiom,
( ( arccos @ zero_zero_real )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% arccos_0
thf(fact_7416_cos__of__real__pi__half,axiom,
( ( cos_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ).
% cos_of_real_pi_half
thf(fact_7417_cos__of__real__pi__half,axiom,
( ( cos_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
= zero_zero_complex ) ).
% cos_of_real_pi_half
thf(fact_7418_sin__of__real__pi__half,axiom,
( ( sin_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% sin_of_real_pi_half
thf(fact_7419_sin__of__real__pi__half,axiom,
( ( sin_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% sin_of_real_pi_half
thf(fact_7420_sin__int__2pin,axiom,
! [N: int] :
( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
= zero_zero_real ) ).
% sin_int_2pin
thf(fact_7421_cos__int__2pin,axiom,
! [N: int] :
( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
= one_one_real ) ).
% cos_int_2pin
thf(fact_7422_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7423_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7424_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7425_neg__numeral__power__le__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7426_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7427_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7428_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7429_of__int__le__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
= ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7430_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7431_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7432_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7433_of__int__less__neg__numeral__power__cancel__iff,axiom,
! [A: int,X: num,N: nat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) )
= ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) ) ) ).
% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7434_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7435_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7436_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7437_neg__numeral__power__less__of__int__cancel__iff,axiom,
! [X: num,N: nat,A: int] :
( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
= ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X ) ) @ N ) @ A ) ) ).
% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7438_ex__le__of__int,axiom,
! [X: rat] :
? [Z2: int] : ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z2 ) ) ).
% ex_le_of_int
thf(fact_7439_ex__le__of__int,axiom,
! [X: real] :
? [Z2: int] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z2 ) ) ).
% ex_le_of_int
thf(fact_7440_mult__of__int__commute,axiom,
! [X: int,Y4: complex] :
( ( times_times_complex @ ( ring_17405671764205052669omplex @ X ) @ Y4 )
= ( times_times_complex @ Y4 @ ( ring_17405671764205052669omplex @ X ) ) ) ).
% mult_of_int_commute
thf(fact_7441_mult__of__int__commute,axiom,
! [X: int,Y4: real] :
( ( times_times_real @ ( ring_1_of_int_real @ X ) @ Y4 )
= ( times_times_real @ Y4 @ ( ring_1_of_int_real @ X ) ) ) ).
% mult_of_int_commute
thf(fact_7442_mult__of__int__commute,axiom,
! [X: int,Y4: rat] :
( ( times_times_rat @ ( ring_1_of_int_rat @ X ) @ Y4 )
= ( times_times_rat @ Y4 @ ( ring_1_of_int_rat @ X ) ) ) ).
% mult_of_int_commute
thf(fact_7443_mult__of__int__commute,axiom,
! [X: int,Y4: int] :
( ( times_times_int @ ( ring_1_of_int_int @ X ) @ Y4 )
= ( times_times_int @ Y4 @ ( ring_1_of_int_int @ X ) ) ) ).
% mult_of_int_commute
thf(fact_7444_cos__int__times__real,axiom,
! [M: int,X: real] :
( ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X ) ) )
= ( real_V1803761363581548252l_real @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).
% cos_int_times_real
thf(fact_7445_cos__int__times__real,axiom,
! [M: int,X: real] :
( ( cos_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X ) ) )
= ( real_V4546457046886955230omplex @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).
% cos_int_times_real
thf(fact_7446_sin__int__times__real,axiom,
! [M: int,X: real] :
( ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X ) ) )
= ( real_V1803761363581548252l_real @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).
% sin_int_times_real
thf(fact_7447_sin__int__times__real,axiom,
! [M: int,X: real] :
( ( sin_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X ) ) )
= ( real_V4546457046886955230omplex @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X ) ) ) ) ).
% sin_int_times_real
thf(fact_7448_of__int__floor__le,axiom,
! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X ) ).
% of_int_floor_le
thf(fact_7449_of__int__floor__le,axiom,
! [X: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) @ X ) ).
% of_int_floor_le
thf(fact_7450_le__of__int__ceiling,axiom,
! [X: rat] : ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) ) ).
% le_of_int_ceiling
thf(fact_7451_le__of__int__ceiling,axiom,
! [X: real] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ).
% le_of_int_ceiling
thf(fact_7452_complex__of__real__def,axiom,
( real_V4546457046886955230omplex
= ( ^ [R5: real] : ( complex2 @ R5 @ zero_zero_real ) ) ) ).
% complex_of_real_def
thf(fact_7453_complex__of__real__code,axiom,
( real_V4546457046886955230omplex
= ( ^ [X3: real] : ( complex2 @ X3 @ zero_zero_real ) ) ) ).
% complex_of_real_code
thf(fact_7454_complex__eq__cancel__iff2,axiom,
! [X: real,Y4: real,Xa: real] :
( ( ( complex2 @ X @ Y4 )
= ( real_V4546457046886955230omplex @ Xa ) )
= ( ( X = Xa )
& ( Y4 = zero_zero_real ) ) ) ).
% complex_eq_cancel_iff2
thf(fact_7455_complex__of__real__mult__Complex,axiom,
! [R2: real,X: real,Y4: real] :
( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X @ Y4 ) )
= ( complex2 @ ( times_times_real @ R2 @ X ) @ ( times_times_real @ R2 @ Y4 ) ) ) ).
% complex_of_real_mult_Complex
thf(fact_7456_Complex__mult__complex__of__real,axiom,
! [X: real,Y4: real,R2: real] :
( ( times_times_complex @ ( complex2 @ X @ Y4 ) @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ ( times_times_real @ X @ R2 ) @ ( times_times_real @ Y4 @ R2 ) ) ) ).
% Complex_mult_complex_of_real
thf(fact_7457_take__bit__of__int,axiom,
! [N: nat,K: int] :
( ( bit_se2923211474154528505it_int @ N @ ( ring_1_of_int_int @ K ) )
= ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_of_int
thf(fact_7458_of__int__and__eq,axiom,
! [K: int,L: int] :
( ( ring_1_of_int_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
= ( bit_se725231765392027082nd_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).
% of_int_and_eq
thf(fact_7459_of__int__mask__eq,axiom,
! [N: nat] :
( ( ring_1_of_int_int @ ( bit_se2000444600071755411sk_int @ N ) )
= ( bit_se2000444600071755411sk_int @ N ) ) ).
% of_int_mask_eq
thf(fact_7460_nonzero__of__real__divide,axiom,
! [Y4: real,X: real] :
( ( Y4 != zero_zero_real )
=> ( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X @ Y4 ) )
= ( divide_divide_real @ ( real_V1803761363581548252l_real @ X ) @ ( real_V1803761363581548252l_real @ Y4 ) ) ) ) ).
% nonzero_of_real_divide
thf(fact_7461_nonzero__of__real__divide,axiom,
! [Y4: real,X: real] :
( ( Y4 != zero_zero_real )
=> ( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X @ Y4 ) )
= ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X ) @ ( real_V4546457046886955230omplex @ Y4 ) ) ) ) ).
% nonzero_of_real_divide
thf(fact_7462_le__floor__iff,axiom,
! [Z: int,X: real] :
( ( ord_less_eq_int @ Z @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X ) ) ).
% le_floor_iff
thf(fact_7463_le__floor__iff,axiom,
! [Z: int,X: rat] :
( ( ord_less_eq_int @ Z @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ X ) ) ).
% le_floor_iff
thf(fact_7464_ceiling__le__iff,axiom,
! [X: rat,Z: int] :
( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ Z )
= ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z ) ) ) ).
% ceiling_le_iff
thf(fact_7465_ceiling__le__iff,axiom,
! [X: real,Z: int] :
( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ Z )
= ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z ) ) ) ).
% ceiling_le_iff
thf(fact_7466_ceiling__le,axiom,
! [X: rat,A: int] :
( ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ A ) )
=> ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X ) @ A ) ) ).
% ceiling_le
thf(fact_7467_ceiling__le,axiom,
! [X: real,A: int] :
( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A ) )
=> ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X ) @ A ) ) ).
% ceiling_le
thf(fact_7468_real__of__int__div4,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) ) ).
% real_of_int_div4
thf(fact_7469_floor__divide__of__int__eq,axiom,
! [K: int,L: int] :
( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( ring_1_of_int_real @ K ) @ ( ring_1_of_int_real @ L ) ) )
= ( divide_divide_int @ K @ L ) ) ).
% floor_divide_of_int_eq
thf(fact_7470_floor__divide__of__int__eq,axiom,
! [K: int,L: int] :
( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ K ) @ ( ring_1_of_int_rat @ L ) ) )
= ( divide_divide_int @ K @ L ) ) ).
% floor_divide_of_int_eq
thf(fact_7471_floor__power,axiom,
! [X: real,N: nat] :
( ( X
= ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) )
=> ( ( archim6058952711729229775r_real @ ( power_power_real @ X @ N ) )
= ( power_power_int @ ( archim6058952711729229775r_real @ X ) @ N ) ) ) ).
% floor_power
thf(fact_7472_floor__power,axiom,
! [X: rat,N: nat] :
( ( X
= ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) )
=> ( ( archim3151403230148437115or_rat @ ( power_power_rat @ X @ N ) )
= ( power_power_int @ ( archim3151403230148437115or_rat @ X ) @ N ) ) ) ).
% floor_power
thf(fact_7473_real__of__int__div,axiom,
! [D: int,N: int] :
( ( dvd_dvd_int @ D @ N )
=> ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D ) )
= ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D ) ) ) ) ).
% real_of_int_div
thf(fact_7474_arccos__le__arccos,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y4 ) @ ( arccos @ X ) ) ) ) ) ).
% arccos_le_arccos
thf(fact_7475_arccos__eq__iff,axiom,
! [X: real,Y4: real] :
( ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
& ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real ) )
=> ( ( ( arccos @ X )
= ( arccos @ Y4 ) )
= ( X = Y4 ) ) ) ).
% arccos_eq_iff
thf(fact_7476_arccos__le__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( arccos @ X ) @ ( arccos @ Y4 ) )
= ( ord_less_eq_real @ Y4 @ X ) ) ) ) ).
% arccos_le_mono
thf(fact_7477_of__int__nonneg,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_nonneg
thf(fact_7478_of__int__nonneg,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_nonneg
thf(fact_7479_of__int__nonneg,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_nonneg
thf(fact_7480_of__int__leD,axiom,
! [N: int,X: code_integer] :
( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X ) ) ) ).
% of_int_leD
thf(fact_7481_of__int__leD,axiom,
! [N: int,X: rat] :
( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_less_eq_rat @ one_one_rat @ X ) ) ) ).
% of_int_leD
thf(fact_7482_of__int__leD,axiom,
! [N: int,X: int] :
( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_less_eq_int @ one_one_int @ X ) ) ) ).
% of_int_leD
thf(fact_7483_of__int__leD,axiom,
! [N: int,X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_less_eq_real @ one_one_real @ X ) ) ) ).
% of_int_leD
thf(fact_7484_of__int__pos,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).
% of_int_pos
thf(fact_7485_of__int__pos,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).
% of_int_pos
thf(fact_7486_of__int__pos,axiom,
! [Z: int] :
( ( ord_less_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).
% of_int_pos
thf(fact_7487_of__int__lessD,axiom,
! [N: int,X: code_integer] :
( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X ) ) ) ).
% of_int_lessD
thf(fact_7488_of__int__lessD,axiom,
! [N: int,X: real] :
( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_less_real @ one_one_real @ X ) ) ) ).
% of_int_lessD
thf(fact_7489_of__int__lessD,axiom,
! [N: int,X: rat] :
( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_less_rat @ one_one_rat @ X ) ) ) ).
% of_int_lessD
thf(fact_7490_of__int__lessD,axiom,
! [N: int,X: int] :
( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X )
=> ( ( N = zero_zero_int )
| ( ord_less_int @ one_one_int @ X ) ) ) ).
% of_int_lessD
thf(fact_7491_floor__exists1,axiom,
! [X: rat] :
? [X4: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X4 ) @ X )
& ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ X4 @ one_one_int ) ) )
& ! [Y3: int] :
( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y3 ) @ X )
& ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y3 @ one_one_int ) ) ) )
=> ( Y3 = X4 ) ) ) ).
% floor_exists1
thf(fact_7492_floor__exists1,axiom,
! [X: real] :
? [X4: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ X4 ) @ X )
& ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ X4 @ one_one_int ) ) )
& ! [Y3: int] :
( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y3 ) @ X )
& ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Y3 @ one_one_int ) ) ) )
=> ( Y3 = X4 ) ) ) ).
% floor_exists1
thf(fact_7493_floor__exists,axiom,
! [X: rat] :
? [Z2: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ X )
& ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ).
% floor_exists
thf(fact_7494_floor__exists,axiom,
! [X: real] :
? [Z2: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X )
& ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ).
% floor_exists
thf(fact_7495_of__int__ceiling__le__add__one,axiom,
! [R2: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R2 ) ) @ ( plus_plus_rat @ R2 @ one_one_rat ) ) ).
% of_int_ceiling_le_add_one
thf(fact_7496_of__int__ceiling__le__add__one,axiom,
! [R2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R2 ) ) @ ( plus_plus_real @ R2 @ one_one_real ) ) ).
% of_int_ceiling_le_add_one
thf(fact_7497_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_7498_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_7499_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_7500_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_7501_of__int__neg__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) ) ).
% of_int_neg_numeral
thf(fact_7502_of__int__ceiling__diff__one__le,axiom,
! [R2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R2 ) ) @ one_one_rat ) @ R2 ) ).
% of_int_ceiling_diff_one_le
thf(fact_7503_of__int__ceiling__diff__one__le,axiom,
! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R2 ) ) @ one_one_real ) @ R2 ) ).
% of_int_ceiling_diff_one_le
thf(fact_7504_of__nat__less__of__int__iff,axiom,
! [N: nat,X: int] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( ring_1_of_int_real @ X ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).
% of_nat_less_of_int_iff
thf(fact_7505_of__nat__less__of__int__iff,axiom,
! [N: nat,X: int] :
( ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( ring_1_of_int_rat @ X ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).
% of_nat_less_of_int_iff
thf(fact_7506_of__nat__less__of__int__iff,axiom,
! [N: nat,X: int] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( ring_1_of_int_int @ X ) )
= ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X ) ) ).
% of_nat_less_of_int_iff
thf(fact_7507_int__le__real__less,axiom,
( ord_less_eq_int
= ( ^ [N4: int,M5: int] : ( ord_less_real @ ( ring_1_of_int_real @ N4 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M5 ) @ one_one_real ) ) ) ) ).
% int_le_real_less
thf(fact_7508_int__less__real__le,axiom,
( ord_less_int
= ( ^ [N4: int,M5: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N4 ) @ one_one_real ) @ ( ring_1_of_int_real @ M5 ) ) ) ) ).
% int_less_real_le
thf(fact_7509_ceiling__divide__eq__div,axiom,
! [A: int,B: int] :
( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% ceiling_divide_eq_div
thf(fact_7510_ceiling__divide__eq__div,axiom,
! [A: int,B: int] :
( ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) )
= ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).
% ceiling_divide_eq_div
thf(fact_7511_sin__zero__iff__int2,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
= ( ? [I2: int] :
( X
= ( times_times_real @ ( ring_1_of_int_real @ I2 ) @ pi ) ) ) ) ).
% sin_zero_iff_int2
thf(fact_7512_arccos__cos__eq__abs__2pi,axiom,
! [Theta: real] :
~ ! [K2: int] :
( ( arccos @ ( cos_real @ Theta ) )
!= ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).
% arccos_cos_eq_abs_2pi
thf(fact_7513_real__of__int__div__aux,axiom,
! [X: int,D: int] :
( ( divide_divide_real @ ( ring_1_of_int_real @ X ) @ ( ring_1_of_int_real @ D ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X @ D ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X @ D ) ) @ ( ring_1_of_int_real @ D ) ) ) ) ).
% real_of_int_div_aux
thf(fact_7514_floor__eq,axiom,
! [N: int,X: real] :
( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X )
= N ) ) ) ).
% floor_eq
thf(fact_7515_real__of__int__floor__add__one__gt,axiom,
! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_gt
thf(fact_7516_real__of__int__floor__add__one__ge,axiom,
! [R2: real] : ( ord_less_eq_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).
% real_of_int_floor_add_one_ge
thf(fact_7517_real__of__int__floor__gt__diff__one,axiom,
! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).
% real_of_int_floor_gt_diff_one
thf(fact_7518_real__of__int__floor__ge__diff__one,axiom,
! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).
% real_of_int_floor_ge_diff_one
thf(fact_7519_arccos__lbound,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y4 ) ) ) ) ).
% arccos_lbound
thf(fact_7520_arccos__less__arccos,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_real @ ( arccos @ Y4 ) @ ( arccos @ X ) ) ) ) ) ).
% arccos_less_arccos
thf(fact_7521_arccos__less__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( ord_less_real @ ( arccos @ X ) @ ( arccos @ Y4 ) )
= ( ord_less_real @ Y4 @ X ) ) ) ) ).
% arccos_less_mono
thf(fact_7522_arccos__ubound,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y4 ) @ pi ) ) ) ).
% arccos_ubound
thf(fact_7523_arccos__cos,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( arccos @ ( cos_real @ X ) )
= X ) ) ) ).
% arccos_cos
thf(fact_7524_floor__split,axiom,
! [P: int > $o,T: real] :
( ( P @ ( archim6058952711729229775r_real @ T ) )
= ( ! [I2: int] :
( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ I2 ) @ T )
& ( ord_less_real @ T @ ( plus_plus_real @ ( ring_1_of_int_real @ I2 ) @ one_one_real ) ) )
=> ( P @ I2 ) ) ) ) ).
% floor_split
thf(fact_7525_floor__split,axiom,
! [P: int > $o,T: rat] :
( ( P @ ( archim3151403230148437115or_rat @ T ) )
= ( ! [I2: int] :
( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ I2 ) @ T )
& ( ord_less_rat @ T @ ( plus_plus_rat @ ( ring_1_of_int_rat @ I2 ) @ one_one_rat ) ) )
=> ( P @ I2 ) ) ) ) ).
% floor_split
thf(fact_7526_floor__eq__iff,axiom,
! [X: real,A: int] :
( ( ( archim6058952711729229775r_real @ X )
= A )
= ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ X )
& ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) ) ) ) ).
% floor_eq_iff
thf(fact_7527_floor__eq__iff,axiom,
! [X: rat,A: int] :
( ( ( archim3151403230148437115or_rat @ X )
= A )
= ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ X )
& ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) ) ) ) ).
% floor_eq_iff
thf(fact_7528_floor__unique,axiom,
! [Z: int,X: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X )
=> ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X )
= Z ) ) ) ).
% floor_unique
thf(fact_7529_floor__unique,axiom,
! [Z: int,X: rat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ X )
=> ( ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) )
=> ( ( archim3151403230148437115or_rat @ X )
= Z ) ) ) ).
% floor_unique
thf(fact_7530_cos__arccos__abs,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Y4 ) @ one_one_real )
=> ( ( cos_real @ ( arccos @ Y4 ) )
= Y4 ) ) ).
% cos_arccos_abs
thf(fact_7531_norm__of__real__diff,axiom,
! [B: real,A: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( real_V1803761363581548252l_real @ B ) @ ( real_V1803761363581548252l_real @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% norm_of_real_diff
thf(fact_7532_norm__of__real__diff,axiom,
! [B: real,A: real] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( real_V4546457046886955230omplex @ B ) @ ( real_V4546457046886955230omplex @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).
% norm_of_real_diff
thf(fact_7533_ceiling__split,axiom,
! [P: int > $o,T: rat] :
( ( P @ ( archim2889992004027027881ng_rat @ T ) )
= ( ! [I2: int] :
( ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ I2 ) @ one_one_rat ) @ T )
& ( ord_less_eq_rat @ T @ ( ring_1_of_int_rat @ I2 ) ) )
=> ( P @ I2 ) ) ) ) ).
% ceiling_split
thf(fact_7534_ceiling__split,axiom,
! [P: int > $o,T: real] :
( ( P @ ( archim7802044766580827645g_real @ T ) )
= ( ! [I2: int] :
( ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ I2 ) @ one_one_real ) @ T )
& ( ord_less_eq_real @ T @ ( ring_1_of_int_real @ I2 ) ) )
=> ( P @ I2 ) ) ) ) ).
% ceiling_split
thf(fact_7535_ceiling__eq__iff,axiom,
! [X: rat,A: int] :
( ( ( archim2889992004027027881ng_rat @ X )
= A )
= ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) @ X )
& ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ A ) ) ) ) ).
% ceiling_eq_iff
thf(fact_7536_ceiling__eq__iff,axiom,
! [X: real,A: int] :
( ( ( archim7802044766580827645g_real @ X )
= A )
= ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) @ X )
& ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ A ) ) ) ) ).
% ceiling_eq_iff
thf(fact_7537_ceiling__unique,axiom,
! [Z: int,X: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X )
=> ( ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ Z ) )
=> ( ( archim2889992004027027881ng_rat @ X )
= Z ) ) ) ).
% ceiling_unique
thf(fact_7538_ceiling__unique,axiom,
! [Z: int,X: real] :
( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z ) )
=> ( ( archim7802044766580827645g_real @ X )
= Z ) ) ) ).
% ceiling_unique
thf(fact_7539_ceiling__correct,axiom,
! [X: rat] :
( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) @ one_one_rat ) @ X )
& ( ord_less_eq_rat @ X @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X ) ) ) ) ).
% ceiling_correct
thf(fact_7540_ceiling__correct,axiom,
! [X: real] :
( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) @ one_one_real ) @ X )
& ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X ) ) ) ) ).
% ceiling_correct
thf(fact_7541_arccos__cos__eq__abs,axiom,
! [Theta: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
=> ( ( arccos @ ( cos_real @ Theta ) )
= ( abs_abs_real @ Theta ) ) ) ).
% arccos_cos_eq_abs
thf(fact_7542_less__floor__iff,axiom,
! [Z: int,X: real] :
( ( ord_less_int @ Z @ ( archim6058952711729229775r_real @ X ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X ) ) ).
% less_floor_iff
thf(fact_7543_less__floor__iff,axiom,
! [Z: int,X: rat] :
( ( ord_less_int @ Z @ ( archim3151403230148437115or_rat @ X ) )
= ( ord_less_eq_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X ) ) ).
% less_floor_iff
thf(fact_7544_floor__le__iff,axiom,
! [X: real,Z: int] :
( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ Z )
= ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) ) ) ).
% floor_le_iff
thf(fact_7545_floor__le__iff,axiom,
! [X: rat,Z: int] :
( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ Z )
= ( ord_less_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) ) ) ).
% floor_le_iff
thf(fact_7546_ceiling__less__iff,axiom,
! [X: rat,Z: int] :
( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X ) @ Z )
= ( ord_less_eq_rat @ X @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) ) ) ).
% ceiling_less_iff
thf(fact_7547_ceiling__less__iff,axiom,
! [X: real,Z: int] :
( ( ord_less_int @ ( archim7802044766580827645g_real @ X ) @ Z )
= ( ord_less_eq_real @ X @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) ) ) ).
% ceiling_less_iff
thf(fact_7548_le__ceiling__iff,axiom,
! [Z: int,X: rat] :
( ( ord_less_eq_int @ Z @ ( archim2889992004027027881ng_rat @ X ) )
= ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X ) ) ).
% le_ceiling_iff
thf(fact_7549_le__ceiling__iff,axiom,
! [Z: int,X: real] :
( ( ord_less_eq_int @ Z @ ( archim7802044766580827645g_real @ X ) )
= ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X ) ) ).
% le_ceiling_iff
thf(fact_7550_floor__correct,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X )
& ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ) ) ).
% floor_correct
thf(fact_7551_floor__correct,axiom,
! [X: rat] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) @ X )
& ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ) ) ).
% floor_correct
thf(fact_7552_real__of__int__div2,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) ) ).
% real_of_int_div2
thf(fact_7553_real__of__int__div3,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) ) @ one_one_real ) ).
% real_of_int_div3
thf(fact_7554_floor__eq2,axiom,
! [N: int,X: real] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X )
=> ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim6058952711729229775r_real @ X )
= N ) ) ) ).
% floor_eq2
thf(fact_7555_floor__divide__real__eq__div,axiom,
! [B: int,A: real] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
= ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).
% floor_divide_real_eq_div
thf(fact_7556_floor__divide__lower,axiom,
! [Q2: real,P5: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_eq_real @ ( times_times_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P5 @ Q2 ) ) ) @ Q2 ) @ P5 ) ) ).
% floor_divide_lower
thf(fact_7557_floor__divide__lower,axiom,
! [Q2: rat,P5: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_eq_rat @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P5 @ Q2 ) ) ) @ Q2 ) @ P5 ) ) ).
% floor_divide_lower
thf(fact_7558_ceiling__divide__upper,axiom,
! [Q2: rat,P5: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_eq_rat @ P5 @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P5 @ Q2 ) ) ) @ Q2 ) ) ) ).
% ceiling_divide_upper
thf(fact_7559_ceiling__divide__upper,axiom,
! [Q2: real,P5: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_eq_real @ P5 @ ( times_times_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P5 @ Q2 ) ) ) @ Q2 ) ) ) ).
% ceiling_divide_upper
thf(fact_7560_arccos__lt__bounded,axiom,
! [Y4: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_real @ Y4 @ one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y4 ) )
& ( ord_less_real @ ( arccos @ Y4 ) @ pi ) ) ) ) ).
% arccos_lt_bounded
thf(fact_7561_even__of__int__iff,axiom,
! [K: int] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ K ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).
% even_of_int_iff
thf(fact_7562_even__of__int__iff,axiom,
! [K: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ K ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).
% even_of_int_iff
thf(fact_7563_arccos__bounded,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y4 ) )
& ( ord_less_eq_real @ ( arccos @ Y4 ) @ pi ) ) ) ) ).
% arccos_bounded
thf(fact_7564_sin__arccos__nonzero,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ( sin_real @ ( arccos @ X ) )
!= zero_zero_real ) ) ) ).
% sin_arccos_nonzero
thf(fact_7565_arccos__cos2,axiom,
! [X: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X )
=> ( ( arccos @ ( cos_real @ X ) )
= ( uminus_uminus_real @ X ) ) ) ) ).
% arccos_cos2
thf(fact_7566_arccos__minus,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ( arccos @ ( uminus_uminus_real @ X ) )
= ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ) ).
% arccos_minus
thf(fact_7567_of__int__of__nat,axiom,
( ring_18347121197199848620nteger
= ( ^ [K3: int] : ( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri4939895301339042750nteger @ ( nat2 @ K3 ) ) ) ) ) ).
% of_int_of_nat
thf(fact_7568_of__int__of__nat,axiom,
( ring_17405671764205052669omplex
= ( ^ [K3: int] : ( if_complex @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri8010041392384452111omplex @ ( nat2 @ K3 ) ) ) ) ) ).
% of_int_of_nat
thf(fact_7569_of__int__of__nat,axiom,
( ring_1_of_int_real
= ( ^ [K3: int] : ( if_real @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri5074537144036343181t_real @ ( nat2 @ K3 ) ) ) ) ) ).
% of_int_of_nat
thf(fact_7570_of__int__of__nat,axiom,
( ring_1_of_int_rat
= ( ^ [K3: int] : ( if_rat @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri681578069525770553at_rat @ ( nat2 @ K3 ) ) ) ) ) ).
% of_int_of_nat
thf(fact_7571_of__int__of__nat,axiom,
( ring_1_of_int_int
= ( ^ [K3: int] : ( if_int @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri1314217659103216013at_int @ ( nat2 @ K3 ) ) ) ) ) ).
% of_int_of_nat
thf(fact_7572_floor__divide__upper,axiom,
! [Q2: real,P5: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_real @ P5 @ ( times_times_real @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P5 @ Q2 ) ) ) @ one_one_real ) @ Q2 ) ) ) ).
% floor_divide_upper
thf(fact_7573_floor__divide__upper,axiom,
! [Q2: rat,P5: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_rat @ P5 @ ( times_times_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P5 @ Q2 ) ) ) @ one_one_rat ) @ Q2 ) ) ) ).
% floor_divide_upper
thf(fact_7574_ceiling__divide__lower,axiom,
! [Q2: real,P5: real] :
( ( ord_less_real @ zero_zero_real @ Q2 )
=> ( ord_less_real @ ( times_times_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P5 @ Q2 ) ) ) @ one_one_real ) @ Q2 ) @ P5 ) ) ).
% ceiling_divide_lower
thf(fact_7575_ceiling__divide__lower,axiom,
! [Q2: rat,P5: rat] :
( ( ord_less_rat @ zero_zero_rat @ Q2 )
=> ( ord_less_rat @ ( times_times_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P5 @ Q2 ) ) ) @ one_one_rat ) @ Q2 ) @ P5 ) ) ).
% ceiling_divide_lower
thf(fact_7576_ceiling__eq,axiom,
! [N: int,X: rat] :
( ( ord_less_rat @ ( ring_1_of_int_rat @ N ) @ X )
=> ( ( ord_less_eq_rat @ X @ ( plus_plus_rat @ ( ring_1_of_int_rat @ N ) @ one_one_rat ) )
=> ( ( archim2889992004027027881ng_rat @ X )
= ( plus_plus_int @ N @ one_one_int ) ) ) ) ).
% ceiling_eq
thf(fact_7577_ceiling__eq,axiom,
! [N: int,X: real] :
( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
=> ( ( ord_less_eq_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
=> ( ( archim7802044766580827645g_real @ X )
= ( plus_plus_int @ N @ one_one_int ) ) ) ) ).
% ceiling_eq
thf(fact_7578_cos__one__2pi__int,axiom,
! [X: real] :
( ( ( cos_real @ X )
= one_one_real )
= ( ? [X3: int] :
( X
= ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).
% cos_one_2pi_int
thf(fact_7579_arccos,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y4 ) )
& ( ord_less_eq_real @ ( arccos @ Y4 ) @ pi )
& ( ( cos_real @ ( arccos @ Y4 ) )
= Y4 ) ) ) ) ).
% arccos
thf(fact_7580_arccos__minus__abs,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( arccos @ ( uminus_uminus_real @ X ) )
= ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ).
% arccos_minus_abs
thf(fact_7581_sin__cos__eq,axiom,
( sin_real
= ( ^ [X3: real] : ( cos_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).
% sin_cos_eq
thf(fact_7582_sin__cos__eq,axiom,
( sin_complex
= ( ^ [X3: complex] : ( cos_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).
% sin_cos_eq
thf(fact_7583_cos__sin__eq,axiom,
( cos_real
= ( ^ [X3: real] : ( sin_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).
% cos_sin_eq
thf(fact_7584_cos__sin__eq,axiom,
( cos_complex
= ( ^ [X3: complex] : ( sin_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ).
% cos_sin_eq
thf(fact_7585_minus__sin__cos__eq,axiom,
! [X: real] :
( ( uminus_uminus_real @ ( sin_real @ X ) )
= ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% minus_sin_cos_eq
thf(fact_7586_minus__sin__cos__eq,axiom,
! [X: complex] :
( ( uminus1482373934393186551omplex @ ( sin_complex @ X ) )
= ( cos_complex @ ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).
% minus_sin_cos_eq
thf(fact_7587_arccos__le__pi2,axiom,
! [Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ Y4 @ one_one_real )
=> ( ord_less_eq_real @ ( arccos @ Y4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% arccos_le_pi2
thf(fact_7588_floor__log__eq__powr__iff,axiom,
! [X: real,B: real,K: int] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ B )
=> ( ( ( archim6058952711729229775r_real @ ( log @ B @ X ) )
= K )
= ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X )
& ( ord_less_real @ X @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).
% floor_log_eq_powr_iff
thf(fact_7589_cos__zero__iff__int,axiom,
! [X: real] :
( ( ( cos_real @ X )
= zero_zero_real )
= ( ? [I2: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I2 )
& ( X
= ( times_times_real @ ( ring_1_of_int_real @ I2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% cos_zero_iff_int
thf(fact_7590_sin__zero__iff__int,axiom,
! [X: real] :
( ( ( sin_real @ X )
= zero_zero_real )
= ( ? [I2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I2 )
& ( X
= ( times_times_real @ ( ring_1_of_int_real @ I2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% sin_zero_iff_int
thf(fact_7591_powr__int,axiom,
! [X: real,I: int] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ I )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ I ) )
= ( power_power_real @ X @ ( nat2 @ I ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ I )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ I ) )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ I ) ) ) ) ) ) ) ) ).
% powr_int
thf(fact_7592_round__unique,axiom,
! [X: rat,Y4: int] :
( ( ord_less_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y4 ) )
=> ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y4 ) @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
=> ( ( archim7778729529865785530nd_rat @ X )
= Y4 ) ) ) ).
% round_unique
thf(fact_7593_round__unique,axiom,
! [X: real,Y4: int] :
( ( ord_less_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y4 ) )
=> ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y4 ) @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( archim8280529875227126926d_real @ X )
= Y4 ) ) ) ).
% round_unique
thf(fact_7594_round__unique_H,axiom,
! [X: real,N: int] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ ( ring_1_of_int_real @ N ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ( archim8280529875227126926d_real @ X )
= N ) ) ).
% round_unique'
thf(fact_7595_round__unique_H,axiom,
! [X: rat,N: int] :
( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ N ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
=> ( ( archim7778729529865785530nd_rat @ X )
= N ) ) ).
% round_unique'
thf(fact_7596_of__int__round__abs__le,axiom,
! [X: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) @ X ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).
% of_int_round_abs_le
thf(fact_7597_of__int__round__abs__le,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) @ X ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% of_int_round_abs_le
thf(fact_7598_of__int__round__gt,axiom,
! [X: real] : ( ord_less_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) ) ).
% of_int_round_gt
thf(fact_7599_of__int__round__gt,axiom,
! [X: rat] : ( ord_less_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) ) ).
% of_int_round_gt
thf(fact_7600_of__int__round__ge,axiom,
! [X: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) ) ).
% of_int_round_ge
thf(fact_7601_of__int__round__ge,axiom,
! [X: real] : ( ord_less_eq_real @ ( minus_minus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) ) ).
% of_int_round_ge
thf(fact_7602_round__0,axiom,
( ( archim8280529875227126926d_real @ zero_zero_real )
= zero_zero_int ) ).
% round_0
thf(fact_7603_round__0,axiom,
( ( archim7778729529865785530nd_rat @ zero_zero_rat )
= zero_zero_int ) ).
% round_0
thf(fact_7604_round__numeral,axiom,
! [N: num] :
( ( archim8280529875227126926d_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% round_numeral
thf(fact_7605_round__numeral,axiom,
! [N: num] :
( ( archim7778729529865785530nd_rat @ ( numeral_numeral_rat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% round_numeral
thf(fact_7606_round__of__nat,axiom,
! [N: nat] :
( ( archim8280529875227126926d_real @ ( semiri5074537144036343181t_real @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% round_of_nat
thf(fact_7607_round__of__nat,axiom,
! [N: nat] :
( ( archim7778729529865785530nd_rat @ ( semiri681578069525770553at_rat @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% round_of_nat
thf(fact_7608_round__neg__numeral,axiom,
! [N: num] :
( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% round_neg_numeral
thf(fact_7609_round__neg__numeral,axiom,
! [N: num] :
( ( archim7778729529865785530nd_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% round_neg_numeral
thf(fact_7610_round__mono,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X ) @ ( archim7778729529865785530nd_rat @ Y4 ) ) ) ).
% round_mono
thf(fact_7611_round__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_int @ ( archim8280529875227126926d_real @ X ) @ ( archim8280529875227126926d_real @ Y4 ) ) ) ).
% round_mono
thf(fact_7612_floor__le__round,axiom,
! [X: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim8280529875227126926d_real @ X ) ) ).
% floor_le_round
thf(fact_7613_floor__le__round,axiom,
! [X: rat] : ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X ) @ ( archim7778729529865785530nd_rat @ X ) ) ).
% floor_le_round
thf(fact_7614_ceiling__ge__round,axiom,
! [X: real] : ( ord_less_eq_int @ ( archim8280529875227126926d_real @ X ) @ ( archim7802044766580827645g_real @ X ) ) ).
% ceiling_ge_round
thf(fact_7615_round__diff__minimal,axiom,
! [Z: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ M ) ) ) ) ).
% round_diff_minimal
thf(fact_7616_round__diff__minimal,axiom,
! [Z: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ M ) ) ) ) ).
% round_diff_minimal
thf(fact_7617_round__def,axiom,
( archim8280529875227126926d_real
= ( ^ [X3: real] : ( archim6058952711729229775r_real @ ( plus_plus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% round_def
thf(fact_7618_round__def,axiom,
( archim7778729529865785530nd_rat
= ( ^ [X3: rat] : ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% round_def
thf(fact_7619_of__int__round__le,axiom,
! [X: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X ) ) @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).
% of_int_round_le
thf(fact_7620_of__int__round__le,axiom,
! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X ) ) @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% of_int_round_le
thf(fact_7621_round__altdef,axiom,
( archim8280529875227126926d_real
= ( ^ [X3: real] : ( if_int @ ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( archim2898591450579166408c_real @ X3 ) ) @ ( archim7802044766580827645g_real @ X3 ) @ ( archim6058952711729229775r_real @ X3 ) ) ) ) ).
% round_altdef
thf(fact_7622_round__altdef,axiom,
( archim7778729529865785530nd_rat
= ( ^ [X3: rat] : ( if_int @ ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( archimedean_frac_rat @ X3 ) ) @ ( archim2889992004027027881ng_rat @ X3 ) @ ( archim3151403230148437115or_rat @ X3 ) ) ) ) ).
% round_altdef
thf(fact_7623_exp__two__pi__i,axiom,
( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
= one_one_complex ) ).
% exp_two_pi_i
thf(fact_7624_exp__two__pi__i_H,axiom,
( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
= one_one_complex ) ).
% exp_two_pi_i'
thf(fact_7625_cot__less__zero,axiom,
! [X: real] :
( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( ord_less_real @ ( cot_real @ X ) @ zero_zero_real ) ) ) ).
% cot_less_zero
thf(fact_7626_cot__periodic,axiom,
! [X: real] :
( ( cot_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
= ( cot_real @ X ) ) ).
% cot_periodic
thf(fact_7627_cot__zero,axiom,
( ( cot_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% cot_zero
thf(fact_7628_cot__zero,axiom,
( ( cot_real @ zero_zero_real )
= zero_zero_real ) ).
% cot_zero
thf(fact_7629_frac__of__int,axiom,
! [Z: int] :
( ( archim2898591450579166408c_real @ ( ring_1_of_int_real @ Z ) )
= zero_zero_real ) ).
% frac_of_int
thf(fact_7630_frac__of__int,axiom,
! [Z: int] :
( ( archimedean_frac_rat @ ( ring_1_of_int_rat @ Z ) )
= zero_zero_rat ) ).
% frac_of_int
thf(fact_7631_cot__pi,axiom,
( ( cot_real @ pi )
= zero_zero_real ) ).
% cot_pi
thf(fact_7632_cot__npi,axiom,
! [N: nat] :
( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
= zero_zero_real ) ).
% cot_npi
thf(fact_7633_power2__i,axiom,
( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ).
% power2_i
thf(fact_7634_i__even__power,axiom,
! [N: nat] :
( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) ) ).
% i_even_power
thf(fact_7635_complex__i__not__zero,axiom,
imaginary_unit != zero_zero_complex ).
% complex_i_not_zero
thf(fact_7636_frac__ge__0,axiom,
! [X: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( archimedean_frac_rat @ X ) ) ).
% frac_ge_0
thf(fact_7637_frac__ge__0,axiom,
! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X ) ) ).
% frac_ge_0
thf(fact_7638_imaginary__unit_Ocode,axiom,
( imaginary_unit
= ( complex2 @ zero_zero_real @ one_one_real ) ) ).
% imaginary_unit.code
thf(fact_7639_Complex__eq__i,axiom,
! [X: real,Y4: real] :
( ( ( complex2 @ X @ Y4 )
= imaginary_unit )
= ( ( X = zero_zero_real )
& ( Y4 = one_one_real ) ) ) ).
% Complex_eq_i
thf(fact_7640_frac__def,axiom,
( archim2898591450579166408c_real
= ( ^ [X3: real] : ( minus_minus_real @ X3 @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X3 ) ) ) ) ) ).
% frac_def
thf(fact_7641_frac__def,axiom,
( archimedean_frac_rat
= ( ^ [X3: rat] : ( minus_minus_rat @ X3 @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X3 ) ) ) ) ) ).
% frac_def
thf(fact_7642_cot__def,axiom,
( cot_complex
= ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( cos_complex @ X3 ) @ ( sin_complex @ X3 ) ) ) ) ).
% cot_def
thf(fact_7643_cot__def,axiom,
( cot_real
= ( ^ [X3: real] : ( divide_divide_real @ ( cos_real @ X3 ) @ ( sin_real @ X3 ) ) ) ) ).
% cot_def
thf(fact_7644_complex__of__real__i,axiom,
! [R2: real] :
( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ imaginary_unit )
= ( complex2 @ zero_zero_real @ R2 ) ) ).
% complex_of_real_i
thf(fact_7645_i__complex__of__real,axiom,
! [R2: real] :
( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R2 ) )
= ( complex2 @ zero_zero_real @ R2 ) ) ).
% i_complex_of_real
thf(fact_7646_frac__eq,axiom,
! [X: rat] :
( ( ( archimedean_frac_rat @ X )
= X )
= ( ( ord_less_eq_rat @ zero_zero_rat @ X )
& ( ord_less_rat @ X @ one_one_rat ) ) ) ).
% frac_eq
thf(fact_7647_frac__eq,axiom,
! [X: real] :
( ( ( archim2898591450579166408c_real @ X )
= X )
= ( ( ord_less_eq_real @ zero_zero_real @ X )
& ( ord_less_real @ X @ one_one_real ) ) ) ).
% frac_eq
thf(fact_7648_frac__add,axiom,
! [X: real,Y4: real] :
( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y4 ) ) @ one_one_real )
=> ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ Y4 ) )
= ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y4 ) ) ) )
& ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y4 ) ) @ one_one_real )
=> ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X @ Y4 ) )
= ( minus_minus_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X ) @ ( archim2898591450579166408c_real @ Y4 ) ) @ one_one_real ) ) ) ) ).
% frac_add
thf(fact_7649_frac__add,axiom,
! [X: rat,Y4: rat] :
( ( ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y4 ) ) @ one_one_rat )
=> ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ Y4 ) )
= ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y4 ) ) ) )
& ( ~ ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y4 ) ) @ one_one_rat )
=> ( ( archimedean_frac_rat @ ( plus_plus_rat @ X @ Y4 ) )
= ( minus_minus_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X ) @ ( archimedean_frac_rat @ Y4 ) ) @ one_one_rat ) ) ) ) ).
% frac_add
thf(fact_7650_cot__gt__zero,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
=> ( ord_less_real @ zero_zero_real @ ( cot_real @ X ) ) ) ) ).
% cot_gt_zero
thf(fact_7651_tan__cot_H,axiom,
! [X: real] :
( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
= ( cot_real @ X ) ) ).
% tan_cot'
thf(fact_7652_Arg__minus__ii,axiom,
( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
= ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% Arg_minus_ii
thf(fact_7653_csqrt__ii,axiom,
( ( csqrt @ imaginary_unit )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% csqrt_ii
thf(fact_7654_Arg__ii,axiom,
( ( arg @ imaginary_unit )
= ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% Arg_ii
thf(fact_7655_cis__minus__pi__half,axiom,
( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
= ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).
% cis_minus_pi_half
thf(fact_7656_signed__take__bit__eq__take__bit__minus,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N4: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N4 ) @ K3 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N4 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N4 ) ) ) ) ) ) ).
% signed_take_bit_eq_take_bit_minus
thf(fact_7657_csqrt__eq__0,axiom,
! [Z: complex] :
( ( ( csqrt @ Z )
= zero_zero_complex )
= ( Z = zero_zero_complex ) ) ).
% csqrt_eq_0
thf(fact_7658_csqrt__0,axiom,
( ( csqrt @ zero_zero_complex )
= zero_zero_complex ) ).
% csqrt_0
thf(fact_7659_cis__zero,axiom,
( ( cis @ zero_zero_real )
= one_one_complex ) ).
% cis_zero
thf(fact_7660_bit__numeral__Bit0__Suc__iff,axiom,
! [M: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( suc @ N ) )
= ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N ) ) ).
% bit_numeral_Bit0_Suc_iff
thf(fact_7661_bit__numeral__Bit0__Suc__iff,axiom,
! [M: num,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( suc @ N ) )
= ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).
% bit_numeral_Bit0_Suc_iff
thf(fact_7662_bit__numeral__Bit1__Suc__iff,axiom,
! [M: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( suc @ N ) )
= ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N ) ) ).
% bit_numeral_Bit1_Suc_iff
thf(fact_7663_bit__numeral__Bit1__Suc__iff,axiom,
! [M: num,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( suc @ N ) )
= ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).
% bit_numeral_Bit1_Suc_iff
thf(fact_7664_signed__take__bit__nonnegative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% signed_take_bit_nonnegative_iff
thf(fact_7665_signed__take__bit__negative__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ zero_zero_int )
= ( bit_se1146084159140164899it_int @ K @ N ) ) ).
% signed_take_bit_negative_iff
thf(fact_7666_bit__numeral__simps_I2_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) @ ( numeral_numeral_nat @ N ) )
= ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ).
% bit_numeral_simps(2)
thf(fact_7667_bit__numeral__simps_I2_J,axiom,
! [W: num,N: num] :
( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit0 @ W ) ) @ ( numeral_numeral_nat @ N ) )
= ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ W ) @ ( pred_numeral @ N ) ) ) ).
% bit_numeral_simps(2)
thf(fact_7668_bit__minus__numeral__Bit0__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
= ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N ) ) ).
% bit_minus_numeral_Bit0_Suc_iff
thf(fact_7669_bit__numeral__simps_I3_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) @ ( numeral_numeral_nat @ N ) )
= ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ).
% bit_numeral_simps(3)
thf(fact_7670_bit__numeral__simps_I3_J,axiom,
! [W: num,N: num] :
( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ ( bit1 @ W ) ) @ ( numeral_numeral_nat @ N ) )
= ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ W ) @ ( pred_numeral @ N ) ) ) ).
% bit_numeral_simps(3)
thf(fact_7671_bit__minus__numeral__Bit1__Suc__iff,axiom,
! [W: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
= ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N ) ) ) ).
% bit_minus_numeral_Bit1_Suc_iff
thf(fact_7672_power2__csqrt,axiom,
! [Z: complex] :
( ( power_power_complex @ ( csqrt @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= Z ) ).
% power2_csqrt
thf(fact_7673_bit__0,axiom,
! [A: code_integer] :
( ( bit_se9216721137139052372nteger @ A @ zero_zero_nat )
= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% bit_0
thf(fact_7674_bit__0,axiom,
! [A: int] :
( ( bit_se1146084159140164899it_int @ A @ zero_zero_nat )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% bit_0
thf(fact_7675_bit__0,axiom,
! [A: nat] :
( ( bit_se1148574629649215175it_nat @ A @ zero_zero_nat )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% bit_0
thf(fact_7676_bit__minus__numeral__int_I1_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
= ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N ) ) ) ).
% bit_minus_numeral_int(1)
thf(fact_7677_bit__minus__numeral__int_I2_J,axiom,
! [W: num,N: num] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
= ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ) ).
% bit_minus_numeral_int(2)
thf(fact_7678_bit__mod__2__iff,axiom,
! [A: code_integer,N: nat] :
( ( bit_se9216721137139052372nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ N )
= ( ( N = zero_zero_nat )
& ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% bit_mod_2_iff
thf(fact_7679_bit__mod__2__iff,axiom,
! [A: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ N )
= ( ( N = zero_zero_nat )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% bit_mod_2_iff
thf(fact_7680_bit__mod__2__iff,axiom,
! [A: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
= ( ( N = zero_zero_nat )
& ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% bit_mod_2_iff
thf(fact_7681_cis__pi__half,axiom,
( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= imaginary_unit ) ).
% cis_pi_half
thf(fact_7682_cis__2pi,axiom,
( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
= one_one_complex ) ).
% cis_2pi
thf(fact_7683_cis__Arg,axiom,
! [Z: complex] :
( ( Z != zero_zero_complex )
=> ( ( cis @ ( arg @ Z ) )
= ( sgn_sgn_complex @ Z ) ) ) ).
% cis_Arg
thf(fact_7684_bit__numeral__iff,axiom,
! [M: num,N: nat] :
( ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ M ) @ N )
= ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).
% bit_numeral_iff
thf(fact_7685_bit__numeral__iff,axiom,
! [M: num,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N )
= ( bit_se1148574629649215175it_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).
% bit_numeral_iff
thf(fact_7686_bit__of__nat__iff__bit,axiom,
! [M: nat,N: nat] :
( ( bit_se1146084159140164899it_int @ ( semiri1314217659103216013at_int @ M ) @ N )
= ( bit_se1148574629649215175it_nat @ M @ N ) ) ).
% bit_of_nat_iff_bit
thf(fact_7687_bit__of__nat__iff__bit,axiom,
! [M: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( semiri1316708129612266289at_nat @ M ) @ N )
= ( bit_se1148574629649215175it_nat @ M @ N ) ) ).
% bit_of_nat_iff_bit
thf(fact_7688_bit__disjunctive__add__iff,axiom,
! [A: int,B: int,N: nat] :
( ! [N2: nat] :
( ~ ( bit_se1146084159140164899it_int @ A @ N2 )
| ~ ( bit_se1146084159140164899it_int @ B @ N2 ) )
=> ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ A @ B ) @ N )
= ( ( bit_se1146084159140164899it_int @ A @ N )
| ( bit_se1146084159140164899it_int @ B @ N ) ) ) ) ).
% bit_disjunctive_add_iff
thf(fact_7689_bit__disjunctive__add__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ! [N2: nat] :
( ~ ( bit_se1148574629649215175it_nat @ A @ N2 )
| ~ ( bit_se1148574629649215175it_nat @ B @ N2 ) )
=> ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ A @ B ) @ N )
= ( ( bit_se1148574629649215175it_nat @ A @ N )
| ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ) ).
% bit_disjunctive_add_iff
thf(fact_7690_bit__and__iff,axiom,
! [A: int,B: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ N )
= ( ( bit_se1146084159140164899it_int @ A @ N )
& ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).
% bit_and_iff
thf(fact_7691_bit__and__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ N )
= ( ( bit_se1148574629649215175it_nat @ A @ N )
& ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).
% bit_and_iff
thf(fact_7692_bit__and__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
& ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).
% bit_and_int_iff
thf(fact_7693_bit__unset__bit__iff,axiom,
! [M: nat,A: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se4203085406695923979it_int @ M @ A ) @ N )
= ( ( bit_se1146084159140164899it_int @ A @ N )
& ( M != N ) ) ) ).
% bit_unset_bit_iff
thf(fact_7694_bit__unset__bit__iff,axiom,
! [M: nat,A: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se4205575877204974255it_nat @ M @ A ) @ N )
= ( ( bit_se1148574629649215175it_nat @ A @ N )
& ( M != N ) ) ) ).
% bit_unset_bit_iff
thf(fact_7695_bit__unset__bit__iff,axiom,
! [M: nat,A: code_integer,N: nat] :
( ( bit_se9216721137139052372nteger @ ( bit_se8260200283734997820nteger @ M @ A ) @ N )
= ( ( bit_se9216721137139052372nteger @ A @ N )
& ( M != N ) ) ) ).
% bit_unset_bit_iff
thf(fact_7696_cis__divide,axiom,
! [A: real,B: real] :
( ( divide1717551699836669952omplex @ ( cis @ A ) @ ( cis @ B ) )
= ( cis @ ( minus_minus_real @ A @ B ) ) ) ).
% cis_divide
thf(fact_7697_cis__neq__zero,axiom,
! [A: real] :
( ( cis @ A )
!= zero_zero_complex ) ).
% cis_neq_zero
thf(fact_7698_not__bit__1__Suc,axiom,
! [N: nat] :
~ ( bit_se1146084159140164899it_int @ one_one_int @ ( suc @ N ) ) ).
% not_bit_1_Suc
thf(fact_7699_not__bit__1__Suc,axiom,
! [N: nat] :
~ ( bit_se1148574629649215175it_nat @ one_one_nat @ ( suc @ N ) ) ).
% not_bit_1_Suc
thf(fact_7700_bit__1__iff,axiom,
! [N: nat] :
( ( bit_se1146084159140164899it_int @ one_one_int @ N )
= ( N = zero_zero_nat ) ) ).
% bit_1_iff
thf(fact_7701_bit__1__iff,axiom,
! [N: nat] :
( ( bit_se1148574629649215175it_nat @ one_one_nat @ N )
= ( N = zero_zero_nat ) ) ).
% bit_1_iff
thf(fact_7702_bit__numeral__simps_I1_J,axiom,
! [N: num] :
~ ( bit_se1146084159140164899it_int @ one_one_int @ ( numeral_numeral_nat @ N ) ) ).
% bit_numeral_simps(1)
thf(fact_7703_bit__numeral__simps_I1_J,axiom,
! [N: num] :
~ ( bit_se1148574629649215175it_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% bit_numeral_simps(1)
thf(fact_7704_bit__take__bit__iff,axiom,
! [M: nat,A: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se2923211474154528505it_int @ M @ A ) @ N )
= ( ( ord_less_nat @ N @ M )
& ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).
% bit_take_bit_iff
thf(fact_7705_bit__take__bit__iff,axiom,
! [M: nat,A: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se2925701944663578781it_nat @ M @ A ) @ N )
= ( ( ord_less_nat @ N @ M )
& ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).
% bit_take_bit_iff
thf(fact_7706_bit__of__bool__iff,axiom,
! [B: $o,N: nat] :
( ( bit_se9216721137139052372nteger @ ( zero_n356916108424825756nteger @ B ) @ N )
= ( B
& ( N = zero_zero_nat ) ) ) ).
% bit_of_bool_iff
thf(fact_7707_bit__of__bool__iff,axiom,
! [B: $o,N: nat] :
( ( bit_se1146084159140164899it_int @ ( zero_n2684676970156552555ol_int @ B ) @ N )
= ( B
& ( N = zero_zero_nat ) ) ) ).
% bit_of_bool_iff
thf(fact_7708_bit__of__bool__iff,axiom,
! [B: $o,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ N )
= ( B
& ( N = zero_zero_nat ) ) ) ).
% bit_of_bool_iff
thf(fact_7709_signed__take__bit__eq__if__positive,axiom,
! [A: int,N: nat] :
( ~ ( bit_se1146084159140164899it_int @ A @ N )
=> ( ( bit_ri631733984087533419it_int @ N @ A )
= ( bit_se2923211474154528505it_int @ N @ A ) ) ) ).
% signed_take_bit_eq_if_positive
thf(fact_7710_DeMoivre,axiom,
! [A: real,N: nat] :
( ( power_power_complex @ ( cis @ A ) @ N )
= ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).
% DeMoivre
thf(fact_7711_cis__Arg__unique,axiom,
! [Z: complex,X: real] :
( ( ( sgn_sgn_complex @ Z )
= ( cis @ X ) )
=> ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X )
=> ( ( ord_less_eq_real @ X @ pi )
=> ( ( arg @ Z )
= X ) ) ) ) ).
% cis_Arg_unique
thf(fact_7712_bit__not__int__iff_H,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_not_int_iff'
thf(fact_7713_flip__bit__eq__if,axiom,
( bit_se2159334234014336723it_int
= ( ^ [N4: nat,A3: int] : ( if_nat_int_int @ ( bit_se1146084159140164899it_int @ A3 @ N4 ) @ bit_se4203085406695923979it_int @ bit_se7879613467334960850it_int @ N4 @ A3 ) ) ) ).
% flip_bit_eq_if
thf(fact_7714_flip__bit__eq__if,axiom,
( bit_se2161824704523386999it_nat
= ( ^ [N4: nat,A3: nat] : ( if_nat_nat_nat @ ( bit_se1148574629649215175it_nat @ A3 @ N4 ) @ bit_se4205575877204974255it_nat @ bit_se7882103937844011126it_nat @ N4 @ A3 ) ) ) ).
% flip_bit_eq_if
thf(fact_7715_flip__bit__eq__if,axiom,
( bit_se1345352211410354436nteger
= ( ^ [N4: nat,A3: code_integer] : ( if_nat5617392847756311170nteger @ ( bit_se9216721137139052372nteger @ A3 @ N4 ) @ bit_se8260200283734997820nteger @ bit_se2793503036327961859nteger @ N4 @ A3 ) ) ) ).
% flip_bit_eq_if
thf(fact_7716_Arg__correct,axiom,
! [Z: complex] :
( ( Z != zero_zero_complex )
=> ( ( ( sgn_sgn_complex @ Z )
= ( cis @ ( arg @ Z ) ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
& ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ) ).
% Arg_correct
thf(fact_7717_Arg__zero,axiom,
( ( arg @ zero_zero_complex )
= zero_zero_real ) ).
% Arg_zero
thf(fact_7718_bit__imp__take__bit__positive,axiom,
! [N: nat,M: nat,K: int] :
( ( ord_less_nat @ N @ M )
=> ( ( bit_se1146084159140164899it_int @ K @ N )
=> ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).
% bit_imp_take_bit_positive
thf(fact_7719_bit__concat__bit__iff,axiom,
! [M: nat,K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L ) @ N )
= ( ( ( ord_less_nat @ N @ M )
& ( bit_se1146084159140164899it_int @ K @ N ) )
| ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1146084159140164899it_int @ L @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).
% bit_concat_bit_iff
thf(fact_7720_signed__take__bit__eq__concat__bit,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N4: nat,K3: int] : ( bit_concat_bit @ N4 @ K3 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N4 ) ) ) ) ) ) ).
% signed_take_bit_eq_concat_bit
thf(fact_7721_exp__eq__0__imp__not__bit,axiom,
! [N: nat,A: int] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
= zero_zero_int )
=> ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ).
% exp_eq_0_imp_not_bit
thf(fact_7722_exp__eq__0__imp__not__bit,axiom,
! [N: nat,A: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= zero_zero_nat )
=> ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ).
% exp_eq_0_imp_not_bit
thf(fact_7723_bit__Suc,axiom,
! [A: int,N: nat] :
( ( bit_se1146084159140164899it_int @ A @ ( suc @ N ) )
= ( bit_se1146084159140164899it_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ N ) ) ).
% bit_Suc
thf(fact_7724_bit__Suc,axiom,
! [A: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ A @ ( suc @ N ) )
= ( bit_se1148574629649215175it_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N ) ) ).
% bit_Suc
thf(fact_7725_bit__iff__idd__imp__stable,axiom,
! [A: code_integer] :
( ! [N2: nat] :
( ( bit_se9216721137139052372nteger @ A @ N2 )
= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
=> ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A ) ) ).
% bit_iff_idd_imp_stable
thf(fact_7726_bit__iff__idd__imp__stable,axiom,
! [A: int] :
( ! [N2: nat] :
( ( bit_se1146084159140164899it_int @ A @ N2 )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
=> ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A ) ) ).
% bit_iff_idd_imp_stable
thf(fact_7727_bit__iff__idd__imp__stable,axiom,
! [A: nat] :
( ! [N2: nat] :
( ( bit_se1148574629649215175it_nat @ A @ N2 )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
=> ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A ) ) ).
% bit_iff_idd_imp_stable
thf(fact_7728_stable__imp__bit__iff__odd,axiom,
! [A: code_integer,N: nat] :
( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
= A )
=> ( ( bit_se9216721137139052372nteger @ A @ N )
= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% stable_imp_bit_iff_odd
thf(fact_7729_stable__imp__bit__iff__odd,axiom,
! [A: int,N: nat] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( bit_se1146084159140164899it_int @ A @ N )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% stable_imp_bit_iff_odd
thf(fact_7730_stable__imp__bit__iff__odd,axiom,
! [A: nat,N: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( bit_se1148574629649215175it_nat @ A @ N )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% stable_imp_bit_iff_odd
thf(fact_7731_int__bit__bound,axiom,
! [K: int] :
~ ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_eq_nat @ N2 @ M2 )
=> ( ( bit_se1146084159140164899it_int @ K @ M2 )
= ( bit_se1146084159140164899it_int @ K @ N2 ) ) )
=> ~ ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N2 @ one_one_nat ) )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ) ) ).
% int_bit_bound
thf(fact_7732_bit__iff__odd,axiom,
( bit_se9216721137139052372nteger
= ( ^ [A3: code_integer,N4: nat] :
~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A3 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ).
% bit_iff_odd
thf(fact_7733_bit__iff__odd,axiom,
( bit_se1146084159140164899it_int
= ( ^ [A3: int,N4: nat] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ).
% bit_iff_odd
thf(fact_7734_bit__iff__odd,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [A3: nat,N4: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ).
% bit_iff_odd
thf(fact_7735_and__exp__eq__0__iff__not__bit,axiom,
! [A: int,N: nat] :
( ( ( bit_se725231765392027082nd_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= zero_zero_int )
= ( ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).
% and_exp_eq_0_iff_not_bit
thf(fact_7736_and__exp__eq__0__iff__not__bit,axiom,
! [A: nat,N: nat] :
( ( ( bit_se727722235901077358nd_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= zero_zero_nat )
= ( ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).
% and_exp_eq_0_iff_not_bit
thf(fact_7737_bit__int__def,axiom,
( bit_se1146084159140164899it_int
= ( ^ [K3: int,N4: nat] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ).
% bit_int_def
thf(fact_7738_of__real__sqrt,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( real_V4546457046886955230omplex @ ( sqrt @ X ) )
= ( csqrt @ ( real_V4546457046886955230omplex @ X ) ) ) ) ).
% of_real_sqrt
thf(fact_7739_even__bit__succ__iff,axiom,
! [A: code_integer,N: nat] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se9216721137139052372nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ N )
= ( ( bit_se9216721137139052372nteger @ A @ N )
| ( N = zero_zero_nat ) ) ) ) ).
% even_bit_succ_iff
thf(fact_7740_even__bit__succ__iff,axiom,
! [A: int,N: nat] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ one_one_int @ A ) @ N )
= ( ( bit_se1146084159140164899it_int @ A @ N )
| ( N = zero_zero_nat ) ) ) ) ).
% even_bit_succ_iff
thf(fact_7741_even__bit__succ__iff,axiom,
! [A: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ N )
= ( ( bit_se1148574629649215175it_nat @ A @ N )
| ( N = zero_zero_nat ) ) ) ) ).
% even_bit_succ_iff
thf(fact_7742_odd__bit__iff__bit__pred,axiom,
! [A: code_integer,N: nat] :
( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se9216721137139052372nteger @ A @ N )
= ( ( bit_se9216721137139052372nteger @ ( minus_8373710615458151222nteger @ A @ one_one_Code_integer ) @ N )
| ( N = zero_zero_nat ) ) ) ) ).
% odd_bit_iff_bit_pred
thf(fact_7743_odd__bit__iff__bit__pred,axiom,
! [A: int,N: nat] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1146084159140164899it_int @ A @ N )
= ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ A @ one_one_int ) @ N )
| ( N = zero_zero_nat ) ) ) ) ).
% odd_bit_iff_bit_pred
thf(fact_7744_odd__bit__iff__bit__pred,axiom,
! [A: nat,N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( bit_se1148574629649215175it_nat @ A @ N )
= ( ( bit_se1148574629649215175it_nat @ ( minus_minus_nat @ A @ one_one_nat ) @ N )
| ( N = zero_zero_nat ) ) ) ) ).
% odd_bit_iff_bit_pred
thf(fact_7745_Arg__bounded,axiom,
! [Z: complex] :
( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
& ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ).
% Arg_bounded
thf(fact_7746_bit__sum__mult__2__cases,axiom,
! [A: code_integer,B: code_integer,N: nat] :
( ! [J2: nat] :
~ ( bit_se9216721137139052372nteger @ A @ ( suc @ J2 ) )
=> ( ( bit_se9216721137139052372nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ N )
= ( ( ( N = zero_zero_nat )
=> ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
& ( ( N != zero_zero_nat )
=> ( bit_se9216721137139052372nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).
% bit_sum_mult_2_cases
thf(fact_7747_bit__sum__mult__2__cases,axiom,
! [A: int,B: int,N: nat] :
( ! [J2: nat] :
~ ( bit_se1146084159140164899it_int @ A @ ( suc @ J2 ) )
=> ( ( bit_se1146084159140164899it_int @ ( plus_plus_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ N )
= ( ( ( N = zero_zero_nat )
=> ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
& ( ( N != zero_zero_nat )
=> ( bit_se1146084159140164899it_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).
% bit_sum_mult_2_cases
thf(fact_7748_bit__sum__mult__2__cases,axiom,
! [A: nat,B: nat,N: nat] :
( ! [J2: nat] :
~ ( bit_se1148574629649215175it_nat @ A @ ( suc @ J2 ) )
=> ( ( bit_se1148574629649215175it_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ N )
= ( ( ( N = zero_zero_nat )
=> ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
& ( ( N != zero_zero_nat )
=> ( bit_se1148574629649215175it_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) @ N ) ) ) ) ) ).
% bit_sum_mult_2_cases
thf(fact_7749_bit__rec,axiom,
( bit_se9216721137139052372nteger
= ( ^ [A3: code_integer,N4: nat] :
( ( ( N4 = zero_zero_nat )
=> ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 ) )
& ( ( N4 != zero_zero_nat )
=> ( bit_se9216721137139052372nteger @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N4 @ one_one_nat ) ) ) ) ) ) ).
% bit_rec
thf(fact_7750_bit__rec,axiom,
( bit_se1146084159140164899it_int
= ( ^ [A3: int,N4: nat] :
( ( ( N4 = zero_zero_nat )
=> ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 ) )
& ( ( N4 != zero_zero_nat )
=> ( bit_se1146084159140164899it_int @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N4 @ one_one_nat ) ) ) ) ) ) ).
% bit_rec
thf(fact_7751_bit__rec,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [A3: nat,N4: nat] :
( ( ( N4 = zero_zero_nat )
=> ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 ) )
& ( ( N4 != zero_zero_nat )
=> ( bit_se1148574629649215175it_nat @ ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( minus_minus_nat @ N4 @ one_one_nat ) ) ) ) ) ) ).
% bit_rec
thf(fact_7752_set__bit__eq,axiom,
( bit_se7879613467334960850it_int
= ( ^ [N4: nat,K3: int] :
( plus_plus_int @ K3
@ ( times_times_int
@ ( zero_n2684676970156552555ol_int
@ ~ ( bit_se1146084159140164899it_int @ K3 @ N4 ) )
@ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ).
% set_bit_eq
thf(fact_7753_unset__bit__eq,axiom,
( bit_se4203085406695923979it_int
= ( ^ [N4: nat,K3: int] : ( minus_minus_int @ K3 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N4 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ).
% unset_bit_eq
thf(fact_7754_take__bit__Suc__from__most,axiom,
! [N: nat,K: int] :
( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K )
= ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N ) ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).
% take_bit_Suc_from_most
thf(fact_7755_cis__multiple__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= one_one_complex ) ) ).
% cis_multiple_2pi
thf(fact_7756_powr__real__of__int,axiom,
! [X: real,N: int] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
= ( power_power_real @ X @ ( nat2 @ N ) ) ) )
& ( ~ ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
= ( inverse_inverse_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ N ) ) ) ) ) ) ) ) ).
% powr_real_of_int
thf(fact_7757_Suc__0__xor__eq,axiom,
! [N: nat] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% Suc_0_xor_eq
thf(fact_7758_xor__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se6528837805403552850or_nat @ N @ ( suc @ zero_zero_nat ) )
= ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% xor_Suc_0_eq
thf(fact_7759_gbinomial__absorption_H,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_7760_gbinomial__absorption_H,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_7761_gbinomial__absorption_H,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).
% gbinomial_absorption'
thf(fact_7762_inverse__inverse__eq,axiom,
! [A: real] :
( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
= A ) ).
% inverse_inverse_eq
thf(fact_7763_inverse__inverse__eq,axiom,
! [A: complex] :
( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
= A ) ).
% inverse_inverse_eq
thf(fact_7764_inverse__inverse__eq,axiom,
! [A: rat] :
( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
= A ) ).
% inverse_inverse_eq
thf(fact_7765_inverse__eq__iff__eq,axiom,
! [A: real,B: real] :
( ( ( inverse_inverse_real @ A )
= ( inverse_inverse_real @ B ) )
= ( A = B ) ) ).
% inverse_eq_iff_eq
thf(fact_7766_inverse__eq__iff__eq,axiom,
! [A: complex,B: complex] :
( ( ( invers8013647133539491842omplex @ A )
= ( invers8013647133539491842omplex @ B ) )
= ( A = B ) ) ).
% inverse_eq_iff_eq
thf(fact_7767_inverse__eq__iff__eq,axiom,
! [A: rat,B: rat] :
( ( ( inverse_inverse_rat @ A )
= ( inverse_inverse_rat @ B ) )
= ( A = B ) ) ).
% inverse_eq_iff_eq
thf(fact_7768_bit_Oxor__left__self,axiom,
! [X: int,Y4: int] :
( ( bit_se6526347334894502574or_int @ X @ ( bit_se6526347334894502574or_int @ X @ Y4 ) )
= Y4 ) ).
% bit.xor_left_self
thf(fact_7769_inverse__nonzero__iff__nonzero,axiom,
! [A: real] :
( ( ( inverse_inverse_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_7770_inverse__nonzero__iff__nonzero,axiom,
! [A: complex] :
( ( ( invers8013647133539491842omplex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_7771_inverse__nonzero__iff__nonzero,axiom,
! [A: rat] :
( ( ( inverse_inverse_rat @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ).
% inverse_nonzero_iff_nonzero
thf(fact_7772_inverse__zero,axiom,
( ( inverse_inverse_real @ zero_zero_real )
= zero_zero_real ) ).
% inverse_zero
thf(fact_7773_inverse__zero,axiom,
( ( invers8013647133539491842omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% inverse_zero
thf(fact_7774_inverse__zero,axiom,
( ( inverse_inverse_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% inverse_zero
thf(fact_7775_inverse__mult__distrib,axiom,
! [A: real,B: real] :
( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_7776_inverse__mult__distrib,axiom,
! [A: complex,B: complex] :
( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
= ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_7777_inverse__mult__distrib,axiom,
! [A: rat,B: rat] :
( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).
% inverse_mult_distrib
thf(fact_7778_inverse__1,axiom,
( ( inverse_inverse_real @ one_one_real )
= one_one_real ) ).
% inverse_1
thf(fact_7779_inverse__1,axiom,
( ( invers8013647133539491842omplex @ one_one_complex )
= one_one_complex ) ).
% inverse_1
thf(fact_7780_inverse__1,axiom,
( ( inverse_inverse_rat @ one_one_rat )
= one_one_rat ) ).
% inverse_1
thf(fact_7781_inverse__eq__1__iff,axiom,
! [X: real] :
( ( ( inverse_inverse_real @ X )
= one_one_real )
= ( X = one_one_real ) ) ).
% inverse_eq_1_iff
thf(fact_7782_inverse__eq__1__iff,axiom,
! [X: complex] :
( ( ( invers8013647133539491842omplex @ X )
= one_one_complex )
= ( X = one_one_complex ) ) ).
% inverse_eq_1_iff
thf(fact_7783_inverse__eq__1__iff,axiom,
! [X: rat] :
( ( ( inverse_inverse_rat @ X )
= one_one_rat )
= ( X = one_one_rat ) ) ).
% inverse_eq_1_iff
thf(fact_7784_inverse__divide,axiom,
! [A: real,B: real] :
( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
= ( divide_divide_real @ B @ A ) ) ).
% inverse_divide
thf(fact_7785_inverse__divide,axiom,
! [A: complex,B: complex] :
( ( invers8013647133539491842omplex @ ( divide1717551699836669952omplex @ A @ B ) )
= ( divide1717551699836669952omplex @ B @ A ) ) ).
% inverse_divide
thf(fact_7786_inverse__divide,axiom,
! [A: rat,B: rat] :
( ( inverse_inverse_rat @ ( divide_divide_rat @ A @ B ) )
= ( divide_divide_rat @ B @ A ) ) ).
% inverse_divide
thf(fact_7787_inverse__minus__eq,axiom,
! [A: real] :
( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
= ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ).
% inverse_minus_eq
thf(fact_7788_inverse__minus__eq,axiom,
! [A: complex] :
( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
= ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ).
% inverse_minus_eq
thf(fact_7789_inverse__minus__eq,axiom,
! [A: rat] :
( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
= ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ).
% inverse_minus_eq
thf(fact_7790_xor_Oright__neutral,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ A @ zero_zero_nat )
= A ) ).
% xor.right_neutral
thf(fact_7791_xor_Oright__neutral,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ A @ zero_zero_int )
= A ) ).
% xor.right_neutral
thf(fact_7792_xor_Oleft__neutral,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ zero_zero_nat @ A )
= A ) ).
% xor.left_neutral
thf(fact_7793_xor_Oleft__neutral,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ zero_zero_int @ A )
= A ) ).
% xor.left_neutral
thf(fact_7794_xor__self__eq,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ A @ A )
= zero_zero_nat ) ).
% xor_self_eq
thf(fact_7795_xor__self__eq,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ A @ A )
= zero_zero_int ) ).
% xor_self_eq
thf(fact_7796_bit_Oxor__self,axiom,
! [X: int] :
( ( bit_se6526347334894502574or_int @ X @ X )
= zero_zero_int ) ).
% bit.xor_self
thf(fact_7797_abs__inverse,axiom,
! [A: real] :
( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
= ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ).
% abs_inverse
thf(fact_7798_abs__inverse,axiom,
! [A: complex] :
( ( abs_abs_complex @ ( invers8013647133539491842omplex @ A ) )
= ( invers8013647133539491842omplex @ ( abs_abs_complex @ A ) ) ) ).
% abs_inverse
thf(fact_7799_abs__inverse,axiom,
! [A: rat] :
( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
= ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ).
% abs_inverse
thf(fact_7800_inverse__sgn,axiom,
! [A: real] :
( ( inverse_inverse_real @ ( sgn_sgn_real @ A ) )
= ( sgn_sgn_real @ A ) ) ).
% inverse_sgn
thf(fact_7801_inverse__sgn,axiom,
! [A: rat] :
( ( inverse_inverse_rat @ ( sgn_sgn_rat @ A ) )
= ( sgn_sgn_rat @ A ) ) ).
% inverse_sgn
thf(fact_7802_sgn__inverse,axiom,
! [A: real] :
( ( sgn_sgn_real @ ( inverse_inverse_real @ A ) )
= ( inverse_inverse_real @ ( sgn_sgn_real @ A ) ) ) ).
% sgn_inverse
thf(fact_7803_sgn__inverse,axiom,
! [A: complex] :
( ( sgn_sgn_complex @ ( invers8013647133539491842omplex @ A ) )
= ( invers8013647133539491842omplex @ ( sgn_sgn_complex @ A ) ) ) ).
% sgn_inverse
thf(fact_7804_sgn__inverse,axiom,
! [A: rat] :
( ( sgn_sgn_rat @ ( inverse_inverse_rat @ A ) )
= ( inverse_inverse_rat @ ( sgn_sgn_rat @ A ) ) ) ).
% sgn_inverse
thf(fact_7805_take__bit__xor,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se2923211474154528505it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
= ( bit_se6526347334894502574or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).
% take_bit_xor
thf(fact_7806_take__bit__xor,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
= ( bit_se6528837805403552850or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).
% take_bit_xor
thf(fact_7807_inverse__nonnegative__iff__nonnegative,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% inverse_nonnegative_iff_nonnegative
thf(fact_7808_inverse__nonnegative__iff__nonnegative,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
= ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).
% inverse_nonnegative_iff_nonnegative
thf(fact_7809_inverse__nonpositive__iff__nonpositive,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% inverse_nonpositive_iff_nonpositive
thf(fact_7810_inverse__nonpositive__iff__nonpositive,axiom,
! [A: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
= ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).
% inverse_nonpositive_iff_nonpositive
thf(fact_7811_inverse__positive__iff__positive,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% inverse_positive_iff_positive
thf(fact_7812_inverse__positive__iff__positive,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
= ( ord_less_rat @ zero_zero_rat @ A ) ) ).
% inverse_positive_iff_positive
thf(fact_7813_inverse__negative__iff__negative,axiom,
! [A: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% inverse_negative_iff_negative
thf(fact_7814_inverse__negative__iff__negative,axiom,
! [A: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ).
% inverse_negative_iff_negative
thf(fact_7815_inverse__less__iff__less__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_real @ B @ A ) ) ) ) ).
% inverse_less_iff_less_neg
thf(fact_7816_inverse__less__iff__less__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ) ).
% inverse_less_iff_less_neg
thf(fact_7817_inverse__less__iff__less,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_real @ B @ A ) ) ) ) ).
% inverse_less_iff_less
thf(fact_7818_inverse__less__iff__less,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_rat @ B @ A ) ) ) ) ).
% inverse_less_iff_less
thf(fact_7819_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_complex @ zero_zero_complex @ ( suc @ K ) )
= zero_zero_complex ) ).
% gbinomial_0(2)
thf(fact_7820_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_real @ zero_zero_real @ ( suc @ K ) )
= zero_zero_real ) ).
% gbinomial_0(2)
thf(fact_7821_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_rat @ zero_zero_rat @ ( suc @ K ) )
= zero_zero_rat ) ).
% gbinomial_0(2)
thf(fact_7822_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_nat @ zero_zero_nat @ ( suc @ K ) )
= zero_zero_nat ) ).
% gbinomial_0(2)
thf(fact_7823_gbinomial__0_I2_J,axiom,
! [K: nat] :
( ( gbinomial_int @ zero_zero_int @ ( suc @ K ) )
= zero_zero_int ) ).
% gbinomial_0(2)
thf(fact_7824_gbinomial__0_I1_J,axiom,
! [A: complex] :
( ( gbinomial_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% gbinomial_0(1)
thf(fact_7825_gbinomial__0_I1_J,axiom,
! [A: real] :
( ( gbinomial_real @ A @ zero_zero_nat )
= one_one_real ) ).
% gbinomial_0(1)
thf(fact_7826_gbinomial__0_I1_J,axiom,
! [A: rat] :
( ( gbinomial_rat @ A @ zero_zero_nat )
= one_one_rat ) ).
% gbinomial_0(1)
thf(fact_7827_gbinomial__0_I1_J,axiom,
! [A: nat] :
( ( gbinomial_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% gbinomial_0(1)
thf(fact_7828_gbinomial__0_I1_J,axiom,
! [A: int] :
( ( gbinomial_int @ A @ zero_zero_nat )
= one_one_int ) ).
% gbinomial_0(1)
thf(fact_7829_frac__eq__0__iff,axiom,
! [X: real] :
( ( ( archim2898591450579166408c_real @ X )
= zero_zero_real )
= ( member_real @ X @ ring_1_Ints_real ) ) ).
% frac_eq_0_iff
thf(fact_7830_frac__eq__0__iff,axiom,
! [X: rat] :
( ( ( archimedean_frac_rat @ X )
= zero_zero_rat )
= ( member_rat @ X @ ring_1_Ints_rat ) ) ).
% frac_eq_0_iff
thf(fact_7831_inverse__le__iff__le__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ) ).
% inverse_le_iff_le_neg
thf(fact_7832_inverse__le__iff__le__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% inverse_le_iff_le_neg
thf(fact_7833_inverse__le__iff__le,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ) ).
% inverse_le_iff_le
thf(fact_7834_inverse__le__iff__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ zero_zero_rat @ B )
=> ( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ord_less_eq_rat @ B @ A ) ) ) ) ).
% inverse_le_iff_le
thf(fact_7835_right__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( times_times_real @ A @ ( inverse_inverse_real @ A ) )
= one_one_real ) ) ).
% right_inverse
thf(fact_7836_right__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( times_times_complex @ A @ ( invers8013647133539491842omplex @ A ) )
= one_one_complex ) ) ).
% right_inverse
thf(fact_7837_right__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( times_times_rat @ A @ ( inverse_inverse_rat @ A ) )
= one_one_rat ) ) ).
% right_inverse
thf(fact_7838_left__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
= one_one_real ) ) ).
% left_inverse
thf(fact_7839_left__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
= one_one_complex ) ) ).
% left_inverse
thf(fact_7840_left__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
= one_one_rat ) ) ).
% left_inverse
thf(fact_7841_inverse__eq__divide__numeral,axiom,
! [W: num] :
( ( inverse_inverse_real @ ( numeral_numeral_real @ W ) )
= ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ W ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_7842_inverse__eq__divide__numeral,axiom,
! [W: num] :
( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ W ) )
= ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ W ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_7843_inverse__eq__divide__numeral,axiom,
! [W: num] :
( ( inverse_inverse_rat @ ( numeral_numeral_rat @ W ) )
= ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ W ) ) ) ).
% inverse_eq_divide_numeral
thf(fact_7844_frac__gt__0__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X ) )
= ( ~ ( member_real @ X @ ring_1_Ints_real ) ) ) ).
% frac_gt_0_iff
thf(fact_7845_frac__gt__0__iff,axiom,
! [X: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( archimedean_frac_rat @ X ) )
= ( ~ ( member_rat @ X @ ring_1_Ints_rat ) ) ) ).
% frac_gt_0_iff
thf(fact_7846_inverse__eq__divide__neg__numeral,axiom,
! [W: num] :
( ( inverse_inverse_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= ( divide_divide_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_7847_inverse__eq__divide__neg__numeral,axiom,
! [W: num] :
( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide1717551699836669952omplex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_7848_inverse__eq__divide__neg__numeral,axiom,
! [W: num] :
( ( inverse_inverse_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
= ( divide_divide_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).
% inverse_eq_divide_neg_numeral
thf(fact_7849_xor__numerals_I3_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ).
% xor_numerals(3)
thf(fact_7850_xor__numerals_I3_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ).
% xor_numerals(3)
thf(fact_7851_xor__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) ) ).
% xor_numerals(1)
thf(fact_7852_xor__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( numeral_numeral_int @ ( bit1 @ Y4 ) ) ) ).
% xor_numerals(1)
thf(fact_7853_xor__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) ) ).
% xor_numerals(2)
thf(fact_7854_xor__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( numeral_numeral_int @ ( bit0 @ Y4 ) ) ) ).
% xor_numerals(2)
thf(fact_7855_xor__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% xor_numerals(5)
thf(fact_7856_xor__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).
% xor_numerals(5)
thf(fact_7857_xor__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).
% xor_numerals(8)
thf(fact_7858_xor__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ X ) ) ) ).
% xor_numerals(8)
thf(fact_7859_xor__numerals_I7_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ).
% xor_numerals(7)
thf(fact_7860_xor__numerals_I7_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ).
% xor_numerals(7)
thf(fact_7861_xor__nat__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) ) ).
% xor_nat_numerals(1)
thf(fact_7862_xor__nat__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) ) ).
% xor_nat_numerals(2)
thf(fact_7863_xor__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% xor_nat_numerals(3)
thf(fact_7864_xor__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).
% xor_nat_numerals(4)
thf(fact_7865_xor__numerals_I4_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ) ).
% xor_numerals(4)
thf(fact_7866_xor__numerals_I4_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ) ).
% xor_numerals(4)
thf(fact_7867_xor__numerals_I6_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ) ).
% xor_numerals(6)
thf(fact_7868_xor__numerals_I6_J,axiom,
! [X: num,Y4: num] :
( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ) ).
% xor_numerals(6)
thf(fact_7869_Ints__power,axiom,
! [A: int,N: nat] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( member_int @ ( power_power_int @ A @ N ) @ ring_1_Ints_int ) ) ).
% Ints_power
thf(fact_7870_Ints__power,axiom,
! [A: real,N: nat] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( member_real @ ( power_power_real @ A @ N ) @ ring_1_Ints_real ) ) ).
% Ints_power
thf(fact_7871_Ints__power,axiom,
! [A: complex,N: nat] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( member_complex @ ( power_power_complex @ A @ N ) @ ring_1_Ints_complex ) ) ).
% Ints_power
thf(fact_7872_nonzero__of__real__inverse,axiom,
! [X: real] :
( ( X != zero_zero_real )
=> ( ( real_V1803761363581548252l_real @ ( inverse_inverse_real @ X ) )
= ( inverse_inverse_real @ ( real_V1803761363581548252l_real @ X ) ) ) ) ).
% nonzero_of_real_inverse
thf(fact_7873_nonzero__of__real__inverse,axiom,
! [X: real] :
( ( X != zero_zero_real )
=> ( ( real_V4546457046886955230omplex @ ( inverse_inverse_real @ X ) )
= ( invers8013647133539491842omplex @ ( real_V4546457046886955230omplex @ X ) ) ) ) ).
% nonzero_of_real_inverse
thf(fact_7874_of__int__xor__eq,axiom,
! [K: int,L: int] :
( ( ring_1_of_int_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
= ( bit_se6526347334894502574or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).
% of_int_xor_eq
thf(fact_7875_Ints__0,axiom,
member_complex @ zero_zero_complex @ ring_1_Ints_complex ).
% Ints_0
thf(fact_7876_Ints__0,axiom,
member_real @ zero_zero_real @ ring_1_Ints_real ).
% Ints_0
thf(fact_7877_Ints__0,axiom,
member_rat @ zero_zero_rat @ ring_1_Ints_rat ).
% Ints_0
thf(fact_7878_Ints__0,axiom,
member_int @ zero_zero_int @ ring_1_Ints_int ).
% Ints_0
thf(fact_7879_Ints__numeral,axiom,
! [N: num] : ( member_complex @ ( numera6690914467698888265omplex @ N ) @ ring_1_Ints_complex ) ).
% Ints_numeral
thf(fact_7880_Ints__numeral,axiom,
! [N: num] : ( member_real @ ( numeral_numeral_real @ N ) @ ring_1_Ints_real ) ).
% Ints_numeral
thf(fact_7881_Ints__numeral,axiom,
! [N: num] : ( member_rat @ ( numeral_numeral_rat @ N ) @ ring_1_Ints_rat ) ).
% Ints_numeral
thf(fact_7882_Ints__numeral,axiom,
! [N: num] : ( member_int @ ( numeral_numeral_int @ N ) @ ring_1_Ints_int ) ).
% Ints_numeral
thf(fact_7883_Ints__mult,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( member_complex @ B @ ring_1_Ints_complex )
=> ( member_complex @ ( times_times_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).
% Ints_mult
thf(fact_7884_Ints__mult,axiom,
! [A: real,B: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( member_real @ B @ ring_1_Ints_real )
=> ( member_real @ ( times_times_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).
% Ints_mult
thf(fact_7885_Ints__mult,axiom,
! [A: rat,B: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ( member_rat @ B @ ring_1_Ints_rat )
=> ( member_rat @ ( times_times_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).
% Ints_mult
thf(fact_7886_Ints__mult,axiom,
! [A: int,B: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( member_int @ B @ ring_1_Ints_int )
=> ( member_int @ ( times_times_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).
% Ints_mult
thf(fact_7887_Ints__add,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( member_complex @ B @ ring_1_Ints_complex )
=> ( member_complex @ ( plus_plus_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).
% Ints_add
thf(fact_7888_Ints__add,axiom,
! [A: real,B: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( member_real @ B @ ring_1_Ints_real )
=> ( member_real @ ( plus_plus_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).
% Ints_add
thf(fact_7889_Ints__add,axiom,
! [A: rat,B: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ( member_rat @ B @ ring_1_Ints_rat )
=> ( member_rat @ ( plus_plus_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).
% Ints_add
thf(fact_7890_Ints__add,axiom,
! [A: int,B: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( member_int @ B @ ring_1_Ints_int )
=> ( member_int @ ( plus_plus_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).
% Ints_add
thf(fact_7891_Ints__1,axiom,
member_rat @ one_one_rat @ ring_1_Ints_rat ).
% Ints_1
thf(fact_7892_Ints__1,axiom,
member_int @ one_one_int @ ring_1_Ints_int ).
% Ints_1
thf(fact_7893_Ints__1,axiom,
member_real @ one_one_real @ ring_1_Ints_real ).
% Ints_1
thf(fact_7894_Ints__1,axiom,
member_complex @ one_one_complex @ ring_1_Ints_complex ).
% Ints_1
thf(fact_7895_real__sqrt__inverse,axiom,
! [X: real] :
( ( sqrt @ ( inverse_inverse_real @ X ) )
= ( inverse_inverse_real @ ( sqrt @ X ) ) ) ).
% real_sqrt_inverse
thf(fact_7896_Ints__diff,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( member_complex @ B @ ring_1_Ints_complex )
=> ( member_complex @ ( minus_minus_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).
% Ints_diff
thf(fact_7897_Ints__diff,axiom,
! [A: real,B: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( member_real @ B @ ring_1_Ints_real )
=> ( member_real @ ( minus_minus_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).
% Ints_diff
thf(fact_7898_Ints__diff,axiom,
! [A: rat,B: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ( member_rat @ B @ ring_1_Ints_rat )
=> ( member_rat @ ( minus_minus_rat @ A @ B ) @ ring_1_Ints_rat ) ) ) ).
% Ints_diff
thf(fact_7899_Ints__diff,axiom,
! [A: int,B: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( member_int @ B @ ring_1_Ints_int )
=> ( member_int @ ( minus_minus_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).
% Ints_diff
thf(fact_7900_Ints__minus,axiom,
! [A: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( member_real @ ( uminus_uminus_real @ A ) @ ring_1_Ints_real ) ) ).
% Ints_minus
thf(fact_7901_Ints__minus,axiom,
! [A: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( member_int @ ( uminus_uminus_int @ A ) @ ring_1_Ints_int ) ) ).
% Ints_minus
thf(fact_7902_Ints__minus,axiom,
! [A: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( member_complex @ ( uminus1482373934393186551omplex @ A ) @ ring_1_Ints_complex ) ) ).
% Ints_minus
thf(fact_7903_Ints__minus,axiom,
! [A: code_integer] :
( ( member_Code_integer @ A @ ring_11222124179247155820nteger )
=> ( member_Code_integer @ ( uminus1351360451143612070nteger @ A ) @ ring_11222124179247155820nteger ) ) ).
% Ints_minus
thf(fact_7904_Ints__minus,axiom,
! [A: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( member_rat @ ( uminus_uminus_rat @ A ) @ ring_1_Ints_rat ) ) ).
% Ints_minus
thf(fact_7905_minus__in__Ints__iff,axiom,
! [X: real] :
( ( member_real @ ( uminus_uminus_real @ X ) @ ring_1_Ints_real )
= ( member_real @ X @ ring_1_Ints_real ) ) ).
% minus_in_Ints_iff
thf(fact_7906_minus__in__Ints__iff,axiom,
! [X: int] :
( ( member_int @ ( uminus_uminus_int @ X ) @ ring_1_Ints_int )
= ( member_int @ X @ ring_1_Ints_int ) ) ).
% minus_in_Ints_iff
thf(fact_7907_minus__in__Ints__iff,axiom,
! [X: complex] :
( ( member_complex @ ( uminus1482373934393186551omplex @ X ) @ ring_1_Ints_complex )
= ( member_complex @ X @ ring_1_Ints_complex ) ) ).
% minus_in_Ints_iff
thf(fact_7908_minus__in__Ints__iff,axiom,
! [X: code_integer] :
( ( member_Code_integer @ ( uminus1351360451143612070nteger @ X ) @ ring_11222124179247155820nteger )
= ( member_Code_integer @ X @ ring_11222124179247155820nteger ) ) ).
% minus_in_Ints_iff
thf(fact_7909_minus__in__Ints__iff,axiom,
! [X: rat] :
( ( member_rat @ ( uminus_uminus_rat @ X ) @ ring_1_Ints_rat )
= ( member_rat @ X @ ring_1_Ints_rat ) ) ).
% minus_in_Ints_iff
thf(fact_7910_of__nat__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri8010041392384452111omplex @ ( gbinomial_nat @ N @ K ) )
= ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K ) ) ).
% of_nat_gbinomial
thf(fact_7911_of__nat__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri5074537144036343181t_real @ ( gbinomial_nat @ N @ K ) )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).
% of_nat_gbinomial
thf(fact_7912_of__nat__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri681578069525770553at_rat @ ( gbinomial_nat @ N @ K ) )
= ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K ) ) ).
% of_nat_gbinomial
thf(fact_7913_xor_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( bit_se6528837805403552850or_nat @ B @ ( bit_se6528837805403552850or_nat @ A @ C ) )
= ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).
% xor.left_commute
thf(fact_7914_xor_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( bit_se6526347334894502574or_int @ B @ ( bit_se6526347334894502574or_int @ A @ C ) )
= ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).
% xor.left_commute
thf(fact_7915_xor_Ocommute,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [A3: nat,B2: nat] : ( bit_se6528837805403552850or_nat @ B2 @ A3 ) ) ) ).
% xor.commute
thf(fact_7916_xor_Ocommute,axiom,
( bit_se6526347334894502574or_int
= ( ^ [A3: int,B2: int] : ( bit_se6526347334894502574or_int @ B2 @ A3 ) ) ) ).
% xor.commute
thf(fact_7917_xor_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( bit_se6528837805403552850or_nat @ ( bit_se6528837805403552850or_nat @ A @ B ) @ C )
= ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).
% xor.assoc
thf(fact_7918_xor_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( bit_se6526347334894502574or_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ C )
= ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).
% xor.assoc
thf(fact_7919_inverse__eq__imp__eq,axiom,
! [A: real,B: real] :
( ( ( inverse_inverse_real @ A )
= ( inverse_inverse_real @ B ) )
=> ( A = B ) ) ).
% inverse_eq_imp_eq
thf(fact_7920_inverse__eq__imp__eq,axiom,
! [A: complex,B: complex] :
( ( ( invers8013647133539491842omplex @ A )
= ( invers8013647133539491842omplex @ B ) )
=> ( A = B ) ) ).
% inverse_eq_imp_eq
thf(fact_7921_inverse__eq__imp__eq,axiom,
! [A: rat,B: rat] :
( ( ( inverse_inverse_rat @ A )
= ( inverse_inverse_rat @ B ) )
=> ( A = B ) ) ).
% inverse_eq_imp_eq
thf(fact_7922_of__nat__xor__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( bit_se6528837805403552850or_nat @ M @ N ) )
= ( bit_se6528837805403552850or_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_xor_eq
thf(fact_7923_of__nat__xor__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se6528837805403552850or_nat @ M @ N ) )
= ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_xor_eq
thf(fact_7924_nonzero__imp__inverse__nonzero,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ A )
!= zero_zero_real ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_7925_nonzero__imp__inverse__nonzero,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ A )
!= zero_zero_complex ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_7926_nonzero__imp__inverse__nonzero,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ A )
!= zero_zero_rat ) ) ).
% nonzero_imp_inverse_nonzero
thf(fact_7927_nonzero__inverse__inverse__eq,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
= A ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_7928_nonzero__inverse__inverse__eq,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ ( invers8013647133539491842omplex @ A ) )
= A ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_7929_nonzero__inverse__inverse__eq,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ ( inverse_inverse_rat @ A ) )
= A ) ) ).
% nonzero_inverse_inverse_eq
thf(fact_7930_nonzero__inverse__eq__imp__eq,axiom,
! [A: real,B: real] :
( ( ( inverse_inverse_real @ A )
= ( inverse_inverse_real @ B ) )
=> ( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( A = B ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_7931_nonzero__inverse__eq__imp__eq,axiom,
! [A: complex,B: complex] :
( ( ( invers8013647133539491842omplex @ A )
= ( invers8013647133539491842omplex @ B ) )
=> ( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( A = B ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_7932_nonzero__inverse__eq__imp__eq,axiom,
! [A: rat,B: rat] :
( ( ( inverse_inverse_rat @ A )
= ( inverse_inverse_rat @ B ) )
=> ( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( A = B ) ) ) ) ).
% nonzero_inverse_eq_imp_eq
thf(fact_7933_inverse__zero__imp__zero,axiom,
! [A: real] :
( ( ( inverse_inverse_real @ A )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ).
% inverse_zero_imp_zero
thf(fact_7934_inverse__zero__imp__zero,axiom,
! [A: complex] :
( ( ( invers8013647133539491842omplex @ A )
= zero_zero_complex )
=> ( A = zero_zero_complex ) ) ).
% inverse_zero_imp_zero
thf(fact_7935_inverse__zero__imp__zero,axiom,
! [A: rat] :
( ( ( inverse_inverse_rat @ A )
= zero_zero_rat )
=> ( A = zero_zero_rat ) ) ).
% inverse_zero_imp_zero
thf(fact_7936_field__class_Ofield__inverse__zero,axiom,
( ( inverse_inverse_real @ zero_zero_real )
= zero_zero_real ) ).
% field_class.field_inverse_zero
thf(fact_7937_field__class_Ofield__inverse__zero,axiom,
( ( invers8013647133539491842omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% field_class.field_inverse_zero
thf(fact_7938_field__class_Ofield__inverse__zero,axiom,
( ( inverse_inverse_rat @ zero_zero_rat )
= zero_zero_rat ) ).
% field_class.field_inverse_zero
thf(fact_7939_mult__commute__imp__mult__inverse__commute,axiom,
! [Y4: real,X: real] :
( ( ( times_times_real @ Y4 @ X )
= ( times_times_real @ X @ Y4 ) )
=> ( ( times_times_real @ ( inverse_inverse_real @ Y4 ) @ X )
= ( times_times_real @ X @ ( inverse_inverse_real @ Y4 ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_7940_mult__commute__imp__mult__inverse__commute,axiom,
! [Y4: complex,X: complex] :
( ( ( times_times_complex @ Y4 @ X )
= ( times_times_complex @ X @ Y4 ) )
=> ( ( times_times_complex @ ( invers8013647133539491842omplex @ Y4 ) @ X )
= ( times_times_complex @ X @ ( invers8013647133539491842omplex @ Y4 ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_7941_mult__commute__imp__mult__inverse__commute,axiom,
! [Y4: rat,X: rat] :
( ( ( times_times_rat @ Y4 @ X )
= ( times_times_rat @ X @ Y4 ) )
=> ( ( times_times_rat @ ( inverse_inverse_rat @ Y4 ) @ X )
= ( times_times_rat @ X @ ( inverse_inverse_rat @ Y4 ) ) ) ) ).
% mult_commute_imp_mult_inverse_commute
thf(fact_7942_nonzero__norm__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( real_V7735802525324610683m_real @ ( inverse_inverse_real @ A ) )
= ( inverse_inverse_real @ ( real_V7735802525324610683m_real @ A ) ) ) ) ).
% nonzero_norm_inverse
thf(fact_7943_nonzero__norm__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( real_V1022390504157884413omplex @ ( invers8013647133539491842omplex @ A ) )
= ( inverse_inverse_real @ ( real_V1022390504157884413omplex @ A ) ) ) ) ).
% nonzero_norm_inverse
thf(fact_7944_Ints__of__nat,axiom,
! [N: nat] : ( member_complex @ ( semiri8010041392384452111omplex @ N ) @ ring_1_Ints_complex ) ).
% Ints_of_nat
thf(fact_7945_Ints__of__nat,axiom,
! [N: nat] : ( member_real @ ( semiri5074537144036343181t_real @ N ) @ ring_1_Ints_real ) ).
% Ints_of_nat
thf(fact_7946_Ints__of__nat,axiom,
! [N: nat] : ( member_rat @ ( semiri681578069525770553at_rat @ N ) @ ring_1_Ints_rat ) ).
% Ints_of_nat
thf(fact_7947_Ints__of__nat,axiom,
! [N: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N ) @ ring_1_Ints_int ) ).
% Ints_of_nat
thf(fact_7948_bit_Oconj__xor__distrib2,axiom,
! [Y4: int,Z: int,X: int] :
( ( bit_se725231765392027082nd_int @ ( bit_se6526347334894502574or_int @ Y4 @ Z ) @ X )
= ( bit_se6526347334894502574or_int @ ( bit_se725231765392027082nd_int @ Y4 @ X ) @ ( bit_se725231765392027082nd_int @ Z @ X ) ) ) ).
% bit.conj_xor_distrib2
thf(fact_7949_bit_Oconj__xor__distrib,axiom,
! [X: int,Y4: int,Z: int] :
( ( bit_se725231765392027082nd_int @ X @ ( bit_se6526347334894502574or_int @ Y4 @ Z ) )
= ( bit_se6526347334894502574or_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) @ ( bit_se725231765392027082nd_int @ X @ Z ) ) ) ).
% bit.conj_xor_distrib
thf(fact_7950_bit__xor__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se6528837805403552850or_nat @ A @ B ) @ N )
= ( ( bit_se1148574629649215175it_nat @ A @ N )
!= ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).
% bit_xor_iff
thf(fact_7951_bit__xor__iff,axiom,
! [A: int,B: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ N )
= ( ( bit_se1146084159140164899it_int @ A @ N )
!= ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).
% bit_xor_iff
thf(fact_7952_Ints__abs,axiom,
! [A: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( member_int @ ( abs_abs_int @ A ) @ ring_1_Ints_int ) ) ).
% Ints_abs
thf(fact_7953_Ints__abs,axiom,
! [A: code_integer] :
( ( member_Code_integer @ A @ ring_11222124179247155820nteger )
=> ( member_Code_integer @ ( abs_abs_Code_integer @ A ) @ ring_11222124179247155820nteger ) ) ).
% Ints_abs
thf(fact_7954_Ints__abs,axiom,
! [A: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( member_rat @ ( abs_abs_rat @ A ) @ ring_1_Ints_rat ) ) ).
% Ints_abs
thf(fact_7955_Ints__abs,axiom,
! [A: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( member_real @ ( abs_abs_real @ A ) @ ring_1_Ints_real ) ) ).
% Ints_abs
thf(fact_7956_Ints__of__int,axiom,
! [Z: int] : ( member_int @ ( ring_1_of_int_int @ Z ) @ ring_1_Ints_int ) ).
% Ints_of_int
thf(fact_7957_Ints__of__int,axiom,
! [Z: int] : ( member_real @ ( ring_1_of_int_real @ Z ) @ ring_1_Ints_real ) ).
% Ints_of_int
thf(fact_7958_Ints__of__int,axiom,
! [Z: int] : ( member_complex @ ( ring_17405671764205052669omplex @ Z ) @ ring_1_Ints_complex ) ).
% Ints_of_int
thf(fact_7959_Ints__of__int,axiom,
! [Z: int] : ( member_rat @ ( ring_1_of_int_rat @ Z ) @ ring_1_Ints_rat ) ).
% Ints_of_int
thf(fact_7960_Ints__induct,axiom,
! [Q2: int,P: int > $o] :
( ( member_int @ Q2 @ ring_1_Ints_int )
=> ( ! [Z2: int] : ( P @ ( ring_1_of_int_int @ Z2 ) )
=> ( P @ Q2 ) ) ) ).
% Ints_induct
thf(fact_7961_Ints__induct,axiom,
! [Q2: real,P: real > $o] :
( ( member_real @ Q2 @ ring_1_Ints_real )
=> ( ! [Z2: int] : ( P @ ( ring_1_of_int_real @ Z2 ) )
=> ( P @ Q2 ) ) ) ).
% Ints_induct
thf(fact_7962_Ints__induct,axiom,
! [Q2: complex,P: complex > $o] :
( ( member_complex @ Q2 @ ring_1_Ints_complex )
=> ( ! [Z2: int] : ( P @ ( ring_17405671764205052669omplex @ Z2 ) )
=> ( P @ Q2 ) ) ) ).
% Ints_induct
thf(fact_7963_Ints__induct,axiom,
! [Q2: rat,P: rat > $o] :
( ( member_rat @ Q2 @ ring_1_Ints_rat )
=> ( ! [Z2: int] : ( P @ ( ring_1_of_int_rat @ Z2 ) )
=> ( P @ Q2 ) ) ) ).
% Ints_induct
thf(fact_7964_Ints__cases,axiom,
! [Q2: int] :
( ( member_int @ Q2 @ ring_1_Ints_int )
=> ~ ! [Z2: int] :
( Q2
!= ( ring_1_of_int_int @ Z2 ) ) ) ).
% Ints_cases
thf(fact_7965_Ints__cases,axiom,
! [Q2: real] :
( ( member_real @ Q2 @ ring_1_Ints_real )
=> ~ ! [Z2: int] :
( Q2
!= ( ring_1_of_int_real @ Z2 ) ) ) ).
% Ints_cases
thf(fact_7966_Ints__cases,axiom,
! [Q2: complex] :
( ( member_complex @ Q2 @ ring_1_Ints_complex )
=> ~ ! [Z2: int] :
( Q2
!= ( ring_17405671764205052669omplex @ Z2 ) ) ) ).
% Ints_cases
thf(fact_7967_Ints__cases,axiom,
! [Q2: rat] :
( ( member_rat @ Q2 @ ring_1_Ints_rat )
=> ~ ! [Z2: int] :
( Q2
!= ( ring_1_of_int_rat @ Z2 ) ) ) ).
% Ints_cases
thf(fact_7968_norm__inverse__le__norm,axiom,
! [R2: real,X: real] :
( ( ord_less_eq_real @ R2 @ ( real_V7735802525324610683m_real @ X ) )
=> ( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( inverse_inverse_real @ X ) ) @ ( inverse_inverse_real @ R2 ) ) ) ) ).
% norm_inverse_le_norm
thf(fact_7969_norm__inverse__le__norm,axiom,
! [R2: real,X: complex] :
( ( ord_less_eq_real @ R2 @ ( real_V1022390504157884413omplex @ X ) )
=> ( ( ord_less_real @ zero_zero_real @ R2 )
=> ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( invers8013647133539491842omplex @ X ) ) @ ( inverse_inverse_real @ R2 ) ) ) ) ).
% norm_inverse_le_norm
thf(fact_7970_positive__imp__inverse__positive,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).
% positive_imp_inverse_positive
thf(fact_7971_positive__imp__inverse__positive,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) ) ) ).
% positive_imp_inverse_positive
thf(fact_7972_negative__imp__inverse__negative,axiom,
! [A: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).
% negative_imp_inverse_negative
thf(fact_7973_negative__imp__inverse__negative,axiom,
! [A: rat] :
( ( ord_less_rat @ A @ zero_zero_rat )
=> ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat ) ) ).
% negative_imp_inverse_negative
thf(fact_7974_inverse__positive__imp__positive,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
=> ( ( A != zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ).
% inverse_positive_imp_positive
thf(fact_7975_inverse__positive__imp__positive,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ ( inverse_inverse_rat @ A ) )
=> ( ( A != zero_zero_rat )
=> ( ord_less_rat @ zero_zero_rat @ A ) ) ) ).
% inverse_positive_imp_positive
thf(fact_7976_inverse__negative__imp__negative,axiom,
! [A: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
=> ( ( A != zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% inverse_negative_imp_negative
thf(fact_7977_inverse__negative__imp__negative,axiom,
! [A: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ zero_zero_rat )
=> ( ( A != zero_zero_rat )
=> ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% inverse_negative_imp_negative
thf(fact_7978_less__imp__inverse__less__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% less_imp_inverse_less_neg
thf(fact_7979_less__imp__inverse__less__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% less_imp_inverse_less_neg
thf(fact_7980_inverse__less__imp__less__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ).
% inverse_less_imp_less_neg
thf(fact_7981_inverse__less__imp__less__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_rat @ B @ A ) ) ) ).
% inverse_less_imp_less_neg
thf(fact_7982_less__imp__inverse__less,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% less_imp_inverse_less
thf(fact_7983_less__imp__inverse__less,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% less_imp_inverse_less
thf(fact_7984_inverse__less__imp__less,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ B @ A ) ) ) ).
% inverse_less_imp_less
thf(fact_7985_inverse__less__imp__less,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_rat @ B @ A ) ) ) ).
% inverse_less_imp_less
thf(fact_7986_nonzero__inverse__mult__distrib,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
= ( times_times_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_7987_nonzero__inverse__mult__distrib,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
= ( times_times_complex @ ( invers8013647133539491842omplex @ B ) @ ( invers8013647133539491842omplex @ A ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_7988_nonzero__inverse__mult__distrib,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
= ( times_times_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ) ).
% nonzero_inverse_mult_distrib
thf(fact_7989_bit__Suc__0__iff,axiom,
! [N: nat] :
( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N )
= ( N = zero_zero_nat ) ) ).
% bit_Suc_0_iff
thf(fact_7990_not__bit__Suc__0__Suc,axiom,
! [N: nat] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N ) ) ).
% not_bit_Suc_0_Suc
thf(fact_7991_nonzero__inverse__minus__eq,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
= ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_7992_nonzero__inverse__minus__eq,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ ( uminus1482373934393186551omplex @ A ) )
= ( uminus1482373934393186551omplex @ ( invers8013647133539491842omplex @ A ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_7993_nonzero__inverse__minus__eq,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ ( uminus_uminus_rat @ A ) )
= ( uminus_uminus_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).
% nonzero_inverse_minus_eq
thf(fact_7994_inverse__numeral__1,axiom,
( ( inverse_inverse_real @ ( numeral_numeral_real @ one ) )
= ( numeral_numeral_real @ one ) ) ).
% inverse_numeral_1
thf(fact_7995_inverse__numeral__1,axiom,
( ( invers8013647133539491842omplex @ ( numera6690914467698888265omplex @ one ) )
= ( numera6690914467698888265omplex @ one ) ) ).
% inverse_numeral_1
thf(fact_7996_inverse__numeral__1,axiom,
( ( inverse_inverse_rat @ ( numeral_numeral_rat @ one ) )
= ( numeral_numeral_rat @ one ) ) ).
% inverse_numeral_1
thf(fact_7997_inverse__unique,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= one_one_real )
=> ( ( inverse_inverse_real @ A )
= B ) ) ).
% inverse_unique
thf(fact_7998_inverse__unique,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= one_one_complex )
=> ( ( invers8013647133539491842omplex @ A )
= B ) ) ).
% inverse_unique
thf(fact_7999_inverse__unique,axiom,
! [A: rat,B: rat] :
( ( ( times_times_rat @ A @ B )
= one_one_rat )
=> ( ( inverse_inverse_rat @ A )
= B ) ) ).
% inverse_unique
thf(fact_8000_divide__inverse__commute,axiom,
( divide_divide_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ ( inverse_inverse_real @ B2 ) @ A3 ) ) ) ).
% divide_inverse_commute
thf(fact_8001_divide__inverse__commute,axiom,
( divide1717551699836669952omplex
= ( ^ [A3: complex,B2: complex] : ( times_times_complex @ ( invers8013647133539491842omplex @ B2 ) @ A3 ) ) ) ).
% divide_inverse_commute
thf(fact_8002_divide__inverse__commute,axiom,
( divide_divide_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ ( inverse_inverse_rat @ B2 ) @ A3 ) ) ) ).
% divide_inverse_commute
thf(fact_8003_divide__inverse,axiom,
( divide_divide_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B2 ) ) ) ) ).
% divide_inverse
thf(fact_8004_divide__inverse,axiom,
( divide1717551699836669952omplex
= ( ^ [A3: complex,B2: complex] : ( times_times_complex @ A3 @ ( invers8013647133539491842omplex @ B2 ) ) ) ) ).
% divide_inverse
thf(fact_8005_divide__inverse,axiom,
( divide_divide_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ A3 @ ( inverse_inverse_rat @ B2 ) ) ) ) ).
% divide_inverse
thf(fact_8006_field__class_Ofield__divide__inverse,axiom,
( divide_divide_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ A3 @ ( inverse_inverse_real @ B2 ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_8007_field__class_Ofield__divide__inverse,axiom,
( divide1717551699836669952omplex
= ( ^ [A3: complex,B2: complex] : ( times_times_complex @ A3 @ ( invers8013647133539491842omplex @ B2 ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_8008_field__class_Ofield__divide__inverse,axiom,
( divide_divide_rat
= ( ^ [A3: rat,B2: rat] : ( times_times_rat @ A3 @ ( inverse_inverse_rat @ B2 ) ) ) ) ).
% field_class.field_divide_inverse
thf(fact_8009_inverse__eq__divide,axiom,
( inverse_inverse_real
= ( divide_divide_real @ one_one_real ) ) ).
% inverse_eq_divide
thf(fact_8010_inverse__eq__divide,axiom,
( invers8013647133539491842omplex
= ( divide1717551699836669952omplex @ one_one_complex ) ) ).
% inverse_eq_divide
thf(fact_8011_inverse__eq__divide,axiom,
( inverse_inverse_rat
= ( divide_divide_rat @ one_one_rat ) ) ).
% inverse_eq_divide
thf(fact_8012_power__mult__inverse__distrib,axiom,
! [X: real,M: nat] :
( ( times_times_real @ ( power_power_real @ X @ M ) @ ( inverse_inverse_real @ X ) )
= ( times_times_real @ ( inverse_inverse_real @ X ) @ ( power_power_real @ X @ M ) ) ) ).
% power_mult_inverse_distrib
thf(fact_8013_power__mult__inverse__distrib,axiom,
! [X: complex,M: nat] :
( ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( invers8013647133539491842omplex @ X ) )
= ( times_times_complex @ ( invers8013647133539491842omplex @ X ) @ ( power_power_complex @ X @ M ) ) ) ).
% power_mult_inverse_distrib
thf(fact_8014_power__mult__inverse__distrib,axiom,
! [X: rat,M: nat] :
( ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( inverse_inverse_rat @ X ) )
= ( times_times_rat @ ( inverse_inverse_rat @ X ) @ ( power_power_rat @ X @ M ) ) ) ).
% power_mult_inverse_distrib
thf(fact_8015_power__mult__power__inverse__commute,axiom,
! [X: real,M: nat,N: nat] :
( ( times_times_real @ ( power_power_real @ X @ M ) @ ( power_power_real @ ( inverse_inverse_real @ X ) @ N ) )
= ( times_times_real @ ( power_power_real @ ( inverse_inverse_real @ X ) @ N ) @ ( power_power_real @ X @ M ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_8016_power__mult__power__inverse__commute,axiom,
! [X: complex,M: nat,N: nat] :
( ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ N ) )
= ( times_times_complex @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ N ) @ ( power_power_complex @ X @ M ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_8017_power__mult__power__inverse__commute,axiom,
! [X: rat,M: nat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ N ) )
= ( times_times_rat @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ N ) @ ( power_power_rat @ X @ M ) ) ) ).
% power_mult_power_inverse_commute
thf(fact_8018_mult__inverse__of__nat__commute,axiom,
! [Xa: nat,X: real] :
( ( times_times_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) @ X )
= ( times_times_real @ X @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_8019_mult__inverse__of__nat__commute,axiom,
! [Xa: nat,X: complex] :
( ( times_times_complex @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa ) ) @ X )
= ( times_times_complex @ X @ ( invers8013647133539491842omplex @ ( semiri8010041392384452111omplex @ Xa ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_8020_mult__inverse__of__nat__commute,axiom,
! [Xa: nat,X: rat] :
( ( times_times_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa ) ) @ X )
= ( times_times_rat @ X @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ Xa ) ) ) ) ).
% mult_inverse_of_nat_commute
thf(fact_8021_nonzero__abs__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( abs_abs_real @ ( inverse_inverse_real @ A ) )
= ( inverse_inverse_real @ ( abs_abs_real @ A ) ) ) ) ).
% nonzero_abs_inverse
thf(fact_8022_nonzero__abs__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( abs_abs_rat @ ( inverse_inverse_rat @ A ) )
= ( inverse_inverse_rat @ ( abs_abs_rat @ A ) ) ) ) ).
% nonzero_abs_inverse
thf(fact_8023_mult__inverse__of__int__commute,axiom,
! [Xa: int,X: real] :
( ( times_times_real @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa ) ) @ X )
= ( times_times_real @ X @ ( inverse_inverse_real @ ( ring_1_of_int_real @ Xa ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_8024_mult__inverse__of__int__commute,axiom,
! [Xa: int,X: complex] :
( ( times_times_complex @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa ) ) @ X )
= ( times_times_complex @ X @ ( invers8013647133539491842omplex @ ( ring_17405671764205052669omplex @ Xa ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_8025_mult__inverse__of__int__commute,axiom,
! [Xa: int,X: rat] :
( ( times_times_rat @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa ) ) @ X )
= ( times_times_rat @ X @ ( inverse_inverse_rat @ ( ring_1_of_int_rat @ Xa ) ) ) ) ).
% mult_inverse_of_int_commute
thf(fact_8026_divide__real__def,axiom,
( divide_divide_real
= ( ^ [X3: real,Y6: real] : ( times_times_real @ X3 @ ( inverse_inverse_real @ Y6 ) ) ) ) ).
% divide_real_def
thf(fact_8027_Ints__double__eq__0__iff,axiom,
! [A: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( ( plus_plus_complex @ A @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_8028_Ints__double__eq__0__iff,axiom,
! [A: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_8029_Ints__double__eq__0__iff,axiom,
! [A: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ( ( plus_plus_rat @ A @ A )
= zero_zero_rat )
= ( A = zero_zero_rat ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_8030_Ints__double__eq__0__iff,axiom,
! [A: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_8031_binomial__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) )
= ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K ) ) ).
% binomial_gbinomial
thf(fact_8032_binomial__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).
% binomial_gbinomial
thf(fact_8033_binomial__gbinomial,axiom,
! [N: nat,K: nat] :
( ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) )
= ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K ) ) ).
% binomial_gbinomial
thf(fact_8034_le__imp__inverse__le__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% le_imp_inverse_le_neg
thf(fact_8035_le__imp__inverse__le__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% le_imp_inverse_le_neg
thf(fact_8036_inverse__le__imp__le__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ).
% inverse_le_imp_le_neg
thf(fact_8037_inverse__le__imp__le__neg,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ B @ zero_zero_rat )
=> ( ord_less_eq_rat @ B @ A ) ) ) ).
% inverse_le_imp_le_neg
thf(fact_8038_le__imp__inverse__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).
% le_imp_inverse_le
thf(fact_8039_le__imp__inverse__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ ( inverse_inverse_rat @ B ) @ ( inverse_inverse_rat @ A ) ) ) ) ).
% le_imp_inverse_le
thf(fact_8040_inverse__le__imp__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ B @ A ) ) ) ).
% inverse_le_imp_le
thf(fact_8041_inverse__le__imp__le,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
=> ( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ord_less_eq_rat @ B @ A ) ) ) ).
% inverse_le_imp_le
thf(fact_8042_inverse__le__1__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ X ) @ one_one_real )
= ( ( ord_less_eq_real @ X @ zero_zero_real )
| ( ord_less_eq_real @ one_one_real @ X ) ) ) ).
% inverse_le_1_iff
thf(fact_8043_inverse__le__1__iff,axiom,
! [X: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ X ) @ one_one_rat )
= ( ( ord_less_eq_rat @ X @ zero_zero_rat )
| ( ord_less_eq_rat @ one_one_rat @ X ) ) ) ).
% inverse_le_1_iff
thf(fact_8044_one__less__inverse__iff,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ X ) )
= ( ( ord_less_real @ zero_zero_real @ X )
& ( ord_less_real @ X @ one_one_real ) ) ) ).
% one_less_inverse_iff
thf(fact_8045_one__less__inverse__iff,axiom,
! [X: rat] :
( ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ X ) )
= ( ( ord_less_rat @ zero_zero_rat @ X )
& ( ord_less_rat @ X @ one_one_rat ) ) ) ).
% one_less_inverse_iff
thf(fact_8046_one__less__inverse,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).
% one_less_inverse
thf(fact_8047_one__less__inverse,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_rat @ A @ one_one_rat )
=> ( ord_less_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).
% one_less_inverse
thf(fact_8048_division__ring__inverse__add,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( plus_plus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_8049_division__ring__inverse__add,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( plus_plus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_8050_division__ring__inverse__add,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( plus_plus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).
% division_ring_inverse_add
thf(fact_8051_inverse__add,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( plus_plus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( times_times_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( inverse_inverse_real @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).
% inverse_add
thf(fact_8052_inverse__add,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( plus_plus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( times_times_complex @ ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( invers8013647133539491842omplex @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).
% inverse_add
thf(fact_8053_inverse__add,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( plus_plus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( times_times_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( inverse_inverse_rat @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).
% inverse_add
thf(fact_8054_field__class_Ofield__inverse,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( times_times_real @ ( inverse_inverse_real @ A ) @ A )
= one_one_real ) ) ).
% field_class.field_inverse
thf(fact_8055_field__class_Ofield__inverse,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ A )
= one_one_complex ) ) ).
% field_class.field_inverse
thf(fact_8056_field__class_Ofield__inverse,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( times_times_rat @ ( inverse_inverse_rat @ A ) @ A )
= one_one_rat ) ) ).
% field_class.field_inverse
thf(fact_8057_division__ring__inverse__diff,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ B @ A ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_8058_division__ring__inverse__diff,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ B @ A ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_8059_division__ring__inverse__diff,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ B @ A ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ).
% division_ring_inverse_diff
thf(fact_8060_not__bit__Suc__0__numeral,axiom,
! [N: num] :
~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N ) ) ).
% not_bit_Suc_0_numeral
thf(fact_8061_nonzero__inverse__eq__divide,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( inverse_inverse_real @ A )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_8062_nonzero__inverse__eq__divide,axiom,
! [A: complex] :
( ( A != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ A )
= ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_8063_nonzero__inverse__eq__divide,axiom,
! [A: rat] :
( ( A != zero_zero_rat )
=> ( ( inverse_inverse_rat @ A )
= ( divide_divide_rat @ one_one_rat @ A ) ) ) ).
% nonzero_inverse_eq_divide
thf(fact_8064_gbinomial__Suc__Suc,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8065_gbinomial__Suc__Suc,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8066_gbinomial__Suc__Suc,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ).
% gbinomial_Suc_Suc
thf(fact_8067_gbinomial__of__nat__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K )
= ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_8068_gbinomial__of__nat__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K )
= ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_8069_gbinomial__of__nat__symmetric,axiom,
! [K: nat,N: nat] :
( ( ord_less_eq_nat @ K @ N )
=> ( ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K )
= ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).
% gbinomial_of_nat_symmetric
thf(fact_8070_inverse__powr,axiom,
! [Y4: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( powr_real @ ( inverse_inverse_real @ Y4 ) @ A )
= ( inverse_inverse_real @ ( powr_real @ Y4 @ A ) ) ) ) ).
% inverse_powr
thf(fact_8071_Ints__odd__nonzero,axiom,
! [A: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( plus_plus_complex @ ( plus_plus_complex @ one_one_complex @ A ) @ A )
!= zero_zero_complex ) ) ).
% Ints_odd_nonzero
thf(fact_8072_Ints__odd__nonzero,axiom,
! [A: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( plus_plus_real @ ( plus_plus_real @ one_one_real @ A ) @ A )
!= zero_zero_real ) ) ).
% Ints_odd_nonzero
thf(fact_8073_Ints__odd__nonzero,axiom,
! [A: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ( plus_plus_rat @ ( plus_plus_rat @ one_one_rat @ A ) @ A )
!= zero_zero_rat ) ) ).
% Ints_odd_nonzero
thf(fact_8074_Ints__odd__nonzero,axiom,
! [A: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ A ) @ A )
!= zero_zero_int ) ) ).
% Ints_odd_nonzero
thf(fact_8075_of__int__divide__in__Ints,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( member_complex @ ( divide1717551699836669952omplex @ ( ring_17405671764205052669omplex @ A ) @ ( ring_17405671764205052669omplex @ B ) ) @ ring_1_Ints_complex ) ) ).
% of_int_divide_in_Ints
thf(fact_8076_of__int__divide__in__Ints,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( member_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) @ ring_1_Ints_real ) ) ).
% of_int_divide_in_Ints
thf(fact_8077_of__int__divide__in__Ints,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( member_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) @ ring_1_Ints_rat ) ) ).
% of_int_divide_in_Ints
thf(fact_8078_of__int__divide__in__Ints,axiom,
! [B: int,A: int] :
( ( dvd_dvd_int @ B @ A )
=> ( member_int @ ( divide_divide_int @ ( ring_1_of_int_int @ A ) @ ( ring_1_of_int_int @ B ) ) @ ring_1_Ints_int ) ) ).
% of_int_divide_in_Ints
thf(fact_8079_inverse__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ B @ A ) )
& ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
=> ( ord_less_eq_real @ A @ B ) ) ) ) ).
% inverse_le_iff
thf(fact_8080_inverse__le__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_eq_rat @ B @ A ) )
& ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
=> ( ord_less_eq_rat @ A @ B ) ) ) ) ).
% inverse_le_iff
thf(fact_8081_inverse__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ B @ A ) )
& ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
=> ( ord_less_real @ A @ B ) ) ) ) ).
% inverse_less_iff
thf(fact_8082_inverse__less__iff,axiom,
! [A: rat,B: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
=> ( ord_less_rat @ B @ A ) )
& ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
=> ( ord_less_rat @ A @ B ) ) ) ) ).
% inverse_less_iff
thf(fact_8083_one__le__inverse__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ X ) )
= ( ( ord_less_real @ zero_zero_real @ X )
& ( ord_less_eq_real @ X @ one_one_real ) ) ) ).
% one_le_inverse_iff
thf(fact_8084_one__le__inverse__iff,axiom,
! [X: rat] :
( ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ X ) )
= ( ( ord_less_rat @ zero_zero_rat @ X )
& ( ord_less_eq_rat @ X @ one_one_rat ) ) ) ).
% one_le_inverse_iff
thf(fact_8085_inverse__less__1__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( inverse_inverse_real @ X ) @ one_one_real )
= ( ( ord_less_eq_real @ X @ zero_zero_real )
| ( ord_less_real @ one_one_real @ X ) ) ) ).
% inverse_less_1_iff
thf(fact_8086_inverse__less__1__iff,axiom,
! [X: rat] :
( ( ord_less_rat @ ( inverse_inverse_rat @ X ) @ one_one_rat )
= ( ( ord_less_eq_rat @ X @ zero_zero_rat )
| ( ord_less_rat @ one_one_rat @ X ) ) ) ).
% inverse_less_1_iff
thf(fact_8087_one__le__inverse,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ one_one_real @ ( inverse_inverse_real @ A ) ) ) ) ).
% one_le_inverse
thf(fact_8088_one__le__inverse,axiom,
! [A: rat] :
( ( ord_less_rat @ zero_zero_rat @ A )
=> ( ( ord_less_eq_rat @ A @ one_one_rat )
=> ( ord_less_eq_rat @ one_one_rat @ ( inverse_inverse_rat @ A ) ) ) ) ).
% one_le_inverse
thf(fact_8089_inverse__diff__inverse,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( minus_minus_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( inverse_inverse_real @ A ) @ ( minus_minus_real @ A @ B ) ) @ ( inverse_inverse_real @ B ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_8090_inverse__diff__inverse,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( minus_minus_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) )
= ( uminus1482373934393186551omplex @ ( times_times_complex @ ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( minus_minus_complex @ A @ B ) ) @ ( invers8013647133539491842omplex @ B ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_8091_inverse__diff__inverse,axiom,
! [A: rat,B: rat] :
( ( A != zero_zero_rat )
=> ( ( B != zero_zero_rat )
=> ( ( minus_minus_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) )
= ( uminus_uminus_rat @ ( times_times_rat @ ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( minus_minus_rat @ A @ B ) ) @ ( inverse_inverse_rat @ B ) ) ) ) ) ) ).
% inverse_diff_inverse
thf(fact_8092_reals__Archimedean,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [N2: nat] : ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ X ) ) ).
% reals_Archimedean
thf(fact_8093_reals__Archimedean,axiom,
! [X: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ? [N2: nat] : ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) ) @ X ) ) ).
% reals_Archimedean
thf(fact_8094_gbinomial__addition__formula,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ A @ ( suc @ K ) )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8095_gbinomial__addition__formula,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ A @ ( suc @ K ) )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8096_gbinomial__addition__formula,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ A @ ( suc @ K ) )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_addition_formula
thf(fact_8097_gbinomial__absorb__comp,axiom,
! [A: complex,K: nat] :
( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ A @ K ) )
= ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_8098_gbinomial__absorb__comp,axiom,
! [A: real,K: nat] :
( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ A @ K ) )
= ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_8099_gbinomial__absorb__comp,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ A @ K ) )
= ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_absorb_comp
thf(fact_8100_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: rat] :
( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
=> ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_8101_gbinomial__ge__n__over__k__pow__k,axiom,
! [K: nat,A: real] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
=> ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_ge_n_over_k_pow_k
thf(fact_8102_gbinomial__mult__1_H,axiom,
! [A: complex,K: nat] :
( ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ A )
= ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_8103_gbinomial__mult__1_H,axiom,
! [A: real,K: nat] :
( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_8104_gbinomial__mult__1_H,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1'
thf(fact_8105_gbinomial__mult__1,axiom,
! [A: complex,K: nat] :
( ( times_times_complex @ A @ ( gbinomial_complex @ A @ K ) )
= ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_8106_gbinomial__mult__1,axiom,
! [A: real,K: nat] :
( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
= ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_8107_gbinomial__mult__1,axiom,
! [A: rat,K: nat] :
( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
= ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).
% gbinomial_mult_1
thf(fact_8108_forall__pos__mono__1,axiom,
! [P: real > $o,E2: real] :
( ! [D2: real,E: real] :
( ( ord_less_real @ D2 @ E )
=> ( ( P @ D2 )
=> ( P @ E ) ) )
=> ( ! [N2: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono_1
thf(fact_8109_real__arch__inverse,axiom,
! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
= ( ? [N4: nat] :
( ( N4 != zero_zero_nat )
& ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N4 ) ) )
& ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N4 ) ) @ E2 ) ) ) ) ).
% real_arch_inverse
thf(fact_8110_forall__pos__mono,axiom,
! [P: real > $o,E2: real] :
( ! [D2: real,E: real] :
( ( ord_less_real @ D2 @ E )
=> ( ( P @ D2 )
=> ( P @ E ) ) )
=> ( ! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ( P @ E2 ) ) ) ) ).
% forall_pos_mono
thf(fact_8111_bit__nat__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_nat_iff
thf(fact_8112_even__xor__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3222712562003087583nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_xor_iff
thf(fact_8113_even__xor__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_xor_iff
thf(fact_8114_even__xor__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_xor_iff
thf(fact_8115_sqrt__divide__self__eq,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( divide_divide_real @ ( sqrt @ X ) @ X )
= ( inverse_inverse_real @ ( sqrt @ X ) ) ) ) ).
% sqrt_divide_self_eq
thf(fact_8116_ln__inverse,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ln_ln_real @ ( inverse_inverse_real @ X ) )
= ( uminus_uminus_real @ ( ln_ln_real @ X ) ) ) ) ).
% ln_inverse
thf(fact_8117_Ints__odd__less__0,axiom,
! [A: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( ord_less_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ A ) @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ) ).
% Ints_odd_less_0
thf(fact_8118_Ints__odd__less__0,axiom,
! [A: rat] :
( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ( ord_less_rat @ ( plus_plus_rat @ ( plus_plus_rat @ one_one_rat @ A ) @ A ) @ zero_zero_rat )
= ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).
% Ints_odd_less_0
thf(fact_8119_Ints__odd__less__0,axiom,
! [A: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ A ) @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% Ints_odd_less_0
thf(fact_8120_Ints__nonzero__abs__ge1,axiom,
! [X: code_integer] :
( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
=> ( ( X != zero_z3403309356797280102nteger )
=> ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ) ).
% Ints_nonzero_abs_ge1
thf(fact_8121_Ints__nonzero__abs__ge1,axiom,
! [X: rat] :
( ( member_rat @ X @ ring_1_Ints_rat )
=> ( ( X != zero_zero_rat )
=> ( ord_less_eq_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ) ).
% Ints_nonzero_abs_ge1
thf(fact_8122_Ints__nonzero__abs__ge1,axiom,
! [X: int] :
( ( member_int @ X @ ring_1_Ints_int )
=> ( ( X != zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ) ).
% Ints_nonzero_abs_ge1
thf(fact_8123_Ints__nonzero__abs__ge1,axiom,
! [X: real] :
( ( member_real @ X @ ring_1_Ints_real )
=> ( ( X != zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ) ).
% Ints_nonzero_abs_ge1
thf(fact_8124_Ints__nonzero__abs__less1,axiom,
! [X: code_integer] :
( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
=> ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer )
=> ( X = zero_z3403309356797280102nteger ) ) ) ).
% Ints_nonzero_abs_less1
thf(fact_8125_Ints__nonzero__abs__less1,axiom,
! [X: real] :
( ( member_real @ X @ ring_1_Ints_real )
=> ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( X = zero_zero_real ) ) ) ).
% Ints_nonzero_abs_less1
thf(fact_8126_Ints__nonzero__abs__less1,axiom,
! [X: rat] :
( ( member_rat @ X @ ring_1_Ints_rat )
=> ( ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat )
=> ( X = zero_zero_rat ) ) ) ).
% Ints_nonzero_abs_less1
thf(fact_8127_Ints__nonzero__abs__less1,axiom,
! [X: int] :
( ( member_int @ X @ ring_1_Ints_int )
=> ( ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int )
=> ( X = zero_zero_int ) ) ) ).
% Ints_nonzero_abs_less1
thf(fact_8128_Ints__eq__abs__less1,axiom,
! [X: code_integer,Y4: code_integer] :
( ( member_Code_integer @ X @ ring_11222124179247155820nteger )
=> ( ( member_Code_integer @ Y4 @ ring_11222124179247155820nteger )
=> ( ( X = Y4 )
= ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ Y4 ) ) @ one_one_Code_integer ) ) ) ) ).
% Ints_eq_abs_less1
thf(fact_8129_Ints__eq__abs__less1,axiom,
! [X: real,Y4: real] :
( ( member_real @ X @ ring_1_Ints_real )
=> ( ( member_real @ Y4 @ ring_1_Ints_real )
=> ( ( X = Y4 )
= ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y4 ) ) @ one_one_real ) ) ) ) ).
% Ints_eq_abs_less1
thf(fact_8130_Ints__eq__abs__less1,axiom,
! [X: rat,Y4: rat] :
( ( member_rat @ X @ ring_1_Ints_rat )
=> ( ( member_rat @ Y4 @ ring_1_Ints_rat )
=> ( ( X = Y4 )
= ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ Y4 ) ) @ one_one_rat ) ) ) ) ).
% Ints_eq_abs_less1
thf(fact_8131_Ints__eq__abs__less1,axiom,
! [X: int,Y4: int] :
( ( member_int @ X @ ring_1_Ints_int )
=> ( ( member_int @ Y4 @ ring_1_Ints_int )
=> ( ( X = Y4 )
= ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Y4 ) ) @ one_one_int ) ) ) ) ).
% Ints_eq_abs_less1
thf(fact_8132_sin__times__pi__eq__0,axiom,
! [X: real] :
( ( ( sin_real @ ( times_times_real @ X @ pi ) )
= zero_zero_real )
= ( member_real @ X @ ring_1_Ints_real ) ) ).
% sin_times_pi_eq_0
thf(fact_8133_ex__inverse__of__nat__less,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ X ) ) ) ).
% ex_inverse_of_nat_less
thf(fact_8134_ex__inverse__of__nat__less,axiom,
! [X: rat] :
( ( ord_less_rat @ zero_zero_rat @ X )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( ord_less_rat @ ( inverse_inverse_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ X ) ) ) ).
% ex_inverse_of_nat_less
thf(fact_8135_power__diff__conv__inverse,axiom,
! [X: real,M: nat,N: nat] :
( ( X != zero_zero_real )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( power_power_real @ X @ ( minus_minus_nat @ N @ M ) )
= ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ ( inverse_inverse_real @ X ) @ M ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_8136_power__diff__conv__inverse,axiom,
! [X: complex,M: nat,N: nat] :
( ( X != zero_zero_complex )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( power_power_complex @ X @ ( minus_minus_nat @ N @ M ) )
= ( times_times_complex @ ( power_power_complex @ X @ N ) @ ( power_power_complex @ ( invers8013647133539491842omplex @ X ) @ M ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_8137_power__diff__conv__inverse,axiom,
! [X: rat,M: nat,N: nat] :
( ( X != zero_zero_rat )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ( power_power_rat @ X @ ( minus_minus_nat @ N @ M ) )
= ( times_times_rat @ ( power_power_rat @ X @ N ) @ ( power_power_rat @ ( inverse_inverse_rat @ X ) @ M ) ) ) ) ) ).
% power_diff_conv_inverse
thf(fact_8138_Suc__times__gbinomial,axiom,
! [K: nat,A: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
= ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8139_Suc__times__gbinomial,axiom,
! [K: nat,A: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
= ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8140_Suc__times__gbinomial,axiom,
! [K: nat,A: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
= ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% Suc_times_gbinomial
thf(fact_8141_gbinomial__absorption,axiom,
! [K: nat,A: complex] :
( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) )
= ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8142_gbinomial__absorption,axiom,
! [K: nat,A: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) )
= ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8143_gbinomial__absorption,axiom,
! [K: nat,A: rat] :
( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) )
= ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).
% gbinomial_absorption
thf(fact_8144_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: complex] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_complex @ ( gbinomial_complex @ A @ M ) @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ M ) @ K ) )
= ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8145_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: real] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8146_gbinomial__trinomial__revision,axiom,
! [K: nat,M: nat,A: rat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).
% gbinomial_trinomial_revision
thf(fact_8147_log__inverse,axiom,
! [A: real,X: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( A != one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( log @ A @ ( inverse_inverse_real @ X ) )
= ( uminus_uminus_real @ ( log @ A @ X ) ) ) ) ) ) ).
% log_inverse
thf(fact_8148_frac__neg,axiom,
! [X: real] :
( ( ( member_real @ X @ ring_1_Ints_real )
=> ( ( archim2898591450579166408c_real @ ( uminus_uminus_real @ X ) )
= zero_zero_real ) )
& ( ~ ( member_real @ X @ ring_1_Ints_real )
=> ( ( archim2898591450579166408c_real @ ( uminus_uminus_real @ X ) )
= ( minus_minus_real @ one_one_real @ ( archim2898591450579166408c_real @ X ) ) ) ) ) ).
% frac_neg
thf(fact_8149_frac__neg,axiom,
! [X: rat] :
( ( ( member_rat @ X @ ring_1_Ints_rat )
=> ( ( archimedean_frac_rat @ ( uminus_uminus_rat @ X ) )
= zero_zero_rat ) )
& ( ~ ( member_rat @ X @ ring_1_Ints_rat )
=> ( ( archimedean_frac_rat @ ( uminus_uminus_rat @ X ) )
= ( minus_minus_rat @ one_one_rat @ ( archimedean_frac_rat @ X ) ) ) ) ) ).
% frac_neg
thf(fact_8150_bit__nat__def,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [M5: nat,N4: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ).
% bit_nat_def
thf(fact_8151_gbinomial__factors,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8152_gbinomial__factors,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8153_gbinomial__factors,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).
% gbinomial_factors
thf(fact_8154_gbinomial__rec,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
= ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8155_gbinomial__rec,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
= ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8156_gbinomial__rec,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
= ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).
% gbinomial_rec
thf(fact_8157_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ K ) )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8158_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ K ) )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8159_gbinomial__index__swap,axiom,
! [K: nat,N: nat] :
( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ K ) )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ N ) ) ) ).
% gbinomial_index_swap
thf(fact_8160_gbinomial__negated__upper,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K3: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ K3 ) @ A3 ) @ one_one_complex ) @ K3 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8161_gbinomial__negated__upper,axiom,
( gbinomial_real
= ( ^ [A3: real,K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( gbinomial_real @ ( minus_minus_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ K3 ) @ A3 ) @ one_one_real ) @ K3 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8162_gbinomial__negated__upper,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K3: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A3 ) @ one_one_rat ) @ K3 ) ) ) ) ).
% gbinomial_negated_upper
thf(fact_8163_exp__plus__inverse__exp,axiom,
! [X: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) ) ).
% exp_plus_inverse_exp
thf(fact_8164_le__mult__floor__Ints,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( member_real @ A @ ring_1_Ints_real )
=> ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_rat @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_8165_le__mult__floor__Ints,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( member_real @ A @ ring_1_Ints_real )
=> ( ord_less_eq_int @ ( ring_1_of_int_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_int @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_8166_le__mult__floor__Ints,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( member_real @ A @ ring_1_Ints_real )
=> ( ord_less_eq_real @ ( ring_1_of_int_real @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_8167_le__mult__floor__Ints,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_8168_le__mult__floor__Ints,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ord_less_eq_int @ ( ring_1_of_int_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_int @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_8169_le__mult__floor__Ints,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ord_less_eq_real @ ( ring_1_of_int_real @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( ring_1_of_int_real @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ) ).
% le_mult_floor_Ints
thf(fact_8170_frac__unique__iff,axiom,
! [X: rat,A: rat] :
( ( ( archimedean_frac_rat @ X )
= A )
= ( ( member_rat @ ( minus_minus_rat @ X @ A ) @ ring_1_Ints_rat )
& ( ord_less_eq_rat @ zero_zero_rat @ A )
& ( ord_less_rat @ A @ one_one_rat ) ) ) ).
% frac_unique_iff
thf(fact_8171_frac__unique__iff,axiom,
! [X: real,A: real] :
( ( ( archim2898591450579166408c_real @ X )
= A )
= ( ( member_real @ ( minus_minus_real @ X @ A ) @ ring_1_Ints_real )
& ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ one_one_real ) ) ) ).
% frac_unique_iff
thf(fact_8172_mult__ceiling__le__Ints,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_8173_mult__ceiling__le__Ints,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ord_less_eq_int @ ( ring_1_of_int_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_int @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_8174_mult__ceiling__le__Ints,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ zero_zero_rat @ A )
=> ( ( member_rat @ A @ ring_1_Ints_rat )
=> ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) ) @ ( ring_1_of_int_real @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_8175_mult__ceiling__le__Ints,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( member_real @ A @ ring_1_Ints_real )
=> ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_rat @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_8176_mult__ceiling__le__Ints,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( member_real @ A @ ring_1_Ints_real )
=> ( ord_less_eq_int @ ( ring_1_of_int_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_int @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_8177_mult__ceiling__le__Ints,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( member_real @ A @ ring_1_Ints_real )
=> ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) ) @ ( ring_1_of_int_real @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ) ).
% mult_ceiling_le_Ints
thf(fact_8178_gbinomial__minus,axiom,
! [A: complex,K: nat] :
( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K )
= ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8179_gbinomial__minus,axiom,
! [A: real,K: nat] :
( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8180_gbinomial__minus,axiom,
! [A: rat,K: nat] :
( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K )
= ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).
% gbinomial_minus
thf(fact_8181_plus__inverse__ge__2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) ) ) ).
% plus_inverse_ge_2
thf(fact_8182_real__inv__sqrt__pow2,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( inverse_inverse_real @ X ) ) ) ).
% real_inv_sqrt_pow2
thf(fact_8183_gbinomial__reduce__nat,axiom,
! [K: nat,A: complex] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_complex @ A @ K )
= ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8184_gbinomial__reduce__nat,axiom,
! [K: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_real @ A @ K )
= ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8185_gbinomial__reduce__nat,axiom,
! [K: nat,A: rat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( gbinomial_rat @ A @ K )
= ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ) ).
% gbinomial_reduce_nat
thf(fact_8186_gbinomial__pochhammer,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ A3 ) @ K3 ) ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_8187_gbinomial__pochhammer,axiom,
( gbinomial_real
= ( ^ [A3: real,K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ A3 ) @ K3 ) ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_8188_gbinomial__pochhammer,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ A3 ) @ K3 ) ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).
% gbinomial_pochhammer
thf(fact_8189_gbinomial__pochhammer_H,axiom,
( gbinomial_rat
= ( ^ [A3: rat,K3: nat] : ( divide_divide_rat @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ A3 @ ( semiri681578069525770553at_rat @ K3 ) ) @ one_one_rat ) @ K3 ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_8190_gbinomial__pochhammer_H,axiom,
( gbinomial_real
= ( ^ [A3: real,K3: nat] : ( divide_divide_real @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ A3 @ ( semiri5074537144036343181t_real @ K3 ) ) @ one_one_real ) @ K3 ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_8191_gbinomial__pochhammer_H,axiom,
( gbinomial_complex
= ( ^ [A3: complex,K3: nat] : ( divide1717551699836669952omplex @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ A3 @ ( semiri8010041392384452111omplex @ K3 ) ) @ one_one_complex ) @ K3 ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).
% gbinomial_pochhammer'
thf(fact_8192_tan__cot,axiom,
! [X: real] :
( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
= ( inverse_inverse_real @ ( tan_real @ X ) ) ) ).
% tan_cot
thf(fact_8193_sin__integer__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= zero_zero_real ) ) ).
% sin_integer_2pi
thf(fact_8194_cos__integer__2pi,axiom,
! [N: real] :
( ( member_real @ N @ ring_1_Ints_real )
=> ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
= one_one_real ) ) ).
% cos_integer_2pi
thf(fact_8195_xor__nat__unfold,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M5: nat,N4: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N4 @ ( if_nat @ ( N4 = zero_zero_nat ) @ M5 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% xor_nat_unfold
thf(fact_8196_real__le__x__sinh,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ X @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% real_le_x_sinh
thf(fact_8197_xor__nat__rec,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M5: nat,N4: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% xor_nat_rec
thf(fact_8198_one__xor__eq,axiom,
! [A: code_integer] :
( ( bit_se3222712562003087583nteger @ one_one_Code_integer @ A )
= ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
@ ( zero_n356916108424825756nteger
@ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% one_xor_eq
thf(fact_8199_one__xor__eq,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ one_one_nat @ A )
= ( minus_minus_nat @ ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% one_xor_eq
thf(fact_8200_one__xor__eq,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ one_one_int @ A )
= ( minus_minus_int @ ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% one_xor_eq
thf(fact_8201_xor__one__eq,axiom,
! [A: code_integer] :
( ( bit_se3222712562003087583nteger @ A @ one_one_Code_integer )
= ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) )
@ ( zero_n356916108424825756nteger
@ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% xor_one_eq
thf(fact_8202_xor__one__eq,axiom,
! [A: nat] :
( ( bit_se6528837805403552850or_nat @ A @ one_one_nat )
= ( minus_minus_nat @ ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) )
@ ( zero_n2687167440665602831ol_nat
@ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% xor_one_eq
thf(fact_8203_xor__one__eq,axiom,
! [A: int] :
( ( bit_se6526347334894502574or_int @ A @ one_one_int )
= ( minus_minus_int @ ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) )
@ ( zero_n2684676970156552555ol_int
@ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% xor_one_eq
thf(fact_8204_real__le__abs__sinh,axiom,
! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% real_le_abs_sinh
thf(fact_8205_tan__sec,axiom,
! [X: real] :
( ( ( cos_real @ X )
!= zero_zero_real )
=> ( ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( inverse_inverse_real @ ( cos_real @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% tan_sec
thf(fact_8206_tan__sec,axiom,
! [X: complex] :
( ( ( cos_complex @ X )
!= zero_zero_complex )
=> ( ( plus_plus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_complex @ ( invers8013647133539491842omplex @ ( cos_complex @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% tan_sec
thf(fact_8207_sinh__ln__real,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( sinh_real @ ( ln_ln_real @ X ) )
= ( divide_divide_real @ ( minus_minus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% sinh_ln_real
thf(fact_8208_cosh__ln__real,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( cosh_real @ ( ln_ln_real @ X ) )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% cosh_ln_real
thf(fact_8209_horner__sum__of__bool__2__less,axiom,
! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).
% horner_sum_of_bool_2_less
thf(fact_8210_cosh__zero__iff,axiom,
! [X: real] :
( ( ( cosh_real @ X )
= zero_zero_real )
= ( ( power_power_real @ ( exp_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ) ).
% cosh_zero_iff
thf(fact_8211_cosh__zero__iff,axiom,
! [X: complex] :
( ( ( cosh_complex @ X )
= zero_zero_complex )
= ( ( power_power_complex @ ( exp_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).
% cosh_zero_iff
thf(fact_8212_push__bit__numeral__minus__1,axiom,
! [N: num] :
( ( bit_se7788150548672797655nteger @ ( numeral_numeral_nat @ N ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ N ) ) ) ) ).
% push_bit_numeral_minus_1
thf(fact_8213_push__bit__numeral__minus__1,axiom,
! [N: num] :
( ( bit_se545348938243370406it_int @ ( numeral_numeral_nat @ N ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ N ) ) ) ) ).
% push_bit_numeral_minus_1
thf(fact_8214_push__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% push_bit_nonnegative_int_iff
thf(fact_8215_push__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% push_bit_negative_int_iff
thf(fact_8216_push__bit__of__0,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% push_bit_of_0
thf(fact_8217_push__bit__of__0,axiom,
! [N: nat] :
( ( bit_se547839408752420682it_nat @ N @ zero_zero_nat )
= zero_zero_nat ) ).
% push_bit_of_0
thf(fact_8218_push__bit__eq__0__iff,axiom,
! [N: nat,A: int] :
( ( ( bit_se545348938243370406it_int @ N @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% push_bit_eq_0_iff
thf(fact_8219_push__bit__eq__0__iff,axiom,
! [N: nat,A: nat] :
( ( ( bit_se547839408752420682it_nat @ N @ A )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% push_bit_eq_0_iff
thf(fact_8220_sinh__0,axiom,
( ( sinh_complex @ zero_zero_complex )
= zero_zero_complex ) ).
% sinh_0
thf(fact_8221_sinh__0,axiom,
( ( sinh_real @ zero_zero_real )
= zero_zero_real ) ).
% sinh_0
thf(fact_8222_push__bit__push__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_se545348938243370406it_int @ M @ ( bit_se545348938243370406it_int @ N @ A ) )
= ( bit_se545348938243370406it_int @ ( plus_plus_nat @ M @ N ) @ A ) ) ).
% push_bit_push_bit
thf(fact_8223_push__bit__push__bit,axiom,
! [M: nat,N: nat,A: nat] :
( ( bit_se547839408752420682it_nat @ M @ ( bit_se547839408752420682it_nat @ N @ A ) )
= ( bit_se547839408752420682it_nat @ ( plus_plus_nat @ M @ N ) @ A ) ) ).
% push_bit_push_bit
thf(fact_8224_push__bit__and,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se545348938243370406it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
= ( bit_se725231765392027082nd_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).
% push_bit_and
thf(fact_8225_push__bit__and,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
= ( bit_se727722235901077358nd_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).
% push_bit_and
thf(fact_8226_push__bit__xor,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se545348938243370406it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
= ( bit_se6526347334894502574or_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).
% push_bit_xor
thf(fact_8227_push__bit__xor,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
= ( bit_se6528837805403552850or_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).
% push_bit_xor
thf(fact_8228_concat__bit__of__zero__1,axiom,
! [N: nat,L: int] :
( ( bit_concat_bit @ N @ zero_zero_int @ L )
= ( bit_se545348938243370406it_int @ N @ L ) ) ).
% concat_bit_of_zero_1
thf(fact_8229_sinh__real__zero__iff,axiom,
! [X: real] :
( ( ( sinh_real @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ).
% sinh_real_zero_iff
thf(fact_8230_sinh__real__le__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ ( sinh_real @ X ) @ ( sinh_real @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ).
% sinh_real_le_iff
thf(fact_8231_cosh__0,axiom,
( ( cosh_complex @ zero_zero_complex )
= one_one_complex ) ).
% cosh_0
thf(fact_8232_cosh__0,axiom,
( ( cosh_real @ zero_zero_real )
= one_one_real ) ).
% cosh_0
thf(fact_8233_sinh__real__neg__iff,axiom,
! [X: real] :
( ( ord_less_real @ ( sinh_real @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ).
% sinh_real_neg_iff
thf(fact_8234_sinh__real__pos__iff,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ ( sinh_real @ X ) )
= ( ord_less_real @ zero_zero_real @ X ) ) ).
% sinh_real_pos_iff
thf(fact_8235_sinh__real__nonpos__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( sinh_real @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ).
% sinh_real_nonpos_iff
thf(fact_8236_sinh__real__nonneg__iff,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X ) )
= ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% sinh_real_nonneg_iff
thf(fact_8237_xor__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
= ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% xor_nonnegative_int_iff
thf(fact_8238_xor__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
!= ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% xor_negative_int_iff
thf(fact_8239_push__bit__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( bit_se545348938243370406it_int @ ( suc @ N ) @ ( numeral_numeral_int @ K ) )
= ( bit_se545348938243370406it_int @ N @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ).
% push_bit_Suc_numeral
thf(fact_8240_push__bit__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( bit_se547839408752420682it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( bit_se547839408752420682it_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% push_bit_Suc_numeral
thf(fact_8241_push__bit__Suc__minus__numeral,axiom,
! [N: nat,K: num] :
( ( bit_se7788150548672797655nteger @ ( suc @ N ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( bit_se7788150548672797655nteger @ N @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ K ) ) ) ) ) ).
% push_bit_Suc_minus_numeral
thf(fact_8242_push__bit__Suc__minus__numeral,axiom,
! [N: nat,K: num] :
( ( bit_se545348938243370406it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ) ).
% push_bit_Suc_minus_numeral
thf(fact_8243_push__bit__numeral,axiom,
! [L: num,K: num] :
( ( bit_se545348938243370406it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ K ) )
= ( bit_se545348938243370406it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ).
% push_bit_numeral
thf(fact_8244_push__bit__numeral,axiom,
! [L: num,K: num] :
( ( bit_se547839408752420682it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ K ) )
= ( bit_se547839408752420682it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% push_bit_numeral
thf(fact_8245_push__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se545348938243370406it_int @ ( suc @ N ) @ A )
= ( bit_se545348938243370406it_int @ N @ ( times_times_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% push_bit_Suc
thf(fact_8246_push__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se547839408752420682it_nat @ ( suc @ N ) @ A )
= ( bit_se547839408752420682it_nat @ N @ ( times_times_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% push_bit_Suc
thf(fact_8247_push__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% push_bit_of_Suc_0
thf(fact_8248_push__bit__of__1,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ one_one_int )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% push_bit_of_1
thf(fact_8249_push__bit__of__1,axiom,
! [N: nat] :
( ( bit_se547839408752420682it_nat @ N @ one_one_nat )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% push_bit_of_1
thf(fact_8250_even__push__bit__iff,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se7788150548672797655nteger @ N @ A ) )
= ( ( N != zero_zero_nat )
| ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_push_bit_iff
thf(fact_8251_even__push__bit__iff,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se545348938243370406it_int @ N @ A ) )
= ( ( N != zero_zero_nat )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_push_bit_iff
thf(fact_8252_even__push__bit__iff,axiom,
! [N: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se547839408752420682it_nat @ N @ A ) )
= ( ( N != zero_zero_nat )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_push_bit_iff
thf(fact_8253_push__bit__minus__numeral,axiom,
! [L: num,K: num] :
( ( bit_se7788150548672797655nteger @ ( numeral_numeral_nat @ L ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
= ( bit_se7788150548672797655nteger @ ( pred_numeral @ L ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ K ) ) ) ) ) ).
% push_bit_minus_numeral
thf(fact_8254_push__bit__minus__numeral,axiom,
! [L: num,K: num] :
( ( bit_se545348938243370406it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( bit_se545348938243370406it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) ) ) ).
% push_bit_minus_numeral
thf(fact_8255_flip__bit__int__def,axiom,
( bit_se2159334234014336723it_int
= ( ^ [N4: nat,K3: int] : ( bit_se6526347334894502574or_int @ K3 @ ( bit_se545348938243370406it_int @ N4 @ one_one_int ) ) ) ) ).
% flip_bit_int_def
thf(fact_8256_bit__xor__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
!= ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).
% bit_xor_int_iff
thf(fact_8257_sinh__add,axiom,
! [X: real,Y4: real] :
( ( sinh_real @ ( plus_plus_real @ X @ Y4 ) )
= ( plus_plus_real @ ( times_times_real @ ( sinh_real @ X ) @ ( cosh_real @ Y4 ) ) @ ( times_times_real @ ( cosh_real @ X ) @ ( sinh_real @ Y4 ) ) ) ) ).
% sinh_add
thf(fact_8258_cosh__add,axiom,
! [X: real,Y4: real] :
( ( cosh_real @ ( plus_plus_real @ X @ Y4 ) )
= ( plus_plus_real @ ( times_times_real @ ( cosh_real @ X ) @ ( cosh_real @ Y4 ) ) @ ( times_times_real @ ( sinh_real @ X ) @ ( sinh_real @ Y4 ) ) ) ) ).
% cosh_add
thf(fact_8259_cosh__diff,axiom,
! [X: real,Y4: real] :
( ( cosh_real @ ( minus_minus_real @ X @ Y4 ) )
= ( minus_minus_real @ ( times_times_real @ ( cosh_real @ X ) @ ( cosh_real @ Y4 ) ) @ ( times_times_real @ ( sinh_real @ X ) @ ( sinh_real @ Y4 ) ) ) ) ).
% cosh_diff
thf(fact_8260_sinh__diff,axiom,
! [X: real,Y4: real] :
( ( sinh_real @ ( minus_minus_real @ X @ Y4 ) )
= ( minus_minus_real @ ( times_times_real @ ( sinh_real @ X ) @ ( cosh_real @ Y4 ) ) @ ( times_times_real @ ( cosh_real @ X ) @ ( sinh_real @ Y4 ) ) ) ) ).
% sinh_diff
thf(fact_8261_cosh__real__nonzero,axiom,
! [X: real] :
( ( cosh_real @ X )
!= zero_zero_real ) ).
% cosh_real_nonzero
thf(fact_8262_push__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se547839408752420682it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).
% push_bit_nat_eq
thf(fact_8263_sinh__le__cosh__real,axiom,
! [X: real] : ( ord_less_eq_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) ) ).
% sinh_le_cosh_real
thf(fact_8264_push__bit__of__nat,axiom,
! [N: nat,M: nat] :
( ( bit_se545348938243370406it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
= ( semiri1314217659103216013at_int @ ( bit_se547839408752420682it_nat @ N @ M ) ) ) ).
% push_bit_of_nat
thf(fact_8265_push__bit__of__nat,axiom,
! [N: nat,M: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
= ( semiri1316708129612266289at_nat @ ( bit_se547839408752420682it_nat @ N @ M ) ) ) ).
% push_bit_of_nat
thf(fact_8266_of__nat__push__bit,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se547839408752420682it_nat @ M @ N ) )
= ( bit_se545348938243370406it_int @ M @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_push_bit
thf(fact_8267_of__nat__push__bit,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( bit_se547839408752420682it_nat @ M @ N ) )
= ( bit_se547839408752420682it_nat @ M @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_push_bit
thf(fact_8268_push__bit__minus,axiom,
! [N: nat,A: code_integer] :
( ( bit_se7788150548672797655nteger @ N @ ( uminus1351360451143612070nteger @ A ) )
= ( uminus1351360451143612070nteger @ ( bit_se7788150548672797655nteger @ N @ A ) ) ) ).
% push_bit_minus
thf(fact_8269_push__bit__minus,axiom,
! [N: nat,A: int] :
( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ A ) )
= ( uminus_uminus_int @ ( bit_se545348938243370406it_int @ N @ A ) ) ) ).
% push_bit_minus
thf(fact_8270_push__bit__add,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se545348938243370406it_int @ N @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).
% push_bit_add
thf(fact_8271_push__bit__add,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).
% push_bit_add
thf(fact_8272_push__bit__of__int,axiom,
! [N: nat,K: int] :
( ( bit_se545348938243370406it_int @ N @ ( ring_1_of_int_int @ K ) )
= ( ring_1_of_int_int @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).
% push_bit_of_int
thf(fact_8273_tanh__def,axiom,
( tanh_complex
= ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sinh_complex @ X3 ) @ ( cosh_complex @ X3 ) ) ) ) ).
% tanh_def
thf(fact_8274_tanh__def,axiom,
( tanh_real
= ( ^ [X3: real] : ( divide_divide_real @ ( sinh_real @ X3 ) @ ( cosh_real @ X3 ) ) ) ) ).
% tanh_def
thf(fact_8275_sinh__minus__cosh,axiom,
! [X: real] :
( ( minus_minus_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) )
= ( uminus_uminus_real @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ).
% sinh_minus_cosh
thf(fact_8276_sinh__minus__cosh,axiom,
! [X: complex] :
( ( minus_minus_complex @ ( sinh_complex @ X ) @ ( cosh_complex @ X ) )
= ( uminus1482373934393186551omplex @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) ) ).
% sinh_minus_cosh
thf(fact_8277_cosh__minus__sinh,axiom,
! [X: real] :
( ( minus_minus_real @ ( cosh_real @ X ) @ ( sinh_real @ X ) )
= ( exp_real @ ( uminus_uminus_real @ X ) ) ) ).
% cosh_minus_sinh
thf(fact_8278_cosh__minus__sinh,axiom,
! [X: complex] :
( ( minus_minus_complex @ ( cosh_complex @ X ) @ ( sinh_complex @ X ) )
= ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) ) ).
% cosh_minus_sinh
thf(fact_8279_XOR__lower,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X @ Y4 ) ) ) ) ).
% XOR_lower
thf(fact_8280_cosh__real__pos,axiom,
! [X: real] : ( ord_less_real @ zero_zero_real @ ( cosh_real @ X ) ) ).
% cosh_real_pos
thf(fact_8281_cosh__real__nonpos__le__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y4 @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y4 ) )
= ( ord_less_eq_real @ Y4 @ X ) ) ) ) ).
% cosh_real_nonpos_le_iff
thf(fact_8282_cosh__real__nonneg__le__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ) ).
% cosh_real_nonneg_le_iff
thf(fact_8283_cosh__real__nonneg,axiom,
! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X ) ) ).
% cosh_real_nonneg
thf(fact_8284_cosh__real__ge__1,axiom,
! [X: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X ) ) ).
% cosh_real_ge_1
thf(fact_8285_sinh__double,axiom,
! [X: complex] :
( ( sinh_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sinh_complex @ X ) ) @ ( cosh_complex @ X ) ) ) ).
% sinh_double
thf(fact_8286_sinh__double,axiom,
! [X: real] :
( ( sinh_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sinh_real @ X ) ) @ ( cosh_real @ X ) ) ) ).
% sinh_double
thf(fact_8287_push__bit__take__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_se545348938243370406it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
= ( bit_se2923211474154528505it_int @ ( plus_plus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ M @ A ) ) ) ).
% push_bit_take_bit
thf(fact_8288_push__bit__take__bit,axiom,
! [M: nat,N: nat,A: nat] :
( ( bit_se547839408752420682it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) )
= ( bit_se2925701944663578781it_nat @ ( plus_plus_nat @ M @ N ) @ ( bit_se547839408752420682it_nat @ M @ A ) ) ) ).
% push_bit_take_bit
thf(fact_8289_take__bit__push__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_se2923211474154528505it_int @ M @ ( bit_se545348938243370406it_int @ N @ A ) )
= ( bit_se545348938243370406it_int @ N @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ M @ N ) @ A ) ) ) ).
% take_bit_push_bit
thf(fact_8290_take__bit__push__bit,axiom,
! [M: nat,N: nat,A: nat] :
( ( bit_se2925701944663578781it_nat @ M @ ( bit_se547839408752420682it_nat @ N @ A ) )
= ( bit_se547839408752420682it_nat @ N @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ M @ N ) @ A ) ) ) ).
% take_bit_push_bit
thf(fact_8291_flip__bit__nat__def,axiom,
( bit_se2161824704523386999it_nat
= ( ^ [M5: nat,N4: nat] : ( bit_se6528837805403552850or_nat @ N4 @ ( bit_se547839408752420682it_nat @ M5 @ one_one_nat ) ) ) ) ).
% flip_bit_nat_def
thf(fact_8292_cosh__real__nonpos__less__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y4 @ zero_zero_real )
=> ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y4 ) )
= ( ord_less_real @ Y4 @ X ) ) ) ) ).
% cosh_real_nonpos_less_iff
thf(fact_8293_cosh__real__nonneg__less__iff,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ) ) ).
% cosh_real_nonneg_less_iff
thf(fact_8294_cosh__real__strict__mono,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y4 ) ) ) ) ).
% cosh_real_strict_mono
thf(fact_8295_bit__push__bit__iff__int,axiom,
! [M: nat,K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N )
= ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_int
thf(fact_8296_cosh__square__eq,axiom,
! [X: real] :
( ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ).
% cosh_square_eq
thf(fact_8297_cosh__square__eq,axiom,
! [X: complex] :
( ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) ) ).
% cosh_square_eq
thf(fact_8298_sinh__square__eq,axiom,
! [X: complex] :
( ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_complex ) ) ).
% sinh_square_eq
thf(fact_8299_sinh__square__eq,axiom,
! [X: real] :
( ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( minus_minus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ).
% sinh_square_eq
thf(fact_8300_hyperbolic__pythagoras,axiom,
! [X: complex] :
( ( minus_minus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_complex ) ).
% hyperbolic_pythagoras
thf(fact_8301_hyperbolic__pythagoras,axiom,
! [X: real] :
( ( minus_minus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ).
% hyperbolic_pythagoras
thf(fact_8302_xor__nat__def,axiom,
( bit_se6528837805403552850or_nat
= ( ^ [M5: nat,N4: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% xor_nat_def
thf(fact_8303_bit__push__bit__iff__nat,axiom,
! [M: nat,Q2: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q2 ) @ N )
= ( ( ord_less_eq_nat @ M @ N )
& ( bit_se1148574629649215175it_nat @ Q2 @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% bit_push_bit_iff_nat
thf(fact_8304_arcosh__cosh__real,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( arcosh_real @ ( cosh_real @ X ) )
= X ) ) ).
% arcosh_cosh_real
thf(fact_8305_concat__bit__eq,axiom,
( bit_concat_bit
= ( ^ [N4: nat,K3: int,L3: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N4 @ K3 ) @ ( bit_se545348938243370406it_int @ N4 @ L3 ) ) ) ) ).
% concat_bit_eq
thf(fact_8306_flip__bit__eq__xor,axiom,
( bit_se1345352211410354436nteger
= ( ^ [N4: nat,A3: code_integer] : ( bit_se3222712562003087583nteger @ A3 @ ( bit_se7788150548672797655nteger @ N4 @ one_one_Code_integer ) ) ) ) ).
% flip_bit_eq_xor
thf(fact_8307_flip__bit__eq__xor,axiom,
( bit_se2159334234014336723it_int
= ( ^ [N4: nat,A3: int] : ( bit_se6526347334894502574or_int @ A3 @ ( bit_se545348938243370406it_int @ N4 @ one_one_int ) ) ) ) ).
% flip_bit_eq_xor
thf(fact_8308_flip__bit__eq__xor,axiom,
( bit_se2161824704523386999it_nat
= ( ^ [N4: nat,A3: nat] : ( bit_se6528837805403552850or_nat @ A3 @ ( bit_se547839408752420682it_nat @ N4 @ one_one_nat ) ) ) ) ).
% flip_bit_eq_xor
thf(fact_8309_cosh__double,axiom,
! [X: complex] :
( ( cosh_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
= ( plus_plus_complex @ ( power_power_complex @ ( cosh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sinh_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cosh_double
thf(fact_8310_cosh__double,axiom,
! [X: real] :
( ( cosh_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
= ( plus_plus_real @ ( power_power_real @ ( cosh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sinh_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cosh_double
thf(fact_8311_push__bit__double,axiom,
! [N: nat,A: int] :
( ( bit_se545348938243370406it_int @ N @ ( times_times_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( times_times_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% push_bit_double
thf(fact_8312_push__bit__double,axiom,
! [N: nat,A: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( times_times_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( times_times_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% push_bit_double
thf(fact_8313_bit__iff__and__push__bit__not__eq__0,axiom,
( bit_se1146084159140164899it_int
= ( ^ [A3: int,N4: nat] :
( ( bit_se725231765392027082nd_int @ A3 @ ( bit_se545348938243370406it_int @ N4 @ one_one_int ) )
!= zero_zero_int ) ) ) ).
% bit_iff_and_push_bit_not_eq_0
thf(fact_8314_bit__iff__and__push__bit__not__eq__0,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [A3: nat,N4: nat] :
( ( bit_se727722235901077358nd_nat @ A3 @ ( bit_se547839408752420682it_nat @ N4 @ one_one_nat ) )
!= zero_zero_nat ) ) ) ).
% bit_iff_and_push_bit_not_eq_0
thf(fact_8315_push__bit__int__def,axiom,
( bit_se545348938243370406it_int
= ( ^ [N4: nat,K3: int] : ( times_times_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% push_bit_int_def
thf(fact_8316_push__bit__nat__def,axiom,
( bit_se547839408752420682it_nat
= ( ^ [N4: nat,M5: nat] : ( times_times_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% push_bit_nat_def
thf(fact_8317_push__bit__eq__mult,axiom,
( bit_se545348938243370406it_int
= ( ^ [N4: nat,A3: int] : ( times_times_int @ A3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% push_bit_eq_mult
thf(fact_8318_push__bit__eq__mult,axiom,
( bit_se547839408752420682it_nat
= ( ^ [N4: nat,A3: nat] : ( times_times_nat @ A3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% push_bit_eq_mult
thf(fact_8319_exp__dvdE,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ A )
=> ~ ! [B3: code_integer] :
( A
!= ( bit_se7788150548672797655nteger @ N @ B3 ) ) ) ).
% exp_dvdE
thf(fact_8320_exp__dvdE,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ A )
=> ~ ! [B3: int] :
( A
!= ( bit_se545348938243370406it_int @ N @ B3 ) ) ) ).
% exp_dvdE
thf(fact_8321_exp__dvdE,axiom,
! [N: nat,A: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ A )
=> ~ ! [B3: nat] :
( A
!= ( bit_se547839408752420682it_nat @ N @ B3 ) ) ) ).
% exp_dvdE
thf(fact_8322_push__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% push_bit_minus_one
thf(fact_8323_tanh__add,axiom,
! [X: complex,Y4: complex] :
( ( ( cosh_complex @ X )
!= zero_zero_complex )
=> ( ( ( cosh_complex @ Y4 )
!= zero_zero_complex )
=> ( ( tanh_complex @ ( plus_plus_complex @ X @ Y4 ) )
= ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tanh_complex @ X ) @ ( tanh_complex @ Y4 ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tanh_complex @ X ) @ ( tanh_complex @ Y4 ) ) ) ) ) ) ) ).
% tanh_add
thf(fact_8324_tanh__add,axiom,
! [X: real,Y4: real] :
( ( ( cosh_real @ X )
!= zero_zero_real )
=> ( ( ( cosh_real @ Y4 )
!= zero_zero_real )
=> ( ( tanh_real @ ( plus_plus_real @ X @ Y4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( tanh_real @ X ) @ ( tanh_real @ Y4 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tanh_real @ X ) @ ( tanh_real @ Y4 ) ) ) ) ) ) ) ).
% tanh_add
thf(fact_8325_XOR__upper,axiom,
! [X: int,N: nat,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_int @ Y4 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_int @ ( bit_se6526347334894502574or_int @ X @ Y4 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% XOR_upper
thf(fact_8326_cosh__field__def,axiom,
( cosh_real
= ( ^ [Z5: real] : ( divide_divide_real @ ( plus_plus_real @ ( exp_real @ Z5 ) @ ( exp_real @ ( uminus_uminus_real @ Z5 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% cosh_field_def
thf(fact_8327_cosh__field__def,axiom,
( cosh_complex
= ( ^ [Z5: complex] : ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( exp_complex @ Z5 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ Z5 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ).
% cosh_field_def
thf(fact_8328_complex__inverse,axiom,
! [A: real,B: real] :
( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
= ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% complex_inverse
thf(fact_8329_xor__int__rec,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K3: int,L3: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% xor_int_rec
thf(fact_8330_sinh__field__def,axiom,
( sinh_real
= ( ^ [Z5: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ Z5 ) @ ( exp_real @ ( uminus_uminus_real @ Z5 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% sinh_field_def
thf(fact_8331_sinh__field__def,axiom,
( sinh_complex
= ( ^ [Z5: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ Z5 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ Z5 ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ).
% sinh_field_def
thf(fact_8332_xor__int__unfold,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K3: int,L3: int] :
( if_int
@ ( K3
= ( uminus_uminus_int @ one_one_int ) )
@ ( bit_ri7919022796975470100ot_int @ L3 )
@ ( if_int
@ ( L3
= ( uminus_uminus_int @ one_one_int ) )
@ ( bit_ri7919022796975470100ot_int @ K3 )
@ ( if_int @ ( K3 = zero_zero_int ) @ L3 @ ( if_int @ ( L3 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_int_unfold
thf(fact_8333_bit__horner__sum__bit__iff,axiom,
! [Bs: list_o,N: nat] :
( ( bit_se9216721137139052372nteger @ ( groups3417619833198082522nteger @ zero_n356916108424825756nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Bs ) @ N )
= ( ( ord_less_nat @ N @ ( size_size_list_o @ Bs ) )
& ( nth_o @ Bs @ N ) ) ) ).
% bit_horner_sum_bit_iff
thf(fact_8334_bit__horner__sum__bit__iff,axiom,
! [Bs: list_o,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( groups9119017779487936845_o_nat @ zero_n2687167440665602831ol_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Bs ) @ N )
= ( ( ord_less_nat @ N @ ( size_size_list_o @ Bs ) )
& ( nth_o @ Bs @ N ) ) ) ).
% bit_horner_sum_bit_iff
thf(fact_8335_bit__horner__sum__bit__iff,axiom,
! [Bs: list_o,N: nat] :
( ( bit_se1146084159140164899it_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ N )
= ( ( ord_less_nat @ N @ ( size_size_list_o @ Bs ) )
& ( nth_o @ Bs @ N ) ) ) ).
% bit_horner_sum_bit_iff
thf(fact_8336_valid__eq2,axiom,
! [T: vEBT_VEBT,D: nat] :
( ( vEBT_VEBT_valid @ T @ D )
=> ( vEBT_invar_vebt @ T @ D ) ) ).
% valid_eq2
thf(fact_8337_valid__eq1,axiom,
! [T: vEBT_VEBT,D: nat] :
( ( vEBT_invar_vebt @ T @ D )
=> ( vEBT_VEBT_valid @ T @ D ) ) ).
% valid_eq1
thf(fact_8338_valid__eq,axiom,
vEBT_VEBT_valid = vEBT_invar_vebt ).
% valid_eq
thf(fact_8339_intind,axiom,
! [I: nat,N: nat,P: nat > $o,X: nat] :
( ( ord_less_nat @ I @ N )
=> ( ( P @ X )
=> ( P @ ( nth_nat @ ( replicate_nat @ N @ X ) @ I ) ) ) ) ).
% intind
thf(fact_8340_intind,axiom,
! [I: nat,N: nat,P: int > $o,X: int] :
( ( ord_less_nat @ I @ N )
=> ( ( P @ X )
=> ( P @ ( nth_int @ ( replicate_int @ N @ X ) @ I ) ) ) ) ).
% intind
thf(fact_8341_intind,axiom,
! [I: nat,N: nat,P: real > $o,X: real] :
( ( ord_less_nat @ I @ N )
=> ( ( P @ X )
=> ( P @ ( nth_real @ ( replicate_real @ N @ X ) @ I ) ) ) ) ).
% intind
thf(fact_8342_intind,axiom,
! [I: nat,N: nat,P: vEBT_VEBT > $o,X: vEBT_VEBT] :
( ( ord_less_nat @ I @ N )
=> ( ( P @ X )
=> ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X ) @ I ) ) ) ) ).
% intind
thf(fact_8343_inthall,axiom,
! [Xs: list_complex,P: complex > $o,N: nat] :
( ! [X4: complex] :
( ( member_complex @ X4 @ ( set_complex2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs ) )
=> ( P @ ( nth_complex @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_8344_inthall,axiom,
! [Xs: list_set_nat,P: set_nat > $o,N: nat] :
( ! [X4: set_nat] :
( ( member_set_nat @ X4 @ ( set_set_nat2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs ) )
=> ( P @ ( nth_set_nat @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_8345_inthall,axiom,
! [Xs: list_VEBT_VEBT,P: vEBT_VEBT > $o,N: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs ) )
=> ( P @ ( nth_VEBT_VEBT @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_8346_inthall,axiom,
! [Xs: list_real,P: real > $o,N: nat] :
( ! [X4: real] :
( ( member_real @ X4 @ ( set_real2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs ) )
=> ( P @ ( nth_real @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_8347_inthall,axiom,
! [Xs: list_o,P: $o > $o,N: nat] :
( ! [X4: $o] :
( ( member_o @ X4 @ ( set_o2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs ) )
=> ( P @ ( nth_o @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_8348_inthall,axiom,
! [Xs: list_nat,P: nat > $o,N: nat] :
( ! [X4: nat] :
( ( member_nat @ X4 @ ( set_nat2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
=> ( P @ ( nth_nat @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_8349_inthall,axiom,
! [Xs: list_int,P: int > $o,N: nat] :
( ! [X4: int] :
( ( member_int @ X4 @ ( set_int2 @ Xs ) )
=> ( P @ X4 ) )
=> ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs ) )
=> ( P @ ( nth_int @ Xs @ N ) ) ) ) ).
% inthall
thf(fact_8350_bit_Ocompl__eq__compl__iff,axiom,
! [X: int,Y4: int] :
( ( ( bit_ri7919022796975470100ot_int @ X )
= ( bit_ri7919022796975470100ot_int @ Y4 ) )
= ( X = Y4 ) ) ).
% bit.compl_eq_compl_iff
thf(fact_8351_bit_Odouble__compl,axiom,
! [X: int] :
( ( bit_ri7919022796975470100ot_int @ ( bit_ri7919022796975470100ot_int @ X ) )
= X ) ).
% bit.double_compl
thf(fact_8352_bit_Oxor__compl__right,axiom,
! [X: int,Y4: int] :
( ( bit_se6526347334894502574or_int @ X @ ( bit_ri7919022796975470100ot_int @ Y4 ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X @ Y4 ) ) ) ).
% bit.xor_compl_right
thf(fact_8353_bit_Oxor__compl__left,axiom,
! [X: int,Y4: int] :
( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ Y4 )
= ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X @ Y4 ) ) ) ).
% bit.xor_compl_left
thf(fact_8354_bit_Oconj__cancel__left,axiom,
! [X: int] :
( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
= zero_zero_int ) ).
% bit.conj_cancel_left
thf(fact_8355_bit_Oconj__cancel__right,axiom,
! [X: int] :
( ( bit_se725231765392027082nd_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
= zero_zero_int ) ).
% bit.conj_cancel_right
thf(fact_8356_bit_Ocompl__zero,axiom,
( ( bit_ri7632146776885996613nteger @ zero_z3403309356797280102nteger )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% bit.compl_zero
thf(fact_8357_bit_Ocompl__zero,axiom,
( ( bit_ri7919022796975470100ot_int @ zero_zero_int )
= ( uminus_uminus_int @ one_one_int ) ) ).
% bit.compl_zero
thf(fact_8358_bit_Ocompl__one,axiom,
( ( bit_ri7632146776885996613nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= zero_z3403309356797280102nteger ) ).
% bit.compl_one
thf(fact_8359_bit_Ocompl__one,axiom,
( ( bit_ri7919022796975470100ot_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% bit.compl_one
thf(fact_8360_bit_Oxor__one__left,axiom,
! [X: code_integer] :
( ( bit_se3222712562003087583nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
= ( bit_ri7632146776885996613nteger @ X ) ) ).
% bit.xor_one_left
thf(fact_8361_bit_Oxor__one__left,axiom,
! [X: int] :
( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ one_one_int ) @ X )
= ( bit_ri7919022796975470100ot_int @ X ) ) ).
% bit.xor_one_left
thf(fact_8362_bit_Oxor__one__right,axiom,
! [X: code_integer] :
( ( bit_se3222712562003087583nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( bit_ri7632146776885996613nteger @ X ) ) ).
% bit.xor_one_right
thf(fact_8363_bit_Oxor__one__right,axiom,
! [X: int] :
( ( bit_se6526347334894502574or_int @ X @ ( uminus_uminus_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ X ) ) ).
% bit.xor_one_right
thf(fact_8364_bit_Oxor__cancel__left,axiom,
! [X: code_integer] :
( ( bit_se3222712562003087583nteger @ ( bit_ri7632146776885996613nteger @ X ) @ X )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% bit.xor_cancel_left
thf(fact_8365_bit_Oxor__cancel__left,axiom,
! [X: int] :
( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
= ( uminus_uminus_int @ one_one_int ) ) ).
% bit.xor_cancel_left
thf(fact_8366_bit_Oxor__cancel__right,axiom,
! [X: code_integer] :
( ( bit_se3222712562003087583nteger @ X @ ( bit_ri7632146776885996613nteger @ X ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% bit.xor_cancel_right
thf(fact_8367_bit_Oxor__cancel__right,axiom,
! [X: int] :
( ( bit_se6526347334894502574or_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% bit.xor_cancel_right
thf(fact_8368_not__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% not_negative_int_iff
thf(fact_8369_not__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% not_nonnegative_int_iff
thf(fact_8370_minus__not__numeral__eq,axiom,
! [N: num] :
( ( uminus1351360451143612070nteger @ ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) )
= ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ).
% minus_not_numeral_eq
thf(fact_8371_minus__not__numeral__eq,axiom,
! [N: num] :
( ( uminus_uminus_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( inc @ N ) ) ) ).
% minus_not_numeral_eq
thf(fact_8372_even__not__iff,axiom,
! [A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri7632146776885996613nteger @ A ) )
= ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_not_iff
thf(fact_8373_even__not__iff,axiom,
! [A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ A ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).
% even_not_iff
thf(fact_8374_push__bit__minus__one__eq__not__mask,axiom,
! [N: nat] :
( ( bit_se7788150548672797655nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N ) ) ) ).
% push_bit_minus_one_eq_not_mask
thf(fact_8375_push__bit__minus__one__eq__not__mask,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).
% push_bit_minus_one_eq_not_mask
thf(fact_8376_not__one__eq,axiom,
( ( bit_ri7632146776885996613nteger @ one_one_Code_integer )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).
% not_one_eq
thf(fact_8377_not__one__eq,axiom,
( ( bit_ri7919022796975470100ot_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% not_one_eq
thf(fact_8378_of__int__not__eq,axiom,
! [K: int] :
( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( bit_ri7919022796975470100ot_int @ ( ring_1_of_int_int @ K ) ) ) ).
% of_int_not_eq
thf(fact_8379_take__bit__not__iff,axiom,
! [N: nat,A: int,B: int] :
( ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) )
= ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ B ) ) )
= ( ( bit_se2923211474154528505it_int @ N @ A )
= ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).
% take_bit_not_iff
thf(fact_8380_take__bit__not__take__bit,axiom,
! [N: nat,A: int] :
( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ ( bit_se2923211474154528505it_int @ N @ A ) ) )
= ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) ) ) ).
% take_bit_not_take_bit
thf(fact_8381_bit__not__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N )
= ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).
% bit_not_int_iff
thf(fact_8382_of__int__not__numeral,axiom,
! [K: num] :
( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K ) ) ) ).
% of_int_not_numeral
thf(fact_8383_not__add__distrib,axiom,
! [A: int,B: int] :
( ( bit_ri7919022796975470100ot_int @ ( plus_plus_int @ A @ B ) )
= ( minus_minus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).
% not_add_distrib
thf(fact_8384_not__diff__distrib,axiom,
! [A: int,B: int] :
( ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A @ B ) )
= ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).
% not_diff_distrib
thf(fact_8385_minus__eq__not__plus__1,axiom,
( uminus1351360451143612070nteger
= ( ^ [A3: code_integer] : ( plus_p5714425477246183910nteger @ ( bit_ri7632146776885996613nteger @ A3 ) @ one_one_Code_integer ) ) ) ).
% minus_eq_not_plus_1
thf(fact_8386_minus__eq__not__plus__1,axiom,
( uminus_uminus_int
= ( ^ [A3: int] : ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A3 ) @ one_one_int ) ) ) ).
% minus_eq_not_plus_1
thf(fact_8387_not__eq__complement,axiom,
( bit_ri7632146776885996613nteger
= ( ^ [A3: code_integer] : ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A3 ) @ one_one_Code_integer ) ) ) ).
% not_eq_complement
thf(fact_8388_not__eq__complement,axiom,
( bit_ri7919022796975470100ot_int
= ( ^ [A3: int] : ( minus_minus_int @ ( uminus_uminus_int @ A3 ) @ one_one_int ) ) ) ).
% not_eq_complement
thf(fact_8389_minus__eq__not__minus__1,axiom,
( uminus1351360451143612070nteger
= ( ^ [A3: code_integer] : ( bit_ri7632146776885996613nteger @ ( minus_8373710615458151222nteger @ A3 @ one_one_Code_integer ) ) ) ) ).
% minus_eq_not_minus_1
thf(fact_8390_minus__eq__not__minus__1,axiom,
( uminus_uminus_int
= ( ^ [A3: int] : ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A3 @ one_one_int ) ) ) ) ).
% minus_eq_not_minus_1
thf(fact_8391_not__int__def,axiom,
( bit_ri7919022796975470100ot_int
= ( ^ [K3: int] : ( minus_minus_int @ ( uminus_uminus_int @ K3 ) @ one_one_int ) ) ) ).
% not_int_def
thf(fact_8392_and__not__numerals_I1_J,axiom,
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= zero_zero_int ) ).
% and_not_numerals(1)
thf(fact_8393_disjunctive__diff,axiom,
! [B: int,A: int] :
( ! [N2: nat] :
( ( bit_se1146084159140164899it_int @ B @ N2 )
=> ( bit_se1146084159140164899it_int @ A @ N2 ) )
=> ( ( minus_minus_int @ A @ B )
= ( bit_se725231765392027082nd_int @ A @ ( bit_ri7919022796975470100ot_int @ B ) ) ) ) ).
% disjunctive_diff
thf(fact_8394_take__bit__not__eq__mask__diff,axiom,
! [N: nat,A: int] :
( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) )
= ( minus_minus_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ).
% take_bit_not_eq_mask_diff
thf(fact_8395_minus__numeral__inc__eq,axiom,
! [N: num] :
( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) )
= ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).
% minus_numeral_inc_eq
thf(fact_8396_minus__numeral__inc__eq,axiom,
! [N: num] :
( ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ).
% minus_numeral_inc_eq
thf(fact_8397_unset__bit__int__def,axiom,
( bit_se4203085406695923979it_int
= ( ^ [N4: nat,K3: int] : ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N4 @ one_one_int ) ) ) ) ) ).
% unset_bit_int_def
thf(fact_8398_not__int__div__2,axiom,
! [K: int] :
( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% not_int_div_2
thf(fact_8399_even__not__iff__int,axiom,
! [K: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).
% even_not_iff_int
thf(fact_8400_not__numeral__Bit0__eq,axiom,
! [N: num] :
( ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ) ).
% not_numeral_Bit0_eq
thf(fact_8401_not__numeral__Bit0__eq,axiom,
! [N: num] :
( ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).
% not_numeral_Bit0_eq
thf(fact_8402_and__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(4)
thf(fact_8403_and__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= one_one_int ) ).
% and_not_numerals(2)
thf(fact_8404_bit__minus__int__iff,axiom,
! [K: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N )
= ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N ) ) ).
% bit_minus_int_iff
thf(fact_8405_take__bit__not__mask__eq__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) )
= zero_zero_int ) ) ).
% take_bit_not_mask_eq_0
thf(fact_8406_push__bit__mask__eq,axiom,
! [M: nat,N: nat] :
( ( bit_se545348938243370406it_int @ M @ ( bit_se2000444600071755411sk_int @ N ) )
= ( bit_se725231765392027082nd_int @ ( bit_se2000444600071755411sk_int @ ( plus_plus_nat @ N @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ M ) ) ) ) ).
% push_bit_mask_eq
thf(fact_8407_unset__bit__eq__and__not,axiom,
( bit_se4203085406695923979it_int
= ( ^ [N4: nat,A3: int] : ( bit_se725231765392027082nd_int @ A3 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N4 @ one_one_int ) ) ) ) ) ).
% unset_bit_eq_and_not
thf(fact_8408_unset__bit__eq__and__not,axiom,
( bit_se8260200283734997820nteger
= ( ^ [N4: nat,A3: code_integer] : ( bit_se3949692690581998587nteger @ A3 @ ( bit_ri7632146776885996613nteger @ ( bit_se7788150548672797655nteger @ N4 @ one_one_Code_integer ) ) ) ) ) ).
% unset_bit_eq_and_not
thf(fact_8409_and__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(5)
thf(fact_8410_and__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).
% and_not_numerals(7)
thf(fact_8411_and__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= zero_zero_int ) ).
% and_not_numerals(3)
thf(fact_8412_and__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(6)
thf(fact_8413_and__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% and_not_numerals(9)
thf(fact_8414_bit__not__iff__eq,axiom,
! [A: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ A ) @ N )
= ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int )
& ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).
% bit_not_iff_eq
thf(fact_8415_minus__exp__eq__not__mask,axiom,
! [N: nat] :
( ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
= ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N ) ) ) ).
% minus_exp_eq_not_mask
thf(fact_8416_minus__exp__eq__not__mask,axiom,
! [N: nat] :
( ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).
% minus_exp_eq_not_mask
thf(fact_8417_and__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% and_not_numerals(8)
thf(fact_8418_not__int__rec,axiom,
( bit_ri7919022796975470100ot_int
= ( ^ [K3: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% not_int_rec
thf(fact_8419_Cauchy__iff2,axiom,
( topolo4055970368930404560y_real
= ( ^ [X8: nat > real] :
! [J3: nat] :
? [M7: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ M7 @ M5 )
=> ! [N4: nat] :
( ( ord_less_eq_nat @ M7 @ N4 )
=> ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X8 @ M5 ) @ ( X8 @ N4 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).
% Cauchy_iff2
thf(fact_8420_length__subseqs,axiom,
! [Xs: list_real] :
( ( size_s6660260683639930848t_real @ ( subseqs_real @ Xs ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_size_list_real @ Xs ) ) ) ).
% length_subseqs
thf(fact_8421_length__subseqs,axiom,
! [Xs: list_o] :
( ( size_s2710708370519433104list_o @ ( subseqs_o @ Xs ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_size_list_o @ Xs ) ) ) ).
% length_subseqs
thf(fact_8422_length__subseqs,axiom,
! [Xs: list_nat] :
( ( size_s3023201423986296836st_nat @ ( subseqs_nat @ Xs ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_size_list_nat @ Xs ) ) ) ).
% length_subseqs
thf(fact_8423_length__subseqs,axiom,
! [Xs: list_int] :
( ( size_s533118279054570080st_int @ ( subseqs_int @ Xs ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_size_list_int @ Xs ) ) ) ).
% length_subseqs
thf(fact_8424_csqrt_Osimps_I1_J,axiom,
! [Z: complex] :
( ( re @ ( csqrt @ Z ) )
= ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% csqrt.simps(1)
thf(fact_8425_sinh__def,axiom,
( sinh_complex
= ( ^ [X3: complex] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( minus_minus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) ) ) ) ).
% sinh_def
thf(fact_8426_sinh__def,axiom,
( sinh_real
= ( ^ [X3: real] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( minus_minus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ) ).
% sinh_def
thf(fact_8427_scaleR__cancel__right,axiom,
! [A: real,X: complex,B: real] :
( ( ( real_V2046097035970521341omplex @ A @ X )
= ( real_V2046097035970521341omplex @ B @ X ) )
= ( ( A = B )
| ( X = zero_zero_complex ) ) ) ).
% scaleR_cancel_right
thf(fact_8428_scaleR__cancel__right,axiom,
! [A: real,X: real,B: real] :
( ( ( real_V1485227260804924795R_real @ A @ X )
= ( real_V1485227260804924795R_real @ B @ X ) )
= ( ( A = B )
| ( X = zero_zero_real ) ) ) ).
% scaleR_cancel_right
thf(fact_8429_scaleR__zero__right,axiom,
! [A: real] :
( ( real_V2046097035970521341omplex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% scaleR_zero_right
thf(fact_8430_scaleR__zero__right,axiom,
! [A: real] :
( ( real_V1485227260804924795R_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% scaleR_zero_right
thf(fact_8431_mult__scaleR__right,axiom,
! [X: complex,A: real,Y4: complex] :
( ( times_times_complex @ X @ ( real_V2046097035970521341omplex @ A @ Y4 ) )
= ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y4 ) ) ) ).
% mult_scaleR_right
thf(fact_8432_mult__scaleR__right,axiom,
! [X: real,A: real,Y4: real] :
( ( times_times_real @ X @ ( real_V1485227260804924795R_real @ A @ Y4 ) )
= ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y4 ) ) ) ).
% mult_scaleR_right
thf(fact_8433_mult__scaleR__left,axiom,
! [A: real,X: complex,Y4: complex] :
( ( times_times_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ Y4 )
= ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y4 ) ) ) ).
% mult_scaleR_left
thf(fact_8434_mult__scaleR__left,axiom,
! [A: real,X: real,Y4: real] :
( ( times_times_real @ ( real_V1485227260804924795R_real @ A @ X ) @ Y4 )
= ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y4 ) ) ) ).
% mult_scaleR_left
thf(fact_8435_scaleR__cancel__left,axiom,
! [A: real,X: complex,Y4: complex] :
( ( ( real_V2046097035970521341omplex @ A @ X )
= ( real_V2046097035970521341omplex @ A @ Y4 ) )
= ( ( X = Y4 )
| ( A = zero_zero_real ) ) ) ).
% scaleR_cancel_left
thf(fact_8436_scaleR__cancel__left,axiom,
! [A: real,X: real,Y4: real] :
( ( ( real_V1485227260804924795R_real @ A @ X )
= ( real_V1485227260804924795R_real @ A @ Y4 ) )
= ( ( X = Y4 )
| ( A = zero_zero_real ) ) ) ).
% scaleR_cancel_left
thf(fact_8437_scaleR__scaleR,axiom,
! [A: real,B: real,X: complex] :
( ( real_V2046097035970521341omplex @ A @ ( real_V2046097035970521341omplex @ B @ X ) )
= ( real_V2046097035970521341omplex @ ( times_times_real @ A @ B ) @ X ) ) ).
% scaleR_scaleR
thf(fact_8438_scaleR__scaleR,axiom,
! [A: real,B: real,X: real] :
( ( real_V1485227260804924795R_real @ A @ ( real_V1485227260804924795R_real @ B @ X ) )
= ( real_V1485227260804924795R_real @ ( times_times_real @ A @ B ) @ X ) ) ).
% scaleR_scaleR
thf(fact_8439_complex__Re__of__nat,axiom,
! [N: nat] :
( ( re @ ( semiri8010041392384452111omplex @ N ) )
= ( semiri5074537144036343181t_real @ N ) ) ).
% complex_Re_of_nat
thf(fact_8440_scaleR__zero__left,axiom,
! [X: complex] :
( ( real_V2046097035970521341omplex @ zero_zero_real @ X )
= zero_zero_complex ) ).
% scaleR_zero_left
thf(fact_8441_scaleR__zero__left,axiom,
! [X: real] :
( ( real_V1485227260804924795R_real @ zero_zero_real @ X )
= zero_zero_real ) ).
% scaleR_zero_left
thf(fact_8442_scaleR__eq__0__iff,axiom,
! [A: real,X: complex] :
( ( ( real_V2046097035970521341omplex @ A @ X )
= zero_zero_complex )
= ( ( A = zero_zero_real )
| ( X = zero_zero_complex ) ) ) ).
% scaleR_eq_0_iff
thf(fact_8443_scaleR__eq__0__iff,axiom,
! [A: real,X: real] :
( ( ( real_V1485227260804924795R_real @ A @ X )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( X = zero_zero_real ) ) ) ).
% scaleR_eq_0_iff
thf(fact_8444_complex__Re__numeral,axiom,
! [V: num] :
( ( re @ ( numera6690914467698888265omplex @ V ) )
= ( numeral_numeral_real @ V ) ) ).
% complex_Re_numeral
thf(fact_8445_scaleR__collapse,axiom,
! [U: real,A: complex] :
( ( plus_plus_complex @ ( real_V2046097035970521341omplex @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V2046097035970521341omplex @ U @ A ) )
= A ) ).
% scaleR_collapse
thf(fact_8446_scaleR__collapse,axiom,
! [U: real,A: real] :
( ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ one_one_real @ U ) @ A ) @ ( real_V1485227260804924795R_real @ U @ A ) )
= A ) ).
% scaleR_collapse
thf(fact_8447_norm__scaleR,axiom,
! [A: real,X: complex] :
( ( real_V1022390504157884413omplex @ ( real_V2046097035970521341omplex @ A @ X ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( real_V1022390504157884413omplex @ X ) ) ) ).
% norm_scaleR
thf(fact_8448_norm__scaleR,axiom,
! [A: real,X: real] :
( ( real_V7735802525324610683m_real @ ( real_V1485227260804924795R_real @ A @ X ) )
= ( times_times_real @ ( abs_abs_real @ A ) @ ( real_V7735802525324610683m_real @ X ) ) ) ).
% norm_scaleR
thf(fact_8449_Re__divide__of__nat,axiom,
! [Z: complex,N: nat] :
( ( re @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N ) ) )
= ( divide_divide_real @ ( re @ Z ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% Re_divide_of_nat
thf(fact_8450_Re__divide__of__real,axiom,
! [Z: complex,R2: real] :
( ( re @ ( divide1717551699836669952omplex @ Z @ ( real_V4546457046886955230omplex @ R2 ) ) )
= ( divide_divide_real @ ( re @ Z ) @ R2 ) ) ).
% Re_divide_of_real
thf(fact_8451_Re__sgn,axiom,
! [Z: complex] :
( ( re @ ( sgn_sgn_complex @ Z ) )
= ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).
% Re_sgn
thf(fact_8452_scaleR__times,axiom,
! [U: num,W: num,A: complex] :
( ( real_V2046097035970521341omplex @ ( numeral_numeral_real @ U ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
= ( real_V2046097035970521341omplex @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ A ) ) ).
% scaleR_times
thf(fact_8453_scaleR__times,axiom,
! [U: num,W: num,A: real] :
( ( real_V1485227260804924795R_real @ ( numeral_numeral_real @ U ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
= ( real_V1485227260804924795R_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ A ) ) ).
% scaleR_times
thf(fact_8454_Re__divide__numeral,axiom,
! [Z: complex,W: num] :
( ( re @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide_divide_real @ ( re @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).
% Re_divide_numeral
thf(fact_8455_cos__Arg__i__mult__zero,axiom,
! [Y4: complex] :
( ( Y4 != zero_zero_complex )
=> ( ( ( re @ Y4 )
= zero_zero_real )
=> ( ( cos_real @ ( arg @ Y4 ) )
= zero_zero_real ) ) ) ).
% cos_Arg_i_mult_zero
thf(fact_8456_inverse__scaleR__times,axiom,
! [V: num,W: num,A: complex] :
( ( real_V2046097035970521341omplex @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
= ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( numeral_numeral_real @ W ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).
% inverse_scaleR_times
thf(fact_8457_inverse__scaleR__times,axiom,
! [V: num,W: num,A: real] :
( ( real_V1485227260804924795R_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
= ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( numeral_numeral_real @ W ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).
% inverse_scaleR_times
thf(fact_8458_fraction__scaleR__times,axiom,
! [U: num,V: num,W: num,A: complex] :
( ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
= ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).
% fraction_scaleR_times
thf(fact_8459_fraction__scaleR__times,axiom,
! [U: num,V: num,W: num,A: real] :
( ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
= ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ W ) ) @ ( numeral_numeral_real @ V ) ) @ A ) ) ).
% fraction_scaleR_times
thf(fact_8460_scaleR__half__double,axiom,
! [A: complex] :
( ( real_V2046097035970521341omplex @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_complex @ A @ A ) )
= A ) ).
% scaleR_half_double
thf(fact_8461_scaleR__half__double,axiom,
! [A: real] :
( ( real_V1485227260804924795R_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ A @ A ) )
= A ) ).
% scaleR_half_double
thf(fact_8462_scaleR__right__imp__eq,axiom,
! [X: complex,A: real,B: real] :
( ( X != zero_zero_complex )
=> ( ( ( real_V2046097035970521341omplex @ A @ X )
= ( real_V2046097035970521341omplex @ B @ X ) )
=> ( A = B ) ) ) ).
% scaleR_right_imp_eq
thf(fact_8463_scaleR__right__imp__eq,axiom,
! [X: real,A: real,B: real] :
( ( X != zero_zero_real )
=> ( ( ( real_V1485227260804924795R_real @ A @ X )
= ( real_V1485227260804924795R_real @ B @ X ) )
=> ( A = B ) ) ) ).
% scaleR_right_imp_eq
thf(fact_8464_scaleR__right__diff__distrib,axiom,
! [A: real,X: complex,Y4: complex] :
( ( real_V2046097035970521341omplex @ A @ ( minus_minus_complex @ X @ Y4 ) )
= ( minus_minus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ A @ Y4 ) ) ) ).
% scaleR_right_diff_distrib
thf(fact_8465_scaleR__right__diff__distrib,axiom,
! [A: real,X: real,Y4: real] :
( ( real_V1485227260804924795R_real @ A @ ( minus_minus_real @ X @ Y4 ) )
= ( minus_minus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ A @ Y4 ) ) ) ).
% scaleR_right_diff_distrib
thf(fact_8466_scaleR__complex_Osimps_I1_J,axiom,
! [R2: real,X: complex] :
( ( re @ ( real_V2046097035970521341omplex @ R2 @ X ) )
= ( times_times_real @ R2 @ ( re @ X ) ) ) ).
% scaleR_complex.simps(1)
thf(fact_8467_scaleR__left__imp__eq,axiom,
! [A: real,X: complex,Y4: complex] :
( ( A != zero_zero_real )
=> ( ( ( real_V2046097035970521341omplex @ A @ X )
= ( real_V2046097035970521341omplex @ A @ Y4 ) )
=> ( X = Y4 ) ) ) ).
% scaleR_left_imp_eq
thf(fact_8468_scaleR__left__imp__eq,axiom,
! [A: real,X: real,Y4: real] :
( ( A != zero_zero_real )
=> ( ( ( real_V1485227260804924795R_real @ A @ X )
= ( real_V1485227260804924795R_real @ A @ Y4 ) )
=> ( X = Y4 ) ) ) ).
% scaleR_left_imp_eq
thf(fact_8469_real__scaleR__def,axiom,
real_V1485227260804924795R_real = times_times_real ).
% real_scaleR_def
thf(fact_8470_scaleR__conv__of__real,axiom,
( real_V2046097035970521341omplex
= ( ^ [R5: real] : ( times_times_complex @ ( real_V4546457046886955230omplex @ R5 ) ) ) ) ).
% scaleR_conv_of_real
thf(fact_8471_scaleR__conv__of__real,axiom,
( real_V1485227260804924795R_real
= ( ^ [R5: real] : ( times_times_real @ ( real_V1803761363581548252l_real @ R5 ) ) ) ) ).
% scaleR_conv_of_real
thf(fact_8472_scaleR__left__diff__distrib,axiom,
! [A: real,B: real,X: complex] :
( ( real_V2046097035970521341omplex @ ( minus_minus_real @ A @ B ) @ X )
= ( minus_minus_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ ( real_V2046097035970521341omplex @ B @ X ) ) ) ).
% scaleR_left_diff_distrib
thf(fact_8473_scaleR__left__diff__distrib,axiom,
! [A: real,B: real,X: real] :
( ( real_V1485227260804924795R_real @ ( minus_minus_real @ A @ B ) @ X )
= ( minus_minus_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ X ) ) ) ).
% scaleR_left_diff_distrib
thf(fact_8474_scaleR__left_Odiff,axiom,
! [X: real,Y4: real,Xa: complex] :
( ( real_V2046097035970521341omplex @ ( minus_minus_real @ X @ Y4 ) @ Xa )
= ( minus_minus_complex @ ( real_V2046097035970521341omplex @ X @ Xa ) @ ( real_V2046097035970521341omplex @ Y4 @ Xa ) ) ) ).
% scaleR_left.diff
thf(fact_8475_scaleR__left_Odiff,axiom,
! [X: real,Y4: real,Xa: real] :
( ( real_V1485227260804924795R_real @ ( minus_minus_real @ X @ Y4 ) @ Xa )
= ( minus_minus_real @ ( real_V1485227260804924795R_real @ X @ Xa ) @ ( real_V1485227260804924795R_real @ Y4 @ Xa ) ) ) ).
% scaleR_left.diff
thf(fact_8476_imaginary__unit_Osimps_I1_J,axiom,
( ( re @ imaginary_unit )
= zero_zero_real ) ).
% imaginary_unit.simps(1)
thf(fact_8477_complex__Re__le__cmod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( re @ X ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% complex_Re_le_cmod
thf(fact_8478_zero__complex_Osimps_I1_J,axiom,
( ( re @ zero_zero_complex )
= zero_zero_real ) ).
% zero_complex.simps(1)
thf(fact_8479_complex__scaleR,axiom,
! [R2: real,A: real,B: real] :
( ( real_V2046097035970521341omplex @ R2 @ ( complex2 @ A @ B ) )
= ( complex2 @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ B ) ) ) ).
% complex_scaleR
thf(fact_8480_minus__complex_Osimps_I1_J,axiom,
! [X: complex,Y4: complex] :
( ( re @ ( minus_minus_complex @ X @ Y4 ) )
= ( minus_minus_real @ ( re @ X ) @ ( re @ Y4 ) ) ) ).
% minus_complex.simps(1)
thf(fact_8481_scaleR__right__mono,axiom,
! [A: real,B: real,X: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ X ) ) ) ) ).
% scaleR_right_mono
thf(fact_8482_scaleR__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ C ) @ ( real_V1485227260804924795R_real @ B @ C ) ) ) ) ).
% scaleR_right_mono_neg
thf(fact_8483_scaleR__le__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% scaleR_le_cancel_left_pos
thf(fact_8484_scaleR__le__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% scaleR_le_cancel_left_neg
thf(fact_8485_scaleR__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% scaleR_le_cancel_left
thf(fact_8486_scaleR__left__mono,axiom,
! [X: real,Y4: real,A: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ A @ Y4 ) ) ) ) ).
% scaleR_left_mono
thf(fact_8487_scaleR__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( real_V1485227260804924795R_real @ C @ B ) ) ) ) ).
% scaleR_left_mono_neg
thf(fact_8488_vector__fraction__eq__iff,axiom,
! [U: real,V: real,A: complex,X: complex] :
( ( ( real_V2046097035970521341omplex @ ( divide_divide_real @ U @ V ) @ A )
= X )
= ( ( ( V = zero_zero_real )
=> ( X = zero_zero_complex ) )
& ( ( V != zero_zero_real )
=> ( ( real_V2046097035970521341omplex @ U @ A )
= ( real_V2046097035970521341omplex @ V @ X ) ) ) ) ) ).
% vector_fraction_eq_iff
thf(fact_8489_vector__fraction__eq__iff,axiom,
! [U: real,V: real,A: real,X: real] :
( ( ( real_V1485227260804924795R_real @ ( divide_divide_real @ U @ V ) @ A )
= X )
= ( ( ( V = zero_zero_real )
=> ( X = zero_zero_real ) )
& ( ( V != zero_zero_real )
=> ( ( real_V1485227260804924795R_real @ U @ A )
= ( real_V1485227260804924795R_real @ V @ X ) ) ) ) ) ).
% vector_fraction_eq_iff
thf(fact_8490_eq__vector__fraction__iff,axiom,
! [X: complex,U: real,V: real,A: complex] :
( ( X
= ( real_V2046097035970521341omplex @ ( divide_divide_real @ U @ V ) @ A ) )
= ( ( ( V = zero_zero_real )
=> ( X = zero_zero_complex ) )
& ( ( V != zero_zero_real )
=> ( ( real_V2046097035970521341omplex @ V @ X )
= ( real_V2046097035970521341omplex @ U @ A ) ) ) ) ) ).
% eq_vector_fraction_iff
thf(fact_8491_eq__vector__fraction__iff,axiom,
! [X: real,U: real,V: real,A: real] :
( ( X
= ( real_V1485227260804924795R_real @ ( divide_divide_real @ U @ V ) @ A ) )
= ( ( ( V = zero_zero_real )
=> ( X = zero_zero_real ) )
& ( ( V != zero_zero_real )
=> ( ( real_V1485227260804924795R_real @ V @ X )
= ( real_V1485227260804924795R_real @ U @ A ) ) ) ) ) ).
% eq_vector_fraction_iff
thf(fact_8492_Real__Vector__Spaces_Ole__add__iff1,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ B @ E2 ) @ D ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C ) @ D ) ) ).
% Real_Vector_Spaces.le_add_iff1
thf(fact_8493_Real__Vector__Spaces_Ole__add__iff2,axiom,
! [A: real,E2: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ B @ E2 ) @ D ) )
= ( ord_less_eq_real @ C @ ( plus_plus_real @ ( real_V1485227260804924795R_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D ) ) ) ).
% Real_Vector_Spaces.le_add_iff2
thf(fact_8494_abs__Re__le__cmod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% abs_Re_le_cmod
thf(fact_8495_Re__csqrt,axiom,
! [Z: complex] : ( ord_less_eq_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) ) ).
% Re_csqrt
thf(fact_8496_zero__le__scaleR__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( A = zero_zero_real ) ) ) ).
% zero_le_scaleR_iff
thf(fact_8497_scaleR__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( A = zero_zero_real ) ) ) ).
% scaleR_le_0_iff
thf(fact_8498_scaleR__mono,axiom,
! [A: real,B: real,X: real,Y4: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ ( real_V1485227260804924795R_real @ B @ Y4 ) ) ) ) ) ) ).
% scaleR_mono
thf(fact_8499_scaleR__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ C ) @ ( real_V1485227260804924795R_real @ B @ D ) ) ) ) ) ) ).
% scaleR_mono'
thf(fact_8500_split__scaleR__neg__le,axiom,
! [A: real,X: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ X @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ X ) ) )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ).
% split_scaleR_neg_le
thf(fact_8501_split__scaleR__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) ) ) ).
% split_scaleR_pos_le
thf(fact_8502_scaleR__nonneg__nonneg,axiom,
! [A: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ X ) ) ) ) ).
% scaleR_nonneg_nonneg
thf(fact_8503_scaleR__nonneg__nonpos,axiom,
! [A: real,X: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ) ).
% scaleR_nonneg_nonpos
thf(fact_8504_scaleR__nonpos__nonneg,axiom,
! [A: real,X: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ zero_zero_real ) ) ) ).
% scaleR_nonpos_nonneg
thf(fact_8505_scaleR__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( real_V1485227260804924795R_real @ A @ B ) ) ) ) ).
% scaleR_nonpos_nonpos
thf(fact_8506_scaleR__left__le__one__le,axiom,
! [X: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ A @ X ) @ X ) ) ) ).
% scaleR_left_le_one_le
thf(fact_8507_scaleR__2,axiom,
! [X: complex] :
( ( real_V2046097035970521341omplex @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X )
= ( plus_plus_complex @ X @ X ) ) ).
% scaleR_2
thf(fact_8508_scaleR__2,axiom,
! [X: real] :
( ( real_V1485227260804924795R_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X )
= ( plus_plus_real @ X @ X ) ) ).
% scaleR_2
thf(fact_8509_real__vector__eq__affinity,axiom,
! [M: real,Y4: complex,X: complex,C: complex] :
( ( M != zero_zero_real )
=> ( ( Y4
= ( plus_plus_complex @ ( real_V2046097035970521341omplex @ M @ X ) @ C ) )
= ( ( minus_minus_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ Y4 ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ C ) )
= X ) ) ) ).
% real_vector_eq_affinity
thf(fact_8510_real__vector__eq__affinity,axiom,
! [M: real,Y4: real,X: real,C: real] :
( ( M != zero_zero_real )
=> ( ( Y4
= ( plus_plus_real @ ( real_V1485227260804924795R_real @ M @ X ) @ C ) )
= ( ( minus_minus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ Y4 ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ C ) )
= X ) ) ) ).
% real_vector_eq_affinity
thf(fact_8511_real__vector__affinity__eq,axiom,
! [M: real,X: complex,C: complex,Y4: complex] :
( ( M != zero_zero_real )
=> ( ( ( plus_plus_complex @ ( real_V2046097035970521341omplex @ M @ X ) @ C )
= Y4 )
= ( X
= ( minus_minus_complex @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ Y4 ) @ ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ M ) @ C ) ) ) ) ) ).
% real_vector_affinity_eq
thf(fact_8512_real__vector__affinity__eq,axiom,
! [M: real,X: real,C: real,Y4: real] :
( ( M != zero_zero_real )
=> ( ( ( plus_plus_real @ ( real_V1485227260804924795R_real @ M @ X ) @ C )
= Y4 )
= ( X
= ( minus_minus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ Y4 ) @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ M ) @ C ) ) ) ) ) ).
% real_vector_affinity_eq
thf(fact_8513_pos__divideR__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
= ( ord_less_eq_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% pos_divideR_le_eq
thf(fact_8514_pos__le__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
= ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).
% pos_le_divideR_eq
thf(fact_8515_neg__divideR__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
= ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).
% neg_divideR_le_eq
thf(fact_8516_neg__le__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
= ( ord_less_eq_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% neg_le_divideR_eq
thf(fact_8517_neg__less__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
= ( ord_less_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% neg_less_divideR_eq
thf(fact_8518_neg__divideR__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
= ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).
% neg_divideR_less_eq
thf(fact_8519_pos__less__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) )
= ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ B ) ) ) ).
% pos_less_divideR_eq
thf(fact_8520_pos__divideR__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) @ A )
= ( ord_less_real @ B @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% pos_divideR_less_eq
thf(fact_8521_nonzero__inverse__scaleR__distrib,axiom,
! [A: real,X: complex] :
( ( A != zero_zero_real )
=> ( ( X != zero_zero_complex )
=> ( ( invers8013647133539491842omplex @ ( real_V2046097035970521341omplex @ A @ X ) )
= ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ A ) @ ( invers8013647133539491842omplex @ X ) ) ) ) ) ).
% nonzero_inverse_scaleR_distrib
thf(fact_8522_nonzero__inverse__scaleR__distrib,axiom,
! [A: real,X: real] :
( ( A != zero_zero_real )
=> ( ( X != zero_zero_real )
=> ( ( inverse_inverse_real @ ( real_V1485227260804924795R_real @ A @ X ) )
= ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ X ) ) ) ) ) ).
% nonzero_inverse_scaleR_distrib
thf(fact_8523_pos__le__minus__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
= ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_le_minus_divideR_eq
thf(fact_8524_pos__minus__divideR__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% pos_minus_divideR_le_eq
thf(fact_8525_neg__le__minus__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% neg_le_minus_divideR_eq
thf(fact_8526_neg__minus__divideR__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
= ( ord_less_eq_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divideR_le_eq
thf(fact_8527_pos__less__minus__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
= ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% pos_less_minus_divideR_eq
thf(fact_8528_pos__minus__divideR__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% pos_minus_divideR_less_eq
thf(fact_8529_neg__less__minus__divideR__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( real_V1485227260804924795R_real @ C @ A ) ) ) ) ).
% neg_less_minus_divideR_eq
thf(fact_8530_neg__minus__divideR__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( uminus_uminus_real @ ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ C ) @ B ) ) @ A )
= ( ord_less_real @ ( real_V1485227260804924795R_real @ C @ A ) @ ( uminus_uminus_real @ B ) ) ) ) ).
% neg_minus_divideR_less_eq
thf(fact_8531_cmod__plus__Re__le__0__iff,axiom,
! [Z: complex] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ zero_zero_real )
= ( ( re @ Z )
= ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ).
% cmod_plus_Re_le_0_iff
thf(fact_8532_cos__n__Re__cis__pow__n,axiom,
! [N: nat,A: real] :
( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
= ( re @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).
% cos_n_Re_cis_pow_n
thf(fact_8533_CauchyD,axiom,
! [X9: nat > complex,E2: real] :
( ( topolo6517432010174082258omplex @ X9 )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ? [M8: nat] :
! [M2: nat] :
( ( ord_less_eq_nat @ M8 @ M2 )
=> ! [N6: nat] :
( ( ord_less_eq_nat @ M8 @ N6 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( X9 @ M2 ) @ ( X9 @ N6 ) ) ) @ E2 ) ) ) ) ) ).
% CauchyD
thf(fact_8534_CauchyD,axiom,
! [X9: nat > real,E2: real] :
( ( topolo4055970368930404560y_real @ X9 )
=> ( ( ord_less_real @ zero_zero_real @ E2 )
=> ? [M8: nat] :
! [M2: nat] :
( ( ord_less_eq_nat @ M8 @ M2 )
=> ! [N6: nat] :
( ( ord_less_eq_nat @ M8 @ N6 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( X9 @ M2 ) @ ( X9 @ N6 ) ) ) @ E2 ) ) ) ) ) ).
% CauchyD
thf(fact_8535_CauchyI,axiom,
! [X9: nat > complex] :
( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [M9: nat] :
! [M4: nat] :
( ( ord_less_eq_nat @ M9 @ M4 )
=> ! [N2: nat] :
( ( ord_less_eq_nat @ M9 @ N2 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( X9 @ M4 ) @ ( X9 @ N2 ) ) ) @ E ) ) ) )
=> ( topolo6517432010174082258omplex @ X9 ) ) ).
% CauchyI
thf(fact_8536_CauchyI,axiom,
! [X9: nat > real] :
( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [M9: nat] :
! [M4: nat] :
( ( ord_less_eq_nat @ M9 @ M4 )
=> ! [N2: nat] :
( ( ord_less_eq_nat @ M9 @ N2 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( X9 @ M4 ) @ ( X9 @ N2 ) ) ) @ E ) ) ) )
=> ( topolo4055970368930404560y_real @ X9 ) ) ).
% CauchyI
thf(fact_8537_Cauchy__iff,axiom,
( topolo6517432010174082258omplex
= ( ^ [X8: nat > complex] :
! [E3: real] :
( ( ord_less_real @ zero_zero_real @ E3 )
=> ? [M7: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ M7 @ M5 )
=> ! [N4: nat] :
( ( ord_less_eq_nat @ M7 @ N4 )
=> ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( X8 @ M5 ) @ ( X8 @ N4 ) ) ) @ E3 ) ) ) ) ) ) ).
% Cauchy_iff
thf(fact_8538_Cauchy__iff,axiom,
( topolo4055970368930404560y_real
= ( ^ [X8: nat > real] :
! [E3: real] :
( ( ord_less_real @ zero_zero_real @ E3 )
=> ? [M7: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ M7 @ M5 )
=> ! [N4: nat] :
( ( ord_less_eq_nat @ M7 @ N4 )
=> ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( X8 @ M5 ) @ ( X8 @ N4 ) ) ) @ E3 ) ) ) ) ) ) ).
% Cauchy_iff
thf(fact_8539_cosh__def,axiom,
( cosh_complex
= ( ^ [X3: complex] : ( real_V2046097035970521341omplex @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) ) ) ) ).
% cosh_def
thf(fact_8540_cosh__def,axiom,
( cosh_real
= ( ^ [X3: real] : ( real_V1485227260804924795R_real @ ( inverse_inverse_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ) ).
% cosh_def
thf(fact_8541_csqrt_Ocode,axiom,
( csqrt
= ( ^ [Z5: complex] :
( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z5 ) @ ( re @ Z5 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
@ ( times_times_real
@ ( if_real
@ ( ( im @ Z5 )
= zero_zero_real )
@ one_one_real
@ ( sgn_sgn_real @ ( im @ Z5 ) ) )
@ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z5 ) @ ( re @ Z5 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% csqrt.code
thf(fact_8542_csqrt_Osimps_I2_J,axiom,
! [Z: complex] :
( ( im @ ( csqrt @ Z ) )
= ( times_times_real
@ ( if_real
@ ( ( im @ Z )
= zero_zero_real )
@ one_one_real
@ ( sgn_sgn_real @ ( im @ Z ) ) )
@ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% csqrt.simps(2)
thf(fact_8543_csqrt__of__real__nonpos,axiom,
! [X: complex] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( ord_less_eq_real @ ( re @ X ) @ zero_zero_real )
=> ( ( csqrt @ X )
= ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X ) ) ) ) ) ) ) ) ).
% csqrt_of_real_nonpos
thf(fact_8544_Complex__divide,axiom,
( divide1717551699836669952omplex
= ( ^ [X3: complex,Y6: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X3 ) @ ( re @ Y6 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( im @ Y6 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X3 ) @ ( re @ Y6 ) ) @ ( times_times_real @ ( re @ X3 ) @ ( im @ Y6 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% Complex_divide
thf(fact_8545_complex__Im__of__int,axiom,
! [Z: int] :
( ( im @ ( ring_17405671764205052669omplex @ Z ) )
= zero_zero_real ) ).
% complex_Im_of_int
thf(fact_8546_complex__Im__fact,axiom,
! [N: nat] :
( ( im @ ( semiri5044797733671781792omplex @ N ) )
= zero_zero_real ) ).
% complex_Im_fact
thf(fact_8547_Im__complex__of__real,axiom,
! [Z: real] :
( ( im @ ( real_V4546457046886955230omplex @ Z ) )
= zero_zero_real ) ).
% Im_complex_of_real
thf(fact_8548_Im__power__real,axiom,
! [X: complex,N: nat] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( im @ ( power_power_complex @ X @ N ) )
= zero_zero_real ) ) ).
% Im_power_real
thf(fact_8549_complex__Im__numeral,axiom,
! [V: num] :
( ( im @ ( numera6690914467698888265omplex @ V ) )
= zero_zero_real ) ).
% complex_Im_numeral
thf(fact_8550_complex__Im__of__nat,axiom,
! [N: nat] :
( ( im @ ( semiri8010041392384452111omplex @ N ) )
= zero_zero_real ) ).
% complex_Im_of_nat
thf(fact_8551_Im__divide__of__real,axiom,
! [Z: complex,R2: real] :
( ( im @ ( divide1717551699836669952omplex @ Z @ ( real_V4546457046886955230omplex @ R2 ) ) )
= ( divide_divide_real @ ( im @ Z ) @ R2 ) ) ).
% Im_divide_of_real
thf(fact_8552_Im__sgn,axiom,
! [Z: complex] :
( ( im @ ( sgn_sgn_complex @ Z ) )
= ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).
% Im_sgn
thf(fact_8553_Re__power__real,axiom,
! [X: complex,N: nat] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( re @ ( power_power_complex @ X @ N ) )
= ( power_power_real @ ( re @ X ) @ N ) ) ) ).
% Re_power_real
thf(fact_8554_Im__divide__numeral,axiom,
! [Z: complex,W: num] :
( ( im @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
= ( divide_divide_real @ ( im @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).
% Im_divide_numeral
thf(fact_8555_Im__divide__of__nat,axiom,
! [Z: complex,N: nat] :
( ( im @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N ) ) )
= ( divide_divide_real @ ( im @ Z ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% Im_divide_of_nat
thf(fact_8556_csqrt__of__real__nonneg,axiom,
! [X: complex] :
( ( ( im @ X )
= zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) )
=> ( ( csqrt @ X )
= ( real_V4546457046886955230omplex @ ( sqrt @ ( re @ X ) ) ) ) ) ) ).
% csqrt_of_real_nonneg
thf(fact_8557_csqrt__minus,axiom,
! [X: complex] :
( ( ( ord_less_real @ ( im @ X ) @ zero_zero_real )
| ( ( ( im @ X )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) ) ) )
=> ( ( csqrt @ ( uminus1482373934393186551omplex @ X ) )
= ( times_times_complex @ imaginary_unit @ ( csqrt @ X ) ) ) ) ).
% csqrt_minus
thf(fact_8558_scaleR__complex_Osimps_I2_J,axiom,
! [R2: real,X: complex] :
( ( im @ ( real_V2046097035970521341omplex @ R2 @ X ) )
= ( times_times_real @ R2 @ ( im @ X ) ) ) ).
% scaleR_complex.simps(2)
thf(fact_8559_zero__complex_Osimps_I2_J,axiom,
( ( im @ zero_zero_complex )
= zero_zero_real ) ).
% zero_complex.simps(2)
thf(fact_8560_one__complex_Osimps_I2_J,axiom,
( ( im @ one_one_complex )
= zero_zero_real ) ).
% one_complex.simps(2)
thf(fact_8561_minus__complex_Osimps_I2_J,axiom,
! [X: complex,Y4: complex] :
( ( im @ ( minus_minus_complex @ X @ Y4 ) )
= ( minus_minus_real @ ( im @ X ) @ ( im @ Y4 ) ) ) ).
% minus_complex.simps(2)
thf(fact_8562_complex__is__Int__iff,axiom,
! [Z: complex] :
( ( member_complex @ Z @ ring_1_Ints_complex )
= ( ( ( im @ Z )
= zero_zero_real )
& ? [I2: int] :
( ( re @ Z )
= ( ring_1_of_int_real @ I2 ) ) ) ) ).
% complex_is_Int_iff
thf(fact_8563_scaleR__complex_Ocode,axiom,
( real_V2046097035970521341omplex
= ( ^ [R5: real,X3: complex] : ( complex2 @ ( times_times_real @ R5 @ ( re @ X3 ) ) @ ( times_times_real @ R5 @ ( im @ X3 ) ) ) ) ) ).
% scaleR_complex.code
thf(fact_8564_abs__Im__le__cmod,axiom,
! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).
% abs_Im_le_cmod
thf(fact_8565_times__complex_Osimps_I2_J,axiom,
! [X: complex,Y4: complex] :
( ( im @ ( times_times_complex @ X @ Y4 ) )
= ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( im @ Y4 ) ) @ ( times_times_real @ ( im @ X ) @ ( re @ Y4 ) ) ) ) ).
% times_complex.simps(2)
thf(fact_8566_cmod__eq__Re,axiom,
! [Z: complex] :
( ( ( im @ Z )
= zero_zero_real )
=> ( ( real_V1022390504157884413omplex @ Z )
= ( abs_abs_real @ ( re @ Z ) ) ) ) ).
% cmod_eq_Re
thf(fact_8567_cmod__eq__Im,axiom,
! [Z: complex] :
( ( ( re @ Z )
= zero_zero_real )
=> ( ( real_V1022390504157884413omplex @ Z )
= ( abs_abs_real @ ( im @ Z ) ) ) ) ).
% cmod_eq_Im
thf(fact_8568_Im__eq__0,axiom,
! [Z: complex] :
( ( ( abs_abs_real @ ( re @ Z ) )
= ( real_V1022390504157884413omplex @ Z ) )
=> ( ( im @ Z )
= zero_zero_real ) ) ).
% Im_eq_0
thf(fact_8569_cmod__Im__le__iff,axiom,
! [X: complex,Y4: complex] :
( ( ( re @ X )
= ( re @ Y4 ) )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y4 ) )
= ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( abs_abs_real @ ( im @ Y4 ) ) ) ) ) ).
% cmod_Im_le_iff
thf(fact_8570_cmod__Re__le__iff,axiom,
! [X: complex,Y4: complex] :
( ( ( im @ X )
= ( im @ Y4 ) )
=> ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y4 ) )
= ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( abs_abs_real @ ( re @ Y4 ) ) ) ) ) ).
% cmod_Re_le_iff
thf(fact_8571_times__complex_Osimps_I1_J,axiom,
! [X: complex,Y4: complex] :
( ( re @ ( times_times_complex @ X @ Y4 ) )
= ( minus_minus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y4 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y4 ) ) ) ) ).
% times_complex.simps(1)
thf(fact_8572_minus__complex_Ocode,axiom,
( minus_minus_complex
= ( ^ [X3: complex,Y6: complex] : ( complex2 @ ( minus_minus_real @ ( re @ X3 ) @ ( re @ Y6 ) ) @ ( minus_minus_real @ ( im @ X3 ) @ ( im @ Y6 ) ) ) ) ) ).
% minus_complex.code
thf(fact_8573_csqrt__principal,axiom,
! [Z: complex] :
( ( ord_less_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) )
| ( ( ( re @ ( csqrt @ Z ) )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( im @ ( csqrt @ Z ) ) ) ) ) ).
% csqrt_principal
thf(fact_8574_cmod__le,axiom,
! [Z: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) ) ).
% cmod_le
thf(fact_8575_sin__n__Im__cis__pow__n,axiom,
! [N: nat,A: real] :
( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
= ( im @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).
% sin_n_Im_cis_pow_n
thf(fact_8576_Re__exp,axiom,
! [Z: complex] :
( ( re @ ( exp_complex @ Z ) )
= ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( cos_real @ ( im @ Z ) ) ) ) ).
% Re_exp
thf(fact_8577_Im__exp,axiom,
! [Z: complex] :
( ( im @ ( exp_complex @ Z ) )
= ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( sin_real @ ( im @ Z ) ) ) ) ).
% Im_exp
thf(fact_8578_times__complex_Ocode,axiom,
( times_times_complex
= ( ^ [X3: complex,Y6: complex] : ( complex2 @ ( minus_minus_real @ ( times_times_real @ ( re @ X3 ) @ ( re @ Y6 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( im @ Y6 ) ) ) @ ( plus_plus_real @ ( times_times_real @ ( re @ X3 ) @ ( im @ Y6 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( re @ Y6 ) ) ) ) ) ) ).
% times_complex.code
thf(fact_8579_cmod__power2,axiom,
! [Z: complex] :
( ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% cmod_power2
thf(fact_8580_Im__power2,axiom,
! [X: complex] :
( ( im @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X ) ) @ ( im @ X ) ) ) ).
% Im_power2
thf(fact_8581_Re__power2,axiom,
! [X: complex] :
( ( re @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Re_power2
thf(fact_8582_complex__eq__0,axiom,
! [Z: complex] :
( ( Z = zero_zero_complex )
= ( ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real ) ) ).
% complex_eq_0
thf(fact_8583_norm__complex__def,axiom,
( real_V1022390504157884413omplex
= ( ^ [Z5: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z5 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z5 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% norm_complex_def
thf(fact_8584_inverse__complex_Osimps_I1_J,axiom,
! [X: complex] :
( ( re @ ( invers8013647133539491842omplex @ X ) )
= ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% inverse_complex.simps(1)
thf(fact_8585_complex__neq__0,axiom,
! [Z: complex] :
( ( Z != zero_zero_complex )
= ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% complex_neq_0
thf(fact_8586_Re__divide,axiom,
! [X: complex,Y4: complex] :
( ( re @ ( divide1717551699836669952omplex @ X @ Y4 ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y4 ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y4 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Re_divide
thf(fact_8587_csqrt__unique,axiom,
! [W: complex,Z: complex] :
( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= Z )
=> ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
| ( ( ( re @ W )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
=> ( ( csqrt @ Z )
= W ) ) ) ).
% csqrt_unique
thf(fact_8588_csqrt__square,axiom,
! [B: complex] :
( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
| ( ( ( re @ B )
= zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
=> ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= B ) ) ).
% csqrt_square
thf(fact_8589_inverse__complex_Osimps_I2_J,axiom,
! [X: complex] :
( ( im @ ( invers8013647133539491842omplex @ X ) )
= ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% inverse_complex.simps(2)
thf(fact_8590_Im__divide,axiom,
! [X: complex,Y4: complex] :
( ( im @ ( divide1717551699836669952omplex @ X @ Y4 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y4 ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y4 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Im_divide
thf(fact_8591_complex__abs__le__norm,axiom,
! [Z: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).
% complex_abs_le_norm
thf(fact_8592_complex__unit__circle,axiom,
! [Z: complex] :
( ( Z != zero_zero_complex )
=> ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= one_one_real ) ) ).
% complex_unit_circle
thf(fact_8593_inverse__complex_Ocode,axiom,
( invers8013647133539491842omplex
= ( ^ [X3: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X3 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X3 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% inverse_complex.code
thf(fact_8594_Im__Reals__divide,axiom,
! [R2: complex,Z: complex] :
( ( member_complex @ R2 @ real_V2521375963428798218omplex )
=> ( ( im @ ( divide1717551699836669952omplex @ R2 @ Z ) )
= ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R2 ) ) @ ( im @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Im_Reals_divide
thf(fact_8595_length__mul__elem,axiom,
! [Xs: list_list_real,N: nat] :
( ! [X4: list_real] :
( ( member_list_real @ X4 @ ( set_list_real2 @ Xs ) )
=> ( ( size_size_list_real @ X4 )
= N ) )
=> ( ( size_size_list_real @ ( concat_real @ Xs ) )
= ( times_times_nat @ ( size_s6660260683639930848t_real @ Xs ) @ N ) ) ) ).
% length_mul_elem
thf(fact_8596_length__mul__elem,axiom,
! [Xs: list_list_o,N: nat] :
( ! [X4: list_o] :
( ( member_list_o @ X4 @ ( set_list_o2 @ Xs ) )
=> ( ( size_size_list_o @ X4 )
= N ) )
=> ( ( size_size_list_o @ ( concat_o @ Xs ) )
= ( times_times_nat @ ( size_s2710708370519433104list_o @ Xs ) @ N ) ) ) ).
% length_mul_elem
thf(fact_8597_length__mul__elem,axiom,
! [Xs: list_list_nat,N: nat] :
( ! [X4: list_nat] :
( ( member_list_nat @ X4 @ ( set_list_nat2 @ Xs ) )
=> ( ( size_size_list_nat @ X4 )
= N ) )
=> ( ( size_size_list_nat @ ( concat_nat @ Xs ) )
= ( times_times_nat @ ( size_s3023201423986296836st_nat @ Xs ) @ N ) ) ) ).
% length_mul_elem
thf(fact_8598_length__mul__elem,axiom,
! [Xs: list_list_int,N: nat] :
( ! [X4: list_int] :
( ( member_list_int @ X4 @ ( set_list_int2 @ Xs ) )
=> ( ( size_size_list_int @ X4 )
= N ) )
=> ( ( size_size_list_int @ ( concat_int @ Xs ) )
= ( times_times_nat @ ( size_s533118279054570080st_int @ Xs ) @ N ) ) ) ).
% length_mul_elem
thf(fact_8599_Re__Reals__divide,axiom,
! [R2: complex,Z: complex] :
( ( member_complex @ R2 @ real_V2521375963428798218omplex )
=> ( ( re @ ( divide1717551699836669952omplex @ R2 @ Z ) )
= ( divide_divide_real @ ( times_times_real @ ( re @ R2 ) @ ( re @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% Re_Reals_divide
thf(fact_8600_complex__diff__cnj,axiom,
! [Z: complex] :
( ( minus_minus_complex @ Z @ ( cnj @ Z ) )
= ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z ) ) ) @ imaginary_unit ) ) ).
% complex_diff_cnj
thf(fact_8601_complex__cnj__zero__iff,axiom,
! [Z: complex] :
( ( ( cnj @ Z )
= zero_zero_complex )
= ( Z = zero_zero_complex ) ) ).
% complex_cnj_zero_iff
thf(fact_8602_complex__cnj__zero,axiom,
( ( cnj @ zero_zero_complex )
= zero_zero_complex ) ).
% complex_cnj_zero
thf(fact_8603_complex__cnj__diff,axiom,
! [X: complex,Y4: complex] :
( ( cnj @ ( minus_minus_complex @ X @ Y4 ) )
= ( minus_minus_complex @ ( cnj @ X ) @ ( cnj @ Y4 ) ) ) ).
% complex_cnj_diff
thf(fact_8604_complex__In__mult__cnj__zero,axiom,
! [Z: complex] :
( ( im @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
= zero_zero_real ) ).
% complex_In_mult_cnj_zero
thf(fact_8605_Re__divide__Reals,axiom,
! [R2: complex,Z: complex] :
( ( member_complex @ R2 @ real_V2521375963428798218omplex )
=> ( ( re @ ( divide1717551699836669952omplex @ Z @ R2 ) )
= ( divide_divide_real @ ( re @ Z ) @ ( re @ R2 ) ) ) ) ).
% Re_divide_Reals
thf(fact_8606_imaginary__eq__real__iff,axiom,
! [Y4: complex,X: complex] :
( ( member_complex @ Y4 @ real_V2521375963428798218omplex )
=> ( ( member_complex @ X @ real_V2521375963428798218omplex )
=> ( ( ( times_times_complex @ imaginary_unit @ Y4 )
= X )
= ( ( X = zero_zero_complex )
& ( Y4 = zero_zero_complex ) ) ) ) ) ).
% imaginary_eq_real_iff
thf(fact_8607_real__eq__imaginary__iff,axiom,
! [Y4: complex,X: complex] :
( ( member_complex @ Y4 @ real_V2521375963428798218omplex )
=> ( ( member_complex @ X @ real_V2521375963428798218omplex )
=> ( ( X
= ( times_times_complex @ imaginary_unit @ Y4 ) )
= ( ( X = zero_zero_complex )
& ( Y4 = zero_zero_complex ) ) ) ) ) ).
% real_eq_imaginary_iff
thf(fact_8608_Im__divide__Reals,axiom,
! [R2: complex,Z: complex] :
( ( member_complex @ R2 @ real_V2521375963428798218omplex )
=> ( ( im @ ( divide1717551699836669952omplex @ Z @ R2 ) )
= ( divide_divide_real @ ( im @ Z ) @ ( re @ R2 ) ) ) ) ).
% Im_divide_Reals
thf(fact_8609_Reals__of__nat,axiom,
! [N: nat] : ( member_complex @ ( semiri8010041392384452111omplex @ N ) @ real_V2521375963428798218omplex ) ).
% Reals_of_nat
thf(fact_8610_Reals__of__nat,axiom,
! [N: nat] : ( member_real @ ( semiri5074537144036343181t_real @ N ) @ real_V470468836141973256s_real ) ).
% Reals_of_nat
thf(fact_8611_Reals__divide,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ real_V2521375963428798218omplex )
=> ( ( member_complex @ B @ real_V2521375963428798218omplex )
=> ( member_complex @ ( divide1717551699836669952omplex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ).
% Reals_divide
thf(fact_8612_Reals__divide,axiom,
! [A: real,B: real] :
( ( member_real @ A @ real_V470468836141973256s_real )
=> ( ( member_real @ B @ real_V470468836141973256s_real )
=> ( member_real @ ( divide_divide_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ).
% Reals_divide
thf(fact_8613_Reals__diff,axiom,
! [A: real,B: real] :
( ( member_real @ A @ real_V470468836141973256s_real )
=> ( ( member_real @ B @ real_V470468836141973256s_real )
=> ( member_real @ ( minus_minus_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ).
% Reals_diff
thf(fact_8614_Reals__diff,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ real_V2521375963428798218omplex )
=> ( ( member_complex @ B @ real_V2521375963428798218omplex )
=> ( member_complex @ ( minus_minus_complex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ).
% Reals_diff
thf(fact_8615_Reals__mult,axiom,
! [A: real,B: real] :
( ( member_real @ A @ real_V470468836141973256s_real )
=> ( ( member_real @ B @ real_V470468836141973256s_real )
=> ( member_real @ ( times_times_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ).
% Reals_mult
thf(fact_8616_Reals__mult,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ real_V2521375963428798218omplex )
=> ( ( member_complex @ B @ real_V2521375963428798218omplex )
=> ( member_complex @ ( times_times_complex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ).
% Reals_mult
thf(fact_8617_Reals__numeral,axiom,
! [W: num] : ( member_complex @ ( numera6690914467698888265omplex @ W ) @ real_V2521375963428798218omplex ) ).
% Reals_numeral
thf(fact_8618_Reals__numeral,axiom,
! [W: num] : ( member_real @ ( numeral_numeral_real @ W ) @ real_V470468836141973256s_real ) ).
% Reals_numeral
thf(fact_8619_Reals__0,axiom,
member_real @ zero_zero_real @ real_V470468836141973256s_real ).
% Reals_0
thf(fact_8620_Reals__0,axiom,
member_complex @ zero_zero_complex @ real_V2521375963428798218omplex ).
% Reals_0
thf(fact_8621_complex__is__Real__iff,axiom,
! [Z: complex] :
( ( member_complex @ Z @ real_V2521375963428798218omplex )
= ( ( im @ Z )
= zero_zero_real ) ) ).
% complex_is_Real_iff
thf(fact_8622_nonzero__Reals__divide,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ real_V2521375963428798218omplex )
=> ( ( member_complex @ B @ real_V2521375963428798218omplex )
=> ( ( B != zero_zero_complex )
=> ( member_complex @ ( divide1717551699836669952omplex @ A @ B ) @ real_V2521375963428798218omplex ) ) ) ) ).
% nonzero_Reals_divide
thf(fact_8623_nonzero__Reals__divide,axiom,
! [A: real,B: real] :
( ( member_real @ A @ real_V470468836141973256s_real )
=> ( ( member_real @ B @ real_V470468836141973256s_real )
=> ( ( B != zero_zero_real )
=> ( member_real @ ( divide_divide_real @ A @ B ) @ real_V470468836141973256s_real ) ) ) ) ).
% nonzero_Reals_divide
thf(fact_8624_Complex__in__Reals,axiom,
! [X: real] : ( member_complex @ ( complex2 @ X @ zero_zero_real ) @ real_V2521375963428798218omplex ) ).
% Complex_in_Reals
thf(fact_8625_nonzero__Reals__inverse,axiom,
! [A: real] :
( ( member_real @ A @ real_V470468836141973256s_real )
=> ( ( A != zero_zero_real )
=> ( member_real @ ( inverse_inverse_real @ A ) @ real_V470468836141973256s_real ) ) ) ).
% nonzero_Reals_inverse
thf(fact_8626_nonzero__Reals__inverse,axiom,
! [A: complex] :
( ( member_complex @ A @ real_V2521375963428798218omplex )
=> ( ( A != zero_zero_complex )
=> ( member_complex @ ( invers8013647133539491842omplex @ A ) @ real_V2521375963428798218omplex ) ) ) ).
% nonzero_Reals_inverse
thf(fact_8627_Re__complex__div__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
= zero_zero_real )
= ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
= zero_zero_real ) ) ).
% Re_complex_div_eq_0
thf(fact_8628_Im__complex__div__eq__0,axiom,
! [A: complex,B: complex] :
( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
= zero_zero_real )
= ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
= zero_zero_real ) ) ).
% Im_complex_div_eq_0
thf(fact_8629_Re__complex__div__gt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Re_complex_div_gt_0
thf(fact_8630_Re__complex__div__lt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Re_complex_div_lt_0
thf(fact_8631_Re__complex__div__ge__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Re_complex_div_ge_0
thf(fact_8632_Re__complex__div__le__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Re_complex_div_le_0
thf(fact_8633_Im__complex__div__gt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Im_complex_div_gt_0
thf(fact_8634_Im__complex__div__lt__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Im_complex_div_lt_0
thf(fact_8635_Im__complex__div__ge__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).
% Im_complex_div_ge_0
thf(fact_8636_Im__complex__div__le__0,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
= ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).
% Im_complex_div_le_0
thf(fact_8637_complex__mod__mult__cnj,axiom,
! [Z: complex] :
( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
= ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% complex_mod_mult_cnj
thf(fact_8638_complex__div__gt__0,axiom,
! [A: complex,B: complex] :
( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
& ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
= ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).
% complex_div_gt_0
thf(fact_8639_complex__norm__square,axiom,
! [Z: complex] :
( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( times_times_complex @ Z @ ( cnj @ Z ) ) ) ).
% complex_norm_square
thf(fact_8640_complex__add__cnj,axiom,
! [Z: complex] :
( ( plus_plus_complex @ Z @ ( cnj @ Z ) )
= ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z ) ) ) ) ).
% complex_add_cnj
thf(fact_8641_complex__div__cnj,axiom,
( divide1717551699836669952omplex
= ( ^ [A3: complex,B2: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A3 @ ( cnj @ B2 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% complex_div_cnj
thf(fact_8642_cnj__add__mult__eq__Re,axiom,
! [Z: complex,W: complex] :
( ( plus_plus_complex @ ( times_times_complex @ Z @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z ) @ W ) )
= ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z @ ( cnj @ W ) ) ) ) ) ) ).
% cnj_add_mult_eq_Re
thf(fact_8643_complex__mult__cnj,axiom,
! [Z: complex] :
( ( times_times_complex @ Z @ ( cnj @ Z ) )
= ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% complex_mult_cnj
thf(fact_8644_or__int__rec,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K3: int,L3: int] :
( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
| ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% or_int_rec
thf(fact_8645_drop__bit__numeral__minus__bit1,axiom,
! [L: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_numeral_minus_bit1
thf(fact_8646_or__numerals_I7_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ) ).
% or_numerals(7)
thf(fact_8647_or__numerals_I7_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ) ).
% or_numerals(7)
thf(fact_8648_or__numerals_I6_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ) ).
% or_numerals(6)
thf(fact_8649_or__numerals_I6_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ) ).
% or_numerals(6)
thf(fact_8650_or_Oright__idem,axiom,
! [A: int,B: int] :
( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ B )
= ( bit_se1409905431419307370or_int @ A @ B ) ) ).
% or.right_idem
thf(fact_8651_or_Oright__idem,axiom,
! [A: nat,B: nat] :
( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ B )
= ( bit_se1412395901928357646or_nat @ A @ B ) ) ).
% or.right_idem
thf(fact_8652_or_Oleft__idem,axiom,
! [A: int,B: int] :
( ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ A @ B ) )
= ( bit_se1409905431419307370or_int @ A @ B ) ) ).
% or.left_idem
thf(fact_8653_or_Oleft__idem,axiom,
! [A: nat,B: nat] :
( ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ A @ B ) )
= ( bit_se1412395901928357646or_nat @ A @ B ) ) ).
% or.left_idem
thf(fact_8654_or_Oidem,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ A @ A )
= A ) ).
% or.idem
thf(fact_8655_or_Oidem,axiom,
! [A: nat] :
( ( bit_se1412395901928357646or_nat @ A @ A )
= A ) ).
% or.idem
thf(fact_8656_or_Oleft__neutral,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ zero_zero_int @ A )
= A ) ).
% or.left_neutral
thf(fact_8657_or_Oleft__neutral,axiom,
! [A: nat] :
( ( bit_se1412395901928357646or_nat @ zero_zero_nat @ A )
= A ) ).
% or.left_neutral
thf(fact_8658_or_Oright__neutral,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ A @ zero_zero_int )
= A ) ).
% or.right_neutral
thf(fact_8659_or_Oright__neutral,axiom,
! [A: nat] :
( ( bit_se1412395901928357646or_nat @ A @ zero_zero_nat )
= A ) ).
% or.right_neutral
thf(fact_8660_drop__bit__of__0,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% drop_bit_of_0
thf(fact_8661_drop__bit__of__0,axiom,
! [N: nat] :
( ( bit_se8570568707652914677it_nat @ N @ zero_zero_nat )
= zero_zero_nat ) ).
% drop_bit_of_0
thf(fact_8662_drop__bit__drop__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_se8568078237143864401it_int @ M @ ( bit_se8568078237143864401it_int @ N @ A ) )
= ( bit_se8568078237143864401it_int @ ( plus_plus_nat @ M @ N ) @ A ) ) ).
% drop_bit_drop_bit
thf(fact_8663_drop__bit__drop__bit,axiom,
! [M: nat,N: nat,A: nat] :
( ( bit_se8570568707652914677it_nat @ M @ ( bit_se8570568707652914677it_nat @ N @ A ) )
= ( bit_se8570568707652914677it_nat @ ( plus_plus_nat @ M @ N ) @ A ) ) ).
% drop_bit_drop_bit
thf(fact_8664_take__bit__or,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se2923211474154528505it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
= ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).
% take_bit_or
thf(fact_8665_take__bit__or,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se2925701944663578781it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
= ( bit_se1412395901928357646or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).
% take_bit_or
thf(fact_8666_push__bit__or,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se545348938243370406it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
= ( bit_se1409905431419307370or_int @ ( bit_se545348938243370406it_int @ N @ A ) @ ( bit_se545348938243370406it_int @ N @ B ) ) ) ).
% push_bit_or
thf(fact_8667_push__bit__or,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se547839408752420682it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
= ( bit_se1412395901928357646or_nat @ ( bit_se547839408752420682it_nat @ N @ A ) @ ( bit_se547839408752420682it_nat @ N @ B ) ) ) ).
% push_bit_or
thf(fact_8668_drop__bit__and,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se8568078237143864401it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
= ( bit_se725231765392027082nd_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( bit_se8568078237143864401it_int @ N @ B ) ) ) ).
% drop_bit_and
thf(fact_8669_drop__bit__and,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
= ( bit_se727722235901077358nd_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( bit_se8570568707652914677it_nat @ N @ B ) ) ) ).
% drop_bit_and
thf(fact_8670_drop__bit__or,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se8568078237143864401it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
= ( bit_se1409905431419307370or_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( bit_se8568078237143864401it_int @ N @ B ) ) ) ).
% drop_bit_or
thf(fact_8671_drop__bit__or,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
= ( bit_se1412395901928357646or_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( bit_se8570568707652914677it_nat @ N @ B ) ) ) ).
% drop_bit_or
thf(fact_8672_drop__bit__xor,axiom,
! [N: nat,A: int,B: int] :
( ( bit_se8568078237143864401it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
= ( bit_se6526347334894502574or_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( bit_se8568078237143864401it_int @ N @ B ) ) ) ).
% drop_bit_xor
thf(fact_8673_drop__bit__xor,axiom,
! [N: nat,A: nat,B: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
= ( bit_se6528837805403552850or_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( bit_se8570568707652914677it_nat @ N @ B ) ) ) ).
% drop_bit_xor
thf(fact_8674_bit_Odisj__one__right,axiom,
! [X: code_integer] :
( ( bit_se1080825931792720795nteger @ X @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% bit.disj_one_right
thf(fact_8675_bit_Odisj__one__right,axiom,
! [X: int] :
( ( bit_se1409905431419307370or_int @ X @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% bit.disj_one_right
thf(fact_8676_bit_Odisj__one__left,axiom,
! [X: code_integer] :
( ( bit_se1080825931792720795nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% bit.disj_one_left
thf(fact_8677_bit_Odisj__one__left,axiom,
! [X: int] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ one_one_int ) @ X )
= ( uminus_uminus_int @ one_one_int ) ) ).
% bit.disj_one_left
thf(fact_8678_drop__bit__of__bool,axiom,
! [N: nat,B: $o] :
( ( bit_se3928097537394005634nteger @ N @ ( zero_n356916108424825756nteger @ B ) )
= ( zero_n356916108424825756nteger
@ ( ( N = zero_zero_nat )
& B ) ) ) ).
% drop_bit_of_bool
thf(fact_8679_drop__bit__of__bool,axiom,
! [N: nat,B: $o] :
( ( bit_se8568078237143864401it_int @ N @ ( zero_n2684676970156552555ol_int @ B ) )
= ( zero_n2684676970156552555ol_int
@ ( ( N = zero_zero_nat )
& B ) ) ) ).
% drop_bit_of_bool
thf(fact_8680_drop__bit__of__bool,axiom,
! [N: nat,B: $o] :
( ( bit_se8570568707652914677it_nat @ N @ ( zero_n2687167440665602831ol_nat @ B ) )
= ( zero_n2687167440665602831ol_nat
@ ( ( N = zero_zero_nat )
& B ) ) ) ).
% drop_bit_of_bool
thf(fact_8681_or__nonnegative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
= ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).
% or_nonnegative_int_iff
thf(fact_8682_or__negative__int__iff,axiom,
! [K: int,L: int] :
( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ zero_zero_int )
= ( ( ord_less_int @ K @ zero_zero_int )
| ( ord_less_int @ L @ zero_zero_int ) ) ) ).
% or_negative_int_iff
thf(fact_8683_bit_Ode__Morgan__disj,axiom,
! [X: int,Y4: int] :
( ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ X @ Y4 ) )
= ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ X ) @ ( bit_ri7919022796975470100ot_int @ Y4 ) ) ) ).
% bit.de_Morgan_disj
thf(fact_8684_bit_Ode__Morgan__conj,axiom,
! [X: int,Y4: int] :
( ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) )
= ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ ( bit_ri7919022796975470100ot_int @ Y4 ) ) ) ).
% bit.de_Morgan_conj
thf(fact_8685_drop__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% drop_bit_nonnegative_int_iff
thf(fact_8686_drop__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% drop_bit_negative_int_iff
thf(fact_8687_drop__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% drop_bit_minus_one
thf(fact_8688_or__nat__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) ) ).
% or_nat_numerals(2)
thf(fact_8689_or__nat__numerals_I4_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(4)
thf(fact_8690_or__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( numeral_numeral_int @ ( bit1 @ Y4 ) ) ) ).
% or_numerals(2)
thf(fact_8691_or__numerals_I2_J,axiom,
! [Y4: num] :
( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) ) ).
% or_numerals(2)
thf(fact_8692_or__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).
% or_numerals(8)
thf(fact_8693_or__numerals_I8_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_numerals(8)
thf(fact_8694_drop__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( numeral_numeral_int @ K ) ) ) ).
% drop_bit_Suc_bit0
thf(fact_8695_drop__bit__Suc__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se8570568707652914677it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( bit_se8570568707652914677it_nat @ N @ ( numeral_numeral_nat @ K ) ) ) ).
% drop_bit_Suc_bit0
thf(fact_8696_drop__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( numeral_numeral_int @ K ) ) ) ).
% drop_bit_Suc_bit1
thf(fact_8697_drop__bit__Suc__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se8570568707652914677it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( bit_se8570568707652914677it_nat @ N @ ( numeral_numeral_nat @ K ) ) ) ).
% drop_bit_Suc_bit1
thf(fact_8698_bit_Odisj__cancel__left,axiom,
! [X: code_integer] :
( ( bit_se1080825931792720795nteger @ ( bit_ri7632146776885996613nteger @ X ) @ X )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% bit.disj_cancel_left
thf(fact_8699_bit_Odisj__cancel__left,axiom,
! [X: int] :
( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ X ) @ X )
= ( uminus_uminus_int @ one_one_int ) ) ).
% bit.disj_cancel_left
thf(fact_8700_bit_Odisj__cancel__right,axiom,
! [X: code_integer] :
( ( bit_se1080825931792720795nteger @ X @ ( bit_ri7632146776885996613nteger @ X ) )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).
% bit.disj_cancel_right
thf(fact_8701_bit_Odisj__cancel__right,axiom,
! [X: int] :
( ( bit_se1409905431419307370or_int @ X @ ( bit_ri7919022796975470100ot_int @ X ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% bit.disj_cancel_right
thf(fact_8702_drop__bit__of__1,axiom,
! [N: nat] :
( ( bit_se3928097537394005634nteger @ N @ one_one_Code_integer )
= ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).
% drop_bit_of_1
thf(fact_8703_drop__bit__of__1,axiom,
! [N: nat] :
( ( bit_se8568078237143864401it_int @ N @ one_one_int )
= ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).
% drop_bit_of_1
thf(fact_8704_drop__bit__of__1,axiom,
! [N: nat] :
( ( bit_se8570568707652914677it_nat @ N @ one_one_nat )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% drop_bit_of_1
thf(fact_8705_or__nat__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) ) ).
% or_nat_numerals(1)
thf(fact_8706_or__nat__numerals_I3_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_nat_numerals(3)
thf(fact_8707_or__numerals_I3_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ).
% or_numerals(3)
thf(fact_8708_or__numerals_I3_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ).
% or_numerals(3)
thf(fact_8709_or__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y4 ) ) )
= ( numeral_numeral_int @ ( bit1 @ Y4 ) ) ) ).
% or_numerals(1)
thf(fact_8710_or__numerals_I1_J,axiom,
! [Y4: num] :
( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y4 ) ) )
= ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) ) ).
% or_numerals(1)
thf(fact_8711_or__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ one_one_int )
= ( numeral_numeral_int @ ( bit1 @ X ) ) ) ).
% or_numerals(5)
thf(fact_8712_or__numerals_I5_J,axiom,
! [X: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ one_one_nat )
= ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).
% or_numerals(5)
thf(fact_8713_drop__bit__numeral__bit0,axiom,
! [L: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) ) ).
% drop_bit_numeral_bit0
thf(fact_8714_drop__bit__numeral__bit0,axiom,
! [L: num,K: num] :
( ( bit_se8570568707652914677it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( bit_se8570568707652914677it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) ) ).
% drop_bit_numeral_bit0
thf(fact_8715_drop__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) ) ).
% drop_bit_numeral_bit1
thf(fact_8716_drop__bit__numeral__bit1,axiom,
! [L: num,K: num] :
( ( bit_se8570568707652914677it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
= ( bit_se8570568707652914677it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) ) ).
% drop_bit_numeral_bit1
thf(fact_8717_or__minus__numerals_I6_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(6)
thf(fact_8718_or__minus__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).
% or_minus_numerals(2)
thf(fact_8719_drop__bit__Suc__minus__bit0,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% drop_bit_Suc_minus_bit0
thf(fact_8720_drop__bit__numeral__minus__bit0,axiom,
! [L: num,K: num] :
( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% drop_bit_numeral_minus_bit0
thf(fact_8721_drop__bit__Suc__minus__bit1,axiom,
! [N: nat,K: num] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
= ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).
% drop_bit_Suc_minus_bit1
thf(fact_8722_and__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).
% and_minus_minus_numerals
thf(fact_8723_or__minus__minus__numerals,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).
% or_minus_minus_numerals
thf(fact_8724_or__numerals_I4_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X ) ) @ ( numeral_numeral_int @ ( bit1 @ Y4 ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X ) @ ( numeral_numeral_int @ Y4 ) ) ) ) ) ).
% or_numerals(4)
thf(fact_8725_or__numerals_I4_J,axiom,
! [X: num,Y4: num] :
( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y4 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X ) @ ( numeral_numeral_nat @ Y4 ) ) ) ) ) ).
% or_numerals(4)
thf(fact_8726_of__int__or__eq,axiom,
! [K: int,L: int] :
( ( ring_1_of_int_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
= ( bit_se1409905431419307370or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).
% of_int_or_eq
thf(fact_8727_or_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( bit_se1409905431419307370or_int @ B @ ( bit_se1409905431419307370or_int @ A @ C ) )
= ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).
% or.left_commute
thf(fact_8728_or_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( bit_se1412395901928357646or_nat @ B @ ( bit_se1412395901928357646or_nat @ A @ C ) )
= ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).
% or.left_commute
thf(fact_8729_or_Ocommute,axiom,
( bit_se1409905431419307370or_int
= ( ^ [A3: int,B2: int] : ( bit_se1409905431419307370or_int @ B2 @ A3 ) ) ) ).
% or.commute
thf(fact_8730_or_Ocommute,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [A3: nat,B2: nat] : ( bit_se1412395901928357646or_nat @ B2 @ A3 ) ) ) ).
% or.commute
thf(fact_8731_or_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ C )
= ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).
% or.assoc
thf(fact_8732_or_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ C )
= ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).
% or.assoc
thf(fact_8733_bit_Oconj__disj__distrib,axiom,
! [X: int,Y4: int,Z: int] :
( ( bit_se725231765392027082nd_int @ X @ ( bit_se1409905431419307370or_int @ Y4 @ Z ) )
= ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) @ ( bit_se725231765392027082nd_int @ X @ Z ) ) ) ).
% bit.conj_disj_distrib
thf(fact_8734_bit_Odisj__conj__distrib,axiom,
! [X: int,Y4: int,Z: int] :
( ( bit_se1409905431419307370or_int @ X @ ( bit_se725231765392027082nd_int @ Y4 @ Z ) )
= ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ X @ Y4 ) @ ( bit_se1409905431419307370or_int @ X @ Z ) ) ) ).
% bit.disj_conj_distrib
thf(fact_8735_bit_Oconj__disj__distrib2,axiom,
! [Y4: int,Z: int,X: int] :
( ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ Y4 @ Z ) @ X )
= ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ Y4 @ X ) @ ( bit_se725231765392027082nd_int @ Z @ X ) ) ) ).
% bit.conj_disj_distrib2
thf(fact_8736_bit_Odisj__conj__distrib2,axiom,
! [Y4: int,Z: int,X: int] :
( ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ Y4 @ Z ) @ X )
= ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ Y4 @ X ) @ ( bit_se1409905431419307370or_int @ Z @ X ) ) ) ).
% bit.disj_conj_distrib2
thf(fact_8737_bit_Odisj__zero__right,axiom,
! [X: int] :
( ( bit_se1409905431419307370or_int @ X @ zero_zero_int )
= X ) ).
% bit.disj_zero_right
thf(fact_8738_or__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( bit_se1409905431419307370or_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( B = zero_zero_int ) ) ) ).
% or_eq_0_iff
thf(fact_8739_or__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( bit_se1412395901928357646or_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% or_eq_0_iff
thf(fact_8740_bit__or__int__iff,axiom,
! [K: int,L: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ N )
= ( ( bit_se1146084159140164899it_int @ K @ N )
| ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).
% bit_or_int_iff
thf(fact_8741_bit__or__iff,axiom,
! [A: int,B: int,N: nat] :
( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ N )
= ( ( bit_se1146084159140164899it_int @ A @ N )
| ( bit_se1146084159140164899it_int @ B @ N ) ) ) ).
% bit_or_iff
thf(fact_8742_bit__or__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( bit_se1148574629649215175it_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ N )
= ( ( bit_se1148574629649215175it_nat @ A @ N )
| ( bit_se1148574629649215175it_nat @ B @ N ) ) ) ).
% bit_or_iff
thf(fact_8743_or__nat__def,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M5: nat,N4: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M5 ) @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% or_nat_def
thf(fact_8744_of__nat__drop__bit,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se8570568707652914677it_nat @ M @ N ) )
= ( bit_se8568078237143864401it_int @ M @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_drop_bit
thf(fact_8745_of__nat__drop__bit,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( bit_se8570568707652914677it_nat @ M @ N ) )
= ( bit_se8570568707652914677it_nat @ M @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_drop_bit
thf(fact_8746_drop__bit__of__nat,axiom,
! [N: nat,M: nat] :
( ( bit_se8568078237143864401it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
= ( semiri1314217659103216013at_int @ ( bit_se8570568707652914677it_nat @ N @ M ) ) ) ).
% drop_bit_of_nat
thf(fact_8747_drop__bit__of__nat,axiom,
! [N: nat,M: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
= ( semiri1316708129612266289at_nat @ ( bit_se8570568707652914677it_nat @ N @ M ) ) ) ).
% drop_bit_of_nat
thf(fact_8748_of__nat__or__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( bit_se1412395901928357646or_nat @ M @ N ) )
= ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_or_eq
thf(fact_8749_of__nat__or__eq,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( bit_se1412395901928357646or_nat @ M @ N ) )
= ( bit_se1412395901928357646or_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_or_eq
thf(fact_8750_or__greater__eq,axiom,
! [L: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L )
=> ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L ) ) ) ).
% or_greater_eq
thf(fact_8751_OR__lower,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X @ Y4 ) ) ) ) ).
% OR_lower
thf(fact_8752_disjunctive__add,axiom,
! [A: int,B: int] :
( ! [N2: nat] :
( ~ ( bit_se1146084159140164899it_int @ A @ N2 )
| ~ ( bit_se1146084159140164899it_int @ B @ N2 ) )
=> ( ( plus_plus_int @ A @ B )
= ( bit_se1409905431419307370or_int @ A @ B ) ) ) ).
% disjunctive_add
thf(fact_8753_disjunctive__add,axiom,
! [A: nat,B: nat] :
( ! [N2: nat] :
( ~ ( bit_se1148574629649215175it_nat @ A @ N2 )
| ~ ( bit_se1148574629649215175it_nat @ B @ N2 ) )
=> ( ( plus_plus_nat @ A @ B )
= ( bit_se1412395901928357646or_nat @ A @ B ) ) ) ).
% disjunctive_add
thf(fact_8754_plus__and__or,axiom,
! [X: int,Y4: int] :
( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X @ Y4 ) @ ( bit_se1409905431419307370or_int @ X @ Y4 ) )
= ( plus_plus_int @ X @ Y4 ) ) ).
% plus_and_or
thf(fact_8755_or__eq__not__not__and,axiom,
( bit_se1409905431419307370or_int
= ( ^ [A3: int,B2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ A3 ) @ ( bit_ri7919022796975470100ot_int @ B2 ) ) ) ) ) ).
% or_eq_not_not_and
thf(fact_8756_and__eq__not__not__or,axiom,
( bit_se725231765392027082nd_int
= ( ^ [A3: int,B2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ A3 ) @ ( bit_ri7919022796975470100ot_int @ B2 ) ) ) ) ) ).
% and_eq_not_not_or
thf(fact_8757_or__int__def,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K3: int,L3: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ ( bit_ri7919022796975470100ot_int @ L3 ) ) ) ) ) ).
% or_int_def
thf(fact_8758_set__bit__nat__def,axiom,
( bit_se7882103937844011126it_nat
= ( ^ [M5: nat,N4: nat] : ( bit_se1412395901928357646or_nat @ N4 @ ( bit_se547839408752420682it_nat @ M5 @ one_one_nat ) ) ) ) ).
% set_bit_nat_def
thf(fact_8759_take__bit__eq__self__iff__drop__bit__eq__0,axiom,
! [N: nat,A: int] :
( ( ( bit_se2923211474154528505it_int @ N @ A )
= A )
= ( ( bit_se8568078237143864401it_int @ N @ A )
= zero_zero_int ) ) ).
% take_bit_eq_self_iff_drop_bit_eq_0
thf(fact_8760_take__bit__eq__self__iff__drop__bit__eq__0,axiom,
! [N: nat,A: nat] :
( ( ( bit_se2925701944663578781it_nat @ N @ A )
= A )
= ( ( bit_se8570568707652914677it_nat @ N @ A )
= zero_zero_nat ) ) ).
% take_bit_eq_self_iff_drop_bit_eq_0
thf(fact_8761_drop__bit__push__bit__int,axiom,
! [M: nat,N: nat,K: int] :
( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N @ K ) )
= ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N @ M ) @ K ) ) ) ).
% drop_bit_push_bit_int
thf(fact_8762_take__bit__drop__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_se2923211474154528505it_int @ M @ ( bit_se8568078237143864401it_int @ N @ A ) )
= ( bit_se8568078237143864401it_int @ N @ ( bit_se2923211474154528505it_int @ ( plus_plus_nat @ M @ N ) @ A ) ) ) ).
% take_bit_drop_bit
thf(fact_8763_take__bit__drop__bit,axiom,
! [M: nat,N: nat,A: nat] :
( ( bit_se2925701944663578781it_nat @ M @ ( bit_se8570568707652914677it_nat @ N @ A ) )
= ( bit_se8570568707652914677it_nat @ N @ ( bit_se2925701944663578781it_nat @ ( plus_plus_nat @ M @ N ) @ A ) ) ) ).
% take_bit_drop_bit
thf(fact_8764_drop__bit__take__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_se8568078237143864401it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
= ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N @ M ) @ ( bit_se8568078237143864401it_int @ M @ A ) ) ) ).
% drop_bit_take_bit
thf(fact_8765_drop__bit__take__bit,axiom,
! [M: nat,N: nat,A: nat] :
( ( bit_se8570568707652914677it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) )
= ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N @ M ) @ ( bit_se8570568707652914677it_nat @ M @ A ) ) ) ).
% drop_bit_take_bit
thf(fact_8766_or__not__numerals_I1_J,axiom,
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).
% or_not_numerals(1)
thf(fact_8767_bit_Oxor__def2,axiom,
( bit_se6526347334894502574or_int
= ( ^ [X3: int,Y6: int] : ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ X3 @ Y6 ) @ ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ X3 ) @ ( bit_ri7919022796975470100ot_int @ Y6 ) ) ) ) ) ).
% bit.xor_def2
thf(fact_8768_bit_Oxor__def,axiom,
( bit_se6526347334894502574or_int
= ( ^ [X3: int,Y6: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ X3 @ ( bit_ri7919022796975470100ot_int @ Y6 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ X3 ) @ Y6 ) ) ) ) ).
% bit.xor_def
thf(fact_8769_set__bit__eq__or,axiom,
( bit_se2793503036327961859nteger
= ( ^ [N4: nat,A3: code_integer] : ( bit_se1080825931792720795nteger @ A3 @ ( bit_se7788150548672797655nteger @ N4 @ one_one_Code_integer ) ) ) ) ).
% set_bit_eq_or
thf(fact_8770_set__bit__eq__or,axiom,
( bit_se7879613467334960850it_int
= ( ^ [N4: nat,A3: int] : ( bit_se1409905431419307370or_int @ A3 @ ( bit_se545348938243370406it_int @ N4 @ one_one_int ) ) ) ) ).
% set_bit_eq_or
thf(fact_8771_set__bit__eq__or,axiom,
( bit_se7882103937844011126it_nat
= ( ^ [N4: nat,A3: nat] : ( bit_se1412395901928357646or_nat @ A3 @ ( bit_se547839408752420682it_nat @ N4 @ one_one_nat ) ) ) ) ).
% set_bit_eq_or
thf(fact_8772_xor__int__def,axiom,
( bit_se6526347334894502574or_int
= ( ^ [K3: int,L3: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ L3 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ L3 ) ) ) ) ).
% xor_int_def
thf(fact_8773_div__push__bit__of__1__eq__drop__bit,axiom,
! [A: int,N: nat] :
( ( divide_divide_int @ A @ ( bit_se545348938243370406it_int @ N @ one_one_int ) )
= ( bit_se8568078237143864401it_int @ N @ A ) ) ).
% div_push_bit_of_1_eq_drop_bit
thf(fact_8774_div__push__bit__of__1__eq__drop__bit,axiom,
! [A: nat,N: nat] :
( ( divide_divide_nat @ A @ ( bit_se547839408752420682it_nat @ N @ one_one_nat ) )
= ( bit_se8570568707652914677it_nat @ N @ A ) ) ).
% div_push_bit_of_1_eq_drop_bit
thf(fact_8775_concat__bit__def,axiom,
( bit_concat_bit
= ( ^ [N4: nat,K3: int,L3: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N4 @ K3 ) @ ( bit_se545348938243370406it_int @ N4 @ L3 ) ) ) ) ).
% concat_bit_def
thf(fact_8776_bit__iff__and__drop__bit__eq__1,axiom,
( bit_se1146084159140164899it_int
= ( ^ [A3: int,N4: nat] :
( ( bit_se725231765392027082nd_int @ ( bit_se8568078237143864401it_int @ N4 @ A3 ) @ one_one_int )
= one_one_int ) ) ) ).
% bit_iff_and_drop_bit_eq_1
thf(fact_8777_bit__iff__and__drop__bit__eq__1,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [A3: nat,N4: nat] :
( ( bit_se727722235901077358nd_nat @ ( bit_se8570568707652914677it_nat @ N4 @ A3 ) @ one_one_nat )
= one_one_nat ) ) ) ).
% bit_iff_and_drop_bit_eq_1
thf(fact_8778_set__bit__int__def,axiom,
( bit_se7879613467334960850it_int
= ( ^ [N4: nat,K3: int] : ( bit_se1409905431419307370or_int @ K3 @ ( bit_se545348938243370406it_int @ N4 @ one_one_int ) ) ) ) ).
% set_bit_int_def
thf(fact_8779_bits__ident,axiom,
! [N: nat,A: int] :
( ( plus_plus_int @ ( bit_se545348938243370406it_int @ N @ ( bit_se8568078237143864401it_int @ N @ A ) ) @ ( bit_se2923211474154528505it_int @ N @ A ) )
= A ) ).
% bits_ident
thf(fact_8780_bits__ident,axiom,
! [N: nat,A: nat] :
( ( plus_plus_nat @ ( bit_se547839408752420682it_nat @ N @ ( bit_se8570568707652914677it_nat @ N @ A ) ) @ ( bit_se2925701944663578781it_nat @ N @ A ) )
= A ) ).
% bits_ident
thf(fact_8781_even__or__iff,axiom,
! [A: code_integer,B: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1080825931792720795nteger @ A @ B ) )
= ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
& ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_or_iff
thf(fact_8782_even__or__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
& ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_or_iff
thf(fact_8783_even__or__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
& ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_or_iff
thf(fact_8784_bit_Ocomplement__unique,axiom,
! [A: code_integer,X: code_integer,Y4: code_integer] :
( ( ( bit_se3949692690581998587nteger @ A @ X )
= zero_z3403309356797280102nteger )
=> ( ( ( bit_se1080825931792720795nteger @ A @ X )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
=> ( ( ( bit_se3949692690581998587nteger @ A @ Y4 )
= zero_z3403309356797280102nteger )
=> ( ( ( bit_se1080825931792720795nteger @ A @ Y4 )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
=> ( X = Y4 ) ) ) ) ) ).
% bit.complement_unique
thf(fact_8785_bit_Ocomplement__unique,axiom,
! [A: int,X: int,Y4: int] :
( ( ( bit_se725231765392027082nd_int @ A @ X )
= zero_zero_int )
=> ( ( ( bit_se1409905431419307370or_int @ A @ X )
= ( uminus_uminus_int @ one_one_int ) )
=> ( ( ( bit_se725231765392027082nd_int @ A @ Y4 )
= zero_zero_int )
=> ( ( ( bit_se1409905431419307370or_int @ A @ Y4 )
= ( uminus_uminus_int @ one_one_int ) )
=> ( X = Y4 ) ) ) ) ) ).
% bit.complement_unique
thf(fact_8786_or__not__numerals_I4_J,axiom,
! [M: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).
% or_not_numerals(4)
thf(fact_8787_or__not__numerals_I2_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(2)
thf(fact_8788_stable__imp__drop__bit__eq,axiom,
! [A: int,N: nat] :
( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= A )
=> ( ( bit_se8568078237143864401it_int @ N @ A )
= A ) ) ).
% stable_imp_drop_bit_eq
thf(fact_8789_stable__imp__drop__bit__eq,axiom,
! [A: nat,N: nat] :
( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= A )
=> ( ( bit_se8570568707652914677it_nat @ N @ A )
= A ) ) ).
% stable_imp_drop_bit_eq
thf(fact_8790_drop__bit__half,axiom,
! [N: nat,A: int] :
( ( bit_se8568078237143864401it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( divide_divide_int @ ( bit_se8568078237143864401it_int @ N @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% drop_bit_half
thf(fact_8791_drop__bit__half,axiom,
! [N: nat,A: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( divide_divide_nat @ ( bit_se8570568707652914677it_nat @ N @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% drop_bit_half
thf(fact_8792_bit_Ocompl__unique,axiom,
! [X: code_integer,Y4: code_integer] :
( ( ( bit_se3949692690581998587nteger @ X @ Y4 )
= zero_z3403309356797280102nteger )
=> ( ( ( bit_se1080825931792720795nteger @ X @ Y4 )
= ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
=> ( ( bit_ri7632146776885996613nteger @ X )
= Y4 ) ) ) ).
% bit.compl_unique
thf(fact_8793_bit_Ocompl__unique,axiom,
! [X: int,Y4: int] :
( ( ( bit_se725231765392027082nd_int @ X @ Y4 )
= zero_zero_int )
=> ( ( ( bit_se1409905431419307370or_int @ X @ Y4 )
= ( uminus_uminus_int @ one_one_int ) )
=> ( ( bit_ri7919022796975470100ot_int @ X )
= Y4 ) ) ) ).
% bit.compl_unique
thf(fact_8794_or__not__numerals_I3_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).
% or_not_numerals(3)
thf(fact_8795_or__not__numerals_I7_J,axiom,
! [M: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
= ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).
% or_not_numerals(7)
thf(fact_8796_drop__bit__int__def,axiom,
( bit_se8568078237143864401it_int
= ( ^ [N4: nat,K3: int] : ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% drop_bit_int_def
thf(fact_8797_signed__take__bit__eq__if__negative,axiom,
! [A: int,N: nat] :
( ( bit_se1146084159140164899it_int @ A @ N )
=> ( ( bit_ri631733984087533419it_int @ N @ A )
= ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ) ) ).
% signed_take_bit_eq_if_negative
thf(fact_8798_drop__bit__Suc,axiom,
! [N: nat,A: int] :
( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ A )
= ( bit_se8568078237143864401it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% drop_bit_Suc
thf(fact_8799_drop__bit__Suc,axiom,
! [N: nat,A: nat] :
( ( bit_se8570568707652914677it_nat @ ( suc @ N ) @ A )
= ( bit_se8570568707652914677it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% drop_bit_Suc
thf(fact_8800_drop__bit__eq__div,axiom,
( bit_se8568078237143864401it_int
= ( ^ [N4: nat,A3: int] : ( divide_divide_int @ A3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% drop_bit_eq_div
thf(fact_8801_drop__bit__eq__div,axiom,
( bit_se8570568707652914677it_nat
= ( ^ [N4: nat,A3: nat] : ( divide_divide_nat @ A3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% drop_bit_eq_div
thf(fact_8802_even__drop__bit__iff__not__bit,axiom,
! [N: nat,A: code_integer] :
( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3928097537394005634nteger @ N @ A ) )
= ( ~ ( bit_se9216721137139052372nteger @ A @ N ) ) ) ).
% even_drop_bit_iff_not_bit
thf(fact_8803_even__drop__bit__iff__not__bit,axiom,
! [N: nat,A: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se8568078237143864401it_int @ N @ A ) )
= ( ~ ( bit_se1146084159140164899it_int @ A @ N ) ) ) ).
% even_drop_bit_iff_not_bit
thf(fact_8804_even__drop__bit__iff__not__bit,axiom,
! [N: nat,A: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se8570568707652914677it_nat @ N @ A ) )
= ( ~ ( bit_se1148574629649215175it_nat @ A @ N ) ) ) ).
% even_drop_bit_iff_not_bit
thf(fact_8805_bit__iff__odd__drop__bit,axiom,
( bit_se9216721137139052372nteger
= ( ^ [A3: code_integer,N4: nat] :
~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3928097537394005634nteger @ N4 @ A3 ) ) ) ) ).
% bit_iff_odd_drop_bit
thf(fact_8806_bit__iff__odd__drop__bit,axiom,
( bit_se1146084159140164899it_int
= ( ^ [A3: int,N4: nat] :
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se8568078237143864401it_int @ N4 @ A3 ) ) ) ) ).
% bit_iff_odd_drop_bit
thf(fact_8807_bit__iff__odd__drop__bit,axiom,
( bit_se1148574629649215175it_nat
= ( ^ [A3: nat,N4: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se8570568707652914677it_nat @ N4 @ A3 ) ) ) ) ).
% bit_iff_odd_drop_bit
thf(fact_8808_mask__Suc__exp,axiom,
! [N: nat] :
( ( bit_se2002935070580805687sk_nat @ ( suc @ N ) )
= ( bit_se1412395901928357646or_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).
% mask_Suc_exp
thf(fact_8809_mask__Suc__exp,axiom,
! [N: nat] :
( ( bit_se2000444600071755411sk_int @ ( suc @ N ) )
= ( bit_se1409905431419307370or_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).
% mask_Suc_exp
thf(fact_8810_or__not__numerals_I6_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% or_not_numerals(6)
thf(fact_8811_or__one__eq,axiom,
! [A: code_integer] :
( ( bit_se1080825931792720795nteger @ A @ one_one_Code_integer )
= ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% or_one_eq
thf(fact_8812_or__one__eq,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ A @ one_one_int )
= ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% or_one_eq
thf(fact_8813_or__one__eq,axiom,
! [A: nat] :
( ( bit_se1412395901928357646or_nat @ A @ one_one_nat )
= ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% or_one_eq
thf(fact_8814_one__or__eq,axiom,
! [A: code_integer] :
( ( bit_se1080825931792720795nteger @ one_one_Code_integer @ A )
= ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% one_or_eq
thf(fact_8815_one__or__eq,axiom,
! [A: int] :
( ( bit_se1409905431419307370or_int @ one_one_int @ A )
= ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% one_or_eq
thf(fact_8816_one__or__eq,axiom,
! [A: nat] :
( ( bit_se1412395901928357646or_nat @ one_one_nat @ A )
= ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).
% one_or_eq
thf(fact_8817_mask__Suc__double,axiom,
! [N: nat] :
( ( bit_se2002935070580805687sk_nat @ ( suc @ N ) )
= ( bit_se1412395901928357646or_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ) ).
% mask_Suc_double
thf(fact_8818_mask__Suc__double,axiom,
! [N: nat] :
( ( bit_se2000444600071755411sk_int @ ( suc @ N ) )
= ( bit_se1409905431419307370or_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N ) ) ) ) ).
% mask_Suc_double
thf(fact_8819_OR__upper,axiom,
! [X: int,N: nat,Y4: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( ord_less_int @ Y4 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ord_less_int @ ( bit_se1409905431419307370or_int @ X @ Y4 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).
% OR_upper
thf(fact_8820_or__not__numerals_I5_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(5)
thf(fact_8821_slice__eq__mask,axiom,
! [N: nat,M: nat,A: int] :
( ( bit_se545348938243370406it_int @ N @ ( bit_se2923211474154528505it_int @ M @ ( bit_se8568078237143864401it_int @ N @ A ) ) )
= ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ ( bit_se2000444600071755411sk_int @ ( plus_plus_nat @ M @ N ) ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N ) ) ) ) ) ).
% slice_eq_mask
thf(fact_8822_signed__take__bit__def,axiom,
( bit_ri6519982836138164636nteger
= ( ^ [N4: nat,A3: code_integer] : ( bit_se1080825931792720795nteger @ ( bit_se1745604003318907178nteger @ N4 @ A3 ) @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( bit_se9216721137139052372nteger @ A3 @ N4 ) ) @ ( bit_ri7632146776885996613nteger @ ( bit_se2119862282449309892nteger @ N4 ) ) ) ) ) ) ).
% signed_take_bit_def
thf(fact_8823_signed__take__bit__def,axiom,
( bit_ri631733984087533419it_int
= ( ^ [N4: nat,A3: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N4 @ A3 ) @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ A3 @ N4 ) ) @ ( bit_ri7919022796975470100ot_int @ ( bit_se2000444600071755411sk_int @ N4 ) ) ) ) ) ) ).
% signed_take_bit_def
thf(fact_8824_or__Suc__0__eq,axiom,
! [N: nat] :
( ( bit_se1412395901928357646or_nat @ N @ ( suc @ zero_zero_nat ) )
= ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% or_Suc_0_eq
thf(fact_8825_Suc__0__or__eq,axiom,
! [N: nat] :
( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N )
= ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% Suc_0_or_eq
thf(fact_8826_drop__bit__rec,axiom,
( bit_se8568078237143864401it_int
= ( ^ [N4: nat,A3: int] : ( if_int @ ( N4 = zero_zero_nat ) @ A3 @ ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% drop_bit_rec
thf(fact_8827_drop__bit__rec,axiom,
( bit_se8570568707652914677it_nat
= ( ^ [N4: nat,A3: nat] : ( if_nat @ ( N4 = zero_zero_nat ) @ A3 @ ( bit_se8570568707652914677it_nat @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% drop_bit_rec
thf(fact_8828_or__not__numerals_I9_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(9)
thf(fact_8829_or__not__numerals_I8_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).
% or_not_numerals(8)
thf(fact_8830_or__nat__rec,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M5: nat,N4: nat] :
( plus_plus_nat
@ ( zero_n2687167440665602831ol_nat
@ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M5 )
| ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) )
@ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% or_nat_rec
thf(fact_8831_or__int__unfold,axiom,
( bit_se1409905431419307370or_int
= ( ^ [K3: int,L3: int] :
( if_int
@ ( ( K3
= ( uminus_uminus_int @ one_one_int ) )
| ( L3
= ( uminus_uminus_int @ one_one_int ) ) )
@ ( uminus_uminus_int @ one_one_int )
@ ( if_int @ ( K3 = zero_zero_int ) @ L3 @ ( if_int @ ( L3 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% or_int_unfold
thf(fact_8832_bit_Oabstract__boolean__algebra__sym__diff__axioms,axiom,
boolea2445317508997433345nteger @ bit_se3949692690581998587nteger @ bit_se1080825931792720795nteger @ bit_ri7632146776885996613nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ bit_se3222712562003087583nteger ).
% bit.abstract_boolean_algebra_sym_diff_axioms
thf(fact_8833_bit_Oabstract__boolean__algebra__sym__diff__axioms,axiom,
boolea8527374999097803216ff_int @ bit_se725231765392027082nd_int @ bit_se1409905431419307370or_int @ bit_ri7919022796975470100ot_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) @ bit_se6526347334894502574or_int ).
% bit.abstract_boolean_algebra_sym_diff_axioms
thf(fact_8834_or__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(8)
thf(fact_8835_or__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).
% or_minus_numerals(4)
thf(fact_8836_max_Obounded__iff,axiom,
! [B: extended_enat,C: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
= ( ( ord_le2932123472753598470d_enat @ B @ A )
& ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_8837_max_Obounded__iff,axiom,
! [B: code_integer,C: code_integer,A: code_integer] :
( ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ B @ C ) @ A )
= ( ( ord_le3102999989581377725nteger @ B @ A )
& ( ord_le3102999989581377725nteger @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_8838_max_Obounded__iff,axiom,
! [B: rat,C: rat,A: rat] :
( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
= ( ( ord_less_eq_rat @ B @ A )
& ( ord_less_eq_rat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_8839_max_Obounded__iff,axiom,
! [B: num,C: num,A: num] :
( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
= ( ( ord_less_eq_num @ B @ A )
& ( ord_less_eq_num @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_8840_max_Obounded__iff,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
= ( ( ord_less_eq_nat @ B @ A )
& ( ord_less_eq_nat @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_8841_max_Obounded__iff,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_eq_int @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_8842_max_Obounded__iff,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( ord_max_real @ B @ C ) @ A )
= ( ( ord_less_eq_real @ B @ A )
& ( ord_less_eq_real @ C @ A ) ) ) ).
% max.bounded_iff
thf(fact_8843_max_Oabsorb2,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_ma741700101516333627d_enat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_8844_max_Oabsorb2,axiom,
! [A: code_integer,B: code_integer] :
( ( ord_le3102999989581377725nteger @ A @ B )
=> ( ( ord_max_Code_integer @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_8845_max_Oabsorb2,axiom,
! [A: rat,B: rat] :
( ( ord_less_eq_rat @ A @ B )
=> ( ( ord_max_rat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_8846_max_Oabsorb2,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_max_num @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_8847_max_Oabsorb2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_max_nat @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_8848_max_Oabsorb2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_max_int @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_8849_max_Oabsorb2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_max_real @ A @ B )
= B ) ) ).
% max.absorb2
thf(fact_8850_max_Oabsorb1,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_ma741700101516333627d_enat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_8851_max_Oabsorb1,axiom,
! [B: code_integer,A: code_integer] :
( ( ord_le3102999989581377725nteger @ B @ A )
=> ( ( ord_max_Code_integer @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_8852_max_Oabsorb1,axiom,
! [B: rat,A: rat] :
( ( ord_less_eq_rat @ B @ A )
=> ( ( ord_max_rat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_8853_max_Oabsorb1,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_max_num @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_8854_max_Oabsorb1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_max_nat @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_8855_max_Oabsorb1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_max_int @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_8856_max_Oabsorb1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_max_real @ A @ B )
= A ) ) ).
% max.absorb1
thf(fact_8857_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n2687167440665602831ol_nat
@ ( P
| Q ) )
= ( ord_max_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_8858_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n2684676970156552555ol_int
@ ( P
| Q ) )
= ( ord_max_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_8859_of__bool__or__iff,axiom,
! [P: $o,Q: $o] :
( ( zero_n356916108424825756nteger
@ ( P
| Q ) )
= ( ord_max_Code_integer @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).
% of_bool_or_iff
thf(fact_8860_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
=> ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
= ( numera1916890842035813515d_enat @ V ) ) )
& ( ~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
=> ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
= ( numera1916890842035813515d_enat @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_8861_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
= ( numera6620942414471956472nteger @ V ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
= ( numera6620942414471956472nteger @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_8862_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ V ) ) )
& ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_8863_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
=> ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
= ( numeral_numeral_nat @ V ) ) )
& ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
=> ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
= ( numeral_numeral_nat @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_8864_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ V ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_8865_max__number__of_I1_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ V ) ) )
& ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ U ) ) ) ) ).
% max_number_of(1)
thf(fact_8866_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ X ) )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(3)
thf(fact_8867_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ X ) )
= ( numera6620942414471956472nteger @ X ) ) ).
% max_0_1(3)
thf(fact_8868_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X ) )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(3)
thf(fact_8869_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X ) )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(3)
thf(fact_8870_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X ) )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(3)
thf(fact_8871_max__0__1_I3_J,axiom,
! [X: num] :
( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X ) )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(3)
thf(fact_8872_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X ) @ zero_z5237406670263579293d_enat )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(4)
thf(fact_8873_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X ) @ zero_z3403309356797280102nteger )
= ( numera6620942414471956472nteger @ X ) ) ).
% max_0_1(4)
thf(fact_8874_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_real @ ( numeral_numeral_real @ X ) @ zero_zero_real )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(4)
thf(fact_8875_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ zero_zero_rat )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(4)
thf(fact_8876_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ zero_zero_nat )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(4)
thf(fact_8877_max__0__1_I4_J,axiom,
! [X: num] :
( ( ord_max_int @ ( numeral_numeral_int @ X ) @ zero_zero_int )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(4)
thf(fact_8878_max__0__1_I2_J,axiom,
( ( ord_max_real @ one_one_real @ zero_zero_real )
= one_one_real ) ).
% max_0_1(2)
thf(fact_8879_max__0__1_I2_J,axiom,
( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
= one_one_rat ) ).
% max_0_1(2)
thf(fact_8880_max__0__1_I2_J,axiom,
( ( ord_max_int @ one_one_int @ zero_zero_int )
= one_one_int ) ).
% max_0_1(2)
thf(fact_8881_max__0__1_I2_J,axiom,
( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
= one_one_nat ) ).
% max_0_1(2)
thf(fact_8882_max__0__1_I2_J,axiom,
( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat )
= one_on7984719198319812577d_enat ) ).
% max_0_1(2)
thf(fact_8883_max__0__1_I2_J,axiom,
( ( ord_max_Code_integer @ one_one_Code_integer @ zero_z3403309356797280102nteger )
= one_one_Code_integer ) ).
% max_0_1(2)
thf(fact_8884_max__0__1_I1_J,axiom,
( ( ord_max_real @ zero_zero_real @ one_one_real )
= one_one_real ) ).
% max_0_1(1)
thf(fact_8885_max__0__1_I1_J,axiom,
( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
= one_one_rat ) ).
% max_0_1(1)
thf(fact_8886_max__0__1_I1_J,axiom,
( ( ord_max_int @ zero_zero_int @ one_one_int )
= one_one_int ) ).
% max_0_1(1)
thf(fact_8887_max__0__1_I1_J,axiom,
( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
= one_one_nat ) ).
% max_0_1(1)
thf(fact_8888_max__0__1_I1_J,axiom,
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat )
= one_on7984719198319812577d_enat ) ).
% max_0_1(1)
thf(fact_8889_max__0__1_I1_J,axiom,
( ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer )
= one_one_Code_integer ) ).
% max_0_1(1)
thf(fact_8890_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(5)
thf(fact_8891_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_Code_integer @ one_one_Code_integer @ ( numera6620942414471956472nteger @ X ) )
= ( numera6620942414471956472nteger @ X ) ) ).
% max_0_1(5)
thf(fact_8892_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(5)
thf(fact_8893_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(5)
thf(fact_8894_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(5)
thf(fact_8895_max__0__1_I5_J,axiom,
! [X: num] :
( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(5)
thf(fact_8896_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ X ) ) ).
% max_0_1(6)
thf(fact_8897_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X ) @ one_one_Code_integer )
= ( numera6620942414471956472nteger @ X ) ) ).
% max_0_1(6)
thf(fact_8898_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_real @ ( numeral_numeral_real @ X ) @ one_one_real )
= ( numeral_numeral_real @ X ) ) ).
% max_0_1(6)
thf(fact_8899_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat )
= ( numeral_numeral_rat @ X ) ) ).
% max_0_1(6)
thf(fact_8900_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat )
= ( numeral_numeral_nat @ X ) ) ).
% max_0_1(6)
thf(fact_8901_max__0__1_I6_J,axiom,
! [X: num] :
( ( ord_max_int @ ( numeral_numeral_int @ X ) @ one_one_int )
= ( numeral_numeral_int @ X ) ) ).
% max_0_1(6)
thf(fact_8902_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_8903_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
& ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_8904_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_8905_max__number__of_I4_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
& ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).
% max_number_of(4)
thf(fact_8906_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
= ( numera6620942414471956472nteger @ V ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
=> ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_8907_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
= ( numeral_numeral_rat @ V ) ) )
& ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
=> ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_8908_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
= ( numeral_numeral_int @ V ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
=> ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_8909_max__number__of_I3_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
= ( numeral_numeral_real @ V ) ) )
& ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
=> ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).
% max_number_of(3)
thf(fact_8910_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
& ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
=> ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
= ( numera6620942414471956472nteger @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_8911_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
& ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
=> ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
= ( numeral_numeral_rat @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_8912_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
=> ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
= ( numeral_numeral_int @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_8913_max__number__of_I2_J,axiom,
! [U: num,V: num] :
( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
& ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
=> ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
= ( numeral_numeral_real @ U ) ) ) ) ).
% max_number_of(2)
thf(fact_8914_drop__bit__of__Suc__0,axiom,
! [N: nat] :
( ( bit_se8570568707652914677it_nat @ N @ ( suc @ zero_zero_nat ) )
= ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).
% drop_bit_of_Suc_0
thf(fact_8915_of__nat__max,axiom,
! [X: nat,Y4: nat] :
( ( semiri4216267220026989637d_enat @ ( ord_max_nat @ X @ Y4 ) )
= ( ord_ma741700101516333627d_enat @ ( semiri4216267220026989637d_enat @ X ) @ ( semiri4216267220026989637d_enat @ Y4 ) ) ) ).
% of_nat_max
thf(fact_8916_of__nat__max,axiom,
! [X: nat,Y4: nat] :
( ( semiri4939895301339042750nteger @ ( ord_max_nat @ X @ Y4 ) )
= ( ord_max_Code_integer @ ( semiri4939895301339042750nteger @ X ) @ ( semiri4939895301339042750nteger @ Y4 ) ) ) ).
% of_nat_max
thf(fact_8917_of__nat__max,axiom,
! [X: nat,Y4: nat] :
( ( semiri5074537144036343181t_real @ ( ord_max_nat @ X @ Y4 ) )
= ( ord_max_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ Y4 ) ) ) ).
% of_nat_max
thf(fact_8918_of__nat__max,axiom,
! [X: nat,Y4: nat] :
( ( semiri681578069525770553at_rat @ ( ord_max_nat @ X @ Y4 ) )
= ( ord_max_rat @ ( semiri681578069525770553at_rat @ X ) @ ( semiri681578069525770553at_rat @ Y4 ) ) ) ).
% of_nat_max
thf(fact_8919_of__nat__max,axiom,
! [X: nat,Y4: nat] :
( ( semiri1316708129612266289at_nat @ ( ord_max_nat @ X @ Y4 ) )
= ( ord_max_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( semiri1316708129612266289at_nat @ Y4 ) ) ) ).
% of_nat_max
thf(fact_8920_of__nat__max,axiom,
! [X: nat,Y4: nat] :
( ( semiri1314217659103216013at_int @ ( ord_max_nat @ X @ Y4 ) )
= ( ord_max_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y4 ) ) ) ).
% of_nat_max
thf(fact_8921_max__diff__distrib__left,axiom,
! [X: code_integer,Y4: code_integer,Z: code_integer] :
( ( minus_8373710615458151222nteger @ ( ord_max_Code_integer @ X @ Y4 ) @ Z )
= ( ord_max_Code_integer @ ( minus_8373710615458151222nteger @ X @ Z ) @ ( minus_8373710615458151222nteger @ Y4 @ Z ) ) ) ).
% max_diff_distrib_left
thf(fact_8922_max__diff__distrib__left,axiom,
! [X: real,Y4: real,Z: real] :
( ( minus_minus_real @ ( ord_max_real @ X @ Y4 ) @ Z )
= ( ord_max_real @ ( minus_minus_real @ X @ Z ) @ ( minus_minus_real @ Y4 @ Z ) ) ) ).
% max_diff_distrib_left
thf(fact_8923_max__diff__distrib__left,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( minus_minus_rat @ ( ord_max_rat @ X @ Y4 ) @ Z )
= ( ord_max_rat @ ( minus_minus_rat @ X @ Z ) @ ( minus_minus_rat @ Y4 @ Z ) ) ) ).
% max_diff_distrib_left
thf(fact_8924_max__diff__distrib__left,axiom,
! [X: int,Y4: int,Z: int] :
( ( minus_minus_int @ ( ord_max_int @ X @ Y4 ) @ Z )
= ( ord_max_int @ ( minus_minus_int @ X @ Z ) @ ( minus_minus_int @ Y4 @ Z ) ) ) ).
% max_diff_distrib_left
thf(fact_8925_max__add__distrib__right,axiom,
! [X: real,Y4: real,Z: real] :
( ( plus_plus_real @ X @ ( ord_max_real @ Y4 @ Z ) )
= ( ord_max_real @ ( plus_plus_real @ X @ Y4 ) @ ( plus_plus_real @ X @ Z ) ) ) ).
% max_add_distrib_right
thf(fact_8926_max__add__distrib__right,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( plus_plus_rat @ X @ ( ord_max_rat @ Y4 @ Z ) )
= ( ord_max_rat @ ( plus_plus_rat @ X @ Y4 ) @ ( plus_plus_rat @ X @ Z ) ) ) ).
% max_add_distrib_right
thf(fact_8927_max__add__distrib__right,axiom,
! [X: int,Y4: int,Z: int] :
( ( plus_plus_int @ X @ ( ord_max_int @ Y4 @ Z ) )
= ( ord_max_int @ ( plus_plus_int @ X @ Y4 ) @ ( plus_plus_int @ X @ Z ) ) ) ).
% max_add_distrib_right
thf(fact_8928_max__add__distrib__right,axiom,
! [X: nat,Y4: nat,Z: nat] :
( ( plus_plus_nat @ X @ ( ord_max_nat @ Y4 @ Z ) )
= ( ord_max_nat @ ( plus_plus_nat @ X @ Y4 ) @ ( plus_plus_nat @ X @ Z ) ) ) ).
% max_add_distrib_right
thf(fact_8929_max__add__distrib__right,axiom,
! [X: code_integer,Y4: code_integer,Z: code_integer] :
( ( plus_p5714425477246183910nteger @ X @ ( ord_max_Code_integer @ Y4 @ Z ) )
= ( ord_max_Code_integer @ ( plus_p5714425477246183910nteger @ X @ Y4 ) @ ( plus_p5714425477246183910nteger @ X @ Z ) ) ) ).
% max_add_distrib_right
thf(fact_8930_max__add__distrib__left,axiom,
! [X: real,Y4: real,Z: real] :
( ( plus_plus_real @ ( ord_max_real @ X @ Y4 ) @ Z )
= ( ord_max_real @ ( plus_plus_real @ X @ Z ) @ ( plus_plus_real @ Y4 @ Z ) ) ) ).
% max_add_distrib_left
thf(fact_8931_max__add__distrib__left,axiom,
! [X: rat,Y4: rat,Z: rat] :
( ( plus_plus_rat @ ( ord_max_rat @ X @ Y4 ) @ Z )
= ( ord_max_rat @ ( plus_plus_rat @ X @ Z ) @ ( plus_plus_rat @ Y4 @ Z ) ) ) ).
% max_add_distrib_left
thf(fact_8932_max__add__distrib__left,axiom,
! [X: int,Y4: int,Z: int] :
( ( plus_plus_int @ ( ord_max_int @ X @ Y4 ) @ Z )
= ( ord_max_int @ ( plus_plus_int @ X @ Z ) @ ( plus_plus_int @ Y4 @ Z ) ) ) ).
% max_add_distrib_left
thf(fact_8933_max__add__distrib__left,axiom,
! [X: nat,Y4: nat,Z: nat] :
( ( plus_plus_nat @ ( ord_max_nat @ X @ Y4 ) @ Z )
= ( ord_max_nat @ ( plus_plus_nat @ X @ Z ) @ ( plus_plus_nat @ Y4 @ Z ) ) ) ).
% max_add_distrib_left
thf(fact_8934_max__add__distrib__left,axiom,
! [X: code_integer,Y4: code_integer,Z: code_integer] :
( ( plus_p5714425477246183910nteger @ ( ord_max_Code_integer @ X @ Y4 ) @ Z )
= ( ord_max_Code_integer @ ( plus_p5714425477246183910nteger @ X @ Z ) @ ( plus_p5714425477246183910nteger @ Y4 @ Z ) ) ) ).
% max_add_distrib_left
thf(fact_8935_max__absorb2,axiom,
! [X: extended_enat,Y4: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y4 )
=> ( ( ord_ma741700101516333627d_enat @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8936_max__absorb2,axiom,
! [X: code_integer,Y4: code_integer] :
( ( ord_le3102999989581377725nteger @ X @ Y4 )
=> ( ( ord_max_Code_integer @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8937_max__absorb2,axiom,
! [X: set_int,Y4: set_int] :
( ( ord_less_eq_set_int @ X @ Y4 )
=> ( ( ord_max_set_int @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8938_max__absorb2,axiom,
! [X: rat,Y4: rat] :
( ( ord_less_eq_rat @ X @ Y4 )
=> ( ( ord_max_rat @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8939_max__absorb2,axiom,
! [X: num,Y4: num] :
( ( ord_less_eq_num @ X @ Y4 )
=> ( ( ord_max_num @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8940_max__absorb2,axiom,
! [X: nat,Y4: nat] :
( ( ord_less_eq_nat @ X @ Y4 )
=> ( ( ord_max_nat @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8941_max__absorb2,axiom,
! [X: int,Y4: int] :
( ( ord_less_eq_int @ X @ Y4 )
=> ( ( ord_max_int @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8942_max__absorb2,axiom,
! [X: real,Y4: real] :
( ( ord_less_eq_real @ X @ Y4 )
=> ( ( ord_max_real @ X @ Y4 )
= Y4 ) ) ).
% max_absorb2
thf(fact_8943_max__absorb1,axiom,
! [Y4: extended_enat,X: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Y4 @ X )
=> ( ( ord_ma741700101516333627d_enat @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8944_max__absorb1,axiom,
! [Y4: code_integer,X: code_integer] :
( ( ord_le3102999989581377725nteger @ Y4 @ X )
=> ( ( ord_max_Code_integer @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8945_max__absorb1,axiom,
! [Y4: set_int,X: set_int] :
( ( ord_less_eq_set_int @ Y4 @ X )
=> ( ( ord_max_set_int @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8946_max__absorb1,axiom,
! [Y4: rat,X: rat] :
( ( ord_less_eq_rat @ Y4 @ X )
=> ( ( ord_max_rat @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8947_max__absorb1,axiom,
! [Y4: num,X: num] :
( ( ord_less_eq_num @ Y4 @ X )
=> ( ( ord_max_num @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8948_max__absorb1,axiom,
! [Y4: nat,X: nat] :
( ( ord_less_eq_nat @ Y4 @ X )
=> ( ( ord_max_nat @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8949_max__absorb1,axiom,
! [Y4: int,X: int] :
( ( ord_less_eq_int @ Y4 @ X )
=> ( ( ord_max_int @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8950_max__absorb1,axiom,
! [Y4: real,X: real] :
( ( ord_less_eq_real @ Y4 @ X )
=> ( ( ord_max_real @ X @ Y4 )
= X ) ) ).
% max_absorb1
thf(fact_8951_max__def,axiom,
( ord_max_nat
= ( ^ [A3: nat,B2: nat] : ( if_nat @ ( ord_less_eq_nat @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).
% max_def
thf(fact_8952_max__def,axiom,
( ord_max_int
= ( ^ [A3: int,B2: int] : ( if_int @ ( ord_less_eq_int @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).
% max_def
thf(fact_8953_max__def,axiom,
( ord_max_real
= ( ^ [A3: real,B2: real] : ( if_real @ ( ord_less_eq_real @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).
% max_def
thf(fact_8954_or__not__num__neg_Osimps_I1_J,axiom,
( ( bit_or_not_num_neg @ one @ one )
= one ) ).
% or_not_num_neg.simps(1)
thf(fact_8955_or__not__num__neg_Osimps_I4_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one )
= ( bit0 @ one ) ) ).
% or_not_num_neg.simps(4)
thf(fact_8956_drop__bit__nat__eq,axiom,
! [N: nat,K: int] :
( ( bit_se8570568707652914677it_nat @ N @ ( nat2 @ K ) )
= ( nat2 @ ( bit_se8568078237143864401it_int @ N @ K ) ) ) ).
% drop_bit_nat_eq
thf(fact_8957_or__not__num__neg_Osimps_I6_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
= ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(6)
thf(fact_8958_or__not__num__neg_Osimps_I7_J,axiom,
! [N: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one )
= one ) ).
% or_not_num_neg.simps(7)
thf(fact_8959_or__not__num__neg_Osimps_I3_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(3)
thf(fact_8960_or__not__num__neg_Osimps_I2_J,axiom,
! [M: num] :
( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
= ( bit1 @ M ) ) ).
% or_not_num_neg.simps(2)
thf(fact_8961_drop__bit__nat__def,axiom,
( bit_se8570568707652914677it_nat
= ( ^ [N4: nat,M5: nat] : ( divide_divide_nat @ M5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ).
% drop_bit_nat_def
thf(fact_8962_int__numeral__or__not__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).
% int_numeral_or_not_num_neg
thf(fact_8963_int__numeral__not__or__num__neg,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).
% int_numeral_not_or_num_neg
thf(fact_8964_numeral__or__not__num__eq,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) )
= ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).
% numeral_or_not_num_eq
thf(fact_8965_or__minus__numerals_I1_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(1)
thf(fact_8966_or__minus__numerals_I5_J,axiom,
! [N: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(5)
thf(fact_8967_or__nat__unfold,axiom,
( bit_se1412395901928357646or_nat
= ( ^ [M5: nat,N4: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N4 @ ( if_nat @ ( N4 = zero_zero_nat ) @ M5 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% or_nat_unfold
thf(fact_8968_or__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(7)
thf(fact_8969_max__enat__simps_I2_J,axiom,
! [Q2: extended_enat] :
( ( ord_ma741700101516333627d_enat @ Q2 @ zero_z5237406670263579293d_enat )
= Q2 ) ).
% max_enat_simps(2)
thf(fact_8970_max__enat__simps_I3_J,axiom,
! [Q2: extended_enat] :
( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q2 )
= Q2 ) ).
% max_enat_simps(3)
thf(fact_8971_max__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( suc @ ( ord_max_nat @ M @ N ) ) ) ).
% max_Suc_Suc
thf(fact_8972_max__0R,axiom,
! [N: nat] :
( ( ord_max_nat @ N @ zero_zero_nat )
= N ) ).
% max_0R
thf(fact_8973_max__0L,axiom,
! [N: nat] :
( ( ord_max_nat @ zero_zero_nat @ N )
= N ) ).
% max_0L
thf(fact_8974_max__nat_Oright__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ A @ zero_zero_nat )
= A ) ).
% max_nat.right_neutral
thf(fact_8975_max__nat_Oneutr__eq__iff,axiom,
! [A: nat,B: nat] :
( ( zero_zero_nat
= ( ord_max_nat @ A @ B ) )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.neutr_eq_iff
thf(fact_8976_max__nat_Oleft__neutral,axiom,
! [A: nat] :
( ( ord_max_nat @ zero_zero_nat @ A )
= A ) ).
% max_nat.left_neutral
thf(fact_8977_max__nat_Oeq__neutr__iff,axiom,
! [A: nat,B: nat] :
( ( ( ord_max_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% max_nat.eq_neutr_iff
thf(fact_8978_pred__numeral__simps_I2_J,axiom,
! [K: num] :
( ( pred_numeral @ ( bit0 @ K ) )
= ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).
% pred_numeral_simps(2)
thf(fact_8979_max__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N ) ) ) ).
% max_numeral_Suc
thf(fact_8980_max__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_max_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( suc @ ( ord_max_nat @ N @ ( pred_numeral @ K ) ) ) ) ).
% max_Suc_numeral
thf(fact_8981_or__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).
% or_minus_numerals(3)
thf(fact_8982_nat__mult__max__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
= ( ord_max_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q2 ) ) ) ).
% nat_mult_max_right
thf(fact_8983_nat__mult__max__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
= ( ord_max_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N @ Q2 ) ) ) ).
% nat_mult_max_left
thf(fact_8984_nat__add__max__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( plus_plus_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
= ( ord_max_nat @ ( plus_plus_nat @ M @ N ) @ ( plus_plus_nat @ M @ Q2 ) ) ) ).
% nat_add_max_right
thf(fact_8985_nat__add__max__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( plus_plus_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
= ( ord_max_nat @ ( plus_plus_nat @ M @ Q2 ) @ ( plus_plus_nat @ N @ Q2 ) ) ) ).
% nat_add_max_left
thf(fact_8986_semiring__norm_I26_J,axiom,
( ( bitM @ one )
= one ) ).
% semiring_norm(26)
thf(fact_8987_nat__minus__add__max,axiom,
! [N: nat,M: nat] :
( ( plus_plus_nat @ ( minus_minus_nat @ N @ M ) @ M )
= ( ord_max_nat @ N @ M ) ) ).
% nat_minus_add_max
thf(fact_8988_semiring__norm_I27_J,axiom,
! [N: num] :
( ( bitM @ ( bit0 @ N ) )
= ( bit1 @ ( bitM @ N ) ) ) ).
% semiring_norm(27)
thf(fact_8989_semiring__norm_I28_J,axiom,
! [N: num] :
( ( bitM @ ( bit1 @ N ) )
= ( bit1 @ ( bit0 @ N ) ) ) ).
% semiring_norm(28)
thf(fact_8990_or__not__num__neg_Osimps_I5_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(5)
thf(fact_8991_inc__BitM__eq,axiom,
! [N: num] :
( ( inc @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% inc_BitM_eq
thf(fact_8992_or__not__num__neg_Osimps_I9_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(9)
thf(fact_8993_BitM__inc__eq,axiom,
! [N: num] :
( ( bitM @ ( inc @ N ) )
= ( bit1 @ N ) ) ).
% BitM_inc_eq
thf(fact_8994_eval__nat__numeral_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( suc @ ( numeral_numeral_nat @ ( bitM @ N ) ) ) ) ).
% eval_nat_numeral(2)
thf(fact_8995_one__plus__BitM,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bitM @ N ) )
= ( bit0 @ N ) ) ).
% one_plus_BitM
thf(fact_8996_BitM__plus__one,axiom,
! [N: num] :
( ( plus_plus_num @ ( bitM @ N ) @ one )
= ( bit0 @ N ) ) ).
% BitM_plus_one
thf(fact_8997_or__not__num__neg_Osimps_I8_J,axiom,
! [N: num,M: num] :
( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
= ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).
% or_not_num_neg.simps(8)
thf(fact_8998_or__not__num__neg_Oelims,axiom,
! [X: num,Xa: num,Y4: num] :
( ( ( bit_or_not_num_neg @ X @ Xa )
= Y4 )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( Y4 != one ) ) )
=> ( ( ( X = one )
=> ! [M4: num] :
( ( Xa
= ( bit0 @ M4 ) )
=> ( Y4
!= ( bit1 @ M4 ) ) ) )
=> ( ( ( X = one )
=> ! [M4: num] :
( ( Xa
= ( bit1 @ M4 ) )
=> ( Y4
!= ( bit1 @ M4 ) ) ) )
=> ( ( ? [N2: num] :
( X
= ( bit0 @ N2 ) )
=> ( ( Xa = one )
=> ( Y4
!= ( bit0 @ one ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit0 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit0 @ M4 ) )
=> ( Y4
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit0 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit1 @ M4 ) )
=> ( Y4
!= ( bit0 @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) )
=> ( ( ? [N2: num] :
( X
= ( bit1 @ N2 ) )
=> ( ( Xa = one )
=> ( Y4 != one ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit1 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit0 @ M4 ) )
=> ( Y4
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) )
=> ~ ! [N2: num] :
( ( X
= ( bit1 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit1 @ M4 ) )
=> ( Y4
!= ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.elims
thf(fact_8999_root__powr__inverse,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( root @ N @ X )
= ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).
% root_powr_inverse
thf(fact_9000_xor__minus__numerals_I2_J,axiom,
! [K: int,N: num] :
( ( bit_se6526347334894502574or_int @ K @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K @ ( neg_numeral_sub_int @ N @ one ) ) ) ) ).
% xor_minus_numerals(2)
thf(fact_9001_xor__minus__numerals_I1_J,axiom,
! [N: num,K: int] :
( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ K )
= ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N @ one ) @ K ) ) ) ).
% xor_minus_numerals(1)
thf(fact_9002_real__root__zero,axiom,
! [N: nat] :
( ( root @ N @ zero_zero_real )
= zero_zero_real ) ).
% real_root_zero
thf(fact_9003_real__root__Suc__0,axiom,
! [X: real] :
( ( root @ ( suc @ zero_zero_nat ) @ X )
= X ) ).
% real_root_Suc_0
thf(fact_9004_root__0,axiom,
! [X: real] :
( ( root @ zero_zero_nat @ X )
= zero_zero_real ) ).
% root_0
thf(fact_9005_real__root__eq__iff,axiom,
! [N: nat,X: real,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X )
= ( root @ N @ Y4 ) )
= ( X = Y4 ) ) ) ).
% real_root_eq_iff
thf(fact_9006_real__root__eq__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ) ).
% real_root_eq_0_iff
thf(fact_9007_real__root__less__iff,axiom,
! [N: nat,X: real,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y4 ) )
= ( ord_less_real @ X @ Y4 ) ) ) ).
% real_root_less_iff
thf(fact_9008_real__root__le__iff,axiom,
! [N: nat,X: real,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y4 ) )
= ( ord_less_eq_real @ X @ Y4 ) ) ) ).
% real_root_le_iff
thf(fact_9009_real__root__one,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ one_one_real )
= one_one_real ) ) ).
% real_root_one
thf(fact_9010_real__root__eq__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( root @ N @ X )
= one_one_real )
= ( X = one_one_real ) ) ) ).
% real_root_eq_1_iff
thf(fact_9011_real__root__gt__0__iff,axiom,
! [N: nat,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y4 ) )
= ( ord_less_real @ zero_zero_real @ Y4 ) ) ) ).
% real_root_gt_0_iff
thf(fact_9012_real__root__lt__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ) ).
% real_root_lt_0_iff
thf(fact_9013_real__root__ge__0__iff,axiom,
! [N: nat,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y4 ) )
= ( ord_less_eq_real @ zero_zero_real @ Y4 ) ) ) ).
% real_root_ge_0_iff
thf(fact_9014_real__root__le__0__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ) ).
% real_root_le_0_iff
thf(fact_9015_real__root__gt__1__iff,axiom,
! [N: nat,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ one_one_real @ ( root @ N @ Y4 ) )
= ( ord_less_real @ one_one_real @ Y4 ) ) ) ).
% real_root_gt_1_iff
thf(fact_9016_real__root__lt__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ ( root @ N @ X ) @ one_one_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ).
% real_root_lt_1_iff
thf(fact_9017_real__root__ge__1__iff,axiom,
! [N: nat,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y4 ) )
= ( ord_less_eq_real @ one_one_real @ Y4 ) ) ) ).
% real_root_ge_1_iff
thf(fact_9018_real__root__le__1__iff,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( root @ N @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ).
% real_root_le_1_iff
thf(fact_9019_real__root__pow__pos2,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( root @ N @ X ) @ N )
= X ) ) ) ).
% real_root_pow_pos2
thf(fact_9020_real__root__inverse,axiom,
! [N: nat,X: real] :
( ( root @ N @ ( inverse_inverse_real @ X ) )
= ( inverse_inverse_real @ ( root @ N @ X ) ) ) ).
% real_root_inverse
thf(fact_9021_real__root__mult__exp,axiom,
! [M: nat,N: nat,X: real] :
( ( root @ ( times_times_nat @ M @ N ) @ X )
= ( root @ M @ ( root @ N @ X ) ) ) ).
% real_root_mult_exp
thf(fact_9022_real__root__mult,axiom,
! [N: nat,X: real,Y4: real] :
( ( root @ N @ ( times_times_real @ X @ Y4 ) )
= ( times_times_real @ ( root @ N @ X ) @ ( root @ N @ Y4 ) ) ) ).
% real_root_mult
thf(fact_9023_real__root__minus,axiom,
! [N: nat,X: real] :
( ( root @ N @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( root @ N @ X ) ) ) ).
% real_root_minus
thf(fact_9024_real__root__commute,axiom,
! [M: nat,N: nat,X: real] :
( ( root @ M @ ( root @ N @ X ) )
= ( root @ N @ ( root @ M @ X ) ) ) ).
% real_root_commute
thf(fact_9025_real__root__divide,axiom,
! [N: nat,X: real,Y4: real] :
( ( root @ N @ ( divide_divide_real @ X @ Y4 ) )
= ( divide_divide_real @ ( root @ N @ X ) @ ( root @ N @ Y4 ) ) ) ).
% real_root_divide
thf(fact_9026_real__root__pos__pos__le,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ).
% real_root_pos_pos_le
thf(fact_9027_real__root__less__mono,axiom,
! [N: nat,X: real,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ X @ Y4 )
=> ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y4 ) ) ) ) ).
% real_root_less_mono
thf(fact_9028_real__root__le__mono,axiom,
! [N: nat,X: real,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ X @ Y4 )
=> ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y4 ) ) ) ) ).
% real_root_le_mono
thf(fact_9029_real__root__power,axiom,
! [N: nat,X: real,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( power_power_real @ X @ K ) )
= ( power_power_real @ ( root @ N @ X ) @ K ) ) ) ).
% real_root_power
thf(fact_9030_real__root__abs,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( abs_abs_real @ X ) )
= ( abs_abs_real @ ( root @ N @ X ) ) ) ) ).
% real_root_abs
thf(fact_9031_sgn__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( sgn_sgn_real @ ( root @ N @ X ) )
= ( sgn_sgn_real @ X ) ) ) ).
% sgn_root
thf(fact_9032_real__root__gt__zero,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).
% real_root_gt_zero
thf(fact_9033_real__root__strict__decreasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).
% real_root_strict_decreasing
thf(fact_9034_sqrt__def,axiom,
( sqrt
= ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% sqrt_def
thf(fact_9035_root__abs__power,axiom,
! [N: nat,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( abs_abs_real @ ( root @ N @ ( power_power_real @ Y4 @ N ) ) )
= ( abs_abs_real @ Y4 ) ) ) ).
% root_abs_power
thf(fact_9036_real__root__pos__pos,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).
% real_root_pos_pos
thf(fact_9037_real__root__strict__increasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_strict_increasing
thf(fact_9038_real__root__decreasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ ( root @ N5 @ X ) @ ( root @ N @ X ) ) ) ) ) ).
% real_root_decreasing
thf(fact_9039_real__root__pow__pos,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( root @ N @ X ) @ N )
= X ) ) ) ).
% real_root_pow_pos
thf(fact_9040_real__root__pos__unique,axiom,
! [N: nat,Y4: real,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
=> ( ( ( power_power_real @ Y4 @ N )
= X )
=> ( ( root @ N @ X )
= Y4 ) ) ) ) ).
% real_root_pos_unique
thf(fact_9041_real__root__power__cancel,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( root @ N @ ( power_power_real @ X @ N ) )
= X ) ) ) ).
% real_root_power_cancel
thf(fact_9042_odd__real__root__pow,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_power_real @ ( root @ N @ X ) @ N )
= X ) ) ).
% odd_real_root_pow
thf(fact_9043_odd__real__root__unique,axiom,
! [N: nat,Y4: real,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ( power_power_real @ Y4 @ N )
= X )
=> ( ( root @ N @ X )
= Y4 ) ) ) ).
% odd_real_root_unique
thf(fact_9044_odd__real__root__power__cancel,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( root @ N @ ( power_power_real @ X @ N ) )
= X ) ) ).
% odd_real_root_power_cancel
thf(fact_9045_real__root__increasing,axiom,
! [N: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_increasing
thf(fact_9046_sub__BitM__One__eq,axiom,
! [N: num] :
( ( neg_numeral_sub_int @ ( bitM @ N ) @ one )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N @ one ) ) ) ).
% sub_BitM_One_eq
thf(fact_9047_root__sgn__power,axiom,
! [N: nat,Y4: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( root @ N @ ( times_times_real @ ( sgn_sgn_real @ Y4 ) @ ( power_power_real @ ( abs_abs_real @ Y4 ) @ N ) ) )
= Y4 ) ) ).
% root_sgn_power
thf(fact_9048_sgn__power__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N @ X ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N @ X ) ) @ N ) )
= X ) ) ).
% sgn_power_root
thf(fact_9049_ln__root,axiom,
! [N: nat,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ln_ln_real @ ( root @ N @ B ) )
= ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% ln_root
thf(fact_9050_log__root,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( log @ B @ ( root @ N @ A ) )
= ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).
% log_root
thf(fact_9051_log__base__root,axiom,
! [N: nat,B: real,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( log @ ( root @ N @ B ) @ X )
= ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X ) ) ) ) ) ).
% log_base_root
thf(fact_9052_split__root,axiom,
! [P: real > $o,N: nat,X: real] :
( ( P @ ( root @ N @ X ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_real ) )
& ( ( ord_less_nat @ zero_zero_nat @ N )
=> ! [Y6: real] :
( ( ( times_times_real @ ( sgn_sgn_real @ Y6 ) @ ( power_power_real @ ( abs_abs_real @ Y6 ) @ N ) )
= X )
=> ( P @ Y6 ) ) ) ) ) ).
% split_root
thf(fact_9053_VEBT__internal_Ocnt_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_cnt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) )
= ( plus_plus_real @ ( plus_plus_real @ one_one_real @ ( vEBT_VEBT_cnt @ Summary ) ) @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ vEBT_VEBT_cnt @ TreeList ) @ zero_zero_real ) ) ) ).
% VEBT_internal.cnt.simps(2)
thf(fact_9054_VEBT_Oinject_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,Y11: option4927543243414619207at_nat,Y12: nat,Y13: list_VEBT_VEBT,Y14: vEBT_VEBT] :
( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
= ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
= ( ( X11 = Y11 )
& ( X12 = Y12 )
& ( X13 = Y13 )
& ( X14 = Y14 ) ) ) ).
% VEBT.inject(1)
thf(fact_9055_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Ux ) ).
% VEBT_internal.naive_member.simps(2)
thf(fact_9056_both__member__options__ding,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).
% both_member_options_ding
thf(fact_9057_VEBT__internal_Ospace_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_space @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_space @ Summary ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space @ TreeList ) @ zero_zero_nat ) ) ) ).
% VEBT_internal.space.simps(2)
thf(fact_9058_VEBT__internal_Ospace_H_Osimps_I2_J,axiom,
! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
( ( vEBT_VEBT_space2 @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_space2 @ Summary ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space2 @ TreeList ) @ zero_zero_nat ) ) ) ).
% VEBT_internal.space'.simps(2)
thf(fact_9059_both__member__options__def,axiom,
( vEBT_V8194947554948674370ptions
= ( ^ [T2: vEBT_VEBT,X3: nat] :
( ( vEBT_V5719532721284313246member @ T2 @ X3 )
| ( vEBT_VEBT_membermima @ T2 @ X3 ) ) ) ) ).
% both_member_options_def
thf(fact_9060_VEBT_Oinject_I2_J,axiom,
! [X21: $o,X222: $o,Y21: $o,Y22: $o] :
( ( ( vEBT_Leaf @ X21 @ X222 )
= ( vEBT_Leaf @ Y21 @ Y22 ) )
= ( ( X21 = Y21 )
& ( X222 = Y22 ) ) ) ).
% VEBT.inject(2)
thf(fact_9061_VEBT__internal_Ospace_H_Ocases,axiom,
! [X: vEBT_VEBT] :
( ! [A4: $o,B3: $o] :
( X
!= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ).
% VEBT_internal.space'.cases
thf(fact_9062_VEBT_Oexhaust,axiom,
! [Y4: vEBT_VEBT] :
( ! [X112: option4927543243414619207at_nat,X122: nat,X132: list_VEBT_VEBT,X142: vEBT_VEBT] :
( Y4
!= ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
=> ~ ! [X212: $o,X223: $o] :
( Y4
!= ( vEBT_Leaf @ X212 @ X223 ) ) ) ).
% VEBT.exhaust
thf(fact_9063_VEBT_Odistinct_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,X21: $o,X222: $o] :
( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
!= ( vEBT_Leaf @ X21 @ X222 ) ) ).
% VEBT.distinct(1)
thf(fact_9064_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,Uw: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).
% VEBT_internal.membermima.simps(1)
thf(fact_9065_VEBT_Osize_I4_J,axiom,
! [X21: $o,X222: $o] :
( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size(4)
thf(fact_9066_vebt__buildup_Osimps_I1_J,axiom,
( ( vEBT_vebt_buildup @ zero_zero_nat )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(1)
thf(fact_9067_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
! [Uu: $o,Uv: $o,D: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D )
= ( D = one_one_nat ) ) ).
% VEBT_internal.valid'.simps(1)
thf(fact_9068_VEBT__internal_Ocnt_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_cnt @ ( vEBT_Leaf @ A @ B ) )
= one_one_real ) ).
% VEBT_internal.cnt.simps(1)
thf(fact_9069_invar__vebt_Ointros_I1_J,axiom,
! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).
% invar_vebt.intros(1)
thf(fact_9070_vebt__buildup_Osimps_I2_J,axiom,
( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
= ( vEBT_Leaf @ $false @ $false ) ) ).
% vebt_buildup.simps(2)
thf(fact_9071_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
! [A: $o,B: $o,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X )
= ( ( ( X = zero_zero_nat )
=> A )
& ( ( X != zero_zero_nat )
=> ( ( ( X = one_one_nat )
=> B )
& ( X = one_one_nat ) ) ) ) ) ).
% VEBT_internal.naive_member.simps(1)
thf(fact_9072_VEBT__internal_Ospace_H_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_space2 @ ( vEBT_Leaf @ A @ B ) )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ).
% VEBT_internal.space'.simps(1)
thf(fact_9073_VEBT__internal_Ospace_Osimps_I1_J,axiom,
! [A: $o,B: $o] :
( ( vEBT_VEBT_space @ ( vEBT_Leaf @ A @ B ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).
% VEBT_internal.space.simps(1)
thf(fact_9074_VEBT__internal_Ospace_H_Oelims,axiom,
! [X: vEBT_VEBT,Y4: nat] :
( ( ( vEBT_VEBT_space2 @ X )
= Y4 )
=> ( ( ? [A4: $o,B3: $o] :
( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y4
!= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y4
!= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_space2 @ Summary2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space2 @ TreeList2 ) @ zero_zero_nat ) ) ) ) ) ) ).
% VEBT_internal.space'.elims
thf(fact_9075_VEBT__internal_Ospace_Oelims,axiom,
! [X: vEBT_VEBT,Y4: nat] :
( ( ( vEBT_VEBT_space @ X )
= Y4 )
=> ( ( ? [A4: $o,B3: $o] :
( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y4
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y4
!= ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_space @ Summary2 ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space @ TreeList2 ) @ zero_zero_nat ) ) ) ) ) ) ).
% VEBT_internal.space.elims
thf(fact_9076_VEBT__internal_Ocnt_Oelims,axiom,
! [X: vEBT_VEBT,Y4: real] :
( ( ( vEBT_VEBT_cnt @ X )
= Y4 )
=> ( ( ? [A4: $o,B3: $o] :
( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y4 != one_one_real ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y4
!= ( plus_plus_real @ ( plus_plus_real @ one_one_real @ ( vEBT_VEBT_cnt @ Summary2 ) ) @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ vEBT_VEBT_cnt @ TreeList2 ) @ zero_zero_real ) ) ) ) ) ) ).
% VEBT_internal.cnt.elims
thf(fact_9077_in__children__def,axiom,
( vEBT_V5917875025757280293ildren
= ( ^ [N4: nat,TreeList3: list_VEBT_VEBT,X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ X3 @ N4 ) ) @ ( vEBT_VEBT_low @ X3 @ N4 ) ) ) ) ).
% in_children_def
thf(fact_9078_invar__vebt_Ointros_I3_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X4 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(3)
thf(fact_9079_VEBT__internal_Ospace_Opelims,axiom,
! [X: vEBT_VEBT,Y4: nat] :
( ( ( vEBT_VEBT_space @ X )
= Y4 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel2 @ X )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y4
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel2 @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y4
= ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( vEBT_VEBT_space @ Summary2 ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space @ TreeList2 ) @ zero_zero_nat ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel2 @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.space.pelims
thf(fact_9080_invar__vebt_Ointros_I2_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X4 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
=> ( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(2)
thf(fact_9081_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).
% VEBT_internal.membermima.simps(2)
thf(fact_9082_VEBT__internal_Ospace_H_Opelims,axiom,
! [X: vEBT_VEBT,Y4: nat] :
( ( ( vEBT_VEBT_space2 @ X )
= Y4 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel @ X )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y4
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y4
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_VEBT_space2 @ Summary2 ) ) @ ( foldr_nat_nat @ plus_plus_nat @ ( map_VEBT_VEBT_nat @ vEBT_VEBT_space2 @ TreeList2 ) @ zero_zero_nat ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_space_rel @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.space'.pelims
thf(fact_9083_VEBT__internal_Ocnt_Opelims,axiom,
! [X: vEBT_VEBT,Y4: real] :
( ( ( vEBT_VEBT_cnt @ X )
= Y4 )
=> ( ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel @ X )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y4 = one_one_real )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel @ ( vEBT_Leaf @ A4 @ B3 ) ) ) )
=> ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y4
= ( plus_plus_real @ ( plus_plus_real @ one_one_real @ ( vEBT_VEBT_cnt @ Summary2 ) ) @ ( foldr_real_real @ plus_plus_real @ ( map_VEBT_VEBT_real @ vEBT_VEBT_cnt @ TreeList2 ) @ zero_zero_real ) ) )
=> ~ ( accp_VEBT_VEBT @ vEBT_VEBT_cnt_rel @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ).
% VEBT_internal.cnt.pelims
thf(fact_9084_mi__ma__2__deg,axiom,
! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
& ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).
% mi_ma_2_deg
thf(fact_9085_both__member__options__from__complete__tree__to__child,axiom,
! [Deg: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
| ( X = Mi )
| ( X = Ma ) ) ) ) ).
% both_member_options_from_complete_tree_to_child
thf(fact_9086_both__member__options__from__chilf__to__complete__tree,axiom,
! [X: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( ( ord_less_eq_nat @ one_one_nat @ Deg )
=> ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).
% both_member_options_from_chilf_to_complete_tree
thf(fact_9087_prod__decode__aux_Ocases,axiom,
! [X: product_prod_nat_nat] :
~ ! [K2: nat,M4: nat] :
( X
!= ( product_Pair_nat_nat @ K2 @ M4 ) ) ).
% prod_decode_aux.cases
thf(fact_9088_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
! [Mi: nat,Ma: nat,Va2: list_VEBT_VEBT,Vb: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va2 @ Vb ) @ X )
= ( ( X = Mi )
| ( X = Ma ) ) ) ).
% VEBT_internal.membermima.simps(3)
thf(fact_9089_invar__vebt_Ointros_I4_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X4 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M = N )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
=> ( ( ord_less_nat @ Mi @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(4)
thf(fact_9090_invar__vebt_Ointros_I5_J,axiom,
! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
( ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_invar_vebt @ X4 @ N ) )
=> ( ( vEBT_invar_vebt @ Summary @ M )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( M
= ( suc @ N ) )
=> ( ( Deg
= ( plus_plus_nat @ N @ M ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
=> ( ( ( Mi = Ma )
=> ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
=> ( ( ord_less_eq_nat @ Mi @ Ma )
=> ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( ( Mi != Ma )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma @ N )
= I3 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
& ! [X4: nat] :
( ( ( ( vEBT_VEBT_high @ X4 @ N )
= I3 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
=> ( ( ord_less_nat @ Mi @ X4 )
& ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
=> ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.intros(5)
thf(fact_9091_invar__vebt_Ocases,axiom,
! [A1: vEBT_VEBT,A22: nat] :
( ( vEBT_invar_vebt @ A1 @ A22 )
=> ( ( ? [A4: $o,B3: $o] :
( A1
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( A22
!= ( suc @ zero_zero_nat ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X5 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4 = N2 )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M4 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
( ( A1
= ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X5 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4
= ( suc @ N2 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M4 ) )
=> ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
=> ~ ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) ) ) ) ) ) ) ) )
=> ( ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X5 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4 = N2 )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M4 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
& ! [X5: nat] :
( ( ( ( vEBT_VEBT_high @ X5 @ N2 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X5 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X5 )
& ( ord_less_eq_nat @ X5 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
=> ~ ! [TreeList2: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
( ( A1
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( A22 = Deg2 )
=> ( ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_invar_vebt @ X5 @ N2 ) )
=> ( ( vEBT_invar_vebt @ Summary2 @ M4 )
=> ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( M4
= ( suc @ N2 ) )
=> ( ( Deg2
= ( plus_plus_nat @ N2 @ M4 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
=> ( ( ( Mi2 = Ma2 )
=> ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_12 ) ) )
=> ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
=> ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ~ ( ( Mi2 != Ma2 )
=> ! [I4: nat] :
( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
= I4 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
& ! [X5: nat] :
( ( ( ( vEBT_VEBT_high @ X5 @ N2 )
= I4 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X5 @ N2 ) ) )
=> ( ( ord_less_nat @ Mi2 @ X5 )
& ( ord_less_eq_nat @ X5 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.cases
thf(fact_9092_invar__vebt_Osimps,axiom,
( vEBT_invar_vebt
= ( ^ [A12: vEBT_VEBT,A23: nat] :
( ( ? [A3: $o,B2: $o] :
( A12
= ( vEBT_Leaf @ A3 @ B2 ) )
& ( A23
= ( suc @ zero_zero_nat ) ) )
| ? [TreeList3: list_VEBT_VEBT,N4: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N4 ) )
& ( vEBT_invar_vebt @ Summary3 @ N4 )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) )
& ( A23
= ( plus_plus_nat @ N4 @ N4 ) )
& ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
| ? [TreeList3: list_VEBT_VEBT,N4: nat,Summary3: vEBT_VEBT] :
( ( A12
= ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N4 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N4 ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N4 ) ) )
& ( A23
= ( plus_plus_nat @ N4 @ ( suc @ N4 ) ) )
& ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
| ? [TreeList3: list_VEBT_VEBT,N4: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N4 ) )
& ( vEBT_invar_vebt @ Summary3 @ N4 )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) )
& ( A23
= ( plus_plus_nat @ N4 @ N4 ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N4 )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma3 @ N4 ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N4 )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X3 @ N4 ) ) )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) )
| ? [TreeList3: list_VEBT_VEBT,N4: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
( ( A12
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList3 @ Summary3 ) )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ( vEBT_invar_vebt @ X3 @ N4 ) )
& ( vEBT_invar_vebt @ Summary3 @ ( suc @ N4 ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N4 ) ) )
& ( A23
= ( plus_plus_nat @ N4 @ ( suc @ N4 ) ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N4 ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary3 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
& ( ( Mi3 != Ma3 )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N4 ) ) )
=> ( ( ( ( vEBT_VEBT_high @ Ma3 @ N4 )
= I2 )
=> ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma3 @ N4 ) ) )
& ! [X3: nat] :
( ( ( ( vEBT_VEBT_high @ X3 @ N4 )
= I2 )
& ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X3 @ N4 ) ) )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) ) ) ) ).
% invar_vebt.simps
thf(fact_9093_VEBT__internal_Ovalid_H_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [Uu2: $o,Uv2: $o,D2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ D2 ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,Deg3: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Deg3 ) ) ) ).
% VEBT_internal.valid'.cases
thf(fact_9094_xor__num_Ocases,axiom,
! [X: product_prod_num_num] :
( ( X
!= ( product_Pair_num_num @ one @ one ) )
=> ( ! [N2: num] :
( X
!= ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) )
=> ( ! [N2: num] :
( X
!= ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) )
=> ( ! [M4: num] :
( X
!= ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) )
=> ( ! [M4: num,N2: num] :
( X
!= ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) )
=> ( ! [M4: num,N2: num] :
( X
!= ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) )
=> ( ! [M4: num] :
( X
!= ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) )
=> ( ! [M4: num,N2: num] :
( X
!= ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) )
=> ~ ! [M4: num,N2: num] :
( X
!= ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.cases
thf(fact_9095_VEBT__internal_Onaive__member_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [A4: $o,B3: $o,X4: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ X4 ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList2: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) @ X4 ) ) ) ) ).
% VEBT_internal.naive_member.cases
thf(fact_9096_VEBT__internal_Omembermima_Ocases,axiom,
! [X: produc9072475918466114483BT_nat] :
( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT,X4: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ X4 ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT,X4: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) @ X4 ) )
=> ~ ! [V3: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT,X4: nat] :
( X
!= ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) @ X4 ) ) ) ) ) ) ).
% VEBT_internal.membermima.cases
thf(fact_9097_neg__eucl__rel__int__mult__2,axiom,
! [B: int,A: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) @ one_one_int ) ) ) ) ) ).
% neg_eucl_rel_int_mult_2
thf(fact_9098_Divides_Oadjust__div__eq,axiom,
! [Q2: int,R2: int] :
( ( adjust_div @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( plus_plus_int @ Q2 @ ( zero_n2684676970156552555ol_int @ ( R2 != zero_zero_int ) ) ) ) ).
% Divides.adjust_div_eq
thf(fact_9099_numeral__div__minus__numeral,axiom,
! [M: num,N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% numeral_div_minus_numeral
thf(fact_9100_minus__numeral__div__numeral,axiom,
! [M: num,N: num] :
( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% minus_numeral_div_numeral
thf(fact_9101_one__div__minus__numeral,axiom,
! [N: num] :
( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% one_div_minus_numeral
thf(fact_9102_minus__one__div__numeral,axiom,
! [N: num] :
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% minus_one_div_numeral
thf(fact_9103_divmod__BitM__2__eq,axiom,
! [M: num] :
( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
= ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).
% divmod_BitM_2_eq
thf(fact_9104_unique__quotient,axiom,
! [A: int,B: int,Q2: int,R2: int,Q5: int,R4: int] :
( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
=> ( Q2 = Q5 ) ) ) ).
% unique_quotient
thf(fact_9105_unique__remainder,axiom,
! [A: int,B: int,Q2: int,R2: int,Q5: int,R4: int] :
( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
=> ( R2 = R4 ) ) ) ).
% unique_remainder
thf(fact_9106_eucl__rel__int__by0,axiom,
! [K: int] : ( eucl_rel_int @ K @ zero_zero_int @ ( product_Pair_int_int @ zero_zero_int @ K ) ) ).
% eucl_rel_int_by0
thf(fact_9107_div__int__unique,axiom,
! [K: int,L: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( divide_divide_int @ K @ L )
= Q2 ) ) ).
% div_int_unique
thf(fact_9108_mod__int__unique,axiom,
! [K: int,L: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( modulo_modulo_int @ K @ L )
= R2 ) ) ).
% mod_int_unique
thf(fact_9109_eucl__rel__int__dividesI,axiom,
! [L: int,K: int,Q2: int] :
( ( L != zero_zero_int )
=> ( ( K
= ( times_times_int @ Q2 @ L ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ zero_zero_int ) ) ) ) ).
% eucl_rel_int_dividesI
thf(fact_9110_eucl__rel__int,axiom,
! [K: int,L: int] : ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ ( divide_divide_int @ K @ L ) @ ( modulo_modulo_int @ K @ L ) ) ) ).
% eucl_rel_int
thf(fact_9111_divmod__int__def,axiom,
( unique5052692396658037445od_int
= ( ^ [M5: num,N4: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M5 ) @ ( numeral_numeral_int @ N4 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M5 ) @ ( numeral_numeral_int @ N4 ) ) ) ) ) ).
% divmod_int_def
thf(fact_9112_divmod_H__nat__def,axiom,
( unique5055182867167087721od_nat
= ( ^ [M5: num,N4: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M5 ) @ ( numeral_numeral_nat @ N4 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M5 ) @ ( numeral_numeral_nat @ N4 ) ) ) ) ) ).
% divmod'_nat_def
thf(fact_9113_zminus1__lemma,axiom,
! [A: int,B: int,Q2: int,R2: int] :
( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( ( B != zero_zero_int )
=> ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R2 = zero_zero_int ) @ ( uminus_uminus_int @ Q2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q2 ) @ one_one_int ) ) @ ( if_int @ ( R2 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R2 ) ) ) ) ) ) ).
% zminus1_lemma
thf(fact_9114_eucl__rel__int__iff,axiom,
! [K: int,L: int,Q2: int,R2: int] :
( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
= ( ( K
= ( plus_plus_int @ ( times_times_int @ L @ Q2 ) @ R2 ) )
& ( ( ord_less_int @ zero_zero_int @ L )
=> ( ( ord_less_eq_int @ zero_zero_int @ R2 )
& ( ord_less_int @ R2 @ L ) ) )
& ( ~ ( ord_less_int @ zero_zero_int @ L )
=> ( ( ( ord_less_int @ L @ zero_zero_int )
=> ( ( ord_less_int @ L @ R2 )
& ( ord_less_eq_int @ R2 @ zero_zero_int ) ) )
& ( ~ ( ord_less_int @ L @ zero_zero_int )
=> ( Q2 = zero_zero_int ) ) ) ) ) ) ).
% eucl_rel_int_iff
thf(fact_9115_eucl__rel__int__remainderI,axiom,
! [R2: int,L: int,K: int,Q2: int] :
( ( ( sgn_sgn_int @ R2 )
= ( sgn_sgn_int @ L ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ L ) )
=> ( ( K
= ( plus_plus_int @ ( times_times_int @ Q2 @ L ) @ R2 ) )
=> ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) ) ) ) ) ).
% eucl_rel_int_remainderI
thf(fact_9116_eucl__rel__int_Osimps,axiom,
( eucl_rel_int
= ( ^ [A12: int,A23: int,A32: product_prod_int_int] :
( ? [K3: int] :
( ( A12 = K3 )
& ( A23 = zero_zero_int )
& ( A32
= ( product_Pair_int_int @ zero_zero_int @ K3 ) ) )
| ? [L3: int,K3: int,Q3: int] :
( ( A12 = K3 )
& ( A23 = L3 )
& ( A32
= ( product_Pair_int_int @ Q3 @ zero_zero_int ) )
& ( L3 != zero_zero_int )
& ( K3
= ( times_times_int @ Q3 @ L3 ) ) )
| ? [R5: int,L3: int,K3: int,Q3: int] :
( ( A12 = K3 )
& ( A23 = L3 )
& ( A32
= ( product_Pair_int_int @ Q3 @ R5 ) )
& ( ( sgn_sgn_int @ R5 )
= ( sgn_sgn_int @ L3 ) )
& ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L3 ) )
& ( K3
= ( plus_plus_int @ ( times_times_int @ Q3 @ L3 ) @ R5 ) ) ) ) ) ) ).
% eucl_rel_int.simps
thf(fact_9117_eucl__rel__int_Ocases,axiom,
! [A1: int,A22: int,A33: product_prod_int_int] :
( ( eucl_rel_int @ A1 @ A22 @ A33 )
=> ( ( ( A22 = zero_zero_int )
=> ( A33
!= ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
=> ( ! [Q4: int] :
( ( A33
= ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
=> ( ( A22 != zero_zero_int )
=> ( A1
!= ( times_times_int @ Q4 @ A22 ) ) ) )
=> ~ ! [R3: int,Q4: int] :
( ( A33
= ( product_Pair_int_int @ Q4 @ R3 ) )
=> ( ( ( sgn_sgn_int @ R3 )
= ( sgn_sgn_int @ A22 ) )
=> ( ( ord_less_int @ ( abs_abs_int @ R3 ) @ ( abs_abs_int @ A22 ) )
=> ( A1
!= ( plus_plus_int @ ( times_times_int @ Q4 @ A22 ) @ R3 ) ) ) ) ) ) ) ) ).
% eucl_rel_int.cases
thf(fact_9118_pos__eucl__rel__int__mult__2,axiom,
! [B: int,A: int,Q2: int,R2: int] :
( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
=> ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) ) ) ) ) ) ).
% pos_eucl_rel_int_mult_2
thf(fact_9119_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa )
=> ( ! [Uu2: $o,Uv2: $o] :
( X
!= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( Xa = Mi2 )
| ( Xa = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) )
=> ( ( Xa = Mi2 )
| ( Xa = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ! [V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(3)
thf(fact_9120_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa: nat,Y4: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa )
= Y4 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> Y4 )
=> ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> Y4 )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( Y4
= ( ~ ( ( Xa = Mi2 )
| ( Xa = Ma2 ) ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) )
=> ( Y4
= ( ~ ( ( Xa = Mi2 )
| ( Xa = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) )
=> ( Y4
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(1)
thf(fact_9121_prod__decode__aux_Osimps,axiom,
( nat_prod_decode_aux
= ( ^ [K3: nat,M5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M5 @ K3 ) @ ( product_Pair_nat_nat @ M5 @ ( minus_minus_nat @ K3 @ M5 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus_nat @ M5 @ ( suc @ K3 ) ) ) ) ) ) ).
% prod_decode_aux.simps
thf(fact_9122_prod__decode__aux_Oelims,axiom,
! [X: nat,Xa: nat,Y4: product_prod_nat_nat] :
( ( ( nat_prod_decode_aux @ X @ Xa )
= Y4 )
=> ( ( ( ord_less_eq_nat @ Xa @ X )
=> ( Y4
= ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X @ Xa ) ) ) )
& ( ~ ( ord_less_eq_nat @ Xa @ X )
=> ( Y4
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa @ ( suc @ X ) ) ) ) ) ) ) ).
% prod_decode_aux.elims
thf(fact_9123_foldr__same,axiom,
! [Xs: list_real,Y4: real] :
( ! [X4: real,Y: real] :
( ( member_real @ X4 @ ( set_real2 @ Xs ) )
=> ( ( member_real @ Y @ ( set_real2 @ Xs ) )
=> ( X4 = Y ) ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( set_real2 @ Xs ) )
=> ( X4 = Y4 ) )
=> ( ( foldr_real_real @ plus_plus_real @ Xs @ zero_zero_real )
= ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_real @ Xs ) ) @ Y4 ) ) ) ) ).
% foldr_same
thf(fact_9124_foldr__mono,axiom,
! [Xs: list_nat,Ys: list_nat,C: nat,D: nat] :
( ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
=> ( ord_less_nat @ ( nth_nat @ Xs @ I3 ) @ ( nth_nat @ Ys @ I3 ) ) )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( foldr_nat_nat @ plus_plus_nat @ Xs @ C ) @ ( size_size_list_nat @ Ys ) ) @ ( foldr_nat_nat @ plus_plus_nat @ Ys @ D ) ) ) ) ) ).
% foldr_mono
thf(fact_9125_foldr__zero,axiom,
! [Xs: list_nat,D: nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
=> ( ord_less_nat @ zero_zero_nat @ ( nth_nat @ Xs @ I3 ) ) )
=> ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ ( minus_minus_nat @ ( foldr_nat_nat @ plus_plus_nat @ Xs @ D ) @ D ) ) ) ).
% foldr_zero
thf(fact_9126_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_leq_as_int
thf(fact_9127_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_less_as_int
thf(fact_9128_nat__plus__as__int,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_plus_as_int
thf(fact_9129_nat__times__as__int,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_times_as_int
thf(fact_9130_nat__minus__as__int,axiom,
( minus_minus_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_minus_as_int
thf(fact_9131_nat__div__as__int,axiom,
( divide_divide_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_div_as_int
thf(fact_9132_nat__mod__as__int,axiom,
( modulo_modulo_nat
= ( ^ [A3: nat,B2: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).
% nat_mod_as_int
thf(fact_9133_diff__nat__eq__if,axiom,
! [Z6: int,Z: int] :
( ( ( ord_less_int @ Z6 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
= ( nat2 @ Z ) ) )
& ( ~ ( ord_less_int @ Z6 @ zero_zero_int )
=> ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z6 ) )
= ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z @ Z6 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z @ Z6 ) ) ) ) ) ) ).
% diff_nat_eq_if
thf(fact_9134_set__decode__def,axiom,
( nat_set_decode
= ( ^ [X3: nat] :
( collect_nat
@ ^ [N4: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) ) ) ) ).
% set_decode_def
thf(fact_9135_vebt__buildup_Osimps_I3_J,axiom,
! [Va2: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.simps(3)
thf(fact_9136_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Osimps_I3_J,axiom,
! [Va2: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( suc @ Va2 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( suc @ Va2 ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.simps(3)
thf(fact_9137_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Osimps_I3_J,axiom,
! [Va2: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( suc @ Va2 ) ) )
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
=> ( ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( suc @ Va2 ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.simps(3)
thf(fact_9138_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
! [Uy: option4927543243414619207at_nat,V: nat,TreeList: list_VEBT_VEBT,S2: vEBT_VEBT,X: nat] :
( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList @ S2 ) @ X )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).
% VEBT_internal.naive_member.simps(3)
thf(fact_9139_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Oelims,axiom,
! [X: nat,Y4: nat] :
( ( ( vEBT_V8646137997579335489_i_l_d @ X )
= Y4 )
=> ( ( ( X = zero_zero_nat )
=> ( Y4
!= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( Y4
!= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.elims
thf(fact_9140_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Oelims,axiom,
! [X: nat,Y4: nat] :
( ( ( vEBT_V8346862874174094_d_u_p @ X )
= Y4 )
=> ( ( ( X = zero_zero_nat )
=> ( Y4
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( Y4
!= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.elims
thf(fact_9141_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
! [V: nat,TreeList: list_VEBT_VEBT,Vd2: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList @ Vd2 ) @ X )
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).
% VEBT_internal.membermima.simps(5)
thf(fact_9142_vebt__buildup_Oelims,axiom,
! [X: nat,Y4: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y4 )
=> ( ( ( X = zero_zero_nat )
=> ( Y4
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( Y4
!= ( vEBT_Leaf @ $false @ $false ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.elims
thf(fact_9143_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
! [Mi: nat,Ma: nat,V: nat,TreeList: list_VEBT_VEBT,Vc2: vEBT_VEBT,X: nat] :
( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList @ Vc2 ) @ X )
= ( ( X = Mi )
| ( X = Ma )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ).
% VEBT_internal.membermima.simps(4)
thf(fact_9144_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa: nat,Y4: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa )
= Y4 )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( Y4
= ( ~ ( ( ( Xa = zero_zero_nat )
=> A4 )
& ( ( Xa != zero_zero_nat )
=> ( ( ( Xa = one_one_nat )
=> B3 )
& ( Xa = one_one_nat ) ) ) ) ) ) )
=> ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> Y4 )
=> ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [S3: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) )
=> ( Y4
= ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(1)
thf(fact_9145_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ~ ( ( ( Xa = zero_zero_nat )
=> A4 )
& ( ( Xa != zero_zero_nat )
=> ( ( ( Xa = one_one_nat )
=> B3 )
& ( Xa = one_one_nat ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [S3: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(2)
thf(fact_9146_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( ( Xa = zero_zero_nat )
=> A4 )
& ( ( Xa != zero_zero_nat )
=> ( ( ( Xa = one_one_nat )
=> B3 )
& ( Xa = one_one_nat ) ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( X
!= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [S3: vEBT_VEBT] :
( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.elims(3)
thf(fact_9147_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa )
=> ( ! [Mi2: nat,Ma2: nat] :
( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ~ ( ( Xa = Mi2 )
| ( Xa = Ma2 ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vc: vEBT_VEBT] :
( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) )
=> ~ ( ( Xa = Mi2 )
| ( Xa = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ! [V3: nat,TreeList2: list_VEBT_VEBT] :
( ? [Vd: vEBT_VEBT] :
( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.elims(2)
thf(fact_9148_monoseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( topolo6980174941875973593q_real
@ ^ [N4: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% monoseq_arctan_series
thf(fact_9149_ln__series,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
=> ( ( ln_ln_real @ X )
= ( suminf_real
@ ^ [N4: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N4 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X @ one_one_real ) @ ( suc @ N4 ) ) ) ) ) ) ) ).
% ln_series
thf(fact_9150_monoseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( topolo6980174941875973593q_real @ ( power_power_real @ X ) ) ) ) ).
% monoseq_realpow
thf(fact_9151_pi__series,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( suminf_real
@ ^ [K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).
% pi_series
thf(fact_9152_arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( ( arctan @ X )
= ( suminf_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).
% arctan_series
thf(fact_9153_bij__betw__nth__root__unity,axiom,
! [C: complex,N: nat] :
( ( C != zero_zero_complex )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) )
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= C ) ) ) ) ) ).
% bij_betw_nth_root_unity
thf(fact_9154_summable__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( summable_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).
% summable_arctan_series
thf(fact_9155_summable__rabs__comparison__test,axiom,
! [F: nat > real,G: nat > real] :
( ? [N7: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N7 @ N2 )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
=> ( ( summable_real @ G )
=> ( summable_real
@ ^ [N4: nat] : ( abs_abs_real @ ( F @ N4 ) ) ) ) ) ).
% summable_rabs_comparison_test
thf(fact_9156_summable__rabs,axiom,
! [F: nat > real] :
( ( summable_real
@ ^ [N4: nat] : ( abs_abs_real @ ( F @ N4 ) ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
@ ( suminf_real
@ ^ [N4: nat] : ( abs_abs_real @ ( F @ N4 ) ) ) ) ) ).
% summable_rabs
thf(fact_9157_summable__power__series,axiom,
! [F: nat > real,Z: real] :
( ! [I3: nat] : ( ord_less_eq_real @ ( F @ I3 ) @ one_one_real )
=> ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Z )
=> ( ( ord_less_real @ Z @ one_one_real )
=> ( summable_real
@ ^ [I2: nat] : ( times_times_real @ ( F @ I2 ) @ ( power_power_real @ Z @ I2 ) ) ) ) ) ) ) ).
% summable_power_series
thf(fact_9158_sin__paired,axiom,
! [X: real] :
( sums_real
@ ^ [N4: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N4 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ one_one_nat ) ) )
@ ( sin_real @ X ) ) ).
% sin_paired
thf(fact_9159_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ~ ( vEBT_VEBT_membermima @ X @ Xa )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa ) )
=> ( ( Xa = Mi2 )
| ( Xa = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) @ Xa ) )
=> ( ( Xa = Mi2 )
| ( Xa = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) @ Xa ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(3)
thf(fact_9160_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa: nat,Y4: $o] :
( ( ( vEBT_VEBT_membermima @ X @ Xa )
= Y4 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ~ Y4
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) ) )
=> ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
=> ( ~ Y4
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( Y4
= ( ( Xa = Mi2 )
| ( Xa = Ma2 ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) )
=> ( ( Y4
= ( ( Xa = Mi2 )
| ( Xa = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) @ Xa ) ) ) )
=> ~ ! [V3: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) )
=> ( ( Y4
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) @ Xa ) ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(1)
thf(fact_9161_power__half__series,axiom,
( sums_real
@ ^ [N4: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N4 ) )
@ one_one_real ) ).
% power_half_series
thf(fact_9162_sums__if_H,axiom,
! [G: nat > real,X: real] :
( ( sums_real @ G @ X )
=> ( sums_real
@ ^ [N4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ X ) ) ).
% sums_if'
thf(fact_9163_sums__if,axiom,
! [G: nat > real,X: real,F: nat > real,Y4: real] :
( ( sums_real @ G @ X )
=> ( ( sums_real @ F @ Y4 )
=> ( sums_real
@ ^ [N4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ ( F @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N4 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( plus_plus_real @ X @ Y4 ) ) ) ) ).
% sums_if
thf(fact_9164_cos__paired,axiom,
! [X: real] :
( sums_real
@ ^ [N4: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N4 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) ) @ ( power_power_real @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) )
@ ( cos_real @ X ) ) ).
% cos_paired
thf(fact_9165_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ( vEBT_VEBT_membermima @ X @ Xa )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa ) )
=> ~ ( ( Xa = Mi2 )
| ( Xa = Ma2 ) ) ) )
=> ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList2 @ Vc ) @ Xa ) )
=> ~ ( ( Xa = Mi2 )
| ( Xa = Ma2 )
| ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
=> ~ ! [V3: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList2 @ Vd ) @ Xa ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.membermima.pelims(2)
thf(fact_9166_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ~ ( vEBT_V5719532721284313246member @ X @ Xa )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa ) )
=> ( ( ( Xa = zero_zero_nat )
=> A4 )
& ( ( Xa != zero_zero_nat )
=> ( ( ( Xa = one_one_nat )
=> B3 )
& ( Xa = one_one_nat ) ) ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList2: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) @ Xa ) )
=> ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(3)
thf(fact_9167_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ( vEBT_V5719532721284313246member @ X @ Xa )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa ) )
=> ~ ( ( ( Xa = zero_zero_nat )
=> A4 )
& ( ( Xa != zero_zero_nat )
=> ( ( ( Xa = one_one_nat )
=> B3 )
& ( Xa = one_one_nat ) ) ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList2: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) @ Xa ) )
=> ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(2)
thf(fact_9168_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa: nat,Y4: $o] :
( ( ( vEBT_V5719532721284313246member @ X @ Xa )
= Y4 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [A4: $o,B3: $o] :
( ( X
= ( vEBT_Leaf @ A4 @ B3 ) )
=> ( ( Y4
= ( ( ( Xa = zero_zero_nat )
=> A4 )
& ( ( Xa != zero_zero_nat )
=> ( ( ( Xa = one_one_nat )
=> B3 )
& ( Xa = one_one_nat ) ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A4 @ B3 ) @ Xa ) ) ) )
=> ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
=> ( ~ Y4
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa ) ) ) )
=> ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList2: list_VEBT_VEBT,S3: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) )
=> ( ( Y4
= ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
=> ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList2 @ S3 ) @ Xa ) ) ) ) ) ) ) ) ).
% VEBT_internal.naive_member.pelims(1)
thf(fact_9169_Arg__def,axiom,
( arg
= ( ^ [Z5: complex] :
( if_real @ ( Z5 = zero_zero_complex ) @ zero_zero_real
@ ( fChoice_real
@ ^ [A3: real] :
( ( ( sgn_sgn_complex @ Z5 )
= ( cis @ A3 ) )
& ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A3 )
& ( ord_less_eq_real @ A3 @ pi ) ) ) ) ) ) ).
% Arg_def
thf(fact_9170_set__vebt__def,axiom,
( vEBT_set_vebt
= ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).
% set_vebt_def
thf(fact_9171_sum__choose__lower,axiom,
! [R2: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( binomial @ ( plus_plus_nat @ R2 @ K3 ) @ K3 )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( suc @ ( plus_plus_nat @ R2 @ N ) ) @ N ) ) ).
% sum_choose_lower
thf(fact_9172_sum__choose__upper,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( binomial @ K3 @ M )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( suc @ N ) @ ( suc @ M ) ) ) ).
% sum_choose_upper
thf(fact_9173_sum__choose__diagonal,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( binomial @ ( minus_minus_nat @ N @ K3 ) @ ( minus_minus_nat @ M @ K3 ) )
@ ( set_ord_atMost_nat @ M ) )
= ( binomial @ ( suc @ N ) @ M ) ) ) ).
% sum_choose_diagonal
thf(fact_9174_vandermonde,axiom,
! [M: nat,N: nat,R2: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( times_times_nat @ ( binomial @ M @ K3 ) @ ( binomial @ N @ ( minus_minus_nat @ R2 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R2 ) )
= ( binomial @ ( plus_plus_nat @ M @ N ) @ R2 ) ) ).
% vandermonde
thf(fact_9175_choose__row__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat @ ( binomial @ N ) @ ( set_ord_atMost_nat @ N ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% choose_row_sum
thf(fact_9176_binomial,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
= ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
@ ( set_ord_atMost_nat @ N ) ) ) ).
% binomial
thf(fact_9177_polynomial__product__nat,axiom,
! [M: nat,A: nat > nat,N: nat,B: nat > nat,X: nat] :
( ! [I3: nat] :
( ( ord_less_nat @ M @ I3 )
=> ( ( A @ I3 )
= zero_zero_nat ) )
=> ( ! [J2: nat] :
( ( ord_less_nat @ N @ J2 )
=> ( ( B @ J2 )
= zero_zero_nat ) )
=> ( ( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [I2: nat] : ( times_times_nat @ ( A @ I2 ) @ ( power_power_nat @ X @ I2 ) )
@ ( set_ord_atMost_nat @ M ) )
@ ( groups3542108847815614940at_nat
@ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X @ J3 ) )
@ ( set_ord_atMost_nat @ N ) ) )
= ( groups3542108847815614940at_nat
@ ^ [R5: nat] :
( times_times_nat
@ ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( times_times_nat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
@ ( set_ord_atMost_nat @ R5 ) )
@ ( power_power_nat @ X @ R5 ) )
@ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).
% polynomial_product_nat
thf(fact_9178_choose__square__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [K3: nat] : ( power_power_nat @ ( binomial @ N @ K3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( set_ord_atMost_nat @ N ) )
= ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).
% choose_square_sum
thf(fact_9179_binomial__r__part__sum,axiom,
! [M: nat] :
( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).
% binomial_r_part_sum
thf(fact_9180_choose__linear__sum,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I2: nat] : ( times_times_nat @ I2 @ ( binomial @ N @ I2 ) )
@ ( set_ord_atMost_nat @ N ) )
= ( times_times_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% choose_linear_sum
thf(fact_9181_mask__eq__sum__exp__nat,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
@ ( collect_nat
@ ^ [Q3: nat] : ( ord_less_nat @ Q3 @ N ) ) ) ) ).
% mask_eq_sum_exp_nat
thf(fact_9182_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M10: nat] :
( ( P @ X )
=> ( ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M10 ) )
=> ~ ! [M4: nat] :
( ( P @ M4 )
=> ~ ! [X5: nat] :
( ( P @ X5 )
=> ( ord_less_eq_nat @ X5 @ M4 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_9183_sum__nth__roots,axiom,
! [N: nat,C: complex] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( groups7754918857620584856omplex
@ ^ [X3: complex] : X3
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= C ) ) )
= zero_zero_complex ) ) ).
% sum_nth_roots
thf(fact_9184_sum__roots__unity,axiom,
! [N: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( groups7754918857620584856omplex
@ ^ [X3: complex] : X3
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) ) )
= zero_zero_complex ) ) ).
% sum_roots_unity
thf(fact_9185_Maclaurin__minus__cos__expansion,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ? [T3: real] :
( ( ord_less_real @ X @ T3 )
& ( ord_less_real @ T3 @ zero_zero_real )
& ( ( cos_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_minus_cos_expansion
thf(fact_9186_Maclaurin__cos__expansion2,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [T3: real] :
( ( ord_less_real @ zero_zero_real @ T3 )
& ( ord_less_real @ T3 @ X )
& ( ( cos_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_cos_expansion2
thf(fact_9187_Maclaurin__sin__expansion3,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ? [T3: real] :
( ( ord_less_real @ zero_zero_real @ T3 )
& ( ord_less_real @ T3 @ X )
& ( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_sin_expansion3
thf(fact_9188_Maclaurin__sin__expansion4,axiom,
! [X: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [T3: real] :
( ( ord_less_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ X )
& ( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).
% Maclaurin_sin_expansion4
thf(fact_9189_sumr__cos__zero__one,axiom,
! [N: nat] :
( ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ zero_zero_real @ M5 ) )
@ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
= one_one_real ) ).
% sumr_cos_zero_one
thf(fact_9190_lessThan__Suc__atMost,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( set_ord_atMost_nat @ K ) ) ).
% lessThan_Suc_atMost
thf(fact_9191_Maclaurin__lemma,axiom,
! [H: real,F: real > real,J: nat > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ H )
=> ? [B8: real] :
( ( F @ H )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M5 ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ B8 @ ( divide_divide_real @ ( power_power_real @ H @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ) ).
% Maclaurin_lemma
thf(fact_9192_sum__split__even__odd,axiom,
! [F: nat > real,G: nat > real,N: nat] :
( ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) @ ( F @ I2 ) @ ( G @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) @ one_one_nat ) )
@ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% sum_split_even_odd
thf(fact_9193_Maclaurin__exp__le,axiom,
! [X: real,N: nat] :
? [T3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( exp_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( divide_divide_real @ ( power_power_real @ X @ M5 ) @ ( semiri2265585572941072030t_real @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).
% Maclaurin_exp_le
thf(fact_9194_Maclaurin__sin__bound,axiom,
! [X: real,N: nat] :
( ord_less_eq_real
@ ( abs_abs_real
@ ( minus_minus_real @ ( sin_real @ X )
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) ) ) )
@ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( abs_abs_real @ X ) @ N ) ) ) ).
% Maclaurin_sin_bound
thf(fact_9195_sum__pos__lt__pair,axiom,
! [F: nat > real,K: nat] :
( ( summable_real @ F )
=> ( ! [D2: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D2 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D2 ) @ one_one_nat ) ) ) ) )
=> ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).
% sum_pos_lt_pair
thf(fact_9196_Maclaurin__exp__lt,axiom,
! [X: real,N: nat] :
( ( X != zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [T3: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
& ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( exp_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( divide_divide_real @ ( power_power_real @ X @ M5 ) @ ( semiri2265585572941072030t_real @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_exp_lt
thf(fact_9197_Maclaurin__sin__expansion,axiom,
! [X: real,N: nat] :
? [T3: real] :
( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ).
% Maclaurin_sin_expansion
thf(fact_9198_Maclaurin__sin__expansion2,axiom,
! [X: real,N: nat] :
? [T3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( sin_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( sin_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).
% Maclaurin_sin_expansion2
thf(fact_9199_Maclaurin__cos__expansion,axiom,
! [X: real,N: nat] :
? [T3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( cos_real @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( cos_coeff @ M5 ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ).
% Maclaurin_cos_expansion
thf(fact_9200_bij__betw__roots__unity,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( bij_betw_nat_complex
@ ^ [K3: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K3 ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
@ ( set_ord_lessThan_nat @ N )
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) ) ) ) ).
% bij_betw_roots_unity
thf(fact_9201_all__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M5: nat] :
( ( ord_less_eq_nat @ M5 @ N )
=> ( P @ M5 ) ) )
= ( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
=> ( P @ X3 ) ) ) ) ).
% all_nat_less
thf(fact_9202_ex__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M5: nat] :
( ( ord_less_eq_nat @ M5 @ N )
& ( P @ M5 ) ) )
= ( ? [X3: nat] :
( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
& ( P @ X3 ) ) ) ) ).
% ex_nat_less
thf(fact_9203_atMost__atLeast0,axiom,
( set_ord_atMost_nat
= ( set_or1269000886237332187st_nat @ zero_zero_nat ) ) ).
% atMost_atLeast0
thf(fact_9204_gauss__sum__nat,axiom,
! [N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X3: nat] : X3
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% gauss_sum_nat
thf(fact_9205_arith__series__nat,axiom,
! [A: nat,D: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I2: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I2 @ D ) )
@ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
= ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% arith_series_nat
thf(fact_9206_Sum__Icc__nat,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X3: nat] : X3
@ ( set_or1269000886237332187st_nat @ M @ N ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( plus_plus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Icc_nat
thf(fact_9207_bset_I1_J,axiom,
! [D3: int,B4: set_int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb @ Xa2 ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb @ Xa2 ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( minus_minus_int @ X4 @ D3 ) ) ) )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X5 )
& ( Q @ X5 ) )
=> ( ( P @ ( minus_minus_int @ X5 @ D3 ) )
& ( Q @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ) ).
% bset(1)
thf(fact_9208_bset_I2_J,axiom,
! [D3: int,B4: set_int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb @ Xa2 ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb @ Xa2 ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( minus_minus_int @ X4 @ D3 ) ) ) )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X5 )
| ( Q @ X5 ) )
=> ( ( P @ ( minus_minus_int @ X5 @ D3 ) )
| ( Q @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ) ).
% bset(2)
thf(fact_9209_aset_I1_J,axiom,
! [D3: int,A2: set_int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb @ Xa2 ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb @ Xa2 ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( plus_plus_int @ X4 @ D3 ) ) ) )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X5 )
& ( Q @ X5 ) )
=> ( ( P @ ( plus_plus_int @ X5 @ D3 ) )
& ( Q @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ) ) ).
% aset(1)
thf(fact_9210_aset_I2_J,axiom,
! [D3: int,A2: set_int,P: int > $o,Q: int > $o] :
( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb @ Xa2 ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
=> ( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb @ Xa2 ) ) ) )
=> ( ( Q @ X4 )
=> ( Q @ ( plus_plus_int @ X4 @ D3 ) ) ) )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ( P @ X5 )
| ( Q @ X5 ) )
=> ( ( P @ ( plus_plus_int @ X5 @ D3 ) )
| ( Q @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ) ) ).
% aset(2)
thf(fact_9211_bset_I9_J,axiom,
! [D: int,D3: int,B4: set_int,T: int] :
( ( dvd_dvd_int @ D @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
=> ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).
% bset(9)
thf(fact_9212_bset_I10_J,axiom,
! [D: int,D3: int,B4: set_int,T: int] :
( ( dvd_dvd_int @ D @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
=> ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).
% bset(10)
thf(fact_9213_aset_I9_J,axiom,
! [D: int,D3: int,A2: set_int,T: int] :
( ( dvd_dvd_int @ D @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
=> ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).
% aset(9)
thf(fact_9214_aset_I10_J,axiom,
! [D: int,D3: int,A2: set_int,T: int] :
( ( dvd_dvd_int @ D @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X5 @ T ) )
=> ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).
% aset(10)
thf(fact_9215_periodic__finite__ex,axiom,
! [D: int,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X4: int,K2: int] :
( ( P @ X4 )
= ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ( ? [X8: int] : ( P @ X8 ) )
= ( ? [X3: int] :
( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
& ( P @ X3 ) ) ) ) ) ) ).
% periodic_finite_ex
thf(fact_9216_bset_I3_J,axiom,
! [D3: int,T: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B4 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X5 = T )
=> ( ( minus_minus_int @ X5 @ D3 )
= T ) ) ) ) ) ).
% bset(3)
thf(fact_9217_bset_I4_J,axiom,
! [D3: int,T: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ T @ B4 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X5 != T )
=> ( ( minus_minus_int @ X5 @ D3 )
!= T ) ) ) ) ) ).
% bset(4)
thf(fact_9218_bset_I5_J,axiom,
! [D3: int,B4: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ X5 @ T )
=> ( ord_less_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ).
% bset(5)
thf(fact_9219_bset_I7_J,axiom,
! [D3: int,T: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ T @ B4 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ T @ X5 )
=> ( ord_less_int @ T @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ).
% bset(7)
thf(fact_9220_aset_I3_J,axiom,
! [D3: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X5 = T )
=> ( ( plus_plus_int @ X5 @ D3 )
= T ) ) ) ) ) ).
% aset(3)
thf(fact_9221_aset_I4_J,axiom,
! [D3: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ T @ A2 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( X5 != T )
=> ( ( plus_plus_int @ X5 @ D3 )
!= T ) ) ) ) ) ).
% aset(4)
thf(fact_9222_aset_I5_J,axiom,
! [D3: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ T @ A2 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ X5 @ T )
=> ( ord_less_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).
% aset(5)
thf(fact_9223_aset_I7_J,axiom,
! [D3: int,A2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_int @ T @ X5 )
=> ( ord_less_int @ T @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ).
% aset(7)
thf(fact_9224_fact__eq__fact__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1408675320244567234ct_nat @ M )
= ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N )
@ ( groups708209901874060359at_nat
@ ^ [X3: nat] : X3
@ ( set_or1269000886237332187st_nat @ ( suc @ N ) @ M ) ) ) ) ) ).
% fact_eq_fact_times
thf(fact_9225_bset_I6_J,axiom,
! [D3: int,B4: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ X5 @ T )
=> ( ord_less_eq_int @ ( minus_minus_int @ X5 @ D3 ) @ T ) ) ) ) ).
% bset(6)
thf(fact_9226_bset_I8_J,axiom,
! [D3: int,T: int,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B4 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ B4 )
=> ( X5
!= ( plus_plus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ T @ X5 )
=> ( ord_less_eq_int @ T @ ( minus_minus_int @ X5 @ D3 ) ) ) ) ) ) ).
% bset(8)
thf(fact_9227_aset_I6_J,axiom,
! [D3: int,T: int,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ X5 @ T )
=> ( ord_less_eq_int @ ( plus_plus_int @ X5 @ D3 ) @ T ) ) ) ) ) ).
% aset(6)
thf(fact_9228_aset_I8_J,axiom,
! [D3: int,A2: set_int,T: int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ! [X5: int] :
( ! [Xa3: int] :
( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb2: int] :
( ( member_int @ Xb2 @ A2 )
=> ( X5
!= ( minus_minus_int @ Xb2 @ Xa3 ) ) ) )
=> ( ( ord_less_eq_int @ T @ X5 )
=> ( ord_less_eq_int @ T @ ( plus_plus_int @ X5 @ D3 ) ) ) ) ) ).
% aset(8)
thf(fact_9229_cppi,axiom,
! [D3: int,P: int > $o,P4: int > $o,A2: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ Z3 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ A2 )
=> ( X4
!= ( minus_minus_int @ Xb @ Xa2 ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
=> ( ! [X4: int,K2: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ( ( ? [X8: int] : ( P @ X8 ) )
= ( ? [X3: int] :
( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
& ( P4 @ X3 ) )
| ? [X3: int] :
( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
& ? [Y6: int] :
( ( member_int @ Y6 @ A2 )
& ( P @ ( minus_minus_int @ Y6 @ X3 ) ) ) ) ) ) ) ) ) ) ).
% cppi
thf(fact_9230_cpmi,axiom,
! [D3: int,P: int > $o,P4: int > $o,B4: set_int] :
( ( ord_less_int @ zero_zero_int @ D3 )
=> ( ? [Z3: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z3 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ! [X4: int] :
( ! [Xa2: int] :
( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
=> ! [Xb: int] :
( ( member_int @ Xb @ B4 )
=> ( X4
!= ( plus_plus_int @ Xb @ Xa2 ) ) ) )
=> ( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
=> ( ! [X4: int,K2: int] :
( ( P4 @ X4 )
= ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ( ( ? [X8: int] : ( P @ X8 ) )
= ( ? [X3: int] :
( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
& ( P4 @ X3 ) )
| ? [X3: int] :
( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
& ? [Y6: int] :
( ( member_int @ Y6 @ B4 )
& ( P @ ( plus_plus_int @ Y6 @ X3 ) ) ) ) ) ) ) ) ) ) ).
% cpmi
thf(fact_9231_fact__div__fact,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) )
= ( groups708209901874060359at_nat
@ ^ [X3: nat] : X3
@ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) ) ).
% fact_div_fact
thf(fact_9232_divmod__step__nat__def,axiom,
( unique5026877609467782581ep_nat
= ( ^ [L3: num] :
( produc2626176000494625587at_nat
@ ^ [Q3: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L3 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q3 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L3 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q3 ) @ R5 ) ) ) ) ) ).
% divmod_step_nat_def
thf(fact_9233_divmod__step__int__def,axiom,
( unique5024387138958732305ep_int
= ( ^ [L3: num] :
( produc4245557441103728435nt_int
@ ^ [Q3: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L3 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q3 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L3 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q3 ) @ R5 ) ) ) ) ) ).
% divmod_step_int_def
thf(fact_9234_Sum__Icc__int,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ M @ N )
=> ( ( groups4538972089207619220nt_int
@ ^ [X3: int] : X3
@ ( set_or1266510415728281911st_int @ M @ N ) )
= ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N @ ( plus_plus_int @ N @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% Sum_Icc_int
thf(fact_9235_divmod__nat__if,axiom,
( divmod_nat
= ( ^ [M5: nat,N4: nat] :
( if_Pro6206227464963214023at_nat
@ ( ( N4 = zero_zero_nat )
| ( ord_less_nat @ M5 @ N4 ) )
@ ( product_Pair_nat_nat @ zero_zero_nat @ M5 )
@ ( produc2626176000494625587at_nat
@ ^ [Q3: nat] : ( product_Pair_nat_nat @ ( suc @ Q3 ) )
@ ( divmod_nat @ ( minus_minus_nat @ M5 @ N4 ) @ N4 ) ) ) ) ) ).
% divmod_nat_if
thf(fact_9236_vebt__buildup_Opelims,axiom,
! [X: nat,Y4: vEBT_VEBT] :
( ( ( vEBT_vebt_buildup @ X )
= Y4 )
=> ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X )
=> ( ( ( X = zero_zero_nat )
=> ( ( Y4
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( ( Y4
= ( vEBT_Leaf @ $false @ $false ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).
% vebt_buildup.pelims
thf(fact_9237_arctan__def,axiom,
( arctan
= ( ^ [Y6: real] :
( the_real
@ ^ [X3: real] :
( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
& ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( tan_real @ X3 )
= Y6 ) ) ) ) ) ).
% arctan_def
thf(fact_9238_prod__int__eq,axiom,
! [I: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ J ) )
= ( groups1705073143266064639nt_int
@ ^ [X3: int] : X3
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).
% prod_int_eq
thf(fact_9239_prod__int__plus__eq,axiom,
! [I: nat,J: nat] :
( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ ( plus_plus_nat @ I @ J ) ) )
= ( groups1705073143266064639nt_int
@ ^ [X3: int] : X3
@ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I @ J ) ) ) ) ) ).
% prod_int_plus_eq
thf(fact_9240_ln__neg__is__const,axiom,
! [X: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ln_ln_real @ X )
= ( the_real
@ ^ [X3: real] : $false ) ) ) ).
% ln_neg_is_const
thf(fact_9241_arccos__def,axiom,
( arccos
= ( ^ [Y6: real] :
( the_real
@ ^ [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
& ( ord_less_eq_real @ X3 @ pi )
& ( ( cos_real @ X3 )
= Y6 ) ) ) ) ) ).
% arccos_def
thf(fact_9242_divmod__nat__def,axiom,
( divmod_nat
= ( ^ [M5: nat,N4: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M5 @ N4 ) @ ( modulo_modulo_nat @ M5 @ N4 ) ) ) ) ).
% divmod_nat_def
thf(fact_9243_pi__half,axiom,
( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( the_real
@ ^ [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
& ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X3 )
= zero_zero_real ) ) ) ) ).
% pi_half
thf(fact_9244_pi__def,axiom,
( pi
= ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
@ ( the_real
@ ^ [X3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
& ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
& ( ( cos_real @ X3 )
= zero_zero_real ) ) ) ) ) ).
% pi_def
thf(fact_9245_arcsin__def,axiom,
( arcsin
= ( ^ [Y6: real] :
( the_real
@ ^ [X3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
& ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
& ( ( sin_real @ X3 )
= Y6 ) ) ) ) ) ).
% arcsin_def
thf(fact_9246_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_092_060_094sub_062u_092_060_094sub_062p_Opelims,axiom,
! [X: nat,Y4: nat] :
( ( ( vEBT_V8346862874174094_d_u_p @ X )
= Y4 )
=> ( ( accp_nat @ vEBT_V1247956027447740395_p_rel @ X )
=> ( ( ( X = zero_zero_nat )
=> ( ( Y4
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_V1247956027447740395_p_rel @ zero_zero_nat ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( ( Y4
= ( numeral_numeral_nat @ ( bit1 @ one ) ) )
=> ~ ( accp_nat @ vEBT_V1247956027447740395_p_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8346862874174094_d_u_p @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( vEBT_V8346862874174094_d_u_p @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_V1247956027447740395_p_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p.pelims
thf(fact_9247_VEBT__internal_OT_092_060_094sub_062b_092_060_094sub_062u_092_060_094sub_062i_092_060_094sub_062l_092_060_094sub_062d_Opelims,axiom,
! [X: nat,Y4: nat] :
( ( ( vEBT_V8646137997579335489_i_l_d @ X )
= Y4 )
=> ( ( accp_nat @ vEBT_V5144397997797733112_d_rel @ X )
=> ( ( ( X = zero_zero_nat )
=> ( ( Y4
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
=> ~ ( accp_nat @ vEBT_V5144397997797733112_d_rel @ zero_zero_nat ) ) )
=> ( ( ( X
= ( suc @ zero_zero_nat ) )
=> ( ( Y4
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
=> ~ ( accp_nat @ vEBT_V5144397997797733112_d_rel @ ( suc @ zero_zero_nat ) ) ) )
=> ~ ! [Va: nat] :
( ( X
= ( suc @ ( suc @ Va ) ) )
=> ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ one_one_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
=> ( Y4
= ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_V8646137997579335489_i_l_d @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_nat @ vEBT_V5144397997797733112_d_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).
% VEBT_internal.T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d.pelims
thf(fact_9248_set__encode__def,axiom,
( nat_set_encode
= ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% set_encode_def
thf(fact_9249_set__decode__inverse,axiom,
! [N: nat] :
( ( nat_set_encode @ ( nat_set_decode @ N ) )
= N ) ).
% set_decode_inverse
thf(fact_9250_VEBT_Osize_I3_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size(3)
thf(fact_9251_Sum__Ico__nat,axiom,
! [M: nat,N: nat] :
( ( groups3542108847815614940at_nat
@ ^ [X3: nat] : X3
@ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% Sum_Ico_nat
thf(fact_9252_sum__power2,axiom,
! [K: nat] :
( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
= ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).
% sum_power2
thf(fact_9253_ex__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M5: nat] :
( ( ord_less_nat @ M5 @ N )
& ( P @ M5 ) ) )
= ( ? [X3: nat] :
( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
& ( P @ X3 ) ) ) ) ).
% ex_nat_less_eq
thf(fact_9254_all__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M5: nat] :
( ( ord_less_nat @ M5 @ N )
=> ( P @ M5 ) ) )
= ( ! [X3: nat] :
( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( P @ X3 ) ) ) ) ).
% all_nat_less_eq
thf(fact_9255_atLeastLessThanSuc__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or4665077453230672383an_nat @ L @ ( suc @ U ) )
= ( set_or1269000886237332187st_nat @ L @ U ) ) ).
% atLeastLessThanSuc_atLeastAtMost
thf(fact_9256_lessThan__atLeast0,axiom,
( set_ord_lessThan_nat
= ( set_or4665077453230672383an_nat @ zero_zero_nat ) ) ).
% lessThan_atLeast0
thf(fact_9257_prod__Suc__Suc__fact,axiom,
! [N: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% prod_Suc_Suc_fact
thf(fact_9258_prod__Suc__fact,axiom,
! [N: nat] :
( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
= ( semiri1408675320244567234ct_nat @ N ) ) ).
% prod_Suc_fact
thf(fact_9259_Chebyshev__sum__upper__nat,axiom,
! [N: nat,A: nat > nat,B: nat > nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ N )
=> ( ord_less_eq_nat @ ( A @ I3 ) @ ( A @ J2 ) ) ) )
=> ( ! [I3: nat,J2: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ J2 @ N )
=> ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I3 ) ) ) )
=> ( ord_less_eq_nat
@ ( times_times_nat @ N
@ ( groups3542108847815614940at_nat
@ ^ [I2: nat] : ( times_times_nat @ ( A @ I2 ) @ ( B @ I2 ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
@ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).
% Chebyshev_sum_upper_nat
thf(fact_9260_VEBT_Osize__gen_I1_J,axiom,
! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).
% VEBT.size_gen(1)
thf(fact_9261_VEBT_Osize__gen_I2_J,axiom,
! [X21: $o,X222: $o] :
( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
= zero_zero_nat ) ).
% VEBT.size_gen(2)
thf(fact_9262_int__of__nat__def,axiom,
code_T6385005292777649522of_nat = semiri1314217659103216013at_int ).
% int_of_nat_def
thf(fact_9263_prod__decode__aux_Opelims,axiom,
! [X: nat,Xa: nat,Y4: product_prod_nat_nat] :
( ( ( nat_prod_decode_aux @ X @ Xa )
= Y4 )
=> ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
=> ~ ( ( ( ( ord_less_eq_nat @ Xa @ X )
=> ( Y4
= ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X @ Xa ) ) ) )
& ( ~ ( ord_less_eq_nat @ Xa @ X )
=> ( Y4
= ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa @ ( suc @ X ) ) ) ) ) )
=> ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).
% prod_decode_aux.pelims
thf(fact_9264_or__not__num__neg_Opelims,axiom,
! [X: num,Xa: num,Y4: num] :
( ( ( bit_or_not_num_neg @ X @ Xa )
= Y4 )
=> ( ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ X @ Xa ) )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( ( Y4 = one )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [M4: num] :
( ( Xa
= ( bit0 @ M4 ) )
=> ( ( Y4
= ( bit1 @ M4 ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit0 @ M4 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [M4: num] :
( ( Xa
= ( bit1 @ M4 ) )
=> ( ( Y4
= ( bit1 @ M4 ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit1 @ M4 ) ) ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit0 @ N2 ) )
=> ( ( Xa = one )
=> ( ( Y4
= ( bit0 @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ one ) ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit0 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit0 @ M4 ) )
=> ( ( Y4
= ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ ( bit0 @ M4 ) ) ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit0 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit1 @ M4 ) )
=> ( ( Y4
= ( bit0 @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ ( bit1 @ M4 ) ) ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit1 @ N2 ) )
=> ( ( Xa = one )
=> ( ( Y4 = one )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ one ) ) ) ) )
=> ( ! [N2: num] :
( ( X
= ( bit1 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit0 @ M4 ) )
=> ( ( Y4
= ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ ( bit0 @ M4 ) ) ) ) ) )
=> ~ ! [N2: num] :
( ( X
= ( bit1 @ N2 ) )
=> ! [M4: num] :
( ( Xa
= ( bit1 @ M4 ) )
=> ( ( Y4
= ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ ( bit1 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% or_not_num_neg.pelims
thf(fact_9265_int__ge__less__than__def,axiom,
( int_ge_less_than
= ( ^ [D4: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z7: int,Z5: int] :
( ( ord_less_eq_int @ D4 @ Z7 )
& ( ord_less_int @ Z7 @ Z5 ) ) ) ) ) ) ).
% int_ge_less_than_def
thf(fact_9266_int__ge__less__than2__def,axiom,
( int_ge_less_than2
= ( ^ [D4: int] :
( collec213857154873943460nt_int
@ ( produc4947309494688390418_int_o
@ ^ [Z7: int,Z5: int] :
( ( ord_less_eq_int @ D4 @ Z5 )
& ( ord_less_int @ Z7 @ Z5 ) ) ) ) ) ) ).
% int_ge_less_than2_def
thf(fact_9267_upto_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [I3: int,J2: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I3 @ J2 ) )
=> ( ( ( ord_less_eq_int @ I3 @ J2 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) @ J2 ) )
=> ( P @ I3 @ J2 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% upto.pinduct
thf(fact_9268_Code__Target__Int_Opositive__def,axiom,
code_Target_positive = numeral_numeral_int ).
% Code_Target_Int.positive_def
thf(fact_9269_divmod__step__integer__def,axiom,
( unique4921790084139445826nteger
= ( ^ [L3: num] :
( produc6916734918728496179nteger
@ ^ [Q3: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L3 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q3 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L3 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q3 ) @ R5 ) ) ) ) ) ).
% divmod_step_integer_def
thf(fact_9270_less__eq__integer__code_I1_J,axiom,
ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ).
% less_eq_integer_code(1)
thf(fact_9271_plus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
= K ) ).
% plus_integer_code(1)
thf(fact_9272_plus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L )
= L ) ).
% plus_integer_code(2)
thf(fact_9273_times__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L )
= zero_z3403309356797280102nteger ) ).
% times_integer_code(2)
thf(fact_9274_times__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% times_integer_code(1)
thf(fact_9275_minus__integer__code_I2_J,axiom,
! [L: code_integer] :
( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ L )
= ( uminus1351360451143612070nteger @ L ) ) ).
% minus_integer_code(2)
thf(fact_9276_minus__integer__code_I1_J,axiom,
! [K: code_integer] :
( ( minus_8373710615458151222nteger @ K @ zero_z3403309356797280102nteger )
= K ) ).
% minus_integer_code(1)
thf(fact_9277_sgn__integer__code,axiom,
( sgn_sgn_Code_integer
= ( ^ [K3: code_integer] : ( if_Code_integer @ ( K3 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).
% sgn_integer_code
thf(fact_9278_nat_Odisc__eq__case_I2_J,axiom,
! [Nat: nat] :
( ( Nat != zero_zero_nat )
= ( case_nat_o @ $false
@ ^ [Uu3: nat] : $true
@ Nat ) ) ).
% nat.disc_eq_case(2)
thf(fact_9279_nat_Odisc__eq__case_I1_J,axiom,
! [Nat: nat] :
( ( Nat = zero_zero_nat )
= ( case_nat_o @ $true
@ ^ [Uu3: nat] : $false
@ Nat ) ) ).
% nat.disc_eq_case(1)
thf(fact_9280_zero__natural_Orsp,axiom,
zero_zero_nat = zero_zero_nat ).
% zero_natural.rsp
thf(fact_9281_zero__integer_Orsp,axiom,
zero_zero_int = zero_zero_int ).
% zero_integer.rsp
thf(fact_9282_less__eq__nat_Osimps_I2_J,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).
% less_eq_nat.simps(2)
thf(fact_9283_max__Suc2,axiom,
! [M: nat,N: nat] :
( ( ord_max_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ ( suc @ N )
@ ^ [M6: nat] : ( suc @ ( ord_max_nat @ M6 @ N ) )
@ M ) ) ).
% max_Suc2
thf(fact_9284_max__Suc1,axiom,
! [N: nat,M: nat] :
( ( ord_max_nat @ ( suc @ N ) @ M )
= ( case_nat_nat @ ( suc @ N )
@ ^ [M6: nat] : ( suc @ ( ord_max_nat @ N @ M6 ) )
@ M ) ) ).
% max_Suc1
thf(fact_9285_diff__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ zero_zero_nat
@ ^ [K3: nat] : K3
@ ( minus_minus_nat @ M @ N ) ) ) ).
% diff_Suc
thf(fact_9286_integer__of__int__code,axiom,
( code_integer_of_int
= ( ^ [K3: int] :
( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K3 ) ) )
@ ( if_Code_integer @ ( K3 = zero_zero_int ) @ zero_z3403309356797280102nteger
@ ( if_Code_integer
@ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int )
@ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
@ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).
% integer_of_int_code
thf(fact_9287_flip__bit__integer_Oabs__eq,axiom,
! [Xa: nat,X: int] :
( ( bit_se1345352211410354436nteger @ Xa @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( bit_se2159334234014336723it_int @ Xa @ X ) ) ) ).
% flip_bit_integer.abs_eq
thf(fact_9288_zero__integer__def,axiom,
( zero_z3403309356797280102nteger
= ( code_integer_of_int @ zero_zero_int ) ) ).
% zero_integer_def
thf(fact_9289_unset__bit__integer_Oabs__eq,axiom,
! [Xa: nat,X: int] :
( ( bit_se8260200283734997820nteger @ Xa @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( bit_se4203085406695923979it_int @ Xa @ X ) ) ) ).
% unset_bit_integer.abs_eq
thf(fact_9290_divide__integer_Oabs__eq,axiom,
! [Xa: int,X: int] :
( ( divide6298287555418463151nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( divide_divide_int @ Xa @ X ) ) ) ).
% divide_integer.abs_eq
thf(fact_9291_set__bit__integer_Oabs__eq,axiom,
! [Xa: nat,X: int] :
( ( bit_se2793503036327961859nteger @ Xa @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( bit_se7879613467334960850it_int @ Xa @ X ) ) ) ).
% set_bit_integer.abs_eq
thf(fact_9292_uminus__integer__code_I1_J,axiom,
( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
= zero_z3403309356797280102nteger ) ).
% uminus_integer_code(1)
thf(fact_9293_less__integer__code_I1_J,axiom,
~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ).
% less_integer_code(1)
thf(fact_9294_abs__integer__code,axiom,
( abs_abs_Code_integer
= ( ^ [K3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ K3 ) @ K3 ) ) ) ).
% abs_integer_code
thf(fact_9295_times__integer_Oabs__eq,axiom,
! [Xa: int,X: int] :
( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( times_times_int @ Xa @ X ) ) ) ).
% times_integer.abs_eq
thf(fact_9296_less__eq__integer_Oabs__eq,axiom,
! [Xa: int,X: int] :
( ( ord_le3102999989581377725nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
= ( ord_less_eq_int @ Xa @ X ) ) ).
% less_eq_integer.abs_eq
thf(fact_9297_minus__integer_Oabs__eq,axiom,
! [Xa: int,X: int] :
( ( minus_8373710615458151222nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X ) )
= ( code_integer_of_int @ ( minus_minus_int @ Xa @ X ) ) ) ).
% minus_integer.abs_eq
thf(fact_9298_floor__real__def,axiom,
( archim6058952711729229775r_real
= ( ^ [X3: real] :
( the_int
@ ^ [Z5: int] :
( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z5 ) @ X3 )
& ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ) ) ) ).
% floor_real_def
thf(fact_9299_floor__rat__def,axiom,
( archim3151403230148437115or_rat
= ( ^ [X3: rat] :
( the_int
@ ^ [Z5: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z5 ) @ X3 )
& ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z5 @ one_one_int ) ) ) ) ) ) ) ).
% floor_rat_def
thf(fact_9300_integer__of__num_I3_J,axiom,
! [N: num] :
( ( code_integer_of_num @ ( bit1 @ N ) )
= ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) @ one_one_Code_integer ) ) ).
% integer_of_num(3)
thf(fact_9301_less__eq__rat__def,axiom,
( ord_less_eq_rat
= ( ^ [X3: rat,Y6: rat] :
( ( ord_less_rat @ X3 @ Y6 )
| ( X3 = Y6 ) ) ) ) ).
% less_eq_rat_def
thf(fact_9302_obtain__pos__sum,axiom,
! [R2: rat] :
( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ~ ! [S3: rat] :
( ( ord_less_rat @ zero_zero_rat @ S3 )
=> ! [T3: rat] :
( ( ord_less_rat @ zero_zero_rat @ T3 )
=> ( R2
!= ( plus_plus_rat @ S3 @ T3 ) ) ) ) ) ).
% obtain_pos_sum
thf(fact_9303_sgn__rat__def,axiom,
( sgn_sgn_rat
= ( ^ [A3: rat] : ( if_rat @ ( A3 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A3 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).
% sgn_rat_def
thf(fact_9304_abs__rat__def,axiom,
( abs_abs_rat
= ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).
% abs_rat_def
thf(fact_9305_integer__of__num__triv_I1_J,axiom,
( ( code_integer_of_num @ one )
= one_one_Code_integer ) ).
% integer_of_num_triv(1)
thf(fact_9306_integer__of__num_I2_J,axiom,
! [N: num] :
( ( code_integer_of_num @ ( bit0 @ N ) )
= ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) ) ).
% integer_of_num(2)
thf(fact_9307_integer__of__num__triv_I2_J,axiom,
( ( code_integer_of_num @ ( bit0 @ one ) )
= ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).
% integer_of_num_triv(2)
thf(fact_9308_pred__def,axiom,
( pred
= ( case_nat_nat @ zero_zero_nat
@ ^ [X23: nat] : X23 ) ) ).
% pred_def
thf(fact_9309_rat__inverse__code,axiom,
! [P5: rat] :
( ( quotient_of @ ( inverse_inverse_rat @ P5 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( A3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A3 ) @ B2 ) @ ( abs_abs_int @ A3 ) ) )
@ ( quotient_of @ P5 ) ) ) ).
% rat_inverse_code
thf(fact_9310_normalize__negative,axiom,
! [Q2: int,P5: int] :
( ( ord_less_int @ Q2 @ zero_zero_int )
=> ( ( normalize @ ( product_Pair_int_int @ P5 @ Q2 ) )
= ( normalize @ ( product_Pair_int_int @ ( uminus_uminus_int @ P5 ) @ ( uminus_uminus_int @ Q2 ) ) ) ) ) ).
% normalize_negative
thf(fact_9311_bit__cut__integer__def,axiom,
( code_bit_cut_integer
= ( ^ [K3: code_integer] :
( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
@ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K3 ) ) ) ) ).
% bit_cut_integer_def
thf(fact_9312_quotient__of__number_I3_J,axiom,
! [K: num] :
( ( quotient_of @ ( numeral_numeral_rat @ K ) )
= ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).
% quotient_of_number(3)
thf(fact_9313_normalize__denom__zero,axiom,
! [P5: int] :
( ( normalize @ ( product_Pair_int_int @ P5 @ zero_zero_int ) )
= ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).
% normalize_denom_zero
thf(fact_9314_rat__zero__code,axiom,
( ( quotient_of @ zero_zero_rat )
= ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).
% rat_zero_code
thf(fact_9315_quotient__of__number_I5_J,axiom,
! [K: num] :
( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
= ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).
% quotient_of_number(5)
thf(fact_9316_diff__rat__def,axiom,
( minus_minus_rat
= ( ^ [Q3: rat,R5: rat] : ( plus_plus_rat @ Q3 @ ( uminus_uminus_rat @ R5 ) ) ) ) ).
% diff_rat_def
thf(fact_9317_rat__times__code,axiom,
! [P5: rat,Q2: rat] :
( ( quotient_of @ ( times_times_rat @ P5 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C5: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ B2 ) @ ( times_times_int @ C5 @ D4 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P5 ) ) ) ).
% rat_times_code
thf(fact_9318_rat__divide__code,axiom,
! [P5: rat,Q2: rat] :
( ( quotient_of @ ( divide_divide_rat @ P5 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C5: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ D4 ) @ ( times_times_int @ C5 @ B2 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P5 ) ) ) ).
% rat_divide_code
thf(fact_9319_rat__plus__code,axiom,
! [P5: rat,Q2: rat] :
( ( quotient_of @ ( plus_plus_rat @ P5 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C5: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A3 @ D4 ) @ ( times_times_int @ B2 @ C5 ) ) @ ( times_times_int @ C5 @ D4 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P5 ) ) ) ).
% rat_plus_code
thf(fact_9320_rat__minus__code,axiom,
! [P5: rat,Q2: rat] :
( ( quotient_of @ ( minus_minus_rat @ P5 @ Q2 ) )
= ( produc4245557441103728435nt_int
@ ^ [A3: int,C5: int] :
( produc4245557441103728435nt_int
@ ^ [B2: int,D4: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A3 @ D4 ) @ ( times_times_int @ B2 @ C5 ) ) @ ( times_times_int @ C5 @ D4 ) ) )
@ ( quotient_of @ Q2 ) )
@ ( quotient_of @ P5 ) ) ) ).
% rat_minus_code
thf(fact_9321_quotient__of__denom__pos,axiom,
! [R2: rat,P5: int,Q2: int] :
( ( ( quotient_of @ R2 )
= ( product_Pair_int_int @ P5 @ Q2 ) )
=> ( ord_less_int @ zero_zero_int @ Q2 ) ) ).
% quotient_of_denom_pos
thf(fact_9322_normalize__denom__pos,axiom,
! [R2: product_prod_int_int,P5: int,Q2: int] :
( ( ( normalize @ R2 )
= ( product_Pair_int_int @ P5 @ Q2 ) )
=> ( ord_less_int @ zero_zero_int @ Q2 ) ) ).
% normalize_denom_pos
thf(fact_9323_normalize__crossproduct,axiom,
! [Q2: int,S2: int,P5: int,R2: int] :
( ( Q2 != zero_zero_int )
=> ( ( S2 != zero_zero_int )
=> ( ( ( normalize @ ( product_Pair_int_int @ P5 @ Q2 ) )
= ( normalize @ ( product_Pair_int_int @ R2 @ S2 ) ) )
=> ( ( times_times_int @ P5 @ S2 )
= ( times_times_int @ R2 @ Q2 ) ) ) ) ) ).
% normalize_crossproduct
thf(fact_9324_rat__less__code,axiom,
( ord_less_rat
= ( ^ [P6: rat,Q3: rat] :
( produc4947309494688390418_int_o
@ ^ [A3: int,C5: int] :
( produc4947309494688390418_int_o
@ ^ [B2: int,D4: int] : ( ord_less_int @ ( times_times_int @ A3 @ D4 ) @ ( times_times_int @ C5 @ B2 ) )
@ ( quotient_of @ Q3 ) )
@ ( quotient_of @ P6 ) ) ) ) ).
% rat_less_code
thf(fact_9325_rat__less__eq__code,axiom,
( ord_less_eq_rat
= ( ^ [P6: rat,Q3: rat] :
( produc4947309494688390418_int_o
@ ^ [A3: int,C5: int] :
( produc4947309494688390418_int_o
@ ^ [B2: int,D4: int] : ( ord_less_eq_int @ ( times_times_int @ A3 @ D4 ) @ ( times_times_int @ C5 @ B2 ) )
@ ( quotient_of @ Q3 ) )
@ ( quotient_of @ P6 ) ) ) ) ).
% rat_less_eq_code
thf(fact_9326_bit__cut__integer__code,axiom,
( code_bit_cut_integer
= ( ^ [K3: code_integer] :
( if_Pro5737122678794959658eger_o @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
@ ( produc9125791028180074456eger_o
@ ^ [R5: code_integer,S4: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S4 ) ) @ ( S4 = one_one_Code_integer ) )
@ ( code_divmod_abs @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_cut_integer_code
thf(fact_9327_bezw__0,axiom,
! [X: nat] :
( ( bezw @ X @ zero_zero_nat )
= ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) ).
% bezw_0
thf(fact_9328_set__encode__inverse,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( nat_set_decode @ ( nat_set_encode @ A2 ) )
= A2 ) ) ).
% set_encode_inverse
thf(fact_9329_finite__set__decode,axiom,
! [N: nat] : ( finite_finite_nat @ ( nat_set_decode @ N ) ) ).
% finite_set_decode
thf(fact_9330_set__encode__eq,axiom,
! [A2: set_nat,B4: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B4 )
=> ( ( ( nat_set_encode @ A2 )
= ( nat_set_encode @ B4 ) )
= ( A2 = B4 ) ) ) ) ).
% set_encode_eq
thf(fact_9331_finite__nat__set__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [N8: set_nat] :
? [M5: nat] :
! [X3: nat] :
( ( member_nat @ X3 @ N8 )
=> ( ord_less_eq_nat @ X3 @ M5 ) ) ) ) ).
% finite_nat_set_iff_bounded_le
thf(fact_9332_finite__less__ub,axiom,
! [F: nat > nat,U: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( F @ N2 ) )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [N4: nat] : ( ord_less_eq_nat @ ( F @ N4 ) @ U ) ) ) ) ).
% finite_less_ub
thf(fact_9333_set__encode__inf,axiom,
! [A2: set_nat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( nat_set_encode @ A2 )
= zero_zero_nat ) ) ).
% set_encode_inf
thf(fact_9334_finite__divisors__nat,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( finite_finite_nat
@ ( collect_nat
@ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M ) ) ) ) ).
% finite_divisors_nat
thf(fact_9335_subset__eq__atLeast0__atMost__finite,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_atMost_finite
thf(fact_9336_subset__eq__atLeast0__lessThan__finite,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( finite_finite_nat @ N5 ) ) ).
% subset_eq_atLeast0_lessThan_finite
thf(fact_9337_divmod__abs__code_I6_J,axiom,
! [J: code_integer] :
( ( code_divmod_abs @ zero_z3403309356797280102nteger @ J )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ) ).
% divmod_abs_code(6)
thf(fact_9338_divmod__abs__code_I5_J,axiom,
! [J: code_integer] :
( ( code_divmod_abs @ J @ zero_z3403309356797280102nteger )
= ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ J ) ) ) ).
% divmod_abs_code(5)
thf(fact_9339_even__set__encode__iff,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
= ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).
% even_set_encode_iff
thf(fact_9340_finite__Collect__le__nat,axiom,
! [K: nat] :
( finite_finite_nat
@ ( collect_nat
@ ^ [N4: nat] : ( ord_less_eq_nat @ N4 @ K ) ) ) ).
% finite_Collect_le_nat
thf(fact_9341_finite__interval__int1,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I2: int] :
( ( ord_less_eq_int @ A @ I2 )
& ( ord_less_eq_int @ I2 @ B ) ) ) ) ).
% finite_interval_int1
thf(fact_9342_finite__interval__int4,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I2: int] :
( ( ord_less_int @ A @ I2 )
& ( ord_less_int @ I2 @ B ) ) ) ) ).
% finite_interval_int4
thf(fact_9343_finite__interval__int2,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I2: int] :
( ( ord_less_eq_int @ A @ I2 )
& ( ord_less_int @ I2 @ B ) ) ) ) ).
% finite_interval_int2
thf(fact_9344_finite__interval__int3,axiom,
! [A: int,B: int] :
( finite_finite_int
@ ( collect_int
@ ^ [I2: int] :
( ( ord_less_int @ A @ I2 )
& ( ord_less_eq_int @ I2 @ B ) ) ) ) ).
% finite_interval_int3
thf(fact_9345_finite__nth__roots,axiom,
! [N: nat,C: complex] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( finite3207457112153483333omplex
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= C ) ) ) ) ).
% finite_nth_roots
thf(fact_9346_finite__atLeastZeroLessThan__int,axiom,
! [U: int] : ( finite_finite_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) ) ).
% finite_atLeastZeroLessThan_int
thf(fact_9347_finite__divisors__int,axiom,
! [I: int] :
( ( I != zero_zero_int )
=> ( finite_finite_int
@ ( collect_int
@ ^ [D4: int] : ( dvd_dvd_int @ D4 @ I ) ) ) ) ).
% finite_divisors_int
thf(fact_9348_finite__nat__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [S5: set_nat] :
? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_atMost_nat @ K3 ) ) ) ) ).
% finite_nat_iff_bounded_le
thf(fact_9349_finite__nat__bounded,axiom,
! [S: set_nat] :
( ( finite_finite_nat @ S )
=> ? [K2: nat] : ( ord_less_eq_set_nat @ S @ ( set_ord_lessThan_nat @ K2 ) ) ) ).
% finite_nat_bounded
thf(fact_9350_finite__nat__iff__bounded,axiom,
( finite_finite_nat
= ( ^ [S5: set_nat] :
? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_lessThan_nat @ K3 ) ) ) ) ).
% finite_nat_iff_bounded
thf(fact_9351_infinite__int__iff__unbounded__le,axiom,
! [S: set_int] :
( ( ~ ( finite_finite_int @ S ) )
= ( ! [M5: int] :
? [N4: int] :
( ( ord_less_eq_int @ M5 @ ( abs_abs_int @ N4 ) )
& ( member_int @ N4 @ S ) ) ) ) ).
% infinite_int_iff_unbounded_le
thf(fact_9352_infinite__nat__iff__unbounded__le,axiom,
! [S: set_nat] :
( ( ~ ( finite_finite_nat @ S ) )
= ( ! [M5: nat] :
? [N4: nat] :
( ( ord_less_eq_nat @ M5 @ N4 )
& ( member_nat @ N4 @ S ) ) ) ) ).
% infinite_nat_iff_unbounded_le
thf(fact_9353_Frct__code__post_I5_J,axiom,
! [K: num] :
( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
= ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).
% Frct_code_post(5)
thf(fact_9354_set__encode__insert,axiom,
! [A2: set_nat,N: nat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ N @ A2 )
=> ( ( nat_set_encode @ ( insert_nat @ N @ A2 ) )
= ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).
% set_encode_insert
thf(fact_9355_lessThan__Suc,axiom,
! [K: nat] :
( ( set_ord_lessThan_nat @ ( suc @ K ) )
= ( insert_nat @ K @ ( set_ord_lessThan_nat @ K ) ) ) ).
% lessThan_Suc
thf(fact_9356_atMost__Suc,axiom,
! [K: nat] :
( ( set_ord_atMost_nat @ ( suc @ K ) )
= ( insert_nat @ ( suc @ K ) @ ( set_ord_atMost_nat @ K ) ) ) ).
% atMost_Suc
thf(fact_9357_atLeast0__atMost__Suc,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).
% atLeast0_atMost_Suc
thf(fact_9358_atLeast0__lessThan__Suc,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).
% atLeast0_lessThan_Suc
thf(fact_9359_atLeastAtMost__insertL,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
= ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).
% atLeastAtMost_insertL
thf(fact_9360_atLeastAtMostSuc__conv,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) )
= ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ).
% atLeastAtMostSuc_conv
thf(fact_9361_Icc__eq__insert__lb__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( set_or1269000886237332187st_nat @ M @ N )
= ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ).
% Icc_eq_insert_lb_nat
thf(fact_9362_lessThan__nat__numeral,axiom,
! [K: num] :
( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).
% lessThan_nat_numeral
thf(fact_9363_atMost__nat__numeral,axiom,
! [K: num] :
( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).
% atMost_nat_numeral
thf(fact_9364_Frct__code__post_I2_J,axiom,
! [A: int] :
( ( frct @ ( product_Pair_int_int @ A @ zero_zero_int ) )
= zero_zero_rat ) ).
% Frct_code_post(2)
thf(fact_9365_Frct__code__post_I1_J,axiom,
! [A: int] :
( ( frct @ ( product_Pair_int_int @ zero_zero_int @ A ) )
= zero_zero_rat ) ).
% Frct_code_post(1)
thf(fact_9366_set__decode__plus__power__2,axiom,
! [N: nat,Z: nat] :
( ~ ( member_nat @ N @ ( nat_set_decode @ Z ) )
=> ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Z ) )
= ( insert_nat @ N @ ( nat_set_decode @ Z ) ) ) ) ).
% set_decode_plus_power_2
thf(fact_9367_Frct__code__post_I4_J,axiom,
! [K: num] :
( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
= ( numeral_numeral_rat @ K ) ) ).
% Frct_code_post(4)
thf(fact_9368_Frct__code__post_I6_J,axiom,
! [K: num,L: num] :
( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L ) ) )
= ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L ) ) ) ).
% Frct_code_post(6)
thf(fact_9369_divmod__integer__code,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L3: code_integer] :
( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L3 )
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ ( code_divmod_abs @ K3 @ L3 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L3 @ S4 ) ) )
@ ( code_divmod_abs @ K3 @ L3 ) ) )
@ ( if_Pro6119634080678213985nteger @ ( L3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
@ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
@ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K3 @ L3 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L3 ) @ S4 ) ) )
@ ( code_divmod_abs @ K3 @ L3 ) ) ) ) ) ) ) ) ) ).
% divmod_integer_code
thf(fact_9370_card__atMost,axiom,
! [U: nat] :
( ( finite_card_nat @ ( set_ord_atMost_nat @ U ) )
= ( suc @ U ) ) ).
% card_atMost
thf(fact_9371_card__atLeastLessThan,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or4665077453230672383an_nat @ L @ U ) )
= ( minus_minus_nat @ U @ L ) ) ).
% card_atLeastLessThan
thf(fact_9372_card__Collect__le__nat,axiom,
! [N: nat] :
( ( finite_card_nat
@ ( collect_nat
@ ^ [I2: nat] : ( ord_less_eq_nat @ I2 @ N ) ) )
= ( suc @ N ) ) ).
% card_Collect_le_nat
thf(fact_9373_card__atLeastAtMost,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or1269000886237332187st_nat @ L @ U ) )
= ( minus_minus_nat @ ( suc @ U ) @ L ) ) ).
% card_atLeastAtMost
thf(fact_9374_card__atLeastLessThan__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or4662586982721622107an_int @ L @ U ) )
= ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).
% card_atLeastLessThan_int
thf(fact_9375_card__atLeastAtMost__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or1266510415728281911st_int @ L @ U ) )
= ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L ) @ one_one_int ) ) ) ).
% card_atLeastAtMost_int
thf(fact_9376_card__length__sum__list__rec,axiom,
! [M: nat,N5: nat] :
( ( ord_less_eq_nat @ one_one_nat @ M )
=> ( ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L3: list_nat] :
( ( ( size_size_list_nat @ L3 )
= M )
& ( ( groups4561878855575611511st_nat @ L3 )
= N5 ) ) ) )
= ( plus_plus_nat
@ ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L3: list_nat] :
( ( ( size_size_list_nat @ L3 )
= ( minus_minus_nat @ M @ one_one_nat ) )
& ( ( groups4561878855575611511st_nat @ L3 )
= N5 ) ) ) )
@ ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L3: list_nat] :
( ( ( size_size_list_nat @ L3 )
= M )
& ( ( plus_plus_nat @ ( groups4561878855575611511st_nat @ L3 ) @ one_one_nat )
= N5 ) ) ) ) ) ) ) ).
% card_length_sum_list_rec
thf(fact_9377_card__length__sum__list,axiom,
! [M: nat,N5: nat] :
( ( finite_card_list_nat
@ ( collect_list_nat
@ ^ [L3: list_nat] :
( ( ( size_size_list_nat @ L3 )
= M )
& ( ( groups4561878855575611511st_nat @ L3 )
= N5 ) ) ) )
= ( binomial @ ( minus_minus_nat @ ( plus_plus_nat @ N5 @ M ) @ one_one_nat ) @ N5 ) ) ).
% card_length_sum_list
thf(fact_9378_card__less__Suc2,axiom,
! [M10: set_nat,I: nat] :
( ~ ( member_nat @ zero_zero_nat @ M10 )
=> ( ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ ( suc @ K3 ) @ M10 )
& ( ord_less_nat @ K3 @ I ) ) ) )
= ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ K3 @ M10 )
& ( ord_less_nat @ K3 @ ( suc @ I ) ) ) ) ) ) ) ).
% card_less_Suc2
thf(fact_9379_card__less__Suc,axiom,
! [M10: set_nat,I: nat] :
( ( member_nat @ zero_zero_nat @ M10 )
=> ( ( suc
@ ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ ( suc @ K3 ) @ M10 )
& ( ord_less_nat @ K3 @ I ) ) ) ) )
= ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ K3 @ M10 )
& ( ord_less_nat @ K3 @ ( suc @ I ) ) ) ) ) ) ) ).
% card_less_Suc
thf(fact_9380_card__less,axiom,
! [M10: set_nat,I: nat] :
( ( member_nat @ zero_zero_nat @ M10 )
=> ( ( finite_card_nat
@ ( collect_nat
@ ^ [K3: nat] :
( ( member_nat @ K3 @ M10 )
& ( ord_less_nat @ K3 @ ( suc @ I ) ) ) ) )
!= zero_zero_nat ) ) ).
% card_less
thf(fact_9381_card__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( finite_card_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) )
= ( nat2 @ U ) ) ).
% card_atLeastZeroLessThan_int
thf(fact_9382_subset__card__intvl__is__intvl,axiom,
! [A2: set_nat,K: nat] :
( ( ord_less_eq_set_nat @ A2 @ ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) )
=> ( A2
= ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) ) ) ).
% subset_card_intvl_is_intvl
thf(fact_9383_atLeastAtMostPlus1__int__conv,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
=> ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
= ( insert_int @ ( plus_plus_int @ one_one_int @ N ) @ ( set_or1266510415728281911st_int @ M @ N ) ) ) ) ).
% atLeastAtMostPlus1_int_conv
thf(fact_9384_subset__eq__atLeast0__lessThan__card,axiom,
! [N5: set_nat,N: nat] :
( ( ord_less_eq_set_nat @ N5 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( ord_less_eq_nat @ ( finite_card_nat @ N5 ) @ N ) ) ).
% subset_eq_atLeast0_lessThan_card
thf(fact_9385_card__sum__le__nat__sum,axiom,
! [S: set_nat] :
( ord_less_eq_nat
@ ( groups3542108847815614940at_nat
@ ^ [X3: nat] : X3
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S ) ) )
@ ( groups3542108847815614940at_nat
@ ^ [X3: nat] : X3
@ S ) ) ).
% card_sum_le_nat_sum
thf(fact_9386_card__nth__roots,axiom,
! [C: complex,N: nat] :
( ( C != zero_zero_complex )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( finite_card_complex
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= C ) ) )
= N ) ) ) ).
% card_nth_roots
thf(fact_9387_card__roots__unity__eq,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( finite_card_complex
@ ( collect_complex
@ ^ [Z5: complex] :
( ( power_power_complex @ Z5 @ N )
= one_one_complex ) ) )
= N ) ) ).
% card_roots_unity_eq
thf(fact_9388_and__int_Osimps,axiom,
( bit_se725231765392027082nd_int
= ( ^ [K3: int,L3: int] :
( if_int
@ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
@ ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) ) )
@ ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L3 ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% and_int.simps
thf(fact_9389_and__int_Oelims,axiom,
! [X: int,Xa: int,Y4: int] :
( ( ( bit_se725231765392027082nd_int @ X @ Xa )
= Y4 )
=> ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y4
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
& ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y4
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.elims
thf(fact_9390_and__int_Opsimps,axiom,
! [K: int,L: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L ) )
=> ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L )
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ) ) )
& ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( ( bit_se725231765392027082nd_int @ K @ L )
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% and_int.psimps
thf(fact_9391_and__int_Opelims,axiom,
! [X: int,Xa: int,Y4: int] :
( ( ( bit_se725231765392027082nd_int @ X @ Xa )
= Y4 )
=> ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa ) )
=> ~ ( ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y4
= ( uminus_uminus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
& ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( Y4
= ( plus_plus_int
@ ( zero_n2684676970156552555ol_int
@ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
& ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
@ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa ) ) ) ) ) ).
% and_int.pelims
thf(fact_9392_and__int_Opinduct,axiom,
! [A0: int,A1: int,P: int > int > $o] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
=> ( ! [K2: int,L2: int] :
( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K2 @ L2 ) )
=> ( ( ~ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
& ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
=> ( P @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
=> ( P @ K2 @ L2 ) ) )
=> ( P @ A0 @ A1 ) ) ) ).
% and_int.pinduct
thf(fact_9393_lessThan__0,axiom,
( ( set_ord_lessThan_nat @ zero_zero_nat )
= bot_bot_set_nat ) ).
% lessThan_0
thf(fact_9394_set__decode__zero,axiom,
( ( nat_set_decode @ zero_zero_nat )
= bot_bot_set_nat ) ).
% set_decode_zero
thf(fact_9395_set__encode__empty,axiom,
( ( nat_set_encode @ bot_bot_set_nat )
= zero_zero_nat ) ).
% set_encode_empty
thf(fact_9396_atLeastLessThan__singleton,axiom,
! [M: nat] :
( ( set_or4665077453230672383an_nat @ M @ ( suc @ M ) )
= ( insert_nat @ M @ bot_bot_set_nat ) ) ).
% atLeastLessThan_singleton
thf(fact_9397_atMost__0,axiom,
( ( set_ord_atMost_nat @ zero_zero_nat )
= ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).
% atMost_0
thf(fact_9398_bot__enat__def,axiom,
bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).
% bot_enat_def
thf(fact_9399_bot__nat__def,axiom,
bot_bot_nat = zero_zero_nat ).
% bot_nat_def
thf(fact_9400_atLeastLessThan0,axiom,
! [M: nat] :
( ( set_or4665077453230672383an_nat @ M @ zero_zero_nat )
= bot_bot_set_nat ) ).
% atLeastLessThan0
thf(fact_9401_lessThan__empty__iff,axiom,
! [N: nat] :
( ( ( set_ord_lessThan_nat @ N )
= bot_bot_set_nat )
= ( N = zero_zero_nat ) ) ).
% lessThan_empty_iff
thf(fact_9402_atLeastLessThanSuc,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_eq_nat @ M @ N )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
= ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ N )
=> ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThanSuc
thf(fact_9403_atLeast1__lessThan__eq__remove0,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_lessThan_eq_remove0
thf(fact_9404_atLeast1__atMost__eq__remove0,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N )
= ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).
% atLeast1_atMost_eq_remove0
thf(fact_9405_atLeastLessThan__nat__numeral,axiom,
! [M: nat,K: num] :
( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
& ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
=> ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
= bot_bot_set_nat ) ) ) ).
% atLeastLessThan_nat_numeral
thf(fact_9406_length__upt,axiom,
! [I: nat,J: nat] :
( ( size_size_list_nat @ ( upt @ I @ J ) )
= ( minus_minus_nat @ J @ I ) ) ).
% length_upt
thf(fact_9407_sum__list__upt,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( groups4561878855575611511st_nat @ ( upt @ M @ N ) )
= ( groups3542108847815614940at_nat
@ ^ [X3: nat] : X3
@ ( set_or4665077453230672383an_nat @ M @ N ) ) ) ) ).
% sum_list_upt
thf(fact_9408_map__Suc__upt,axiom,
! [M: nat,N: nat] :
( ( map_nat_nat @ suc @ ( upt @ M @ N ) )
= ( upt @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% map_Suc_upt
thf(fact_9409_map__add__upt,axiom,
! [N: nat,M: nat] :
( ( map_nat_nat
@ ^ [I2: nat] : ( plus_plus_nat @ I2 @ N )
@ ( upt @ zero_zero_nat @ M ) )
= ( upt @ N @ ( plus_plus_nat @ M @ N ) ) ) ).
% map_add_upt
thf(fact_9410_map__decr__upt,axiom,
! [M: nat,N: nat] :
( ( map_nat_nat
@ ^ [N4: nat] : ( minus_minus_nat @ N4 @ ( suc @ zero_zero_nat ) )
@ ( upt @ ( suc @ M ) @ ( suc @ N ) ) )
= ( upt @ M @ N ) ) ).
% map_decr_upt
thf(fact_9411_atLeastAtMost__upt,axiom,
( set_or1269000886237332187st_nat
= ( ^ [N4: nat,M5: nat] : ( set_nat2 @ ( upt @ N4 @ ( suc @ M5 ) ) ) ) ) ).
% atLeastAtMost_upt
thf(fact_9412_atLeast__upt,axiom,
( set_ord_lessThan_nat
= ( ^ [N4: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ N4 ) ) ) ) ).
% atLeast_upt
thf(fact_9413_atMost__upto,axiom,
( set_ord_atMost_nat
= ( ^ [N4: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ ( suc @ N4 ) ) ) ) ) ).
% atMost_upto
thf(fact_9414_sorted__upt,axiom,
! [M: nat,N: nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( upt @ M @ N ) ) ).
% sorted_upt
thf(fact_9415_sorted__wrt__less__idx,axiom,
! [Ns: list_nat,I: nat] :
( ( sorted_wrt_nat @ ord_less_nat @ Ns )
=> ( ( ord_less_nat @ I @ ( size_size_list_nat @ Ns ) )
=> ( ord_less_eq_nat @ I @ ( nth_nat @ Ns @ I ) ) ) ) ).
% sorted_wrt_less_idx
thf(fact_9416_binomial__def,axiom,
( binomial
= ( ^ [N4: nat,K3: nat] :
( finite_card_set_nat
@ ( collect_set_nat
@ ^ [K7: set_nat] :
( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N4 ) ) )
& ( ( finite_card_nat @ K7 )
= K3 ) ) ) ) ) ) ).
% binomial_def
thf(fact_9417_Suc__0__div__numeral,axiom,
! [K: num] :
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
= ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).
% Suc_0_div_numeral
thf(fact_9418_Suc__0__mod__numeral,axiom,
! [K: num] :
( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
= ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).
% Suc_0_mod_numeral
thf(fact_9419_fst__divmod__nat,axiom,
! [M: nat,N: nat] :
( ( product_fst_nat_nat @ ( divmod_nat @ M @ N ) )
= ( divide_divide_nat @ M @ N ) ) ).
% fst_divmod_nat
thf(fact_9420_snd__divmod__nat,axiom,
! [M: nat,N: nat] :
( ( product_snd_nat_nat @ ( divmod_nat @ M @ N ) )
= ( modulo_modulo_nat @ M @ N ) ) ).
% snd_divmod_nat
thf(fact_9421_quotient__of__denom__pos_H,axiom,
! [R2: rat] : ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ ( quotient_of @ R2 ) ) ) ).
% quotient_of_denom_pos'
thf(fact_9422_bezw__non__0,axiom,
! [Y4: nat,X: nat] :
( ( ord_less_nat @ zero_zero_nat @ Y4 )
=> ( ( bezw @ X @ Y4 )
= ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y4 @ ( modulo_modulo_nat @ X @ Y4 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y4 @ ( modulo_modulo_nat @ X @ Y4 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y4 @ ( modulo_modulo_nat @ X @ Y4 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y4 ) ) ) ) ) ) ) ).
% bezw_non_0
thf(fact_9423_bezw_Osimps,axiom,
( bezw
= ( ^ [X3: nat,Y6: nat] : ( if_Pro3027730157355071871nt_int @ ( Y6 = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X3 @ Y6 ) ) ) ) ) ) ) ) ).
% bezw.simps
thf(fact_9424_bezw_Oelims,axiom,
! [X: nat,Xa: nat,Y4: product_prod_int_int] :
( ( ( bezw @ X @ Xa )
= Y4 )
=> ( ( ( Xa = zero_zero_nat )
=> ( Y4
= ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
& ( ( Xa != zero_zero_nat )
=> ( Y4
= ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa ) ) ) ) ) ) ) ) ) ).
% bezw.elims
thf(fact_9425_bezw_Opelims,axiom,
! [X: nat,Xa: nat,Y4: product_prod_int_int] :
( ( ( bezw @ X @ Xa )
= Y4 )
=> ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
=> ~ ( ( ( ( Xa = zero_zero_nat )
=> ( Y4
= ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
& ( ( Xa != zero_zero_nat )
=> ( Y4
= ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa ) ) ) ) ) ) ) )
=> ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).
% bezw.pelims
thf(fact_9426_one__mod__minus__numeral,axiom,
! [N: num] :
( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ) ).
% one_mod_minus_numeral
thf(fact_9427_minus__one__mod__numeral,axiom,
! [N: num] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
= ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).
% minus_one_mod_numeral
thf(fact_9428_minus__numeral__mod__numeral,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).
% minus_numeral_mod_numeral
thf(fact_9429_numeral__mod__minus__numeral,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ) ).
% numeral_mod_minus_numeral
thf(fact_9430_Divides_Oadjust__mod__def,axiom,
( adjust_mod
= ( ^ [L3: int,R5: int] : ( if_int @ ( R5 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ L3 @ R5 ) ) ) ) ).
% Divides.adjust_mod_def
thf(fact_9431_normalize__def,axiom,
( normalize
= ( ^ [P6: product_prod_int_int] :
( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P6 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P6 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P6 ) @ ( product_snd_int_int @ P6 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P6 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P6 ) @ ( product_snd_int_int @ P6 ) ) ) )
@ ( if_Pro3027730157355071871nt_int
@ ( ( product_snd_int_int @ P6 )
= zero_zero_int )
@ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
@ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P6 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P6 ) @ ( product_snd_int_int @ P6 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P6 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P6 ) @ ( product_snd_int_int @ P6 ) ) ) ) ) ) ) ) ) ).
% normalize_def
thf(fact_9432_gcd__pos__int,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ ( gcd_gcd_int @ M @ N ) )
= ( ( M != zero_zero_int )
| ( N != zero_zero_int ) ) ) ).
% gcd_pos_int
thf(fact_9433_gcd__neg__numeral__1__int,axiom,
! [N: num,X: int] :
( ( gcd_gcd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ X )
= ( gcd_gcd_int @ ( numeral_numeral_int @ N ) @ X ) ) ).
% gcd_neg_numeral_1_int
thf(fact_9434_gcd__neg__numeral__2__int,axiom,
! [X: int,N: num] :
( ( gcd_gcd_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( gcd_gcd_int @ X @ ( numeral_numeral_int @ N ) ) ) ).
% gcd_neg_numeral_2_int
thf(fact_9435_gcd__0__int,axiom,
! [X: int] :
( ( gcd_gcd_int @ X @ zero_zero_int )
= ( abs_abs_int @ X ) ) ).
% gcd_0_int
thf(fact_9436_gcd__0__left__int,axiom,
! [X: int] :
( ( gcd_gcd_int @ zero_zero_int @ X )
= ( abs_abs_int @ X ) ) ).
% gcd_0_left_int
thf(fact_9437_gcd__proj2__if__dvd__int,axiom,
! [Y4: int,X: int] :
( ( dvd_dvd_int @ Y4 @ X )
=> ( ( gcd_gcd_int @ X @ Y4 )
= ( abs_abs_int @ Y4 ) ) ) ).
% gcd_proj2_if_dvd_int
thf(fact_9438_gcd__proj1__if__dvd__int,axiom,
! [X: int,Y4: int] :
( ( dvd_dvd_int @ X @ Y4 )
=> ( ( gcd_gcd_int @ X @ Y4 )
= ( abs_abs_int @ X ) ) ) ).
% gcd_proj1_if_dvd_int
thf(fact_9439_gcd__ge__0__int,axiom,
! [X: int,Y4: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_gcd_int @ X @ Y4 ) ) ).
% gcd_ge_0_int
thf(fact_9440_bezout__int,axiom,
! [X: int,Y4: int] :
? [U2: int,V3: int] :
( ( plus_plus_int @ ( times_times_int @ U2 @ X ) @ ( times_times_int @ V3 @ Y4 ) )
= ( gcd_gcd_int @ X @ Y4 ) ) ).
% bezout_int
thf(fact_9441_gcd__mult__distrib__int,axiom,
! [K: int,M: int,N: int] :
( ( times_times_int @ ( abs_abs_int @ K ) @ ( gcd_gcd_int @ M @ N ) )
= ( gcd_gcd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) ) ) ).
% gcd_mult_distrib_int
thf(fact_9442_gcd__le1__int,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).
% gcd_le1_int
thf(fact_9443_gcd__le2__int,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).
% gcd_le2_int
thf(fact_9444_gcd__cases__int,axiom,
! [X: int,Y4: int,P: int > $o] :
( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( P @ ( gcd_gcd_int @ X @ Y4 ) ) ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ Y4 @ zero_zero_int )
=> ( P @ ( gcd_gcd_int @ X @ ( uminus_uminus_int @ Y4 ) ) ) ) )
=> ( ( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y4 )
=> ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ Y4 ) ) ) )
=> ( ( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y4 @ zero_zero_int )
=> ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ ( uminus_uminus_int @ Y4 ) ) ) ) )
=> ( P @ ( gcd_gcd_int @ X @ Y4 ) ) ) ) ) ) ).
% gcd_cases_int
thf(fact_9445_gcd__unique__int,axiom,
! [D: int,A: int,B: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ D )
& ( dvd_dvd_int @ D @ A )
& ( dvd_dvd_int @ D @ B )
& ! [E3: int] :
( ( ( dvd_dvd_int @ E3 @ A )
& ( dvd_dvd_int @ E3 @ B ) )
=> ( dvd_dvd_int @ E3 @ D ) ) )
= ( D
= ( gcd_gcd_int @ A @ B ) ) ) ).
% gcd_unique_int
thf(fact_9446_gcd__non__0__int,axiom,
! [Y4: int,X: int] :
( ( ord_less_int @ zero_zero_int @ Y4 )
=> ( ( gcd_gcd_int @ X @ Y4 )
= ( gcd_gcd_int @ Y4 @ ( modulo_modulo_int @ X @ Y4 ) ) ) ) ).
% gcd_non_0_int
thf(fact_9447_gcd__code__int,axiom,
( gcd_gcd_int
= ( ^ [K3: int,L3: int] : ( abs_abs_int @ ( if_int @ ( L3 = zero_zero_int ) @ K3 @ ( gcd_gcd_int @ L3 @ ( modulo_modulo_int @ ( abs_abs_int @ K3 ) @ ( abs_abs_int @ L3 ) ) ) ) ) ) ) ).
% gcd_code_int
thf(fact_9448_gcd__0__left__nat,axiom,
! [X: nat] :
( ( gcd_gcd_nat @ zero_zero_nat @ X )
= X ) ).
% gcd_0_left_nat
thf(fact_9449_gcd__0__nat,axiom,
! [X: nat] :
( ( gcd_gcd_nat @ X @ zero_zero_nat )
= X ) ).
% gcd_0_nat
thf(fact_9450_gcd__nat_Oright__neutral,axiom,
! [A: nat] :
( ( gcd_gcd_nat @ A @ zero_zero_nat )
= A ) ).
% gcd_nat.right_neutral
thf(fact_9451_gcd__nat_Oneutr__eq__iff,axiom,
! [A: nat,B: nat] :
( ( zero_zero_nat
= ( gcd_gcd_nat @ A @ B ) )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% gcd_nat.neutr_eq_iff
thf(fact_9452_gcd__nat_Oleft__neutral,axiom,
! [A: nat] :
( ( gcd_gcd_nat @ zero_zero_nat @ A )
= A ) ).
% gcd_nat.left_neutral
thf(fact_9453_gcd__nat_Oeq__neutr__iff,axiom,
! [A: nat,B: nat] :
( ( ( gcd_gcd_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( B = zero_zero_nat ) ) ) ).
% gcd_nat.eq_neutr_iff
thf(fact_9454_gcd__nat_Oabsorb1,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( gcd_gcd_nat @ A @ B )
= A ) ) ).
% gcd_nat.absorb1
thf(fact_9455_gcd__nat_Oabsorb2,axiom,
! [B: nat,A: nat] :
( ( dvd_dvd_nat @ B @ A )
=> ( ( gcd_gcd_nat @ A @ B )
= B ) ) ).
% gcd_nat.absorb2
thf(fact_9456_gcd__nat_Obounded__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) )
= ( ( dvd_dvd_nat @ A @ B )
& ( dvd_dvd_nat @ A @ C ) ) ) ).
% gcd_nat.bounded_iff
thf(fact_9457_gcd__proj1__if__dvd__nat,axiom,
! [X: nat,Y4: nat] :
( ( dvd_dvd_nat @ X @ Y4 )
=> ( ( gcd_gcd_nat @ X @ Y4 )
= X ) ) ).
% gcd_proj1_if_dvd_nat
thf(fact_9458_gcd__proj2__if__dvd__nat,axiom,
! [Y4: nat,X: nat] :
( ( dvd_dvd_nat @ Y4 @ X )
=> ( ( gcd_gcd_nat @ X @ Y4 )
= Y4 ) ) ).
% gcd_proj2_if_dvd_nat
thf(fact_9459_gcd__Suc__0,axiom,
! [M: nat] :
( ( gcd_gcd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( suc @ zero_zero_nat ) ) ).
% gcd_Suc_0
thf(fact_9460_gcd__pos__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N ) )
= ( ( M != zero_zero_nat )
| ( N != zero_zero_nat ) ) ) ).
% gcd_pos_nat
thf(fact_9461_gcd__int__int__eq,axiom,
! [M: nat,N: nat] :
( ( gcd_gcd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ M @ N ) ) ) ).
% gcd_int_int_eq
thf(fact_9462_gcd__nat__abs__right__eq,axiom,
! [N: nat,K: int] :
( ( gcd_gcd_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
= ( nat2 @ ( gcd_gcd_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).
% gcd_nat_abs_right_eq
thf(fact_9463_gcd__nat__abs__left__eq,axiom,
! [K: int,N: nat] :
( ( gcd_gcd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
= ( nat2 @ ( gcd_gcd_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% gcd_nat_abs_left_eq
thf(fact_9464_gcd__mult__distrib__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( gcd_gcd_nat @ M @ N ) )
= ( gcd_gcd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% gcd_mult_distrib_nat
thf(fact_9465_gcd__nat_Omono,axiom,
! [A: nat,C: nat,B: nat,D: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( ( dvd_dvd_nat @ B @ D )
=> ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ ( gcd_gcd_nat @ C @ D ) ) ) ) ).
% gcd_nat.mono
thf(fact_9466_gcd__nat_OorderE,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( A
= ( gcd_gcd_nat @ A @ B ) ) ) ).
% gcd_nat.orderE
thf(fact_9467_gcd__nat_OorderI,axiom,
! [A: nat,B: nat] :
( ( A
= ( gcd_gcd_nat @ A @ B ) )
=> ( dvd_dvd_nat @ A @ B ) ) ).
% gcd_nat.orderI
thf(fact_9468_gcd__nat_Oabsorb3,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( gcd_gcd_nat @ A @ B )
= A ) ) ).
% gcd_nat.absorb3
thf(fact_9469_gcd__nat_Oabsorb4,axiom,
! [B: nat,A: nat] :
( ( ( dvd_dvd_nat @ B @ A )
& ( B != A ) )
=> ( ( gcd_gcd_nat @ A @ B )
= B ) ) ).
% gcd_nat.absorb4
thf(fact_9470_gcd__nat_OboundedE,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) )
=> ~ ( ( dvd_dvd_nat @ A @ B )
=> ~ ( dvd_dvd_nat @ A @ C ) ) ) ).
% gcd_nat.boundedE
thf(fact_9471_gcd__nat_OboundedI,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) ) ) ) ).
% gcd_nat.boundedI
thf(fact_9472_gcd__nat_Oorder__iff,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B2: nat] :
( A3
= ( gcd_gcd_nat @ A3 @ B2 ) ) ) ) ).
% gcd_nat.order_iff
thf(fact_9473_gcd__nat_Ocobounded1,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ).
% gcd_nat.cobounded1
thf(fact_9474_gcd__nat_Ocobounded2,axiom,
! [A: nat,B: nat] : ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ).
% gcd_nat.cobounded2
thf(fact_9475_gcd__nat_Oabsorb__iff1,axiom,
( dvd_dvd_nat
= ( ^ [A3: nat,B2: nat] :
( ( gcd_gcd_nat @ A3 @ B2 )
= A3 ) ) ) ).
% gcd_nat.absorb_iff1
thf(fact_9476_gcd__nat_Oabsorb__iff2,axiom,
( dvd_dvd_nat
= ( ^ [B2: nat,A3: nat] :
( ( gcd_gcd_nat @ A3 @ B2 )
= B2 ) ) ) ).
% gcd_nat.absorb_iff2
thf(fact_9477_gcd__nat_OcoboundedI1,axiom,
! [A: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A @ C )
=> ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C ) ) ).
% gcd_nat.coboundedI1
thf(fact_9478_gcd__nat_OcoboundedI2,axiom,
! [B: nat,C: nat,A: nat] :
( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C ) ) ).
% gcd_nat.coboundedI2
thf(fact_9479_gcd__nat_Ostrict__boundedE,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ ( gcd_gcd_nat @ B @ C ) )
& ( A
!= ( gcd_gcd_nat @ B @ C ) ) )
=> ~ ( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ~ ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_boundedE
thf(fact_9480_gcd__nat_Ostrict__order__iff,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( A
= ( gcd_gcd_nat @ A @ B ) )
& ( A != B ) ) ) ).
% gcd_nat.strict_order_iff
thf(fact_9481_gcd__nat_Ostrict__coboundedI1,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) )
=> ( ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C )
& ( ( gcd_gcd_nat @ A @ B )
!= C ) ) ) ).
% gcd_nat.strict_coboundedI1
thf(fact_9482_gcd__nat_Ostrict__coboundedI2,axiom,
! [B: nat,C: nat,A: nat] :
( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ ( gcd_gcd_nat @ A @ B ) @ C )
& ( ( gcd_gcd_nat @ A @ B )
!= C ) ) ) ).
% gcd_nat.strict_coboundedI2
thf(fact_9483_gcd__unique__nat,axiom,
! [D: nat,A: nat,B: nat] :
( ( ( dvd_dvd_nat @ D @ A )
& ( dvd_dvd_nat @ D @ B )
& ! [E3: nat] :
( ( ( dvd_dvd_nat @ E3 @ A )
& ( dvd_dvd_nat @ E3 @ B ) )
=> ( dvd_dvd_nat @ E3 @ D ) ) )
= ( D
= ( gcd_gcd_nat @ A @ B ) ) ) ).
% gcd_unique_nat
thf(fact_9484_gcd__le2__nat,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).
% gcd_le2_nat
thf(fact_9485_gcd__le1__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).
% gcd_le1_nat
thf(fact_9486_gcd__diff1__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N ) @ N )
= ( gcd_gcd_nat @ M @ N ) ) ) ).
% gcd_diff1_nat
thf(fact_9487_gcd__diff2__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( gcd_gcd_nat @ ( minus_minus_nat @ N @ M ) @ N )
= ( gcd_gcd_nat @ M @ N ) ) ) ).
% gcd_diff2_nat
thf(fact_9488_gcd__nat_Oelims,axiom,
! [X: nat,Xa: nat,Y4: nat] :
( ( ( gcd_gcd_nat @ X @ Xa )
= Y4 )
=> ( ( ( Xa = zero_zero_nat )
=> ( Y4 = X ) )
& ( ( Xa != zero_zero_nat )
=> ( Y4
= ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) ) ) ) ).
% gcd_nat.elims
thf(fact_9489_gcd__nat_Osimps,axiom,
( gcd_gcd_nat
= ( ^ [X3: nat,Y6: nat] : ( if_nat @ ( Y6 = zero_zero_nat ) @ X3 @ ( gcd_gcd_nat @ Y6 @ ( modulo_modulo_nat @ X3 @ Y6 ) ) ) ) ) ).
% gcd_nat.simps
thf(fact_9490_gcd__non__0__nat,axiom,
! [Y4: nat,X: nat] :
( ( Y4 != zero_zero_nat )
=> ( ( gcd_gcd_nat @ X @ Y4 )
= ( gcd_gcd_nat @ Y4 @ ( modulo_modulo_nat @ X @ Y4 ) ) ) ) ).
% gcd_non_0_nat
thf(fact_9491_gcd__code__integer,axiom,
( gcd_gcd_Code_integer
= ( ^ [K3: code_integer,L3: code_integer] : ( abs_abs_Code_integer @ ( if_Code_integer @ ( L3 = zero_z3403309356797280102nteger ) @ K3 @ ( gcd_gcd_Code_integer @ L3 @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K3 ) @ ( abs_abs_Code_integer @ L3 ) ) ) ) ) ) ) ).
% gcd_code_integer
thf(fact_9492_bezout__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [X4: nat,Y: nat] :
( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).
% bezout_nat
thf(fact_9493_bezout__gcd__nat_H,axiom,
! [B: nat,A: nat] :
? [X4: nat,Y: nat] :
( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y ) @ ( times_times_nat @ A @ X4 ) )
& ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y ) )
= ( gcd_gcd_nat @ A @ B ) ) )
| ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y ) @ ( times_times_nat @ B @ X4 ) )
& ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y ) )
= ( gcd_gcd_nat @ A @ B ) ) ) ) ).
% bezout_gcd_nat'
thf(fact_9494_gcd__int__def,axiom,
( gcd_gcd_int
= ( ^ [X3: int,Y6: int] : ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ ( nat2 @ ( abs_abs_int @ X3 ) ) @ ( nat2 @ ( abs_abs_int @ Y6 ) ) ) ) ) ) ).
% gcd_int_def
thf(fact_9495_bezw__aux,axiom,
! [X: nat,Y4: nat] :
( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X @ Y4 ) )
= ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X @ Y4 ) ) @ ( semiri1314217659103216013at_int @ X ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X @ Y4 ) ) @ ( semiri1314217659103216013at_int @ Y4 ) ) ) ) ).
% bezw_aux
thf(fact_9496_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M: nat] :
( ! [K2: nat] :
( ( ord_less_nat @ N @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ! [I4: nat] :
( ( ord_less_nat @ K2 @ I4 )
=> ( P @ I4 ) )
=> ( P @ K2 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_9497_gcd__nat_Opelims,axiom,
! [X: nat,Xa: nat,Y4: nat] :
( ( ( gcd_gcd_nat @ X @ Xa )
= Y4 )
=> ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa ) )
=> ~ ( ( ( ( Xa = zero_zero_nat )
=> ( Y4 = X ) )
& ( ( Xa != zero_zero_nat )
=> ( Y4
= ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X @ Xa ) ) ) ) )
=> ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa ) ) ) ) ) ).
% gcd_nat.pelims
thf(fact_9498_Sup__nat__empty,axiom,
( ( complete_Sup_Sup_nat @ bot_bot_set_nat )
= zero_zero_nat ) ).
% Sup_nat_empty
thf(fact_9499_divmod__integer__eq__cases,axiom,
( code_divmod_integer
= ( ^ [K3: code_integer,L3: code_integer] :
( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
@ ( if_Pro6119634080678213985nteger @ ( L3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
@ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L3
@ ( if_Pro6119634080678213985nteger
@ ( ( sgn_sgn_Code_integer @ K3 )
= ( sgn_sgn_Code_integer @ L3 ) )
@ ( code_divmod_abs @ K3 @ L3 )
@ ( produc6916734918728496179nteger
@ ^ [R5: code_integer,S4: code_integer] : ( if_Pro6119634080678213985nteger @ ( S4 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L3 ) @ S4 ) ) )
@ ( code_divmod_abs @ K3 @ L3 ) ) ) ) ) ) ) ) ).
% divmod_integer_eq_cases
thf(fact_9500_card__greaterThanLessThan__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or5832277885323065728an_int @ L @ U ) )
= ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L @ one_one_int ) ) ) ) ).
% card_greaterThanLessThan_int
thf(fact_9501_Suc__funpow,axiom,
! [N: nat] :
( ( compow_nat_nat @ N @ suc )
= ( plus_plus_nat @ N ) ) ).
% Suc_funpow
thf(fact_9502_card__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or5834768355832116004an_nat @ L @ U ) )
= ( minus_minus_nat @ U @ ( suc @ L ) ) ) ).
% card_greaterThanLessThan
thf(fact_9503_card_Ocomp__fun__commute__on,axiom,
( ( comp_nat_nat_nat @ suc @ suc )
= ( comp_nat_nat_nat @ suc @ suc ) ) ).
% card.comp_fun_commute_on
thf(fact_9504_atLeastSucLessThan__greaterThanLessThan,axiom,
! [L: nat,U: nat] :
( ( set_or4665077453230672383an_nat @ ( suc @ L ) @ U )
= ( set_or5834768355832116004an_nat @ L @ U ) ) ).
% atLeastSucLessThan_greaterThanLessThan
thf(fact_9505_greaterThanLessThan__upt,axiom,
( set_or5834768355832116004an_nat
= ( ^ [N4: nat,M5: nat] : ( set_nat2 @ ( upt @ ( suc @ N4 ) @ M5 ) ) ) ) ).
% greaterThanLessThan_upt
thf(fact_9506_Code__Target__Int_Onegative__def,axiom,
( code_Target_negative
= ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).
% Code_Target_Int.negative_def
thf(fact_9507_nth__sorted__list__of__set__greaterThanLessThan,axiom,
! [N: nat,J: nat,I: nat] :
( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ ( suc @ I ) ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) ) @ N )
= ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9508_nat__of__integer__non__positive,axiom,
! [K: code_integer] :
( ( ord_le3102999989581377725nteger @ K @ zero_z3403309356797280102nteger )
=> ( ( code_nat_of_integer @ K )
= zero_zero_nat ) ) ).
% nat_of_integer_non_positive
thf(fact_9509_max__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
@ ^ [X3: nat,Y6: nat] : ( ord_less_eq_nat @ Y6 @ X3 )
@ ^ [X3: nat,Y6: nat] : ( ord_less_nat @ Y6 @ X3 ) ) ).
% max_nat.semilattice_neutr_order_axioms
thf(fact_9510_of__nat__of__integer,axiom,
! [K: code_integer] :
( ( semiri4939895301339042750nteger @ ( code_nat_of_integer @ K ) )
= ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ K ) ) ).
% of_nat_of_integer
thf(fact_9511_nat__of__integer__code__post_I1_J,axiom,
( ( code_nat_of_integer @ zero_z3403309356797280102nteger )
= zero_zero_nat ) ).
% nat_of_integer_code_post(1)
thf(fact_9512_nat__of__integer__code__post_I3_J,axiom,
! [K: num] :
( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K ) )
= ( numeral_numeral_nat @ K ) ) ).
% nat_of_integer_code_post(3)
thf(fact_9513_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
( semila1623282765462674594er_nat @ gcd_gcd_nat @ zero_zero_nat @ dvd_dvd_nat
@ ^ [M5: nat,N4: nat] :
( ( dvd_dvd_nat @ M5 @ N4 )
& ( M5 != N4 ) ) ) ).
% gcd_nat.semilattice_neutr_order_axioms
thf(fact_9514_nat__of__integer__code,axiom,
( code_nat_of_integer
= ( ^ [K3: code_integer] :
( if_nat @ ( ord_le3102999989581377725nteger @ K3 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
@ ( produc1555791787009142072er_nat
@ ^ [L3: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L3 ) @ ( code_nat_of_integer @ L3 ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L3 ) @ ( code_nat_of_integer @ L3 ) ) @ one_one_nat ) )
@ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% nat_of_integer_code
thf(fact_9515_int__of__integer__code,axiom,
( code_int_of_integer
= ( ^ [K3: code_integer] :
( if_int @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K3 ) ) )
@ ( if_int @ ( K3 = zero_z3403309356797280102nteger ) @ zero_zero_int
@ ( produc1553301316500091796er_int
@ ^ [L3: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L3 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L3 ) ) @ one_one_int ) )
@ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% int_of_integer_code
thf(fact_9516_times__int_Oabs__eq,axiom,
! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( times_times_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) )
@ Xa
@ X ) ) ) ).
% times_int.abs_eq
thf(fact_9517_zero__integer_Orep__eq,axiom,
( ( code_int_of_integer @ zero_z3403309356797280102nteger )
= zero_zero_int ) ).
% zero_integer.rep_eq
thf(fact_9518_int__of__integer__numeral,axiom,
! [K: num] :
( ( code_int_of_integer @ ( numera6620942414471956472nteger @ K ) )
= ( numeral_numeral_int @ K ) ) ).
% int_of_integer_numeral
thf(fact_9519_times__integer_Orep__eq,axiom,
! [X: code_integer,Xa: code_integer] :
( ( code_int_of_integer @ ( times_3573771949741848930nteger @ X @ Xa ) )
= ( times_times_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).
% times_integer.rep_eq
thf(fact_9520_minus__integer_Orep__eq,axiom,
! [X: code_integer,Xa: code_integer] :
( ( code_int_of_integer @ ( minus_8373710615458151222nteger @ X @ Xa ) )
= ( minus_minus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).
% minus_integer.rep_eq
thf(fact_9521_divide__integer_Orep__eq,axiom,
! [X: code_integer,Xa: code_integer] :
( ( code_int_of_integer @ ( divide6298287555418463151nteger @ X @ Xa ) )
= ( divide_divide_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa ) ) ) ).
% divide_integer.rep_eq
thf(fact_9522_int__of__integer__of__nat,axiom,
! [N: nat] :
( ( code_int_of_integer @ ( semiri4939895301339042750nteger @ N ) )
= ( semiri1314217659103216013at_int @ N ) ) ).
% int_of_integer_of_nat
thf(fact_9523_eq__Abs__Integ,axiom,
! [Z: int] :
~ ! [X4: nat,Y: nat] :
( Z
!= ( abs_Integ @ ( product_Pair_nat_nat @ X4 @ Y ) ) ) ).
% eq_Abs_Integ
thf(fact_9524_int_Oabs__induct,axiom,
! [P: int > $o,X: int] :
( ! [Y: product_prod_nat_nat] : ( P @ ( abs_Integ @ Y ) )
=> ( P @ X ) ) ).
% int.abs_induct
thf(fact_9525_less__eq__integer_Orep__eq,axiom,
( ord_le3102999989581377725nteger
= ( ^ [X3: code_integer,Xa4: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ X3 ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).
% less_eq_integer.rep_eq
thf(fact_9526_integer__less__eq__iff,axiom,
( ord_le3102999989581377725nteger
= ( ^ [K3: code_integer,L3: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ K3 ) @ ( code_int_of_integer @ L3 ) ) ) ) ).
% integer_less_eq_iff
thf(fact_9527_nat_Oabs__eq,axiom,
! [X: product_prod_nat_nat] :
( ( nat2 @ ( abs_Integ @ X ) )
= ( produc6842872674320459806at_nat @ minus_minus_nat @ X ) ) ).
% nat.abs_eq
thf(fact_9528_unset__bit__integer_Orep__eq,axiom,
! [X: nat,Xa: code_integer] :
( ( code_int_of_integer @ ( bit_se8260200283734997820nteger @ X @ Xa ) )
= ( bit_se4203085406695923979it_int @ X @ ( code_int_of_integer @ Xa ) ) ) ).
% unset_bit_integer.rep_eq
thf(fact_9529_set__bit__integer_Orep__eq,axiom,
! [X: nat,Xa: code_integer] :
( ( code_int_of_integer @ ( bit_se2793503036327961859nteger @ X @ Xa ) )
= ( bit_se7879613467334960850it_int @ X @ ( code_int_of_integer @ Xa ) ) ) ).
% set_bit_integer.rep_eq
thf(fact_9530_flip__bit__integer_Orep__eq,axiom,
! [X: nat,Xa: code_integer] :
( ( code_int_of_integer @ ( bit_se1345352211410354436nteger @ X @ Xa ) )
= ( bit_se2159334234014336723it_int @ X @ ( code_int_of_integer @ Xa ) ) ) ).
% flip_bit_integer.rep_eq
thf(fact_9531_zero__int__def,axiom,
( zero_zero_int
= ( abs_Integ @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) ) ).
% zero_int_def
thf(fact_9532_int__def,axiom,
( semiri1314217659103216013at_int
= ( ^ [N4: nat] : ( abs_Integ @ ( product_Pair_nat_nat @ N4 @ zero_zero_nat ) ) ) ) ).
% int_def
thf(fact_9533_uminus__int_Oabs__eq,axiom,
! [X: product_prod_nat_nat] :
( ( uminus_uminus_int @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc2626176000494625587at_nat
@ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 )
@ X ) ) ) ).
% uminus_int.abs_eq
thf(fact_9534_one__int__def,axiom,
( one_one_int
= ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).
% one_int_def
thf(fact_9535_less__int_Oabs__eq,axiom,
! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( ord_less_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
= ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) )
@ Xa
@ X ) ) ).
% less_int.abs_eq
thf(fact_9536_less__eq__int_Oabs__eq,axiom,
! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( ord_less_eq_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
= ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) )
@ Xa
@ X ) ) ).
% less_eq_int.abs_eq
thf(fact_9537_plus__int_Oabs__eq,axiom,
! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( plus_plus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) )
@ Xa
@ X ) ) ) ).
% plus_int.abs_eq
thf(fact_9538_minus__int_Oabs__eq,axiom,
! [Xa: product_prod_nat_nat,X: product_prod_nat_nat] :
( ( minus_minus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X ) )
= ( abs_Integ
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) )
@ Xa
@ X ) ) ) ).
% minus_int.abs_eq
thf(fact_9539_Gcd__remove0__nat,axiom,
! [M10: set_nat] :
( ( finite_finite_nat @ M10 )
=> ( ( gcd_Gcd_nat @ M10 )
= ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M10 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).
% Gcd_remove0_nat
thf(fact_9540_nth__sorted__list__of__set__greaterThanAtMost,axiom,
! [N: nat,J: nat,I: nat] :
( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ I ) )
=> ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) ) @ N )
= ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).
% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9541_card__greaterThanAtMost,axiom,
! [L: nat,U: nat] :
( ( finite_card_nat @ ( set_or6659071591806873216st_nat @ L @ U ) )
= ( minus_minus_nat @ U @ L ) ) ).
% card_greaterThanAtMost
thf(fact_9542_Gcd__dvd__nat,axiom,
! [A: nat,A2: set_nat] :
( ( member_nat @ A @ A2 )
=> ( dvd_dvd_nat @ ( gcd_Gcd_nat @ A2 ) @ A ) ) ).
% Gcd_dvd_nat
thf(fact_9543_Gcd__greatest__nat,axiom,
! [A2: set_nat,A: nat] :
( ! [B3: nat] :
( ( member_nat @ B3 @ A2 )
=> ( dvd_dvd_nat @ A @ B3 ) )
=> ( dvd_dvd_nat @ A @ ( gcd_Gcd_nat @ A2 ) ) ) ).
% Gcd_greatest_nat
thf(fact_9544_atLeastSucAtMost__greaterThanAtMost,axiom,
! [L: nat,U: nat] :
( ( set_or1269000886237332187st_nat @ ( suc @ L ) @ U )
= ( set_or6659071591806873216st_nat @ L @ U ) ) ).
% atLeastSucAtMost_greaterThanAtMost
thf(fact_9545_greaterThanAtMost__upt,axiom,
( set_or6659071591806873216st_nat
= ( ^ [N4: nat,M5: nat] : ( set_nat2 @ ( upt @ ( suc @ N4 ) @ ( suc @ M5 ) ) ) ) ) ).
% greaterThanAtMost_upt
thf(fact_9546_less__eq__int_Orep__eq,axiom,
( ord_less_eq_int
= ( ^ [X3: int,Xa4: int] :
( produc8739625826339149834_nat_o
@ ^ [Y6: nat,Z5: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y6 @ V4 ) @ ( plus_plus_nat @ U3 @ Z5 ) ) )
@ ( rep_Integ @ X3 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_eq_int.rep_eq
thf(fact_9547_less__int_Orep__eq,axiom,
( ord_less_int
= ( ^ [X3: int,Xa4: int] :
( produc8739625826339149834_nat_o
@ ^ [Y6: nat,Z5: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y6 @ V4 ) @ ( plus_plus_nat @ U3 @ Z5 ) ) )
@ ( rep_Integ @ X3 )
@ ( rep_Integ @ Xa4 ) ) ) ) ).
% less_int.rep_eq
thf(fact_9548_card__greaterThanAtMost__int,axiom,
! [L: int,U: int] :
( ( finite_card_int @ ( set_or6656581121297822940st_int @ L @ U ) )
= ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).
% card_greaterThanAtMost_int
thf(fact_9549_Gcd__dvd__int,axiom,
! [A: int,A2: set_int] :
( ( member_int @ A @ A2 )
=> ( dvd_dvd_int @ ( gcd_Gcd_int @ A2 ) @ A ) ) ).
% Gcd_dvd_int
thf(fact_9550_Gcd__greatest__int,axiom,
! [A2: set_int,A: int] :
( ! [B3: int] :
( ( member_int @ B3 @ A2 )
=> ( dvd_dvd_int @ A @ B3 ) )
=> ( dvd_dvd_int @ A @ ( gcd_Gcd_int @ A2 ) ) ) ).
% Gcd_greatest_int
thf(fact_9551_Gcd__int__greater__eq__0,axiom,
! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Gcd_int @ K5 ) ) ).
% Gcd_int_greater_eq_0
thf(fact_9552_nat_Orep__eq,axiom,
( nat2
= ( ^ [X3: int] : ( produc6842872674320459806at_nat @ minus_minus_nat @ ( rep_Integ @ X3 ) ) ) ) ).
% nat.rep_eq
thf(fact_9553_uminus__int__def,axiom,
( uminus_uminus_int
= ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
@ ( produc2626176000494625587at_nat
@ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) ) ) ) ).
% uminus_int_def
thf(fact_9554_prod__encode__def,axiom,
( nat_prod_encode
= ( produc6842872674320459806at_nat
@ ^ [M5: nat,N4: nat] : ( plus_plus_nat @ ( nat_triangle @ ( plus_plus_nat @ M5 @ N4 ) ) @ M5 ) ) ) ).
% prod_encode_def
thf(fact_9555_num__of__nat_Osimps_I2_J,axiom,
! [N: nat] :
( ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= ( inc @ ( num_of_nat @ N ) ) ) )
& ( ~ ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( suc @ N ) )
= one ) ) ) ).
% num_of_nat.simps(2)
thf(fact_9556_prod__encode__eq,axiom,
! [X: product_prod_nat_nat,Y4: product_prod_nat_nat] :
( ( ( nat_prod_encode @ X )
= ( nat_prod_encode @ Y4 ) )
= ( X = Y4 ) ) ).
% prod_encode_eq
thf(fact_9557_num__of__nat__numeral__eq,axiom,
! [Q2: num] :
( ( num_of_nat @ ( numeral_numeral_nat @ Q2 ) )
= Q2 ) ).
% num_of_nat_numeral_eq
thf(fact_9558_num__of__nat_Osimps_I1_J,axiom,
( ( num_of_nat @ zero_zero_nat )
= one ) ).
% num_of_nat.simps(1)
thf(fact_9559_le__prod__encode__1,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).
% le_prod_encode_1
thf(fact_9560_le__prod__encode__2,axiom,
! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).
% le_prod_encode_2
thf(fact_9561_numeral__num__of__nat,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( numeral_numeral_nat @ ( num_of_nat @ N ) )
= N ) ) ).
% numeral_num_of_nat
thf(fact_9562_num__of__nat__One,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ one_one_nat )
=> ( ( num_of_nat @ N )
= one ) ) ).
% num_of_nat_One
thf(fact_9563_num__of__nat__double,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( plus_plus_nat @ N @ N ) )
= ( bit0 @ ( num_of_nat @ N ) ) ) ) ).
% num_of_nat_double
thf(fact_9564_num__of__nat__plus__distrib,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( num_of_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N ) ) ) ) ) ).
% num_of_nat_plus_distrib
thf(fact_9565_prod__encode__prod__decode__aux,axiom,
! [K: nat,M: nat] :
( ( nat_prod_encode @ ( nat_prod_decode_aux @ K @ M ) )
= ( plus_plus_nat @ ( nat_triangle @ K ) @ M ) ) ).
% prod_encode_prod_decode_aux
thf(fact_9566_times__int__def,axiom,
( times_times_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) ) ) ) ).
% times_int_def
thf(fact_9567_minus__int__def,axiom,
( minus_minus_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) ) ) ) ).
% minus_int_def
thf(fact_9568_plus__int__def,axiom,
( plus_plus_int
= ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) ) ) ) ).
% plus_int_def
thf(fact_9569_pred__nat__def,axiom,
( pred_nat
= ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [M5: nat,N4: nat] :
( N4
= ( suc @ M5 ) ) ) ) ) ).
% pred_nat_def
thf(fact_9570_pow_Osimps_I3_J,axiom,
! [X: num,Y4: num] :
( ( pow @ X @ ( bit1 @ Y4 ) )
= ( times_times_num @ ( sqr @ ( pow @ X @ Y4 ) ) @ X ) ) ).
% pow.simps(3)
thf(fact_9571_image__minus__const__atLeastLessThan__nat,axiom,
! [C: nat,Y4: nat,X: nat] :
( ( ( ord_less_nat @ C @ Y4 )
=> ( ( image_nat_nat
@ ^ [I2: nat] : ( minus_minus_nat @ I2 @ C )
@ ( set_or4665077453230672383an_nat @ X @ Y4 ) )
= ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X @ C ) @ ( minus_minus_nat @ Y4 @ C ) ) ) )
& ( ~ ( ord_less_nat @ C @ Y4 )
=> ( ( ( ord_less_nat @ X @ Y4 )
=> ( ( image_nat_nat
@ ^ [I2: nat] : ( minus_minus_nat @ I2 @ C )
@ ( set_or4665077453230672383an_nat @ X @ Y4 ) )
= ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
& ( ~ ( ord_less_nat @ X @ Y4 )
=> ( ( image_nat_nat
@ ^ [I2: nat] : ( minus_minus_nat @ I2 @ C )
@ ( set_or4665077453230672383an_nat @ X @ Y4 ) )
= bot_bot_set_nat ) ) ) ) ) ).
% image_minus_const_atLeastLessThan_nat
thf(fact_9572_bij__betw__Suc,axiom,
! [M10: set_nat,N5: set_nat] :
( ( bij_betw_nat_nat @ suc @ M10 @ N5 )
= ( ( image_nat_nat @ suc @ M10 )
= N5 ) ) ).
% bij_betw_Suc
thf(fact_9573_image__Suc__atLeastAtMost,axiom,
! [I: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ I @ J ) )
= ( set_or1269000886237332187st_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastAtMost
thf(fact_9574_image__Suc__atLeastLessThan,axiom,
! [I: nat,J: nat] :
( ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ I @ J ) )
= ( set_or4665077453230672383an_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).
% image_Suc_atLeastLessThan
thf(fact_9575_sqr_Osimps_I2_J,axiom,
! [N: num] :
( ( sqr @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( sqr @ N ) ) ) ) ).
% sqr.simps(2)
thf(fact_9576_sqr_Osimps_I1_J,axiom,
( ( sqr @ one )
= one ) ).
% sqr.simps(1)
thf(fact_9577_zero__notin__Suc__image,axiom,
! [A2: set_nat] :
~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).
% zero_notin_Suc_image
thf(fact_9578_sqr__conv__mult,axiom,
( sqr
= ( ^ [X3: num] : ( times_times_num @ X3 @ X3 ) ) ) ).
% sqr_conv_mult
thf(fact_9579_image__Suc__lessThan,axiom,
! [N: nat] :
( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ).
% image_Suc_lessThan
thf(fact_9580_image__Suc__atMost,axiom,
! [N: nat] :
( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) )
= ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N ) ) ) ).
% image_Suc_atMost
thf(fact_9581_atLeast0__atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ) ).
% atLeast0_atMost_Suc_eq_insert_0
thf(fact_9582_atLeast0__lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ).
% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9583_lessThan__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_lessThan_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) ) ) ) ).
% lessThan_Suc_eq_insert_0
thf(fact_9584_atMost__Suc__eq__insert__0,axiom,
! [N: nat] :
( ( set_ord_atMost_nat @ ( suc @ N ) )
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) ) ) ) ).
% atMost_Suc_eq_insert_0
thf(fact_9585_pow_Osimps_I2_J,axiom,
! [X: num,Y4: num] :
( ( pow @ X @ ( bit0 @ Y4 ) )
= ( sqr @ ( pow @ X @ Y4 ) ) ) ).
% pow.simps(2)
thf(fact_9586_sqr_Osimps_I3_J,axiom,
! [N: num] :
( ( sqr @ ( bit1 @ N ) )
= ( bit1 @ ( bit0 @ ( plus_plus_num @ ( sqr @ N ) @ N ) ) ) ) ).
% sqr.simps(3)
thf(fact_9587_Gcd__int__eq,axiom,
! [N5: set_nat] :
( ( gcd_Gcd_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N5 ) )
= ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ N5 ) ) ) ).
% Gcd_int_eq
thf(fact_9588_Inf__real__def,axiom,
( comple4887499456419720421f_real
= ( ^ [X8: set_real] : ( uminus_uminus_real @ ( comple1385675409528146559p_real @ ( image_real_real @ uminus_uminus_real @ X8 ) ) ) ) ) ).
% Inf_real_def
thf(fact_9589_finite__int__iff__bounded,axiom,
( finite_finite_int
= ( ^ [S5: set_int] :
? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_lessThan_int @ K3 ) ) ) ) ).
% finite_int_iff_bounded
thf(fact_9590_finite__int__iff__bounded__le,axiom,
( finite_finite_int
= ( ^ [S5: set_int] :
? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_atMost_int @ K3 ) ) ) ) ).
% finite_int_iff_bounded_le
thf(fact_9591_image__int__atLeastAtMost,axiom,
! [A: nat,B: nat] :
( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ A @ B ) )
= ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% image_int_atLeastAtMost
thf(fact_9592_image__int__atLeastLessThan,axiom,
! [A: nat,B: nat] :
( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or4665077453230672383an_nat @ A @ B ) )
= ( set_or4662586982721622107an_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% image_int_atLeastLessThan
thf(fact_9593_image__add__int__atLeastLessThan,axiom,
! [L: int,U: int] :
( ( image_int_int
@ ^ [X3: int] : ( plus_plus_int @ X3 @ L )
@ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L ) ) )
= ( set_or4662586982721622107an_int @ L @ U ) ) ).
% image_add_int_atLeastLessThan
thf(fact_9594_Gcd__int__def,axiom,
( gcd_Gcd_int
= ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).
% Gcd_int_def
thf(fact_9595_image__atLeastZeroLessThan__int,axiom,
! [U: int] :
( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
= ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).
% image_atLeastZeroLessThan_int
thf(fact_9596_range__mod,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( image_nat_nat
@ ^ [M5: nat] : ( modulo_modulo_nat @ M5 @ N )
@ top_top_set_nat )
= ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).
% range_mod
thf(fact_9597_suminf__eq__SUP__real,axiom,
! [X9: nat > real] :
( ( summable_real @ X9 )
=> ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( X9 @ I3 ) )
=> ( ( suminf_real @ X9 )
= ( comple1385675409528146559p_real
@ ( image_nat_real
@ ^ [I2: nat] : ( groups6591440286371151544t_real @ X9 @ ( set_ord_lessThan_nat @ I2 ) )
@ top_top_set_nat ) ) ) ) ) ).
% suminf_eq_SUP_real
thf(fact_9598_UNIV__nat__eq,axiom,
( top_top_set_nat
= ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).
% UNIV_nat_eq
thf(fact_9599_measure__function__int,axiom,
fun_is_measure_int @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) ).
% measure_function_int
thf(fact_9600_card__UNIV__bool,axiom,
( ( finite_card_o @ top_top_set_o )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% card_UNIV_bool
thf(fact_9601_range__mult,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
& ( ( A != zero_zero_real )
=> ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
= top_top_set_real ) ) ) ).
% range_mult
thf(fact_9602_infinite__UNIV__int,axiom,
~ ( finite_finite_int @ top_top_set_int ) ).
% infinite_UNIV_int
thf(fact_9603_bij__prod__encode,axiom,
bij_be5333170631980326235at_nat @ nat_prod_encode @ top_to4669805908274784177at_nat @ top_top_set_nat ).
% bij_prod_encode
thf(fact_9604_surj__prod__encode,axiom,
( ( image_2486076414777270412at_nat @ nat_prod_encode @ top_to4669805908274784177at_nat )
= top_top_set_nat ) ).
% surj_prod_encode
thf(fact_9605_int__in__range__abs,axiom,
! [N: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N ) @ ( image_int_int @ abs_abs_int @ top_top_set_int ) ) ).
% int_in_range_abs
thf(fact_9606_root__def,axiom,
( root
= ( ^ [N4: nat,X3: real] :
( if_real @ ( N4 = zero_zero_nat ) @ zero_zero_real
@ ( the_in5290026491893676941l_real @ top_top_set_real
@ ^ [Y6: real] : ( times_times_real @ ( sgn_sgn_real @ Y6 ) @ ( power_power_real @ ( abs_abs_real @ Y6 ) @ N4 ) )
@ X3 ) ) ) ) ).
% root_def
thf(fact_9607_card__UNIV__char,axiom,
( ( finite_card_char @ top_top_set_char )
= ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% card_UNIV_char
thf(fact_9608_UNIV__bool,axiom,
( top_top_set_o
= ( insert_o @ $false @ ( insert_o @ $true @ bot_bot_set_o ) ) ) ).
% UNIV_bool
thf(fact_9609_UNIV__char__of__nat,axiom,
( top_top_set_char
= ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).
% UNIV_char_of_nat
thf(fact_9610_char_Osize_I2_J,axiom,
! [X1: $o,X2: $o,X33: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_size_char @ ( char2 @ X1 @ X2 @ X33 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= zero_zero_nat ) ).
% char.size(2)
thf(fact_9611_nat__of__char__less__256,axiom,
! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% nat_of_char_less_256
thf(fact_9612_range__nat__of__char,axiom,
( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
= ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).
% range_nat_of_char
thf(fact_9613_integer__of__char__code,axiom,
! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
= ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).
% integer_of_char_code
thf(fact_9614_char_Osize__gen,axiom,
! [X1: $o,X2: $o,X33: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
( ( size_char @ ( char2 @ X1 @ X2 @ X33 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
= zero_zero_nat ) ).
% char.size_gen
thf(fact_9615_String_Ochar__of__ascii__of,axiom,
! [C: char] :
( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
= ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).
% String.char_of_ascii_of
thf(fact_9616_DERIV__real__root__generic,axiom,
! [N: nat,X: real,D3: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( X != zero_zero_real )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( D3
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( D3
= ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
=> ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( D3
= ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).
% DERIV_real_root_generic
thf(fact_9617_has__real__derivative__neg__dec__right,axiom,
! [F: real > real,L: real,X: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( member_real @ ( plus_plus_real @ X @ H2 ) @ S )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_right
thf(fact_9618_has__real__derivative__pos__inc__right,axiom,
! [F: real > real,L: real,X: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( member_real @ ( plus_plus_real @ X @ H2 ) @ S )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H2 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_right
thf(fact_9619_has__real__derivative__pos__inc__left,axiom,
! [F: real > real,L: real,X: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( member_real @ ( minus_minus_real @ X @ H2 ) @ S )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).
% has_real_derivative_pos_inc_left
thf(fact_9620_has__real__derivative__neg__dec__left,axiom,
! [F: real > real,L: real,X: real,S: set_real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ S ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( member_real @ ( minus_minus_real @ X @ H2 ) @ S )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H2 ) ) ) ) ) ) ) ) ) ).
% has_real_derivative_neg_dec_left
thf(fact_9621_deriv__nonneg__imp__mono,axiom,
! [A: real,B: real,G: real > real,G2: real > real] :
( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X4 ) ) )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).
% deriv_nonneg_imp_mono
thf(fact_9622_DERIV__nonneg__imp__nondecreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_eq_real @ zero_zero_real @ Y3 ) ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).
% DERIV_nonneg_imp_nondecreasing
thf(fact_9623_DERIV__nonpos__imp__nonincreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_eq_real @ Y3 @ zero_zero_real ) ) ) )
=> ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).
% DERIV_nonpos_imp_nonincreasing
thf(fact_9624_DERIV__pos__imp__increasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y3 ) ) ) )
=> ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing
thf(fact_9625_DERIV__neg__imp__decreasing,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ Y3 @ zero_zero_real ) ) ) )
=> ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).
% DERIV_neg_imp_decreasing
thf(fact_9626_DERIV__isconst__all,axiom,
! [F: real > real,X: real,Y4: real] :
( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ( ( F @ X )
= ( F @ Y4 ) ) ) ).
% DERIV_isconst_all
thf(fact_9627_DERIV__pos__inc__right,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H2 ) ) ) ) ) ) ) ) ).
% DERIV_pos_inc_right
thf(fact_9628_DERIV__neg__dec__right,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ).
% DERIV_neg_dec_right
thf(fact_9629_DERIV__const__ratio__const2,axiom,
! [A: real,B: real,F: real > real,K: real] :
( ( A != B )
=> ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ( ( divide_divide_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( minus_minus_real @ B @ A ) )
= K ) ) ) ).
% DERIV_const_ratio_const2
thf(fact_9630_DERIV__const__ratio__const,axiom,
! [A: real,B: real,F: real > real,K: real] :
( ( A != B )
=> ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ K ) ) ) ) ).
% DERIV_const_ratio_const
thf(fact_9631_DERIV__pos__inc__left,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H2 ) ) @ ( F @ X ) ) ) ) ) ) ) ).
% DERIV_pos_inc_left
thf(fact_9632_DERIV__neg__dec__left,axiom,
! [F: real > real,L: real,X: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [D2: real] :
( ( ord_less_real @ zero_zero_real @ D2 )
& ! [H2: real] :
( ( ord_less_real @ zero_zero_real @ H2 )
=> ( ( ord_less_real @ H2 @ D2 )
=> ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H2 ) ) ) ) ) ) ) ) ).
% DERIV_neg_dec_left
thf(fact_9633_DERIV__isconst3,axiom,
! [A: real,B: real,X: real,Y4: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( member_real @ X @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( member_real @ Y4 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ( ( F @ X )
= ( F @ Y4 ) ) ) ) ) ) ).
% DERIV_isconst3
thf(fact_9634_MVT2,axiom,
! [A: real,B: real,F: real > real,F2: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
=> ( ( ord_less_eq_real @ X4 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F2 @ Z2 ) ) ) ) ) ) ).
% MVT2
thf(fact_9635_DERIV__local__const,axiom,
! [F: real > real,L: real,X: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y ) ) @ D )
=> ( ( F @ X )
= ( F @ Y ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_const
thf(fact_9636_DERIV__ln,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ ln_ln_real @ ( inverse_inverse_real @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_ln
thf(fact_9637_DERIV__const__average,axiom,
! [A: real,B: real,V: real > real,K: real] :
( ( A != B )
=> ( ! [X4: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% DERIV_const_average
thf(fact_9638_DERIV__local__min,axiom,
! [F: real > real,L: real,X: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y ) ) @ D )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_min
thf(fact_9639_DERIV__local__max,axiom,
! [F: real > real,L: real,X: real,D: real] :
( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Y: real] :
( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y ) ) @ D )
=> ( ord_less_eq_real @ ( F @ Y ) @ ( F @ X ) ) )
=> ( L = zero_zero_real ) ) ) ) ).
% DERIV_local_max
thf(fact_9640_DERIV__ln__divide,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_ln_divide
thf(fact_9641_DERIV__pow,axiom,
! [N: nat,X: real,S2: set_real] :
( has_fi5821293074295781190e_real
@ ^ [X3: real] : ( power_power_real @ X3 @ N )
@ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ X @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
@ ( topolo2177554685111907308n_real @ X @ S2 ) ) ).
% DERIV_pow
thf(fact_9642_DERIV__fun__pow,axiom,
! [G: real > real,M: real,X: real,N: nat] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X3: real] : ( power_power_real @ ( G @ X3 ) @ N )
@ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( G @ X ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ M )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_fun_pow
thf(fact_9643_has__real__derivative__powr,axiom,
! [Z: real,R2: real] :
( ( ord_less_real @ zero_zero_real @ Z )
=> ( has_fi5821293074295781190e_real
@ ^ [Z5: real] : ( powr_real @ Z5 @ R2 )
@ ( times_times_real @ R2 @ ( powr_real @ Z @ ( minus_minus_real @ R2 @ one_one_real ) ) )
@ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) ).
% has_real_derivative_powr
thf(fact_9644_DERIV__series_H,axiom,
! [F: real > nat > real,F2: real > nat > real,X0: real,A: real,B: real,L4: nat > real] :
( ! [N2: nat] :
( has_fi5821293074295781190e_real
@ ^ [X3: real] : ( F @ X3 @ N2 )
@ ( F2 @ X0 @ N2 )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( summable_real @ ( F @ X4 ) ) )
=> ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( summable_real @ ( F2 @ X0 ) )
=> ( ( summable_real @ L4 )
=> ( ! [N2: nat,X4: real,Y: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ( member_real @ Y @ ( set_or1633881224788618240n_real @ A @ B ) )
=> ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X4 @ N2 ) @ ( F @ Y @ N2 ) ) ) @ ( times_times_real @ ( L4 @ N2 ) @ ( abs_abs_real @ ( minus_minus_real @ X4 @ Y ) ) ) ) ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X3: real] : ( suminf_real @ ( F @ X3 ) )
@ ( suminf_real @ ( F2 @ X0 ) )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).
% DERIV_series'
thf(fact_9645_DERIV__log,axiom,
! [X: real,B: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_log
thf(fact_9646_DERIV__fun__powr,axiom,
! [G: real > real,M: real,X: real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X3: real] : ( powr_real @ ( G @ X3 ) @ R2 )
@ ( times_times_real @ ( times_times_real @ R2 @ ( powr_real @ ( G @ X ) @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_fun_powr
thf(fact_9647_DERIV__powr,axiom,
! [G: real > real,M: real,X: real,F: real > real,R2: real] :
( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
=> ( ( has_fi5821293074295781190e_real @ F @ R2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( has_fi5821293074295781190e_real
@ ^ [X3: real] : ( powr_real @ ( G @ X3 ) @ ( F @ X3 ) )
@ ( times_times_real @ ( powr_real @ ( G @ X ) @ ( F @ X ) ) @ ( plus_plus_real @ ( times_times_real @ R2 @ ( ln_ln_real @ ( G @ X ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X ) ) @ ( G @ X ) ) ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).
% DERIV_powr
thf(fact_9648_artanh__real__has__field__derivative,axiom,
! [X: real,A2: set_real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).
% artanh_real_has_field_derivative
thf(fact_9649_DERIV__real__sqrt,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_real_sqrt
thf(fact_9650_DERIV__arctan,axiom,
! [X: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ).
% DERIV_arctan
thf(fact_9651_arsinh__real__has__field__derivative,axiom,
! [X: real,A2: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ).
% arsinh_real_has_field_derivative
thf(fact_9652_DERIV__real__sqrt__generic,axiom,
! [X: real,D3: real] :
( ( X != zero_zero_real )
=> ( ( ( ord_less_real @ zero_zero_real @ X )
=> ( D3
= ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( ( ( ord_less_real @ X @ zero_zero_real )
=> ( D3
= ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
=> ( has_fi5821293074295781190e_real @ sqrt @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).
% DERIV_real_sqrt_generic
thf(fact_9653_arcosh__real__has__field__derivative,axiom,
! [X: real,A2: set_real] :
( ( ord_less_real @ one_one_real @ X )
=> ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).
% arcosh_real_has_field_derivative
thf(fact_9654_DERIV__power__series_H,axiom,
! [R: real,F: nat > real,X0: real] :
( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( summable_real
@ ^ [N4: nat] : ( times_times_real @ ( times_times_real @ ( F @ N4 ) @ ( semiri5074537144036343181t_real @ ( suc @ N4 ) ) ) @ ( power_power_real @ X4 @ N4 ) ) ) )
=> ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
=> ( ( ord_less_real @ zero_zero_real @ R )
=> ( has_fi5821293074295781190e_real
@ ^ [X3: real] :
( suminf_real
@ ^ [N4: nat] : ( times_times_real @ ( F @ N4 ) @ ( power_power_real @ X3 @ ( suc @ N4 ) ) ) )
@ ( suminf_real
@ ^ [N4: nat] : ( times_times_real @ ( times_times_real @ ( F @ N4 ) @ ( semiri5074537144036343181t_real @ ( suc @ N4 ) ) ) @ ( power_power_real @ X0 @ N4 ) ) )
@ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).
% DERIV_power_series'
thf(fact_9655_DERIV__real__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_real_root
thf(fact_9656_DERIV__arccos,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_arccos
thf(fact_9657_DERIV__arcsin,axiom,
! [X: real] :
( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_arcsin
thf(fact_9658_Maclaurin__all__le__objl,axiom,
! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
( ( ( ( Diff @ zero_zero_nat )
= F )
& ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ? [T3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ).
% Maclaurin_all_le_objl
thf(fact_9659_Maclaurin__all__le,axiom,
! [Diff: nat > real > real,F: real > real,X: real,N: nat] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ? [T3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_all_le
thf(fact_9660_DERIV__odd__real__root,axiom,
! [N: nat,X: real] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( X != zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).
% DERIV_odd_real_root
thf(fact_9661_Maclaurin__minus,axiom,
! [H: real,N: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ H @ zero_zero_real )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ H @ T3 )
& ( ord_less_eq_real @ T3 @ zero_zero_real ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ? [T3: real] :
( ( ord_less_real @ H @ T3 )
& ( ord_less_real @ T3 @ zero_zero_real )
& ( ( F @ H )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_minus
thf(fact_9662_Maclaurin2,axiom,
! [H: real,Diff: nat > real > real,F: real > real,N: nat] :
( ( ord_less_real @ zero_zero_real @ H )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ H ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ? [T3: real] :
( ( ord_less_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ H )
& ( ( F @ H )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H @ N ) ) ) ) ) ) ) ) ).
% Maclaurin2
thf(fact_9663_Maclaurin,axiom,
! [H: real,N: nat,Diff: nat > real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ H )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ H ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ? [T3: real] :
( ( ord_less_real @ zero_zero_real @ T3 )
& ( ord_less_real @ T3 @ H )
& ( ( F @ H )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ H @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin
thf(fact_9664_Maclaurin__all__lt,axiom,
! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( X != zero_zero_real )
=> ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ? [T3: real] :
( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
& ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ) ) ).
% Maclaurin_all_lt
thf(fact_9665_Maclaurin__bi__le,axiom,
! [Diff: nat > real > real,F: real > real,N: nat,X: real] :
( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ? [T3: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ X @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X @ N ) ) ) ) ) ) ) ).
% Maclaurin_bi_le
thf(fact_9666_Taylor__down,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ A @ T3 )
& ( ord_less_eq_real @ T3 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ( ( ord_less_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ? [T3: real] :
( ( ord_less_real @ A @ T3 )
& ( ord_less_real @ T3 @ C )
& ( ( F @ A )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ C ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_down
thf(fact_9667_Taylor__up,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ A @ T3 )
& ( ord_less_eq_real @ T3 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_real @ C @ B )
=> ? [T3: real] :
( ( ord_less_real @ C @ T3 )
& ( ord_less_real @ T3 @ B )
& ( ( F @ B )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ C ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).
% Taylor_up
thf(fact_9668_Taylor,axiom,
! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( Diff @ zero_zero_nat )
= F )
=> ( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ A @ T3 )
& ( ord_less_eq_real @ T3 @ B ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ( ( ord_less_eq_real @ A @ C )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ( ord_less_eq_real @ A @ X )
=> ( ( ord_less_eq_real @ X @ B )
=> ( ( X != C )
=> ? [T3: real] :
( ( ( ord_less_real @ X @ C )
=> ( ( ord_less_real @ X @ T3 )
& ( ord_less_real @ T3 @ C ) ) )
& ( ~ ( ord_less_real @ X @ C )
=> ( ( ord_less_real @ C @ T3 )
& ( ord_less_real @ T3 @ X ) ) )
& ( ( F @ X )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [M5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M5 @ C ) @ ( semiri2265585572941072030t_real @ M5 ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ M5 ) )
@ ( set_ord_lessThan_nat @ N ) )
@ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% Taylor
thf(fact_9669_Maclaurin__lemma2,axiom,
! [N: nat,H: real,Diff: nat > real > real,K: nat,B4: real] :
( ! [M4: nat,T3: real] :
( ( ( ord_less_nat @ M4 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T3 )
& ( ord_less_eq_real @ T3 @ H ) )
=> ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
=> ( ( N
= ( suc @ K ) )
=> ! [M2: nat,T4: real] :
( ( ( ord_less_nat @ M2 @ N )
& ( ord_less_eq_real @ zero_zero_real @ T4 )
& ( ord_less_eq_real @ T4 @ H ) )
=> ( has_fi5821293074295781190e_real
@ ^ [U3: real] :
( minus_minus_real @ ( Diff @ M2 @ U3 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M2 @ P6 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P6 ) ) @ ( power_power_real @ U3 @ P6 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ M2 ) ) )
@ ( times_times_real @ B4 @ ( divide_divide_real @ ( power_power_real @ U3 @ ( minus_minus_nat @ N @ M2 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ M2 ) ) ) ) ) )
@ ( minus_minus_real @ ( Diff @ ( suc @ M2 ) @ T4 )
@ ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [P6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M2 ) @ P6 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P6 ) ) @ ( power_power_real @ T4 @ P6 ) )
@ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) )
@ ( times_times_real @ B4 @ ( divide_divide_real @ ( power_power_real @ T4 @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ T4 @ top_top_set_real ) ) ) ) ) ).
% Maclaurin_lemma2
thf(fact_9670_DERIV__arctan__series,axiom,
! [X: real] :
( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( has_fi5821293074295781190e_real
@ ^ [X10: real] :
( suminf_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X10 @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
@ ( suminf_real
@ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( power_power_real @ X @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).
% DERIV_arctan_series
thf(fact_9671_DERIV__even__real__root,axiom,
! [N: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( ord_less_real @ X @ zero_zero_real )
=> ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ ( power_power_real @ ( root @ N @ X ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).
% DERIV_even_real_root
thf(fact_9672_isCont__Lb__Ub,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
=> ? [L5: real,M8: real] :
( ! [X5: real] :
( ( ( ord_less_eq_real @ A @ X5 )
& ( ord_less_eq_real @ X5 @ B ) )
=> ( ( ord_less_eq_real @ L5 @ ( F @ X5 ) )
& ( ord_less_eq_real @ ( F @ X5 ) @ M8 ) ) )
& ! [Y3: real] :
( ( ( ord_less_eq_real @ L5 @ Y3 )
& ( ord_less_eq_real @ Y3 @ M8 ) )
=> ? [X4: real] :
( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B )
& ( ( F @ X4 )
= Y3 ) ) ) ) ) ) ).
% isCont_Lb_Ub
thf(fact_9673_LIM__fun__less__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ L @ zero_zero_real )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X5: real] :
( ( ( X5 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X5 ) ) @ R3 ) )
=> ( ord_less_real @ ( F @ X5 ) @ zero_zero_real ) ) ) ) ) ).
% LIM_fun_less_zero
thf(fact_9674_LIM__fun__not__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( L != zero_zero_real )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X5: real] :
( ( ( X5 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X5 ) ) @ R3 ) )
=> ( ( F @ X5 )
!= zero_zero_real ) ) ) ) ) ).
% LIM_fun_not_zero
thf(fact_9675_LIM__fun__gt__zero,axiom,
! [F: real > real,L: real,C: real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
=> ( ( ord_less_real @ zero_zero_real @ L )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ! [X5: real] :
( ( ( X5 != C )
& ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X5 ) ) @ R3 ) )
=> ( ord_less_real @ zero_zero_real @ ( F @ X5 ) ) ) ) ) ) ).
% LIM_fun_gt_zero
thf(fact_9676_isCont__real__sqrt,axiom,
! [X: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ sqrt ) ).
% isCont_real_sqrt
thf(fact_9677_isCont__real__root,axiom,
! [X: real,N: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ ( root @ N ) ) ).
% isCont_real_root
thf(fact_9678_isCont__inverse__function2,axiom,
! [A: real,X: real,B: real,G: real > real,F: real > real] :
( ( ord_less_real @ A @ X )
=> ( ( ord_less_real @ X @ B )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( ( G @ ( F @ Z2 ) )
= Z2 ) ) )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ F ) ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ) ).
% isCont_inverse_function2
thf(fact_9679_isCont__ln,axiom,
! [X: real] :
( ( X != zero_zero_real )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ ln_ln_real ) ) ).
% isCont_ln
thf(fact_9680_LIM__cos__div__sin,axiom,
( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( cos_real @ X3 ) @ ( sin_real @ X3 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).
% LIM_cos_div_sin
thf(fact_9681_DERIV__inverse__function,axiom,
! [F: real > real,D3: real,G: real > real,X: real,A: real,B: real] :
( ( has_fi5821293074295781190e_real @ F @ D3 @ ( topolo2177554685111907308n_real @ ( G @ X ) @ top_top_set_real ) )
=> ( ( D3 != zero_zero_real )
=> ( ( ord_less_real @ A @ X )
=> ( ( ord_less_real @ X @ B )
=> ( ! [Y: real] :
( ( ord_less_real @ A @ Y )
=> ( ( ord_less_real @ Y @ B )
=> ( ( F @ ( G @ Y ) )
= Y ) ) )
=> ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ G )
=> ( has_fi5821293074295781190e_real @ G @ ( inverse_inverse_real @ D3 ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ) ).
% DERIV_inverse_function
thf(fact_9682_LIM__less__bound,axiom,
! [B: real,X: real,F: real > real] :
( ( ord_less_real @ B @ X )
=> ( ! [X4: real] :
( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ B @ X ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
=> ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ F )
=> ( ord_less_eq_real @ zero_zero_real @ ( F @ X ) ) ) ) ) ).
% LIM_less_bound
thf(fact_9683_isCont__inverse__function,axiom,
! [D: real,X: real,G: real > real,F: real > real] :
( ( ord_less_real @ zero_zero_real @ D )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ X ) ) @ D )
=> ( ( G @ ( F @ Z2 ) )
= Z2 ) )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z2 @ X ) ) @ D )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ F ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ).
% isCont_inverse_function
thf(fact_9684_GMVT_H,axiom,
! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F2: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ F ) ) )
=> ( ! [Z2: real] :
( ( ord_less_eq_real @ A @ Z2 )
=> ( ( ord_less_eq_real @ Z2 @ B )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) @ G ) ) )
=> ( ! [Z2: real] :
( ( ord_less_real @ A @ Z2 )
=> ( ( ord_less_real @ Z2 @ B )
=> ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z2 ) @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) )
=> ( ! [Z2: real] :
( ( ord_less_real @ A @ Z2 )
=> ( ( ord_less_real @ Z2 @ B )
=> ( has_fi5821293074295781190e_real @ F @ ( F2 @ Z2 ) @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) )
=> ? [C3: real] :
( ( ord_less_real @ A @ C3 )
& ( ord_less_real @ C3 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C3 ) )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F2 @ C3 ) ) ) ) ) ) ) ) ) ).
% GMVT'
thf(fact_9685_summable__Leibniz_I3_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
=> ! [N6: nat] :
( member_real
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) ) ) ) ) ) ) ).
% summable_Leibniz(3)
thf(fact_9686_summable__Leibniz_I2_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
=> ! [N6: nat] :
( member_real
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) )
@ ( set_or1222579329274155063t_real
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) ) ) ) ) ) ) ).
% summable_Leibniz(2)
thf(fact_9687_filterlim__Suc,axiom,
filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).
% filterlim_Suc
thf(fact_9688_mult__nat__right__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat
@ ^ [X3: nat] : ( times_times_nat @ X3 @ C )
@ at_top_nat
@ at_top_nat ) ) ).
% mult_nat_right_at_top
thf(fact_9689_mult__nat__left__at__top,axiom,
! [C: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).
% mult_nat_left_at_top
thf(fact_9690_monoseq__convergent,axiom,
! [X9: nat > real,B4: real] :
( ( topolo6980174941875973593q_real @ X9 )
=> ( ! [I3: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X9 @ I3 ) ) @ B4 )
=> ~ ! [L5: real] :
~ ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L5 ) @ at_top_nat ) ) ) ).
% monoseq_convergent
thf(fact_9691_LIMSEQ__root,axiom,
( filterlim_nat_real
@ ^ [N4: nat] : ( root @ N4 @ ( semiri5074537144036343181t_real @ N4 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ).
% LIMSEQ_root
thf(fact_9692_nested__sequence__unique,axiom,
! [F: nat > real,G: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N2 ) ) @ ( G @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( G @ N2 ) )
=> ( ( filterlim_nat_real
@ ^ [N4: nat] : ( minus_minus_real @ ( F @ N4 ) @ ( G @ N4 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat )
=> ? [L2: real] :
( ! [N6: nat] : ( ord_less_eq_real @ ( F @ N6 ) @ L2 )
& ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat )
& ! [N6: nat] : ( ord_less_eq_real @ L2 @ ( G @ N6 ) )
& ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat ) ) ) ) ) ) ).
% nested_sequence_unique
thf(fact_9693_LIMSEQ__inverse__zero,axiom,
! [X9: nat > real] :
( ! [R3: real] :
? [N7: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ N7 @ N2 )
=> ( ord_less_real @ R3 @ ( X9 @ N2 ) ) )
=> ( filterlim_nat_real
@ ^ [N4: nat] : ( inverse_inverse_real @ ( X9 @ N4 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_zero
thf(fact_9694_lim__inverse__n_H,axiom,
( filterlim_nat_real
@ ^ [N4: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N4 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% lim_inverse_n'
thf(fact_9695_LIMSEQ__root__const,axiom,
! [C: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( filterlim_nat_real
@ ^ [N4: nat] : ( root @ N4 @ C )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat ) ) ).
% LIMSEQ_root_const
thf(fact_9696_LIMSEQ__inverse__real__of__nat,axiom,
( filterlim_nat_real
@ ^ [N4: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N4 ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat
thf(fact_9697_LIMSEQ__inverse__real__of__nat__add,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N4: nat] : ( plus_plus_real @ R2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N4 ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add
thf(fact_9698_increasing__LIMSEQ,axiom,
! [F: nat > real,L: real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ L )
=> ( ! [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
=> ? [N6: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F @ N6 ) @ E ) ) )
=> ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).
% increasing_LIMSEQ
thf(fact_9699_LIMSEQ__realpow__zero,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ X ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).
% LIMSEQ_realpow_zero
thf(fact_9700_LIMSEQ__divide__realpow__zero,axiom,
! [X: real,A: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( filterlim_nat_real
@ ^ [N4: nat] : ( divide_divide_real @ A @ ( power_power_real @ X @ N4 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_divide_realpow_zero
thf(fact_9701_LIMSEQ__abs__realpow__zero,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero
thf(fact_9702_LIMSEQ__abs__realpow__zero2,axiom,
! [C: real] :
( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
=> ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).
% LIMSEQ_abs_realpow_zero2
thf(fact_9703_LIMSEQ__inverse__realpow__zero,axiom,
! [X: real] :
( ( ord_less_real @ one_one_real @ X )
=> ( filterlim_nat_real
@ ^ [N4: nat] : ( inverse_inverse_real @ ( power_power_real @ X @ N4 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% LIMSEQ_inverse_realpow_zero
thf(fact_9704_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N4: nat] : ( plus_plus_real @ R2 @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N4 ) ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_9705_tendsto__exp__limit__sequentially,axiom,
! [X: real] :
( filterlim_nat_real
@ ^ [N4: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N4 ) ) ) @ N4 )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
@ at_top_nat ) ).
% tendsto_exp_limit_sequentially
thf(fact_9706_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
! [R2: real] :
( filterlim_nat_real
@ ^ [N4: nat] : ( times_times_real @ R2 @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N4 ) ) ) ) ) )
@ ( topolo2815343760600316023s_real @ R2 )
@ at_top_nat ) ).
% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_9707_summable__Leibniz_I1_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( summable_real
@ ^ [N4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N4 ) @ ( A @ N4 ) ) ) ) ) ).
% summable_Leibniz(1)
thf(fact_9708_summable,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( summable_real
@ ^ [N4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N4 ) @ ( A @ N4 ) ) ) ) ) ) ).
% summable
thf(fact_9709_cos__diff__limit__1,axiom,
! [Theta: nat > real,Theta2: real] :
( ( filterlim_nat_real
@ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat )
=> ~ ! [K2: nat > int] :
~ ( filterlim_nat_real
@ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
@ ( topolo2815343760600316023s_real @ Theta2 )
@ at_top_nat ) ) ).
% cos_diff_limit_1
thf(fact_9710_cos__limit__1,axiom,
! [Theta: nat > real] :
( ( filterlim_nat_real
@ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
@ ( topolo2815343760600316023s_real @ one_one_real )
@ at_top_nat )
=> ? [K2: nat > int] :
( filterlim_nat_real
@ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% cos_limit_1
thf(fact_9711_summable__Leibniz_I4_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( filterlim_nat_real
@ ^ [N4: nat] :
( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) ) )
@ at_top_nat ) ) ) ).
% summable_Leibniz(4)
thf(fact_9712_zeroseq__arctan__series,axiom,
! [X: real] :
( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
=> ( filterlim_nat_real
@ ^ [N4: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_nat ) ) ).
% zeroseq_arctan_series
thf(fact_9713_summable__Leibniz_H_I2_J,axiom,
! [A: nat > real,N: nat] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( ord_less_eq_real
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) ) ) ) ) ) ).
% summable_Leibniz'(2)
thf(fact_9714_summable__Leibniz_H_I3_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( filterlim_nat_real
@ ^ [N4: nat] :
( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) ) )
@ at_top_nat ) ) ) ) ).
% summable_Leibniz'(3)
thf(fact_9715_sums__alternating__upper__lower,axiom,
! [A: nat > real] :
( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ? [L2: real] :
( ! [N6: nat] :
( ord_less_eq_real
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) ) )
@ L2 )
& ( filterlim_nat_real
@ ^ [N4: nat] :
( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) ) )
@ ( topolo2815343760600316023s_real @ L2 )
@ at_top_nat )
& ! [N6: nat] :
( ord_less_eq_real @ L2
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N6 ) @ one_one_nat ) ) ) )
& ( filterlim_nat_real
@ ^ [N4: nat] :
( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real @ L2 )
@ at_top_nat ) ) ) ) ) ).
% sums_alternating_upper_lower
thf(fact_9716_summable__Leibniz_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ( topolo6980174941875973593q_real @ A )
=> ( filterlim_nat_real
@ ^ [N4: nat] :
( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) ) )
@ at_top_nat ) ) ) ).
% summable_Leibniz(5)
thf(fact_9717_summable__Leibniz_H_I5_J,axiom,
! [A: nat > real] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( filterlim_nat_real
@ ^ [N4: nat] :
( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ one_one_nat ) ) )
@ ( topolo2815343760600316023s_real
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) ) )
@ at_top_nat ) ) ) ) ).
% summable_Leibniz'(5)
thf(fact_9718_summable__Leibniz_H_I4_J,axiom,
! [A: nat > real,N: nat] :
( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
=> ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
=> ( ord_less_eq_real
@ ( suminf_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) ) )
@ ( groups6591440286371151544t_real
@ ^ [I2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I2 ) @ ( A @ I2 ) )
@ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ) ) ).
% summable_Leibniz'(4)
thf(fact_9719_real__bounded__linear,axiom,
( real_V5970128139526366754l_real
= ( ^ [F3: real > real] :
? [C5: real] :
( F3
= ( ^ [X3: real] : ( times_times_real @ X3 @ C5 ) ) ) ) ) ).
% real_bounded_linear
thf(fact_9720_tendsto__arctan__at__bot,axiom,
filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).
% tendsto_arctan_at_bot
thf(fact_9721_dist__real__def,axiom,
( real_V975177566351809787t_real
= ( ^ [X3: real,Y6: real] : ( abs_abs_real @ ( minus_minus_real @ X3 @ Y6 ) ) ) ) ).
% dist_real_def
thf(fact_9722_dist__complex__def,axiom,
( real_V3694042436643373181omplex
= ( ^ [X3: complex,Y6: complex] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y6 ) ) ) ) ).
% dist_complex_def
thf(fact_9723_exp__at__bot,axiom,
filterlim_real_real @ exp_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_bot_real ).
% exp_at_bot
thf(fact_9724_filterlim__inverse__at__bot__neg,axiom,
filterlim_real_real @ inverse_inverse_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5984915006950818249n_real @ zero_zero_real ) ) ).
% filterlim_inverse_at_bot_neg
thf(fact_9725_DERIV__pos__imp__increasing__at__bot,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X4: real] :
( ( ord_less_eq_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y3 ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_pos_imp_increasing_at_bot
thf(fact_9726_filterlim__pow__at__bot__odd,axiom,
! [N: nat,F: real > real,F4: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F4 )
=> ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( filterlim_real_real
@ ^ [X3: real] : ( power_power_real @ ( F @ X3 ) @ N )
@ at_bot_real
@ F4 ) ) ) ) ).
% filterlim_pow_at_bot_odd
thf(fact_9727_tendsto__exp__limit__at__right,axiom,
! [X: real] :
( filterlim_real_real
@ ^ [Y6: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X @ Y6 ) ) @ ( divide_divide_real @ one_one_real @ Y6 ) )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).
% tendsto_exp_limit_at_right
thf(fact_9728_ln__at__0,axiom,
filterlim_real_real @ ln_ln_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).
% ln_at_0
thf(fact_9729_tendsto__arcosh__at__left__1,axiom,
filterlim_real_real @ arcosh_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5849166863359141190n_real @ one_one_real ) ) ).
% tendsto_arcosh_at_left_1
thf(fact_9730_filterlim__tan__at__right,axiom,
filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).
% filterlim_tan_at_right
thf(fact_9731_atLeast__0,axiom,
( ( set_ord_atLeast_nat @ zero_zero_nat )
= top_top_set_nat ) ).
% atLeast_0
thf(fact_9732_atLeast__Suc__greaterThan,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( set_or1210151606488870762an_nat @ K ) ) ).
% atLeast_Suc_greaterThan
thf(fact_9733_greaterThan__0,axiom,
( ( set_or1210151606488870762an_nat @ zero_zero_nat )
= ( image_nat_nat @ suc @ top_top_set_nat ) ) ).
% greaterThan_0
thf(fact_9734_greaterThan__Suc,axiom,
! [K: nat] :
( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).
% greaterThan_Suc
thf(fact_9735_atLeast__Suc,axiom,
! [K: nat] :
( ( set_ord_atLeast_nat @ ( suc @ K ) )
= ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).
% atLeast_Suc
thf(fact_9736_filterlim__pow__at__bot__even,axiom,
! [N: nat,F: real > real,F4: filter_real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( filterlim_real_real @ F @ at_bot_real @ F4 )
=> ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( filterlim_real_real
@ ^ [X3: real] : ( power_power_real @ ( F @ X3 ) @ N )
@ at_top_real
@ F4 ) ) ) ) ).
% filterlim_pow_at_bot_even
thf(fact_9737_filterlim__tan__at__left,axiom,
filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% filterlim_tan_at_left
thf(fact_9738_sqrt__at__top,axiom,
filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).
% sqrt_at_top
thf(fact_9739_filterlim__real__sequentially,axiom,
filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).
% filterlim_real_sequentially
thf(fact_9740_ln__x__over__x__tendsto__0,axiom,
( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( ln_ln_real @ X3 ) @ X3 )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_real ) ).
% ln_x_over_x_tendsto_0
thf(fact_9741_filterlim__inverse__at__right__top,axiom,
filterlim_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) @ at_top_real ).
% filterlim_inverse_at_right_top
thf(fact_9742_filterlim__inverse__at__top__right,axiom,
filterlim_real_real @ inverse_inverse_real @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).
% filterlim_inverse_at_top_right
thf(fact_9743_tendsto__power__div__exp__0,axiom,
! [K: nat] :
( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( power_power_real @ X3 @ K ) @ ( exp_real @ X3 ) )
@ ( topolo2815343760600316023s_real @ zero_zero_real )
@ at_top_real ) ).
% tendsto_power_div_exp_0
thf(fact_9744_tendsto__exp__limit__at__top,axiom,
! [X: real] :
( filterlim_real_real
@ ^ [Y6: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ Y6 ) ) @ Y6 )
@ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
@ at_top_real ) ).
% tendsto_exp_limit_at_top
thf(fact_9745_DERIV__neg__imp__decreasing__at__top,axiom,
! [B: real,F: real > real,Flim: real] :
( ! [X4: real] :
( ( ord_less_eq_real @ B @ X4 )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ Y3 @ zero_zero_real ) ) )
=> ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
=> ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).
% DERIV_neg_imp_decreasing_at_top
thf(fact_9746_tendsto__arctan__at__top,axiom,
filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).
% tendsto_arctan_at_top
thf(fact_9747_lhopital__left__at__top,axiom,
! [G: real > real,X: real,G2: real > real,F: real > real,F2: real > real,Y4: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ ( topolo2815343760600316023s_real @ Y4 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ ( topolo2815343760600316023s_real @ Y4 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top
thf(fact_9748_at__top__le__at__infinity,axiom,
ord_le4104064031414453916r_real @ at_top_real @ at_infinity_real ).
% at_top_le_at_infinity
thf(fact_9749_at__bot__le__at__infinity,axiom,
ord_le4104064031414453916r_real @ at_bot_real @ at_infinity_real ).
% at_bot_le_at_infinity
thf(fact_9750_filterlim__real__at__infinity__sequentially,axiom,
filterlim_nat_real @ semiri5074537144036343181t_real @ at_infinity_real @ at_top_nat ).
% filterlim_real_at_infinity_sequentially
thf(fact_9751_eventually__at__right__to__0,axiom,
! [P: real > $o,A: real] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
= ( eventually_real
@ ^ [X3: real] : ( P @ ( plus_plus_real @ X3 @ A ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% eventually_at_right_to_0
thf(fact_9752_eventually__at__top__to__right,axiom,
! [P: real > $o] :
( ( eventually_real @ P @ at_top_real )
= ( eventually_real
@ ^ [X3: real] : ( P @ ( inverse_inverse_real @ X3 ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% eventually_at_top_to_right
thf(fact_9753_eventually__at__right__to__top,axiom,
! [P: real > $o] :
( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
= ( eventually_real
@ ^ [X3: real] : ( P @ ( inverse_inverse_real @ X3 ) )
@ at_top_real ) ) ).
% eventually_at_right_to_top
thf(fact_9754_lhopital__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F2: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top_at_top
thf(fact_9755_lhopital,axiom,
! [F: real > real,X: real,G: real > real,G2: real > real,F2: real > real,F4: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ) ) ).
% lhopital
thf(fact_9756_lhopital__right__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F2: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top_at_top
thf(fact_9757_lhopital__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F2: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top_at_bot
thf(fact_9758_lhopital__left__at__top__at__top,axiom,
! [F: real > real,A: real,G: real > real,F2: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ at_top_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top_at_top
thf(fact_9759_lhospital__at__top__at__top,axiom,
! [G: real > real,G2: real > real,F: real > real,F2: real > real,X: real] :
( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ at_top_real )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ at_top_real )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ at_top_real )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ ( topolo2815343760600316023s_real @ X )
@ at_top_real )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ ( topolo2815343760600316023s_real @ X )
@ at_top_real ) ) ) ) ) ) ).
% lhospital_at_top_at_top
thf(fact_9760_lhopital__at__top,axiom,
! [G: real > real,X: real,G2: real > real,F: real > real,F2: real > real,Y4: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ ( topolo2815343760600316023s_real @ Y4 )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ ( topolo2815343760600316023s_real @ Y4 )
@ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).
% lhopital_at_top
thf(fact_9761_lhopital__right__0,axiom,
! [F0: real > real,G0: real > real,G2: real > real,F2: real > real,F4: filter_real] :
( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G0 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F0 @ X3 ) @ ( G0 @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right_0
thf(fact_9762_lhopital__right,axiom,
! [F: real > real,X: real,G: real > real,G2: real > real,F2: real > real,F4: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_right
thf(fact_9763_lhopital__left,axiom,
! [F: real > real,X: real,G: real > real,G2: real > real,F2: real > real,F4: filter_real] :
( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ F4
@ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ) ) ).
% lhopital_left
thf(fact_9764_lhopital__right__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F2: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top_at_bot
thf(fact_9765_lhopital__left__at__top__at__bot,axiom,
! [F: real > real,A: real,G: real > real,F2: real > real,G2: real > real] :
( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ at_bot_real
@ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).
% lhopital_left_at_top_at_bot
thf(fact_9766_lhopital__right__at__top,axiom,
! [G: real > real,X: real,G2: real > real,F: real > real,F2: real > real,Y4: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ ( topolo2815343760600316023s_real @ Y4 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ ( topolo2815343760600316023s_real @ Y4 )
@ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ).
% lhopital_right_at_top
thf(fact_9767_lhopital__right__0__at__top,axiom,
! [G: real > real,G2: real > real,F: real > real,F2: real > real,X: real] :
( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X3: real] :
( ( G2 @ X3 )
!= zero_zero_real )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( eventually_real
@ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
@ ( topolo2815343760600316023s_real @ X )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
=> ( filterlim_real_real
@ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
@ ( topolo2815343760600316023s_real @ X )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).
% lhopital_right_0_at_top
thf(fact_9768_eventually__sequentially__Suc,axiom,
! [P: nat > $o] :
( ( eventually_nat
@ ^ [I2: nat] : ( P @ ( suc @ I2 ) )
@ at_top_nat )
= ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentially_Suc
thf(fact_9769_le__sequentially,axiom,
! [F4: filter_nat] :
( ( ord_le2510731241096832064er_nat @ F4 @ at_top_nat )
= ( ! [N8: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N8 ) @ F4 ) ) ) ).
% le_sequentially
thf(fact_9770_eventually__sequentially,axiom,
! [P: nat > $o] :
( ( eventually_nat @ P @ at_top_nat )
= ( ? [N8: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ N8 @ N4 )
=> ( P @ N4 ) ) ) ) ).
% eventually_sequentially
thf(fact_9771_eventually__sequentiallyI,axiom,
! [C: nat,P: nat > $o] :
( ! [X4: nat] :
( ( ord_less_eq_nat @ C @ X4 )
=> ( P @ X4 ) )
=> ( eventually_nat @ P @ at_top_nat ) ) ).
% eventually_sequentiallyI
thf(fact_9772_filterlim__int__sequentially,axiom,
filterlim_nat_int @ semiri1314217659103216013at_int @ at_top_int @ at_top_nat ).
% filterlim_int_sequentially
thf(fact_9773_Bseq__eq__bounded,axiom,
! [F: nat > real,A: real,B: real] :
( ( ord_less_eq_set_real @ ( image_nat_real @ F @ top_top_set_nat ) @ ( set_or1222579329274155063t_real @ A @ B ) )
=> ( bfun_nat_real @ F @ at_top_nat ) ) ).
% Bseq_eq_bounded
thf(fact_9774_Bseq__realpow,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( bfun_nat_real @ ( power_power_real @ X ) @ at_top_nat ) ) ) ).
% Bseq_realpow
thf(fact_9775_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_9776_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_9777_GreatestI__ex__nat,axiom,
! [P: nat > $o,B: nat] :
( ? [X_12: nat] : ( P @ X_12 )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_9778_GMVT,axiom,
! [A: real,B: real,F: real > real,G: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
=> ( ! [X4: real] :
( ( ( ord_less_real @ A @ X4 )
& ( ord_less_real @ X4 @ B ) )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ( ! [X4: real] :
( ( ( ord_less_eq_real @ A @ X4 )
& ( ord_less_eq_real @ X4 @ B ) )
=> ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ G ) )
=> ( ! [X4: real] :
( ( ( ord_less_real @ A @ X4 )
& ( ord_less_real @ X4 @ B ) )
=> ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
=> ? [G_c: real,F_c: real,C3: real] :
( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
& ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
& ( ord_less_real @ A @ C3 )
& ( ord_less_real @ C3 @ B )
& ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
= ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).
% GMVT
thf(fact_9779_MVT,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [L2: real,Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) )
& ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
= ( times_times_real @ ( minus_minus_real @ B @ A ) @ L2 ) ) ) ) ) ) ).
% MVT
thf(fact_9780_continuous__on__arcosh_H,axiom,
! [A2: set_real,F: real > real] :
( ( topolo5044208981011980120l_real @ A2 @ F )
=> ( ! [X4: real] :
( ( member_real @ X4 @ A2 )
=> ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
=> ( topolo5044208981011980120l_real @ A2
@ ^ [X3: real] : ( arcosh_real @ ( F @ X3 ) ) ) ) ) ).
% continuous_on_arcosh'
thf(fact_9781_continuous__image__closed__interval,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ? [C3: real,D2: real] :
( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
= ( set_or1222579329274155063t_real @ C3 @ D2 ) )
& ( ord_less_eq_real @ C3 @ D2 ) ) ) ) ).
% continuous_image_closed_interval
thf(fact_9782_continuous__on__arcosh,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( set_ord_atLeast_real @ one_one_real ) )
=> ( topolo5044208981011980120l_real @ A2 @ arcosh_real ) ) ).
% continuous_on_arcosh
thf(fact_9783_Rolle__deriv,axiom,
! [A: real,B: real,F: real > real,F2: real > real > real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ A )
= ( F @ B ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_de1759254742604945161l_real @ F @ ( F2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( ( F2 @ Z2 )
= ( ^ [V4: real] : zero_zero_real ) ) ) ) ) ) ) ).
% Rolle_deriv
thf(fact_9784_mvt,axiom,
! [A: real,B: real,F: real > real,F2: real > real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_de1759254742604945161l_real @ F @ ( F2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ~ ! [Xi: real] :
( ( ord_less_real @ A @ Xi )
=> ( ( ord_less_real @ Xi @ B )
=> ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
!= ( F2 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).
% mvt
thf(fact_9785_DERIV__pos__imp__increasing__open,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ zero_zero_real @ Y3 ) ) ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ) ).
% DERIV_pos_imp_increasing_open
thf(fact_9786_DERIV__neg__imp__decreasing__open,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ? [Y3: real] :
( ( has_fi5821293074295781190e_real @ F @ Y3 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
& ( ord_less_real @ Y3 @ zero_zero_real ) ) ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ) ).
% DERIV_neg_imp_decreasing_open
thf(fact_9787_DERIV__isconst__end,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ( ( F @ B )
= ( F @ A ) ) ) ) ) ).
% DERIV_isconst_end
thf(fact_9788_continuous__on__artanh,axiom,
! [A2: set_real] :
( ( ord_less_eq_set_real @ A2 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) )
=> ( topolo5044208981011980120l_real @ A2 @ artanh_real ) ) ).
% continuous_on_artanh
thf(fact_9789_DERIV__isconst2,axiom,
! [A: real,B: real,F: real > real,X: real] :
( ( ord_less_real @ A @ B )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ( ( ord_less_eq_real @ A @ X )
=> ( ( ord_less_eq_real @ X @ B )
=> ( ( F @ X )
= ( F @ A ) ) ) ) ) ) ) ).
% DERIV_isconst2
thf(fact_9790_Rolle,axiom,
! [A: real,B: real,F: real > real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ A )
= ( F @ B ) )
=> ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
=> ( ! [X4: real] :
( ( ord_less_real @ A @ X4 )
=> ( ( ord_less_real @ X4 @ B )
=> ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
=> ? [Z2: real] :
( ( ord_less_real @ A @ Z2 )
& ( ord_less_real @ Z2 @ B )
& ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ Z2 @ top_top_set_real ) ) ) ) ) ) ) ).
% Rolle
thf(fact_9791_surj__int__encode,axiom,
( ( image_int_nat @ nat_int_encode @ top_top_set_int )
= top_top_set_nat ) ).
% surj_int_encode
thf(fact_9792_int__encode__eq,axiom,
! [X: int,Y4: int] :
( ( ( nat_int_encode @ X )
= ( nat_int_encode @ Y4 ) )
= ( X = Y4 ) ) ).
% int_encode_eq
thf(fact_9793_bij__int__encode,axiom,
bij_betw_int_nat @ nat_int_encode @ top_top_set_int @ top_top_set_nat ).
% bij_int_encode
thf(fact_9794_uniformity__real__def,axiom,
( topolo1511823702728130853y_real
= ( comple2936214249959783750l_real
@ ( image_2178119161166701260l_real
@ ^ [E3: real] :
( princi6114159922880469582l_real
@ ( collec3799799289383736868l_real
@ ( produc5414030515140494994real_o
@ ^ [X3: real,Y6: real] : ( ord_less_real @ ( real_V975177566351809787t_real @ X3 @ Y6 ) @ E3 ) ) ) )
@ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% uniformity_real_def
thf(fact_9795_uniformity__complex__def,axiom,
( topolo896644834953643431omplex
= ( comple8358262395181532106omplex
@ ( image_5971271580939081552omplex
@ ^ [E3: real] :
( princi3496590319149328850omplex
@ ( collec8663557070575231912omplex
@ ( produc6771430404735790350plex_o
@ ^ [X3: complex,Y6: complex] : ( ord_less_real @ ( real_V3694042436643373181omplex @ X3 @ Y6 ) @ E3 ) ) ) )
@ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% uniformity_complex_def
thf(fact_9796_range__abs__Nats,axiom,
( ( image_int_int @ abs_abs_int @ top_top_set_int )
= semiring_1_Nats_int ) ).
% range_abs_Nats
thf(fact_9797_inj__sgn__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( inj_on_real_real
@ ^ [Y6: real] : ( times_times_real @ ( sgn_sgn_real @ Y6 ) @ ( power_power_real @ ( abs_abs_real @ Y6 ) @ N ) )
@ top_top_set_real ) ) ).
% inj_sgn_power
thf(fact_9798_surj__int__decode,axiom,
( ( image_nat_int @ nat_int_decode @ top_top_set_nat )
= top_top_set_int ) ).
% surj_int_decode
thf(fact_9799_int__decode__inverse,axiom,
! [N: nat] :
( ( nat_int_encode @ ( nat_int_decode @ N ) )
= N ) ).
% int_decode_inverse
thf(fact_9800_int__encode__inverse,axiom,
! [X: int] :
( ( nat_int_decode @ ( nat_int_encode @ X ) )
= X ) ).
% int_encode_inverse
thf(fact_9801_int__decode__eq,axiom,
! [X: nat,Y4: nat] :
( ( ( nat_int_decode @ X )
= ( nat_int_decode @ Y4 ) )
= ( X = Y4 ) ) ).
% int_decode_eq
thf(fact_9802_bij__int__decode,axiom,
bij_betw_nat_int @ nat_int_decode @ top_top_set_nat @ top_top_set_int ).
% bij_int_decode
thf(fact_9803_log__inj,axiom,
! [B: real] :
( ( ord_less_real @ one_one_real @ B )
=> ( inj_on_real_real @ ( log @ B ) @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).
% log_inj
thf(fact_9804_complex__is__Nat__iff,axiom,
! [Z: complex] :
( ( member_complex @ Z @ semiri3842193898606819883omplex )
= ( ( ( im @ Z )
= zero_zero_real )
& ? [I2: nat] :
( ( re @ Z )
= ( semiri5074537144036343181t_real @ I2 ) ) ) ) ).
% complex_is_Nat_iff
thf(fact_9805_inj__int__encode,axiom,
! [A2: set_int] : ( inj_on_int_nat @ nat_int_encode @ A2 ) ).
% inj_int_encode
thf(fact_9806_inj__on__set__encode,axiom,
inj_on_set_nat_nat @ nat_set_encode @ ( collect_set_nat @ finite_finite_nat ) ).
% inj_on_set_encode
thf(fact_9807_inj__prod__encode,axiom,
! [A2: set_Pr1261947904930325089at_nat] : ( inj_on2178005380612969504at_nat @ nat_prod_encode @ A2 ) ).
% inj_prod_encode
thf(fact_9808_inj__Suc,axiom,
! [N5: set_nat] : ( inj_on_nat_nat @ suc @ N5 ) ).
% inj_Suc
thf(fact_9809_inj__int__decode,axiom,
! [A2: set_nat] : ( inj_on_nat_int @ nat_int_decode @ A2 ) ).
% inj_int_decode
thf(fact_9810_inj__on__diff__nat,axiom,
! [N5: set_nat,K: nat] :
( ! [N2: nat] :
( ( member_nat @ N2 @ N5 )
=> ( ord_less_eq_nat @ K @ N2 ) )
=> ( inj_on_nat_nat
@ ^ [N4: nat] : ( minus_minus_nat @ N4 @ K )
@ N5 ) ) ).
% inj_on_diff_nat
thf(fact_9811_summable__reindex,axiom,
! [F: nat > real,G: nat > nat] :
( ( summable_real @ F )
=> ( ( inj_on_nat_nat @ G @ top_top_set_nat )
=> ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
=> ( summable_real @ ( comp_nat_real_nat @ F @ G ) ) ) ) ) ).
% summable_reindex
thf(fact_9812_suminf__reindex__mono,axiom,
! [F: nat > real,G: nat > nat] :
( ( summable_real @ F )
=> ( ( inj_on_nat_nat @ G @ top_top_set_nat )
=> ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
=> ( ord_less_eq_real @ ( suminf_real @ ( comp_nat_real_nat @ F @ G ) ) @ ( suminf_real @ F ) ) ) ) ) ).
% suminf_reindex_mono
thf(fact_9813_inj__on__char__of__nat,axiom,
inj_on_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).
% inj_on_char_of_nat
thf(fact_9814_suminf__reindex,axiom,
! [F: nat > real,G: nat > nat] :
( ( summable_real @ F )
=> ( ( inj_on_nat_nat @ G @ top_top_set_nat )
=> ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
=> ( ! [X4: nat] :
( ~ ( member_nat @ X4 @ ( image_nat_nat @ G @ top_top_set_nat ) )
=> ( ( F @ X4 )
= zero_zero_real ) )
=> ( ( suminf_real @ ( comp_nat_real_nat @ F @ G ) )
= ( suminf_real @ F ) ) ) ) ) ) ).
% suminf_reindex
thf(fact_9815_powr__real__of__int_H,axiom,
! [X: real,N: int] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ( X != zero_zero_real )
| ( ord_less_int @ zero_zero_int @ N ) )
=> ( ( powr_real @ X @ ( ring_1_of_int_real @ N ) )
= ( power_int_real @ X @ N ) ) ) ) ).
% powr_real_of_int'
thf(fact_9816_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa = one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Deg2 = Xa )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(3)
thf(fact_9817_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ( vEBT_VEBT_valid @ X @ Xa )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Xa != one_one_nat ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ~ ( ( Deg2 = Xa )
& ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ).
% VEBT_internal.valid'.elims(2)
thf(fact_9818_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg4: nat] :
( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList @ Summary ) @ Deg4 )
= ( ( Deg = Deg4 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ Ma3 )
& ! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ X3 )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima2 ) ) ) ).
% VEBT_internal.valid'.simps(2)
thf(fact_9819_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa: nat,Y4: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa )
= Y4 )
=> ( ( ? [Uu2: $o,Uv2: $o] :
( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( Y4
= ( Xa != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( Y4
= ( ~ ( ( Deg2 = Xa )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.elims(1)
thf(fact_9820_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ~ ( vEBT_VEBT_valid @ X @ Xa )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) )
=> ( Xa = one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa ) )
=> ( ( Deg2 = Xa )
& ! [X4: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(3)
thf(fact_9821_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
! [X: vEBT_VEBT,Xa: nat] :
( ( vEBT_VEBT_valid @ X @ Xa )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) )
=> ( Xa != one_one_nat ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa ) )
=> ~ ( ( Deg2 = Xa )
& ! [X5: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(2)
thf(fact_9822_Sup__int__def,axiom,
( complete_Sup_Sup_int
= ( ^ [X8: set_int] :
( the_int
@ ^ [X3: int] :
( ( member_int @ X3 @ X8 )
& ! [Y6: int] :
( ( member_int @ Y6 @ X8 )
=> ( ord_less_eq_int @ Y6 @ X3 ) ) ) ) ) ) ).
% Sup_int_def
thf(fact_9823_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
! [X: vEBT_VEBT,Xa: nat,Y4: $o] :
( ( ( vEBT_VEBT_valid @ X @ Xa )
= Y4 )
=> ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa ) )
=> ( ! [Uu2: $o,Uv2: $o] :
( ( X
= ( vEBT_Leaf @ Uu2 @ Uv2 ) )
=> ( ( Y4
= ( Xa = one_one_nat ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa ) ) ) )
=> ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
( ( X
= ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
=> ( ( Y4
= ( ( Deg2 = Xa )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
& ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
& ( case_o184042715313410164at_nat
@ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
& ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
@ ( produc6081775807080527818_nat_o
@ ^ [Mi3: nat,Ma3: nat] :
( ( ord_less_eq_nat @ Mi3 @ Ma3 )
& ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
=> ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I2 ) @ X8 ) )
= ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
& ( ( Mi3 = Ma3 )
=> ! [X3: vEBT_VEBT] :
( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
=> ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X8 ) ) )
& ( ( Mi3 != Ma3 )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
& ! [X3: nat] :
( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
=> ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
=> ( ( ord_less_nat @ Mi3 @ X3 )
& ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
@ Mima ) ) )
=> ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ).
% VEBT_internal.valid'.pelims(1)
thf(fact_9824_Rats__eq__int__div__nat,axiom,
( field_5140801741446780682s_real
= ( collect_real
@ ^ [Uu3: real] :
? [I2: int,N4: nat] :
( ( Uu3
= ( divide_divide_real @ ( ring_1_of_int_real @ I2 ) @ ( semiri5074537144036343181t_real @ N4 ) ) )
& ( N4 != zero_zero_nat ) ) ) ) ).
% Rats_eq_int_div_nat
thf(fact_9825_Rats__abs__iff,axiom,
! [X: real] :
( ( member_real @ ( abs_abs_real @ X ) @ field_5140801741446780682s_real )
= ( member_real @ X @ field_5140801741446780682s_real ) ) ).
% Rats_abs_iff
thf(fact_9826_Rats__dense__in__real,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ? [X4: real] :
( ( member_real @ X4 @ field_5140801741446780682s_real )
& ( ord_less_real @ X @ X4 )
& ( ord_less_real @ X4 @ Y4 ) ) ) ).
% Rats_dense_in_real
thf(fact_9827_Rats__no__bot__less,axiom,
! [X: real] :
? [X4: real] :
( ( member_real @ X4 @ field_5140801741446780682s_real )
& ( ord_less_real @ X4 @ X ) ) ).
% Rats_no_bot_less
thf(fact_9828_Rats__no__top__le,axiom,
! [X: real] :
? [X4: real] :
( ( member_real @ X4 @ field_5140801741446780682s_real )
& ( ord_less_eq_real @ X @ X4 ) ) ).
% Rats_no_top_le
thf(fact_9829_Rats__eq__int__div__int,axiom,
( field_5140801741446780682s_real
= ( collect_real
@ ^ [Uu3: real] :
? [I2: int,J3: int] :
( ( Uu3
= ( divide_divide_real @ ( ring_1_of_int_real @ I2 ) @ ( ring_1_of_int_real @ J3 ) ) )
& ( J3 != zero_zero_int ) ) ) ) ).
% Rats_eq_int_div_int
thf(fact_9830_rat__floor__lemma,axiom,
! [A: int,B: int] :
( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( divide_divide_int @ A @ B ) ) @ ( fract @ A @ B ) )
& ( ord_less_rat @ ( fract @ A @ B ) @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ) ).
% rat_floor_lemma
thf(fact_9831_mult__rat,axiom,
! [A: int,B: int,C: int,D: int] :
( ( times_times_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ).
% mult_rat
thf(fact_9832_divide__rat,axiom,
! [A: int,B: int,C: int,D: int] :
( ( divide_divide_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ).
% divide_rat
thf(fact_9833_floor__Fract,axiom,
! [A: int,B: int] :
( ( archim3151403230148437115or_rat @ ( fract @ A @ B ) )
= ( divide_divide_int @ A @ B ) ) ).
% floor_Fract
thf(fact_9834_less__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( ord_less_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% less_rat
thf(fact_9835_add__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( plus_plus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% add_rat
thf(fact_9836_le__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( ord_less_eq_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% le_rat
thf(fact_9837_diff__rat,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( minus_minus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
= ( fract @ ( minus_minus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% diff_rat
thf(fact_9838_sgn__rat,axiom,
! [A: int,B: int] :
( ( sgn_sgn_rat @ ( fract @ A @ B ) )
= ( ring_1_of_int_rat @ ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ) ).
% sgn_rat
thf(fact_9839_Rat__induct__pos,axiom,
! [P: rat > $o,Q2: rat] :
( ! [A4: int,B3: int] :
( ( ord_less_int @ zero_zero_int @ B3 )
=> ( P @ ( fract @ A4 @ B3 ) ) )
=> ( P @ Q2 ) ) ).
% Rat_induct_pos
thf(fact_9840_Fract__coprime,axiom,
! [A: int,B: int] :
( ( fract @ ( divide_divide_int @ A @ ( gcd_gcd_int @ A @ B ) ) @ ( divide_divide_int @ B @ ( gcd_gcd_int @ A @ B ) ) )
= ( fract @ A @ B ) ) ).
% Fract_coprime
thf(fact_9841_rat__number__collapse_I1_J,axiom,
! [K: int] :
( ( fract @ zero_zero_int @ K )
= zero_zero_rat ) ).
% rat_number_collapse(1)
thf(fact_9842_rat__number__collapse_I6_J,axiom,
! [K: int] :
( ( fract @ K @ zero_zero_int )
= zero_zero_rat ) ).
% rat_number_collapse(6)
thf(fact_9843_eq__rat_I2_J,axiom,
! [A: int] :
( ( fract @ A @ zero_zero_int )
= ( fract @ zero_zero_int @ one_one_int ) ) ).
% eq_rat(2)
thf(fact_9844_mult__rat__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( fract @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( fract @ A @ B ) ) ) ).
% mult_rat_cancel
thf(fact_9845_eq__rat_I1_J,axiom,
! [B: int,D: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( D != zero_zero_int )
=> ( ( ( fract @ A @ B )
= ( fract @ C @ D ) )
= ( ( times_times_int @ A @ D )
= ( times_times_int @ C @ B ) ) ) ) ) ).
% eq_rat(1)
thf(fact_9846_eq__rat_I3_J,axiom,
! [A: int,C: int] :
( ( fract @ zero_zero_int @ A )
= ( fract @ zero_zero_int @ C ) ) ).
% eq_rat(3)
thf(fact_9847_Fract__of__nat__eq,axiom,
! [K: nat] :
( ( fract @ ( semiri1314217659103216013at_int @ K ) @ one_one_int )
= ( semiri681578069525770553at_rat @ K ) ) ).
% Fract_of_nat_eq
thf(fact_9848_Zero__rat__def,axiom,
( zero_zero_rat
= ( fract @ zero_zero_int @ one_one_int ) ) ).
% Zero_rat_def
thf(fact_9849_atLeastLessThan__add__Un,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( set_or4665077453230672383an_nat @ I @ ( plus_plus_nat @ J @ K ) )
= ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).
% atLeastLessThan_add_Un
thf(fact_9850_rat__number__collapse_I3_J,axiom,
! [W: num] :
( ( fract @ ( numeral_numeral_int @ W ) @ one_one_int )
= ( numeral_numeral_rat @ W ) ) ).
% rat_number_collapse(3)
thf(fact_9851_rat__number__expand_I3_J,axiom,
( numeral_numeral_rat
= ( ^ [K3: num] : ( fract @ ( numeral_numeral_int @ K3 ) @ one_one_int ) ) ) ).
% rat_number_expand(3)
thf(fact_9852_zero__less__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ zero_zero_rat @ ( fract @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% zero_less_Fract_iff
thf(fact_9853_Fract__less__zero__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ zero_zero_rat )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% Fract_less_zero_iff
thf(fact_9854_Fract__less__one__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ ( fract @ A @ B ) @ one_one_rat )
= ( ord_less_int @ A @ B ) ) ) ).
% Fract_less_one_iff
thf(fact_9855_one__less__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_rat @ one_one_rat @ ( fract @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% one_less_Fract_iff
thf(fact_9856_Fract__add__one,axiom,
! [N: int,M: int] :
( ( N != zero_zero_int )
=> ( ( fract @ ( plus_plus_int @ M @ N ) @ N )
= ( plus_plus_rat @ ( fract @ M @ N ) @ one_one_rat ) ) ) ).
% Fract_add_one
thf(fact_9857_Fract__le__zero__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ zero_zero_rat )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% Fract_le_zero_iff
thf(fact_9858_zero__le__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ zero_zero_rat @ ( fract @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% zero_le_Fract_iff
thf(fact_9859_one__le__Fract__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ one_one_rat @ ( fract @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% one_le_Fract_iff
thf(fact_9860_Fract__le__one__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ one_one_rat )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% Fract_le_one_iff
thf(fact_9861_rat__number__expand_I5_J,axiom,
! [K: num] :
( ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) )
= ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).
% rat_number_expand(5)
thf(fact_9862_rat__number__collapse_I4_J,axiom,
! [W: num] :
( ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ one_one_int )
= ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ).
% rat_number_collapse(4)
thf(fact_9863_sup__int__def,axiom,
sup_sup_int = ord_max_int ).
% sup_int_def
thf(fact_9864_sup__enat__def,axiom,
sup_su3973961784419623482d_enat = ord_ma741700101516333627d_enat ).
% sup_enat_def
thf(fact_9865_sup__nat__def,axiom,
sup_sup_nat = ord_max_nat ).
% sup_nat_def
thf(fact_9866_pos__deriv__imp__strict__mono,axiom,
! [F: real > real,F2: real > real] :
( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
=> ( ! [X4: real] : ( ord_less_real @ zero_zero_real @ ( F2 @ X4 ) )
=> ( order_7092887310737990675l_real @ F ) ) ) ).
% pos_deriv_imp_strict_mono
thf(fact_9867_take__bit__numeral__minus__numeral__int,axiom,
! [M: num,N: num] :
( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( case_option_int_num @ zero_zero_int
@ ^ [Q3: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q3 ) ) )
@ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N ) ) ) ).
% take_bit_numeral_minus_numeral_int
thf(fact_9868_of__nat__eq__id,axiom,
semiri1316708129612266289at_nat = id_nat ).
% of_nat_eq_id
thf(fact_9869_take__bit__num__simps_I1_J,axiom,
! [M: num] :
( ( bit_take_bit_num @ zero_zero_nat @ M )
= none_num ) ).
% take_bit_num_simps(1)
thf(fact_9870_take__bit__num__simps_I2_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ ( suc @ N ) @ one )
= ( some_num @ one ) ) ).
% take_bit_num_simps(2)
thf(fact_9871_take__bit__num__simps_I5_J,axiom,
! [R2: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ one )
= ( some_num @ one ) ) ).
% take_bit_num_simps(5)
thf(fact_9872_strict__mono__imp__increasing,axiom,
! [F: nat > nat,N: nat] :
( ( order_5726023648592871131at_nat @ F )
=> ( ord_less_eq_nat @ N @ ( F @ N ) ) ) ).
% strict_mono_imp_increasing
thf(fact_9873_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
! [N: nat] :
( ( bit_take_bit_num @ N @ one )
= ( case_nat_option_num @ none_num
@ ^ [N4: nat] : ( some_num @ one )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_9874_less__int__def,axiom,
( ord_less_int
= ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ) ).
% less_int_def
thf(fact_9875_nat__def,axiom,
( nat2
= ( map_fu2345160673673942751at_nat @ rep_Integ @ id_nat @ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ) ).
% nat_def
thf(fact_9876_less__eq__int__def,axiom,
( ord_less_eq_int
= ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ) ).
% less_eq_int_def
thf(fact_9877_take__bit__num__def,axiom,
( bit_take_bit_num
= ( ^ [N4: nat,M5: num] :
( if_option_num
@ ( ( bit_se2925701944663578781it_nat @ N4 @ ( numeral_numeral_nat @ M5 ) )
= zero_zero_nat )
@ none_num
@ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N4 @ ( numeral_numeral_nat @ M5 ) ) ) ) ) ) ) ).
% take_bit_num_def
thf(fact_9878_and__minus__numerals_I3_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(3)
thf(fact_9879_and__minus__numerals_I7_J,axiom,
! [N: num,M: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).
% and_minus_numerals(7)
thf(fact_9880_take__bit__num__simps_I4_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit1 @ M ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N @ M ) ) ) ) ).
% take_bit_num_simps(4)
thf(fact_9881_take__bit__num__simps_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ ( suc @ N ) @ ( bit0 @ M ) )
= ( case_o6005452278849405969um_num @ none_num
@ ^ [Q3: num] : ( some_num @ ( bit0 @ Q3 ) )
@ ( bit_take_bit_num @ N @ M ) ) ) ).
% take_bit_num_simps(3)
thf(fact_9882_take__bit__num__simps_I7_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit1 @ M ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ) ).
% take_bit_num_simps(7)
thf(fact_9883_take__bit__num__simps_I6_J,axiom,
! [R2: num,M: num] :
( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit0 @ M ) )
= ( case_o6005452278849405969um_num @ none_num
@ ^ [Q3: num] : ( some_num @ ( bit0 @ Q3 ) )
@ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ).
% take_bit_num_simps(6)
thf(fact_9884_and__minus__numerals_I8_J,axiom,
! [N: num,M: num] :
( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(8)
thf(fact_9885_and__minus__numerals_I4_J,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).
% and_minus_numerals(4)
thf(fact_9886_and__not__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N9: num] : ( some_num @ ( bit1 @ N9 ) )
@ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(8)
thf(fact_9887_and__not__num_Osimps_I1_J,axiom,
( ( bit_and_not_num @ one @ one )
= none_num ) ).
% and_not_num.simps(1)
thf(fact_9888_and__not__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one @ ( bit1 @ N ) )
= none_num ) ).
% and_not_num.simps(3)
thf(fact_9889_and__not__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(4)
thf(fact_9890_and__not__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_and_not_num @ one @ ( bit0 @ N ) )
= ( some_num @ one ) ) ).
% and_not_num.simps(2)
thf(fact_9891_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit0 @ M ) )
= ( case_nat_option_num @ none_num
@ ^ [N4: nat] :
( case_o6005452278849405969um_num @ none_num
@ ^ [Q3: num] : ( some_num @ ( bit0 @ Q3 ) )
@ ( bit_take_bit_num @ N4 @ M ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_9892_and__not__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% and_not_num.simps(7)
thf(fact_9893_and__not__num__eq__Some__iff,axiom,
! [M: num,N: num,Q2: num] :
( ( ( bit_and_not_num @ M @ N )
= ( some_num @ Q2 ) )
= ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ Q2 ) ) ) ).
% and_not_num_eq_Some_iff
thf(fact_9894_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
! [N: nat,M: num] :
( ( bit_take_bit_num @ N @ ( bit1 @ M ) )
= ( case_nat_option_num @ none_num
@ ^ [N4: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N4 @ M ) ) )
@ N ) ) ).
% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_9895_and__not__num__eq__None__iff,axiom,
! [M: num,N: num] :
( ( ( bit_and_not_num @ M @ N )
= none_num )
= ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= zero_zero_int ) ) ).
% and_not_num_eq_None_iff
thf(fact_9896_int__numeral__and__not__num,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N ) ) ) ).
% int_numeral_and_not_num
thf(fact_9897_int__numeral__not__and__num,axiom,
! [M: num,N: num] :
( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N @ M ) ) ) ).
% int_numeral_not_and_num
thf(fact_9898_positive__rat,axiom,
! [A: int,B: int] :
( ( positive @ ( fract @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% positive_rat
thf(fact_9899_Rat_Opositive__zero,axiom,
~ ( positive @ zero_zero_rat ) ).
% Rat.positive_zero
thf(fact_9900_Rat_Opositive__minus,axiom,
! [X: rat] :
( ~ ( positive @ X )
=> ( ( X != zero_zero_rat )
=> ( positive @ ( uminus_uminus_rat @ X ) ) ) ) ).
% Rat.positive_minus
thf(fact_9901_less__rat__def,axiom,
( ord_less_rat
= ( ^ [X3: rat,Y6: rat] : ( positive @ ( minus_minus_rat @ Y6 @ X3 ) ) ) ) ).
% less_rat_def
thf(fact_9902_Rat_Opositive_Orep__eq,axiom,
( positive
= ( ^ [X3: rat] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ ( rep_Rat @ X3 ) ) @ ( product_snd_int_int @ ( rep_Rat @ X3 ) ) ) ) ) ) ).
% Rat.positive.rep_eq
thf(fact_9903_and__not__num_Oelims,axiom,
! [X: num,Xa: num,Y4: option_num] :
( ( ( bit_and_not_num @ X @ Xa )
= Y4 )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( Y4 != none_num ) ) )
=> ( ( ( X = one )
=> ( ? [N2: num] :
( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( some_num @ one ) ) ) )
=> ( ( ( X = one )
=> ( ? [N2: num] :
( Xa
= ( bit1 @ N2 ) )
=> ( Y4 != none_num ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ( ( Xa = one )
=> ( Y4
!= ( some_num @ ( bit0 @ M4 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ( ( Xa = one )
=> ( Y4
!= ( some_num @ ( bit0 @ M4 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N9: num] : ( some_num @ ( bit1 @ N9 ) )
@ ( bit_and_not_num @ M4 @ N2 ) ) ) ) )
=> ~ ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_not_num.elims
thf(fact_9904_and__not__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(5)
thf(fact_9905_and__not__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(9)
thf(fact_9906_and__not__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).
% and_not_num.simps(6)
thf(fact_9907_and__not__num_Opelims,axiom,
! [X: num,Xa: num,Y4: option_num] :
( ( ( bit_and_not_num @ X @ Xa )
= Y4 )
=> ( ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ X @ Xa ) )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( ( Y4 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ( ( Xa = one )
=> ( ( Y4
= ( some_num @ ( bit0 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ( ( Xa = one )
=> ( ( Y4
= ( some_num @ ( bit0 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N9: num] : ( some_num @ ( bit1 @ N9 ) )
@ ( bit_and_not_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
=> ~ ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_not_num.pelims
thf(fact_9908_Rat_Opositive__def,axiom,
( positive
= ( map_fu898904425404107465nt_o_o @ rep_Rat @ id_o
@ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) ) ) ) ).
% Rat.positive_def
thf(fact_9909_and__num_Oelims,axiom,
! [X: num,Xa: num,Y4: option_num] :
( ( ( bit_un7362597486090784418nd_num @ X @ Xa )
= Y4 )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( Y4
!= ( some_num @ one ) ) ) )
=> ( ( ( X = one )
=> ( ? [N2: num] :
( Xa
= ( bit0 @ N2 ) )
=> ( Y4 != none_num ) ) )
=> ( ( ( X = one )
=> ( ? [N2: num] :
( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( some_num @ one ) ) ) )
=> ( ( ? [M4: num] :
( X
= ( bit0 @ M4 ) )
=> ( ( Xa = one )
=> ( Y4 != none_num ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) )
=> ( ( ? [M4: num] :
( X
= ( bit1 @ M4 ) )
=> ( ( Xa = one )
=> ( Y4
!= ( some_num @ one ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) )
=> ~ ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N9: num] : ( some_num @ ( bit1 @ N9 ) )
@ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_num.elims
thf(fact_9910_xor__num_Oelims,axiom,
! [X: num,Xa: num,Y4: option_num] :
( ( ( bit_un2480387367778600638or_num @ X @ Xa )
= Y4 )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( Y4 != none_num ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( some_num @ ( bit1 @ N2 ) ) ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( some_num @ ( bit0 @ N2 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ( ( Xa = one )
=> ( Y4
!= ( some_num @ ( bit1 @ M4 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ( ( Xa = one )
=> ( Y4
!= ( some_num @ ( bit0 @ M4 ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( Y4
!= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) ) )
=> ~ ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( Y4
!= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.elims
thf(fact_9911_and__num_Osimps_I1_J,axiom,
( ( bit_un7362597486090784418nd_num @ one @ one )
= ( some_num @ one ) ) ).
% and_num.simps(1)
thf(fact_9912_xor__num_Osimps_I1_J,axiom,
( ( bit_un2480387367778600638or_num @ one @ one )
= none_num ) ).
% xor_num.simps(1)
thf(fact_9913_xor__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).
% xor_num.simps(5)
thf(fact_9914_and__num_Osimps_I5_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(5)
thf(fact_9915_and__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ one )
= ( some_num @ one ) ) ).
% and_num.simps(7)
thf(fact_9916_and__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_un7362597486090784418nd_num @ one @ ( bit1 @ N ) )
= ( some_num @ one ) ) ).
% and_num.simps(3)
thf(fact_9917_and__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ one )
= none_num ) ).
% and_num.simps(4)
thf(fact_9918_and__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_un7362597486090784418nd_num @ one @ ( bit0 @ N ) )
= none_num ) ).
% and_num.simps(2)
thf(fact_9919_and__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(8)
thf(fact_9920_and__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(6)
thf(fact_9921_xor__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).
% xor_num.simps(9)
thf(fact_9922_xor__num_Osimps_I2_J,axiom,
! [N: num] :
( ( bit_un2480387367778600638or_num @ one @ ( bit0 @ N ) )
= ( some_num @ ( bit1 @ N ) ) ) ).
% xor_num.simps(2)
thf(fact_9923_xor__num_Osimps_I3_J,axiom,
! [N: num] :
( ( bit_un2480387367778600638or_num @ one @ ( bit1 @ N ) )
= ( some_num @ ( bit0 @ N ) ) ) ).
% xor_num.simps(3)
thf(fact_9924_xor__num_Osimps_I4_J,axiom,
! [M: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ one )
= ( some_num @ ( bit1 @ M ) ) ) ).
% xor_num.simps(4)
thf(fact_9925_xor__num_Osimps_I7_J,axiom,
! [M: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ one )
= ( some_num @ ( bit0 @ M ) ) ) ).
% xor_num.simps(7)
thf(fact_9926_and__num_Osimps_I9_J,axiom,
! [M: num,N: num] :
( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N9: num] : ( some_num @ ( bit1 @ N9 ) )
@ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).
% and_num.simps(9)
thf(fact_9927_xor__num_Osimps_I8_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).
% xor_num.simps(8)
thf(fact_9928_xor__num_Osimps_I6_J,axiom,
! [M: num,N: num] :
( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).
% xor_num.simps(6)
thf(fact_9929_and__num_Opelims,axiom,
! [X: num,Xa: num,Y4: option_num] :
( ( ( bit_un7362597486090784418nd_num @ X @ Xa )
= Y4 )
=> ( ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ X @ Xa ) )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( ( Y4
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ( ( Xa = one )
=> ( ( Y4 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ( ( Xa = one )
=> ( ( Y4
= ( some_num @ one ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
=> ~ ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( case_o6005452278849405969um_num @ ( some_num @ one )
@ ^ [N9: num] : ( some_num @ ( bit1 @ N9 ) )
@ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% and_num.pelims
thf(fact_9930_xor__num_Opelims,axiom,
! [X: num,Xa: num,Y4: option_num] :
( ( ( bit_un2480387367778600638or_num @ X @ Xa )
= Y4 )
=> ( ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ X @ Xa ) )
=> ( ( ( X = one )
=> ( ( Xa = one )
=> ( ( Y4 = none_num )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( some_num @ ( bit1 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
=> ( ( ( X = one )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( some_num @ ( bit0 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ( ( Xa = one )
=> ( ( Y4
= ( some_num @ ( bit1 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit0 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ( ( Xa = one )
=> ( ( Y4
= ( some_num @ ( bit0 @ M4 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) ) ) ) )
=> ( ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit0 @ N2 ) )
=> ( ( Y4
= ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
=> ~ ! [M4: num] :
( ( X
= ( bit1 @ M4 ) )
=> ! [N2: num] :
( ( Xa
= ( bit1 @ N2 ) )
=> ( ( Y4
= ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) )
=> ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
% xor_num.pelims
thf(fact_9931_and__num__rel__dict,axiom,
bit_un4731106466462545111um_rel = bit_un5425074673868309765um_rel ).
% and_num_rel_dict
thf(fact_9932_xor__num__rel__dict,axiom,
bit_un2901131394128224187um_rel = bit_un3595099601533988841um_rel ).
% xor_num_rel_dict
thf(fact_9933_xor__num__dict,axiom,
bit_un2480387367778600638or_num = bit_un6178654185764691216or_num ).
% xor_num_dict
thf(fact_9934_and__num__dict,axiom,
bit_un7362597486090784418nd_num = bit_un1837492267222099188nd_num ).
% and_num_dict
thf(fact_9935_Bit__Operations_Otake__bit__num__code,axiom,
( bit_take_bit_num
= ( ^ [N4: nat,M5: num] :
( produc478579273971653890on_num
@ ^ [A3: nat,X3: num] :
( case_nat_option_num @ none_num
@ ^ [O: nat] :
( case_num_option_num @ ( some_num @ one )
@ ^ [P6: num] :
( case_o6005452278849405969um_num @ none_num
@ ^ [Q3: num] : ( some_num @ ( bit0 @ Q3 ) )
@ ( bit_take_bit_num @ O @ P6 ) )
@ ^ [P6: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P6 ) ) )
@ X3 )
@ A3 )
@ ( product_Pair_nat_num @ N4 @ M5 ) ) ) ) ).
% Bit_Operations.take_bit_num_code
thf(fact_9936_of__rat__dense,axiom,
! [X: real,Y4: real] :
( ( ord_less_real @ X @ Y4 )
=> ? [Q4: rat] :
( ( ord_less_real @ X @ ( field_7254667332652039916t_real @ Q4 ) )
& ( ord_less_real @ ( field_7254667332652039916t_real @ Q4 ) @ Y4 ) ) ) ).
% of_rat_dense
thf(fact_9937_plus__rat__def,axiom,
( plus_plus_rat
= ( map_fu4333342158222067775at_rat @ rep_Rat @ ( map_fu5673905371560938248nt_rat @ rep_Rat @ abs_Rat )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ) ).
% plus_rat_def
thf(fact_9938_inverse__rat__def,axiom,
( inverse_inverse_rat
= ( map_fu5673905371560938248nt_rat @ rep_Rat @ abs_Rat
@ ^ [X3: product_prod_int_int] :
( if_Pro3027730157355071871nt_int
@ ( ( product_fst_int_int @ X3 )
= zero_zero_int )
@ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
@ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) ) ) ) ).
% inverse_rat_def
thf(fact_9939_Fract_Oabs__eq,axiom,
( fract
= ( ^ [Xa4: int,X3: int] : ( abs_Rat @ ( if_Pro3027730157355071871nt_int @ ( X3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ Xa4 @ X3 ) ) ) ) ) ).
% Fract.abs_eq
thf(fact_9940_zero__rat__def,axiom,
( zero_zero_rat
= ( abs_Rat @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ) ).
% zero_rat_def
thf(fact_9941_times__rat__def,axiom,
( times_times_rat
= ( map_fu4333342158222067775at_rat @ rep_Rat @ ( map_fu5673905371560938248nt_rat @ rep_Rat @ abs_Rat )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ) ).
% times_rat_def
thf(fact_9942_plus__rat_Oabs__eq,axiom,
! [Xa: product_prod_int_int,X: product_prod_int_int] :
( ( ratrel @ Xa @ Xa )
=> ( ( ratrel @ X @ X )
=> ( ( plus_plus_rat @ ( abs_Rat @ Xa ) @ ( abs_Rat @ X ) )
= ( abs_Rat @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ Xa ) @ ( product_snd_int_int @ X ) ) @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ Xa ) @ ( product_snd_int_int @ X ) ) ) ) ) ) ) ).
% plus_rat.abs_eq
thf(fact_9943_inverse__rat_Oabs__eq,axiom,
! [X: product_prod_int_int] :
( ( ratrel @ X @ X )
=> ( ( inverse_inverse_rat @ ( abs_Rat @ X ) )
= ( abs_Rat
@ ( if_Pro3027730157355071871nt_int
@ ( ( product_fst_int_int @ X )
= zero_zero_int )
@ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
@ ( product_Pair_int_int @ ( product_snd_int_int @ X ) @ ( product_fst_int_int @ X ) ) ) ) ) ) ).
% inverse_rat.abs_eq
thf(fact_9944_ratrel__iff,axiom,
( ratrel
= ( ^ [X3: product_prod_int_int,Y6: product_prod_int_int] :
( ( ( product_snd_int_int @ X3 )
!= zero_zero_int )
& ( ( product_snd_int_int @ Y6 )
!= zero_zero_int )
& ( ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) )
= ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) ) ) ) ).
% ratrel_iff
thf(fact_9945_zero__rat_Orsp,axiom,
ratrel @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ).
% zero_rat.rsp
thf(fact_9946_ratrel__def,axiom,
( ratrel
= ( ^ [X3: product_prod_int_int,Y6: product_prod_int_int] :
( ( ( product_snd_int_int @ X3 )
!= zero_zero_int )
& ( ( product_snd_int_int @ Y6 )
!= zero_zero_int )
& ( ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) )
= ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) ) ) ) ).
% ratrel_def
thf(fact_9947_times__rat_Oabs__eq,axiom,
! [Xa: product_prod_int_int,X: product_prod_int_int] :
( ( ratrel @ Xa @ Xa )
=> ( ( ratrel @ X @ X )
=> ( ( times_times_rat @ ( abs_Rat @ Xa ) @ ( abs_Rat @ X ) )
= ( abs_Rat @ ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ Xa ) @ ( product_fst_int_int @ X ) ) @ ( times_times_int @ ( product_snd_int_int @ Xa ) @ ( product_snd_int_int @ X ) ) ) ) ) ) ) ).
% times_rat.abs_eq
thf(fact_9948_Rat_Opositive_Oabs__eq,axiom,
! [X: product_prod_int_int] :
( ( ratrel @ X @ X )
=> ( ( positive @ ( abs_Rat @ X ) )
= ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ X ) ) ) ) ) ).
% Rat.positive.abs_eq
thf(fact_9949_num__of__integer__code,axiom,
( code_num_of_integer
= ( ^ [K3: code_integer] :
( if_num @ ( ord_le3102999989581377725nteger @ K3 @ one_one_Code_integer ) @ one
@ ( produc7336495610019696514er_num
@ ^ [L3: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L3 ) @ ( code_num_of_integer @ L3 ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L3 ) @ ( code_num_of_integer @ L3 ) ) @ one ) )
@ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).
% num_of_integer_code
thf(fact_9950_take__upt,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ M ) @ N )
=> ( ( take_nat @ M @ ( upt @ I @ N ) )
= ( upt @ I @ ( plus_plus_nat @ I @ M ) ) ) ) ).
% take_upt
thf(fact_9951_min__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_min_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( suc @ ( ord_min_nat @ M @ N ) ) ) ).
% min_Suc_Suc
thf(fact_9952_min__0R,axiom,
! [N: nat] :
( ( ord_min_nat @ N @ zero_zero_nat )
= zero_zero_nat ) ).
% min_0R
thf(fact_9953_min__0L,axiom,
! [N: nat] :
( ( ord_min_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% min_0L
thf(fact_9954_min__Suc__numeral,axiom,
! [N: nat,K: num] :
( ( ord_min_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
= ( suc @ ( ord_min_nat @ N @ ( pred_numeral @ K ) ) ) ) ).
% min_Suc_numeral
thf(fact_9955_min__numeral__Suc,axiom,
! [K: num,N: nat] :
( ( ord_min_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
= ( suc @ ( ord_min_nat @ ( pred_numeral @ K ) @ N ) ) ) ).
% min_numeral_Suc
thf(fact_9956_inf__nat__def,axiom,
inf_inf_nat = ord_min_nat ).
% inf_nat_def
thf(fact_9957_concat__bit__assoc__sym,axiom,
! [M: nat,N: nat,K: int,L: int,R2: int] :
( ( bit_concat_bit @ M @ ( bit_concat_bit @ N @ K @ L ) @ R2 )
= ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_concat_bit @ ( minus_minus_nat @ M @ N ) @ L @ R2 ) ) ) ).
% concat_bit_assoc_sym
thf(fact_9958_min__diff,axiom,
! [M: nat,I: nat,N: nat] :
( ( ord_min_nat @ ( minus_minus_nat @ M @ I ) @ ( minus_minus_nat @ N @ I ) )
= ( minus_minus_nat @ ( ord_min_nat @ M @ N ) @ I ) ) ).
% min_diff
thf(fact_9959_nat__mult__min__right,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ M @ ( ord_min_nat @ N @ Q2 ) )
= ( ord_min_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q2 ) ) ) ).
% nat_mult_min_right
thf(fact_9960_nat__mult__min__left,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( times_times_nat @ ( ord_min_nat @ M @ N ) @ Q2 )
= ( ord_min_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N @ Q2 ) ) ) ).
% nat_mult_min_left
thf(fact_9961_take__bit__concat__bit__eq,axiom,
! [M: nat,N: nat,K: int,L: int] :
( ( bit_se2923211474154528505it_int @ M @ ( bit_concat_bit @ N @ K @ L ) )
= ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ M @ N ) @ L ) ) ) ).
% take_bit_concat_bit_eq
thf(fact_9962_min__Suc2,axiom,
! [M: nat,N: nat] :
( ( ord_min_nat @ M @ ( suc @ N ) )
= ( case_nat_nat @ zero_zero_nat
@ ^ [M6: nat] : ( suc @ ( ord_min_nat @ M6 @ N ) )
@ M ) ) ).
% min_Suc2
thf(fact_9963_min__Suc1,axiom,
! [N: nat,M: nat] :
( ( ord_min_nat @ ( suc @ N ) @ M )
= ( case_nat_nat @ zero_zero_nat
@ ^ [M6: nat] : ( suc @ ( ord_min_nat @ N @ M6 ) )
@ M ) ) ).
% min_Suc1
thf(fact_9964_min__enat__simps_I2_J,axiom,
! [Q2: extended_enat] :
( ( ord_mi8085742599997312461d_enat @ Q2 @ zero_z5237406670263579293d_enat )
= zero_z5237406670263579293d_enat ) ).
% min_enat_simps(2)
thf(fact_9965_min__enat__simps_I3_J,axiom,
! [Q2: extended_enat] :
( ( ord_mi8085742599997312461d_enat @ zero_z5237406670263579293d_enat @ Q2 )
= zero_z5237406670263579293d_enat ) ).
% min_enat_simps(3)
thf(fact_9966_inf__int__def,axiom,
inf_inf_int = ord_min_int ).
% inf_int_def
thf(fact_9967_Max__divisors__self__nat,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ N ) ) )
= N ) ) ).
% Max_divisors_self_nat
thf(fact_9968_inf__enat__def,axiom,
inf_in1870772243966228564d_enat = ord_mi8085742599997312461d_enat ).
% inf_enat_def
thf(fact_9969_card__le__Suc__Max,axiom,
! [S: set_nat] :
( ( finite_finite_nat @ S )
=> ( ord_less_eq_nat @ ( finite_card_nat @ S ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S ) ) ) ) ).
% card_le_Suc_Max
thf(fact_9970_Sup__nat__def,axiom,
( complete_Sup_Sup_nat
= ( ^ [X8: set_nat] : ( if_nat @ ( X8 = bot_bot_set_nat ) @ zero_zero_nat @ ( lattic8265883725875713057ax_nat @ X8 ) ) ) ) ).
% Sup_nat_def
thf(fact_9971_divide__nat__def,axiom,
( divide_divide_nat
= ( ^ [M5: nat,N4: nat] :
( if_nat @ ( N4 = zero_zero_nat ) @ zero_zero_nat
@ ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [K3: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K3 @ N4 ) @ M5 ) ) ) ) ) ) ).
% divide_nat_def
thf(fact_9972_gcd__is__Max__divisors__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( gcd_gcd_nat @ M @ N )
= ( lattic8265883725875713057ax_nat
@ ( collect_nat
@ ^ [D4: nat] :
( ( dvd_dvd_nat @ D4 @ M )
& ( dvd_dvd_nat @ D4 @ N ) ) ) ) ) ) ).
% gcd_is_Max_divisors_nat
thf(fact_9973_Gcd__eq__Max,axiom,
! [M10: set_nat] :
( ( finite_finite_nat @ M10 )
=> ( ( M10 != bot_bot_set_nat )
=> ( ~ ( member_nat @ zero_zero_nat @ M10 )
=> ( ( gcd_Gcd_nat @ M10 )
= ( lattic8265883725875713057ax_nat
@ ( comple7806235888213564991et_nat
@ ( image_nat_set_nat
@ ^ [M5: nat] :
( collect_nat
@ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M5 ) )
@ M10 ) ) ) ) ) ) ) ).
% Gcd_eq_Max
thf(fact_9974_Max__divisors__self__int,axiom,
! [N: int] :
( ( N != zero_zero_int )
=> ( ( lattic8263393255366662781ax_int
@ ( collect_int
@ ^ [D4: int] : ( dvd_dvd_int @ D4 @ N ) ) )
= ( abs_abs_int @ N ) ) ) ).
% Max_divisors_self_int
thf(fact_9975_upt__conv__Cons__Cons,axiom,
! [M: nat,N: nat,Ns: list_nat,Q2: nat] :
( ( ( cons_nat @ M @ ( cons_nat @ N @ Ns ) )
= ( upt @ M @ Q2 ) )
= ( ( cons_nat @ N @ Ns )
= ( upt @ ( suc @ M ) @ Q2 ) ) ) ).
% upt_conv_Cons_Cons
thf(fact_9976_upt__conv__Cons,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( upt @ I @ J )
= ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).
% upt_conv_Cons
thf(fact_9977_gcd__is__Max__divisors__int,axiom,
! [N: int,M: int] :
( ( N != zero_zero_int )
=> ( ( gcd_gcd_int @ M @ N )
= ( lattic8263393255366662781ax_int
@ ( collect_int
@ ^ [D4: int] :
( ( dvd_dvd_int @ D4 @ M )
& ( dvd_dvd_int @ D4 @ N ) ) ) ) ) ) ).
% gcd_is_Max_divisors_int
thf(fact_9978_sorted__list__of__set__greaterThanAtMost,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ ( suc @ I ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) )
= ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanAtMost
thf(fact_9979_sorted__list__of__set__greaterThanLessThan,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ ( suc @ I ) @ J )
=> ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) )
= ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I ) @ J ) ) ) ) ) ).
% sorted_list_of_set_greaterThanLessThan
thf(fact_9980_upto__aux__rec,axiom,
( upto_aux
= ( ^ [I2: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I2 ) @ Js @ ( upto_aux @ I2 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).
% upto_aux_rec
thf(fact_9981_list__encode_Osimps_I2_J,axiom,
! [X: nat,Xs: list_nat] :
( ( nat_list_encode @ ( cons_nat @ X @ Xs ) )
= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X @ ( nat_list_encode @ Xs ) ) ) ) ) ).
% list_encode.simps(2)
thf(fact_9982_upt__conv__Nil,axiom,
! [J: nat,I: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( upt @ I @ J )
= nil_nat ) ) ).
% upt_conv_Nil
thf(fact_9983_upt__eq__Nil__conv,axiom,
! [I: nat,J: nat] :
( ( ( upt @ I @ J )
= nil_nat )
= ( ( J = zero_zero_nat )
| ( ord_less_eq_nat @ J @ I ) ) ) ).
% upt_eq_Nil_conv
thf(fact_9984_sorted__list__of__set__lessThan__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K ) ) @ ( cons_nat @ K @ nil_nat ) ) ) ).
% sorted_list_of_set_lessThan_Suc
thf(fact_9985_sorted__list__of__set__atMost__Suc,axiom,
! [K: nat] :
( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K ) ) )
= ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K ) ) @ ( cons_nat @ ( suc @ K ) @ nil_nat ) ) ) ).
% sorted_list_of_set_atMost_Suc
thf(fact_9986_upt__rec__numeral,axiom,
! [M: num,N: num] :
( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
=> ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) ) ) ) )
& ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
=> ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= nil_nat ) ) ) ).
% upt_rec_numeral
thf(fact_9987_upt__Suc,axiom,
! [I: nat,J: nat] :
( ( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
& ( ~ ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= nil_nat ) ) ) ).
% upt_Suc
thf(fact_9988_upt__Suc__append,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( suc @ J ) )
= ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).
% upt_Suc_append
thf(fact_9989_list__encode_Ocases,axiom,
! [X: list_nat] :
( ( X != nil_nat )
=> ~ ! [X4: nat,Xs2: list_nat] :
( X
!= ( cons_nat @ X4 @ Xs2 ) ) ) ).
% list_encode.cases
thf(fact_9990_list__encode_Osimps_I1_J,axiom,
( ( nat_list_encode @ nil_nat )
= zero_zero_nat ) ).
% list_encode.simps(1)
thf(fact_9991_upt__0,axiom,
! [I: nat] :
( ( upt @ I @ zero_zero_nat )
= nil_nat ) ).
% upt_0
thf(fact_9992_inj__list__encode,axiom,
! [A2: set_list_nat] : ( inj_on_list_nat_nat @ nat_list_encode @ A2 ) ).
% inj_list_encode
thf(fact_9993_list__encode__eq,axiom,
! [X: list_nat,Y4: list_nat] :
( ( ( nat_list_encode @ X )
= ( nat_list_encode @ Y4 ) )
= ( X = Y4 ) ) ).
% list_encode_eq
thf(fact_9994_bij__list__encode,axiom,
bij_be8532844293280997160at_nat @ nat_list_encode @ top_top_set_list_nat @ top_top_set_nat ).
% bij_list_encode
thf(fact_9995_surj__list__encode,axiom,
( ( image_list_nat_nat @ nat_list_encode @ top_top_set_list_nat )
= top_top_set_nat ) ).
% surj_list_encode
thf(fact_9996_upt__add__eq__append,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( upt @ I @ ( plus_plus_nat @ J @ K ) )
= ( append_nat @ ( upt @ I @ J ) @ ( upt @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).
% upt_add_eq_append
thf(fact_9997_list__encode_Oelims,axiom,
! [X: list_nat,Y4: nat] :
( ( ( nat_list_encode @ X )
= Y4 )
=> ( ( ( X = nil_nat )
=> ( Y4 != zero_zero_nat ) )
=> ~ ! [X4: nat,Xs2: list_nat] :
( ( X
= ( cons_nat @ X4 @ Xs2 ) )
=> ( Y4
!= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs2 ) ) ) ) ) ) ) ) ).
% list_encode.elims
thf(fact_9998_upt__rec,axiom,
( upt
= ( ^ [I2: nat,J3: nat] : ( if_list_nat @ ( ord_less_nat @ I2 @ J3 ) @ ( cons_nat @ I2 @ ( upt @ ( suc @ I2 ) @ J3 ) ) @ nil_nat ) ) ) ).
% upt_rec
thf(fact_9999_list__encode_Opelims,axiom,
! [X: list_nat,Y4: nat] :
( ( ( nat_list_encode @ X )
= Y4 )
=> ( ( accp_list_nat @ nat_list_encode_rel @ X )
=> ( ( ( X = nil_nat )
=> ( ( Y4 = zero_zero_nat )
=> ~ ( accp_list_nat @ nat_list_encode_rel @ nil_nat ) ) )
=> ~ ! [X4: nat,Xs2: list_nat] :
( ( X
= ( cons_nat @ X4 @ Xs2 ) )
=> ( ( Y4
= ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs2 ) ) ) ) )
=> ~ ( accp_list_nat @ nat_list_encode_rel @ ( cons_nat @ X4 @ Xs2 ) ) ) ) ) ) ) ).
% list_encode.pelims
thf(fact_10000_upto_Opelims,axiom,
! [X: int,Xa: int,Y4: list_int] :
( ( ( upto @ X @ Xa )
= Y4 )
=> ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa ) )
=> ~ ( ( ( ( ord_less_eq_int @ X @ Xa )
=> ( Y4
= ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa ) ) ) )
& ( ~ ( ord_less_eq_int @ X @ Xa )
=> ( Y4 = nil_int ) ) )
=> ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa ) ) ) ) ) ).
% upto.pelims
thf(fact_10001_nth__upto,axiom,
! [I: int,K: nat,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) @ J )
=> ( ( nth_int @ ( upto @ I @ J ) @ K )
= ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).
% nth_upto
thf(fact_10002_length__upto,axiom,
! [I: int,J: int] :
( ( size_size_list_int @ ( upto @ I @ J ) )
= ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I ) @ one_one_int ) ) ) ).
% length_upto
thf(fact_10003_upto__rec__numeral_I1_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= nil_int ) ) ) ).
% upto_rec_numeral(1)
thf(fact_10004_upto__rec__numeral_I4_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(4)
thf(fact_10005_upto__rec__numeral_I3_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
=> ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= nil_int ) ) ) ).
% upto_rec_numeral(3)
thf(fact_10006_upto__rec__numeral_I2_J,axiom,
! [M: num,N: num] :
( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
& ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
=> ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= nil_int ) ) ) ).
% upto_rec_numeral(2)
thf(fact_10007_sorted__upto,axiom,
! [M: int,N: int] : ( sorted_wrt_int @ ord_less_eq_int @ ( upto @ M @ N ) ) ).
% sorted_upto
thf(fact_10008_upto__split2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).
% upto_split2
thf(fact_10009_upto__split1,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).
% upto_split1
thf(fact_10010_atLeastLessThan__upto,axiom,
( set_or4662586982721622107an_int
= ( ^ [I2: int,J3: int] : ( set_int2 @ ( upto @ I2 @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% atLeastLessThan_upto
thf(fact_10011_upto_Osimps,axiom,
( upto
= ( ^ [I2: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I2 @ J3 ) @ ( cons_int @ I2 @ ( upto @ ( plus_plus_int @ I2 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).
% upto.simps
thf(fact_10012_upto_Oelims,axiom,
! [X: int,Xa: int,Y4: list_int] :
( ( ( upto @ X @ Xa )
= Y4 )
=> ( ( ( ord_less_eq_int @ X @ Xa )
=> ( Y4
= ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa ) ) ) )
& ( ~ ( ord_less_eq_int @ X @ Xa )
=> ( Y4 = nil_int ) ) ) ) ).
% upto.elims
thf(fact_10013_upto__rec1,axiom,
! [I: int,J: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) ) ).
% upto_rec1
thf(fact_10014_upto__rec2,axiom,
! [I: int,J: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).
% upto_rec2
thf(fact_10015_greaterThanLessThan__upto,axiom,
( set_or5832277885323065728an_int
= ( ^ [I2: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I2 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).
% greaterThanLessThan_upto
thf(fact_10016_upto__split3,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_eq_int @ I @ J )
=> ( ( ord_less_eq_int @ J @ K )
=> ( ( upto @ I @ K )
= ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).
% upto_split3
thf(fact_10017_upto_Opsimps,axiom,
! [I: int,J: int] :
( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I @ J ) )
=> ( ( ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) )
& ( ~ ( ord_less_eq_int @ I @ J )
=> ( ( upto @ I @ J )
= nil_int ) ) ) ) ).
% upto.psimps
thf(fact_10018_tl__upt,axiom,
! [M: nat,N: nat] :
( ( tl_nat @ ( upt @ M @ N ) )
= ( upt @ ( suc @ M ) @ N ) ) ).
% tl_upt
thf(fact_10019_quotient__of__def,axiom,
( quotient_of
= ( ^ [X3: rat] :
( the_Pr4378521158711661632nt_int
@ ^ [Pair: product_prod_int_int] :
( ( X3
= ( fract @ ( product_fst_int_int @ Pair ) @ ( product_snd_int_int @ Pair ) ) )
& ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ Pair ) )
& ( algebr932160517623751201me_int @ ( product_fst_int_int @ Pair ) @ ( product_snd_int_int @ Pair ) ) ) ) ) ) ).
% quotient_of_def
thf(fact_10020_coprime__abs__left__iff,axiom,
! [K: int,L: int] :
( ( algebr932160517623751201me_int @ ( abs_abs_int @ K ) @ L )
= ( algebr932160517623751201me_int @ K @ L ) ) ).
% coprime_abs_left_iff
thf(fact_10021_coprime__abs__right__iff,axiom,
! [K: int,L: int] :
( ( algebr932160517623751201me_int @ K @ ( abs_abs_int @ L ) )
= ( algebr932160517623751201me_int @ K @ L ) ) ).
% coprime_abs_right_iff
thf(fact_10022_normalize__stable,axiom,
! [Q2: int,P5: int] :
( ( ord_less_int @ zero_zero_int @ Q2 )
=> ( ( algebr932160517623751201me_int @ P5 @ Q2 )
=> ( ( normalize @ ( product_Pair_int_int @ P5 @ Q2 ) )
= ( product_Pair_int_int @ P5 @ Q2 ) ) ) ) ).
% normalize_stable
thf(fact_10023_mono__Suc,axiom,
order_mono_nat_nat @ suc ).
% mono_Suc
thf(fact_10024_coprime__crossproduct__int,axiom,
! [A: int,D: int,B: int,C: int] :
( ( algebr932160517623751201me_int @ A @ D )
=> ( ( algebr932160517623751201me_int @ B @ C )
=> ( ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ C ) )
= ( times_times_int @ ( abs_abs_int @ B ) @ ( abs_abs_int @ D ) ) )
= ( ( ( abs_abs_int @ A )
= ( abs_abs_int @ B ) )
& ( ( abs_abs_int @ C )
= ( abs_abs_int @ D ) ) ) ) ) ) ).
% coprime_crossproduct_int
thf(fact_10025_mono__times__nat,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( order_mono_nat_nat @ ( times_times_nat @ N ) ) ) ).
% mono_times_nat
thf(fact_10026_coprime__common__divisor__int,axiom,
! [A: int,B: int,X: int] :
( ( algebr932160517623751201me_int @ A @ B )
=> ( ( dvd_dvd_int @ X @ A )
=> ( ( dvd_dvd_int @ X @ B )
=> ( ( abs_abs_int @ X )
= one_one_int ) ) ) ) ).
% coprime_common_divisor_int
thf(fact_10027_Rat__cases,axiom,
! [Q2: rat] :
~ ! [A4: int,B3: int] :
( ( Q2
= ( fract @ A4 @ B3 ) )
=> ( ( ord_less_int @ zero_zero_int @ B3 )
=> ~ ( algebr932160517623751201me_int @ A4 @ B3 ) ) ) ).
% Rat_cases
thf(fact_10028_Rat__induct,axiom,
! [P: rat > $o,Q2: rat] :
( ! [A4: int,B3: int] :
( ( ord_less_int @ zero_zero_int @ B3 )
=> ( ( algebr932160517623751201me_int @ A4 @ B3 )
=> ( P @ ( fract @ A4 @ B3 ) ) ) )
=> ( P @ Q2 ) ) ).
% Rat_induct
thf(fact_10029_Rat__cases__nonzero,axiom,
! [Q2: rat] :
( ! [A4: int,B3: int] :
( ( Q2
= ( fract @ A4 @ B3 ) )
=> ( ( ord_less_int @ zero_zero_int @ B3 )
=> ( ( A4 != zero_zero_int )
=> ~ ( algebr932160517623751201me_int @ A4 @ B3 ) ) ) )
=> ( Q2 = zero_zero_rat ) ) ).
% Rat_cases_nonzero
thf(fact_10030_quotient__of__unique,axiom,
! [R2: rat] :
? [X4: product_prod_int_int] :
( ( R2
= ( fract @ ( product_fst_int_int @ X4 ) @ ( product_snd_int_int @ X4 ) ) )
& ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ X4 ) )
& ( algebr932160517623751201me_int @ ( product_fst_int_int @ X4 ) @ ( product_snd_int_int @ X4 ) )
& ! [Y3: product_prod_int_int] :
( ( ( R2
= ( fract @ ( product_fst_int_int @ Y3 ) @ ( product_snd_int_int @ Y3 ) ) )
& ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ Y3 ) )
& ( algebr932160517623751201me_int @ ( product_fst_int_int @ Y3 ) @ ( product_snd_int_int @ Y3 ) ) )
=> ( Y3 = X4 ) ) ) ).
% quotient_of_unique
thf(fact_10031_mono__ge2__power__minus__self,axiom,
! [K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( order_mono_nat_nat
@ ^ [M5: nat] : ( minus_minus_nat @ ( power_power_nat @ K @ M5 ) @ M5 ) ) ) ).
% mono_ge2_power_minus_self
thf(fact_10032_tendsto__at__topI__sequentially__real,axiom,
! [F: real > real,Y4: real] :
( ( order_mono_real_real @ F )
=> ( ( filterlim_nat_real
@ ^ [N4: nat] : ( F @ ( semiri5074537144036343181t_real @ N4 ) )
@ ( topolo2815343760600316023s_real @ Y4 )
@ at_top_nat )
=> ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Y4 ) @ at_top_real ) ) ) ).
% tendsto_at_topI_sequentially_real
thf(fact_10033_coprime__int__iff,axiom,
! [M: nat,N: nat] :
( ( algebr932160517623751201me_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( algebr934650988132801477me_nat @ M @ N ) ) ).
% coprime_int_iff
thf(fact_10034_coprime__nat__abs__left__iff,axiom,
! [K: int,N: nat] :
( ( algebr934650988132801477me_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
= ( algebr932160517623751201me_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% coprime_nat_abs_left_iff
thf(fact_10035_coprime__nat__abs__right__iff,axiom,
! [N: nat,K: int] :
( ( algebr934650988132801477me_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
= ( algebr932160517623751201me_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ).
% coprime_nat_abs_right_iff
thf(fact_10036_coprime__Suc__0__right,axiom,
! [N: nat] : ( algebr934650988132801477me_nat @ N @ ( suc @ zero_zero_nat ) ) ).
% coprime_Suc_0_right
thf(fact_10037_coprime__Suc__0__left,axiom,
! [N: nat] : ( algebr934650988132801477me_nat @ ( suc @ zero_zero_nat ) @ N ) ).
% coprime_Suc_0_left
thf(fact_10038_coprime__crossproduct__nat,axiom,
! [A: nat,D: nat,B: nat,C: nat] :
( ( algebr934650988132801477me_nat @ A @ D )
=> ( ( algebr934650988132801477me_nat @ B @ C )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ D ) )
= ( ( A = B )
& ( C = D ) ) ) ) ) ).
% coprime_crossproduct_nat
thf(fact_10039_coprime__Suc__left__nat,axiom,
! [N: nat] : ( algebr934650988132801477me_nat @ ( suc @ N ) @ N ) ).
% coprime_Suc_left_nat
thf(fact_10040_coprime__Suc__right__nat,axiom,
! [N: nat] : ( algebr934650988132801477me_nat @ N @ ( suc @ N ) ) ).
% coprime_Suc_right_nat
thf(fact_10041_coprime__common__divisor__nat,axiom,
! [A: nat,B: nat,X: nat] :
( ( algebr934650988132801477me_nat @ A @ B )
=> ( ( dvd_dvd_nat @ X @ A )
=> ( ( dvd_dvd_nat @ X @ B )
=> ( X = one_one_nat ) ) ) ) ).
% coprime_common_divisor_nat
thf(fact_10042_incseq__bounded,axiom,
! [X9: nat > real,B4: real] :
( ( order_mono_nat_real @ X9 )
=> ( ! [I3: nat] : ( ord_less_eq_real @ ( X9 @ I3 ) @ B4 )
=> ( bfun_nat_real @ X9 @ at_top_nat ) ) ) ).
% incseq_bounded
thf(fact_10043_coprime__diff__one__right__nat,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( algebr934650988132801477me_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% coprime_diff_one_right_nat
thf(fact_10044_coprime__diff__one__left__nat,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( algebr934650988132801477me_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ N ) ) ).
% coprime_diff_one_left_nat
thf(fact_10045_incseq__convergent,axiom,
! [X9: nat > real,B4: real] :
( ( order_mono_nat_real @ X9 )
=> ( ! [I3: nat] : ( ord_less_eq_real @ ( X9 @ I3 ) @ B4 )
=> ~ ! [L5: real] :
( ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L5 ) @ at_top_nat )
=> ~ ! [I4: nat] : ( ord_less_eq_real @ ( X9 @ I4 ) @ L5 ) ) ) ) ).
% incseq_convergent
thf(fact_10046_Rats__abs__nat__div__natE,axiom,
! [X: real] :
( ( member_real @ X @ field_5140801741446780682s_real )
=> ~ ! [M4: nat,N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ( ( abs_abs_real @ X )
= ( divide_divide_real @ ( semiri5074537144036343181t_real @ M4 ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
=> ~ ( algebr934650988132801477me_nat @ M4 @ N2 ) ) ) ) ).
% Rats_abs_nat_div_natE
thf(fact_10047_nonneg__incseq__Bseq__subseq__iff,axiom,
! [F: nat > real,G: nat > nat] :
( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
=> ( ( order_mono_nat_real @ F )
=> ( ( order_5726023648592871131at_nat @ G )
=> ( ( bfun_nat_real
@ ^ [X3: nat] : ( F @ ( G @ X3 ) )
@ at_top_nat )
= ( bfun_nat_real @ F @ at_top_nat ) ) ) ) ) ).
% nonneg_incseq_Bseq_subseq_iff
thf(fact_10048_Rat_Opositive_Orsp,axiom,
( bNF_re8699439704749558557nt_o_o @ ratrel
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 )
@ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) )
@ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) ) ) ).
% Rat.positive.rsp
thf(fact_10049_vanishes__mult__bounded,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ? [A7: rat] :
( ( ord_less_rat @ zero_zero_rat @ A7 )
& ! [N2: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N2 ) ) @ A7 ) )
=> ( ( vanishes @ Y7 )
=> ( vanishes
@ ^ [N4: nat] : ( times_times_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ).
% vanishes_mult_bounded
thf(fact_10050_vanishes__const,axiom,
! [C: rat] :
( ( vanishes
@ ^ [N4: nat] : C )
= ( C = zero_zero_rat ) ) ).
% vanishes_const
thf(fact_10051_vanishes__diff,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( vanishes @ X9 )
=> ( ( vanishes @ Y7 )
=> ( vanishes
@ ^ [N4: nat] : ( minus_minus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ).
% vanishes_diff
thf(fact_10052_vanishes__add,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( vanishes @ X9 )
=> ( ( vanishes @ Y7 )
=> ( vanishes
@ ^ [N4: nat] : ( plus_plus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ).
% vanishes_add
thf(fact_10053_vanishes__minus,axiom,
! [X9: nat > rat] :
( ( vanishes @ X9 )
=> ( vanishes
@ ^ [N4: nat] : ( uminus_uminus_rat @ ( X9 @ N4 ) ) ) ) ).
% vanishes_minus
thf(fact_10054_vanishes__def,axiom,
( vanishes
= ( ^ [X8: nat > rat] :
! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( X8 @ N4 ) ) @ R5 ) ) ) ) ) ).
% vanishes_def
thf(fact_10055_vanishesI,axiom,
! [X9: nat > rat] :
( ! [R3: rat] :
( ( ord_less_rat @ zero_zero_rat @ R3 )
=> ? [K4: nat] :
! [N2: nat] :
( ( ord_less_eq_nat @ K4 @ N2 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N2 ) ) @ R3 ) ) )
=> ( vanishes @ X9 ) ) ).
% vanishesI
thf(fact_10056_vanishesD,axiom,
! [X9: nat > rat,R2: rat] :
( ( vanishes @ X9 )
=> ( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ? [K2: nat] :
! [N6: nat] :
( ( ord_less_eq_nat @ K2 @ N6 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N6 ) ) @ R2 ) ) ) ) ).
% vanishesD
thf(fact_10057_Fract_Orsp,axiom,
( bNF_re157797125943740599nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ( bNF_re6250860962936578807nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ratrel )
@ ^ [A3: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( B2 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A3 @ B2 ) )
@ ^ [A3: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( B2 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A3 @ B2 ) ) ) ).
% Fract.rsp
thf(fact_10058_integer__of__natural_Orsp,axiom,
( bNF_re6650684261131312217nt_int
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ semiri1314217659103216013at_int
@ semiri1314217659103216013at_int ) ).
% integer_of_natural.rsp
thf(fact_10059_less__eq__integer_Orsp,axiom,
( bNF_re3403563459893282935_int_o
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ( bNF_re5089333283451836215nt_o_o
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ ord_less_eq_int
@ ord_less_eq_int ) ).
% less_eq_integer.rsp
thf(fact_10060_less__eq__natural_Orsp,axiom,
( bNF_re578469030762574527_nat_o
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re4705727531993890431at_o_o
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ ord_less_eq_nat
@ ord_less_eq_nat ) ).
% less_eq_natural.rsp
thf(fact_10061_times__natural_Orsp,axiom,
( bNF_re1345281282404953727at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re5653821019739307937at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
@ times_times_nat
@ times_times_nat ) ).
% times_natural.rsp
thf(fact_10062_times__integer_Orsp,axiom,
( bNF_re711492959462206631nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ( bNF_re4712519889275205905nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
@ times_times_int
@ times_times_int ) ).
% times_integer.rsp
thf(fact_10063_divide__integer_Orsp,axiom,
( bNF_re711492959462206631nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ( bNF_re4712519889275205905nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
@ divide_divide_int
@ divide_divide_int ) ).
% divide_integer.rsp
thf(fact_10064_divide__natural_Orsp,axiom,
( bNF_re1345281282404953727at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re5653821019739307937at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
@ divide_divide_nat
@ divide_divide_nat ) ).
% divide_natural.rsp
thf(fact_10065_set__bit__natural_Orsp,axiom,
( bNF_re1345281282404953727at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re5653821019739307937at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
@ bit_se7882103937844011126it_nat
@ bit_se7882103937844011126it_nat ) ).
% set_bit_natural.rsp
thf(fact_10066_set__bit__integer_Orsp,axiom,
( bNF_re4785983289428654063nt_int
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re4712519889275205905nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
@ bit_se7879613467334960850it_int
@ bit_se7879613467334960850it_int ) ).
% set_bit_integer.rsp
thf(fact_10067_unset__bit__natural_Orsp,axiom,
( bNF_re1345281282404953727at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re5653821019739307937at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
@ bit_se4205575877204974255it_nat
@ bit_se4205575877204974255it_nat ) ).
% unset_bit_natural.rsp
thf(fact_10068_unset__bit__integer_Orsp,axiom,
( bNF_re4785983289428654063nt_int
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re4712519889275205905nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
@ bit_se4203085406695923979it_int
@ bit_se4203085406695923979it_int ) ).
% unset_bit_integer.rsp
thf(fact_10069_flip__bit__natural_Orsp,axiom,
( bNF_re1345281282404953727at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re5653821019739307937at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
@ bit_se2161824704523386999it_nat
@ bit_se2161824704523386999it_nat ) ).
% flip_bit_natural.rsp
thf(fact_10070_flip__bit__integer_Orsp,axiom,
( bNF_re4785983289428654063nt_int
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re4712519889275205905nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
@ bit_se2159334234014336723it_int
@ bit_se2159334234014336723it_int ) ).
% flip_bit_integer.rsp
thf(fact_10071_Suc_Orsp,axiom,
( bNF_re5653821019739307937at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ suc
@ suc ) ).
% Suc.rsp
thf(fact_10072_minus__integer_Orsp,axiom,
( bNF_re711492959462206631nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ( bNF_re4712519889275205905nt_int
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
@ minus_minus_int
@ minus_minus_int ) ).
% minus_integer.rsp
thf(fact_10073_minus__natural_Orsp,axiom,
( bNF_re1345281282404953727at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( bNF_re5653821019739307937at_nat
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
@ minus_minus_nat
@ minus_minus_nat ) ).
% minus_natural.rsp
thf(fact_10074_sub_Orsp,axiom,
( bNF_re8402795839162346335um_int
@ ^ [Y5: num,Z4: num] : ( Y5 = Z4 )
@ ( bNF_re1822329894187522285nt_int
@ ^ [Y5: num,Z4: num] : ( Y5 = Z4 )
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
@ ^ [M5: num,N4: num] : ( minus_minus_int @ ( numeral_numeral_int @ M5 ) @ ( numeral_numeral_int @ N4 ) )
@ ^ [M5: num,N4: num] : ( minus_minus_int @ ( numeral_numeral_int @ M5 ) @ ( numeral_numeral_int @ N4 ) ) ) ).
% sub.rsp
thf(fact_10075_times__rat_Orsp,axiom,
( bNF_re5228765855967844073nt_int @ ratrel @ ( bNF_re7145576690424134365nt_int @ ratrel @ ratrel )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ).
% times_rat.rsp
thf(fact_10076_plus__rat_Orsp,axiom,
( bNF_re5228765855967844073nt_int @ ratrel @ ( bNF_re7145576690424134365nt_int @ ratrel @ ratrel )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) ) ) ).
% plus_rat.rsp
thf(fact_10077_inverse__rat_Orsp,axiom,
( bNF_re7145576690424134365nt_int @ ratrel @ ratrel
@ ^ [X3: product_prod_int_int] :
( if_Pro3027730157355071871nt_int
@ ( ( product_fst_int_int @ X3 )
= zero_zero_int )
@ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
@ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) )
@ ^ [X3: product_prod_int_int] :
( if_Pro3027730157355071871nt_int
@ ( ( product_fst_int_int @ X3 )
= zero_zero_int )
@ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
@ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) ) ) ).
% inverse_rat.rsp
thf(fact_10078_plus__rat_Otransfer,axiom,
( bNF_re7627151682743391978at_rat @ pcr_rat @ ( bNF_re8279943556446156061nt_rat @ pcr_rat @ pcr_rat )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) @ ( times_times_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ X3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
@ plus_plus_rat ) ).
% plus_rat.transfer
thf(fact_10079_inverse__rat_Otransfer,axiom,
( bNF_re8279943556446156061nt_rat @ pcr_rat @ pcr_rat
@ ^ [X3: product_prod_int_int] :
( if_Pro3027730157355071871nt_int
@ ( ( product_fst_int_int @ X3 )
= zero_zero_int )
@ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
@ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) )
@ inverse_inverse_rat ) ).
% inverse_rat.transfer
thf(fact_10080_zero__rat_Otransfer,axiom,
pcr_rat @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ zero_zero_rat ).
% zero_rat.transfer
thf(fact_10081_Fract_Otransfer,axiom,
( bNF_re3461391660133120880nt_rat
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ ( bNF_re2214769303045360666nt_rat
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 )
@ pcr_rat )
@ ^ [A3: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( B2 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A3 @ B2 ) )
@ fract ) ).
% Fract.transfer
thf(fact_10082_times__rat_Otransfer,axiom,
( bNF_re7627151682743391978at_rat @ pcr_rat @ ( bNF_re8279943556446156061nt_rat @ pcr_rat @ pcr_rat )
@ ^ [X3: product_prod_int_int,Y6: product_prod_int_int] : ( product_Pair_int_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_fst_int_int @ Y6 ) ) @ ( times_times_int @ ( product_snd_int_int @ X3 ) @ ( product_snd_int_int @ Y6 ) ) )
@ times_times_rat ) ).
% times_rat.transfer
thf(fact_10083_Rat_Opositive_Otransfer,axiom,
( bNF_re1494630372529172596at_o_o @ pcr_rat
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 )
@ ^ [X3: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) )
@ positive ) ).
% Rat.positive.transfer
thf(fact_10084_times__int_Otransfer,axiom,
( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) )
@ times_times_int ) ).
% times_int.transfer
thf(fact_10085_zero__int_Otransfer,axiom,
pcr_int @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) @ zero_zero_int ).
% zero_int.transfer
thf(fact_10086_int__transfer,axiom,
( bNF_re6830278522597306478at_int
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ pcr_int
@ ^ [N4: nat] : ( product_Pair_nat_nat @ N4 @ zero_zero_nat )
@ semiri1314217659103216013at_int ) ).
% int_transfer
thf(fact_10087_uminus__int_Otransfer,axiom,
( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int
@ ( produc2626176000494625587at_nat
@ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) )
@ uminus_uminus_int ) ).
% uminus_int.transfer
thf(fact_10088_nat_Otransfer,axiom,
( bNF_re4555766996558763186at_nat @ pcr_int
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( produc6842872674320459806at_nat @ minus_minus_nat )
@ nat2 ) ).
% nat.transfer
thf(fact_10089_one__int_Otransfer,axiom,
pcr_int @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) @ one_one_int ).
% one_int.transfer
thf(fact_10090_less__int_Otransfer,axiom,
( bNF_re717283939379294677_int_o @ pcr_int
@ ( bNF_re6644619430987730960nt_o_o @ pcr_int
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
@ ord_less_int ) ).
% less_int.transfer
thf(fact_10091_less__eq__int_Otransfer,axiom,
( bNF_re717283939379294677_int_o @ pcr_int
@ ( bNF_re6644619430987730960nt_o_o @ pcr_int
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
@ ord_less_eq_int ) ).
% less_eq_int.transfer
thf(fact_10092_plus__int_Otransfer,axiom,
( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) )
@ plus_plus_int ) ).
% plus_int.transfer
thf(fact_10093_minus__int_Otransfer,axiom,
( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) )
@ minus_minus_int ) ).
% minus_int.transfer
thf(fact_10094_product__atMost__eq__Un,axiom,
! [A2: set_nat,M: nat] :
( ( produc457027306803732586at_nat @ A2
@ ^ [Uu3: nat] : ( set_ord_atMost_nat @ M ) )
= ( sup_su6327502436637775413at_nat
@ ( produc457027306803732586at_nat @ A2
@ ^ [I2: nat] : ( set_ord_atMost_nat @ ( minus_minus_nat @ M @ I2 ) ) )
@ ( produc457027306803732586at_nat @ A2
@ ^ [I2: nat] : ( set_or6659071591806873216st_nat @ ( minus_minus_nat @ M @ I2 ) @ M ) ) ) ) ).
% product_atMost_eq_Un
thf(fact_10095_pairs__le__eq__Sigma,axiom,
! [M: nat] :
( ( collec3392354462482085612at_nat
@ ( produc6081775807080527818_nat_o
@ ^ [I2: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ J3 ) @ M ) ) )
= ( produc457027306803732586at_nat @ ( set_ord_atMost_nat @ M )
@ ^ [R5: nat] : ( set_ord_atMost_nat @ ( minus_minus_nat @ M @ R5 ) ) ) ) ).
% pairs_le_eq_Sigma
thf(fact_10096_inverse__real_Otransfer,axiom,
( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real
@ ^ [X8: nat > rat] :
( if_nat_rat @ ( vanishes @ X8 )
@ ^ [N4: nat] : zero_zero_rat
@ ^ [N4: nat] : ( inverse_inverse_rat @ ( X8 @ N4 ) ) )
@ inverse_inverse_real ) ).
% inverse_real.transfer
thf(fact_10097_zero__real_Otransfer,axiom,
( pcr_real
@ ^ [N4: nat] : zero_zero_rat
@ zero_zero_real ) ).
% zero_real.transfer
thf(fact_10098_one__real_Otransfer,axiom,
( pcr_real
@ ^ [N4: nat] : one_one_rat
@ one_one_real ) ).
% one_real.transfer
thf(fact_10099_uminus__real_Otransfer,axiom,
( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real
@ ^ [X8: nat > rat,N4: nat] : ( uminus_uminus_rat @ ( X8 @ N4 ) )
@ uminus_uminus_real ) ).
% uminus_real.transfer
thf(fact_10100_plus__real_Otransfer,axiom,
( bNF_re4695409256820837752l_real @ pcr_real @ ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( plus_plus_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) )
@ plus_plus_real ) ).
% plus_real.transfer
thf(fact_10101_times__real_Otransfer,axiom,
( bNF_re4695409256820837752l_real @ pcr_real @ ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( times_times_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) )
@ times_times_real ) ).
% times_real.transfer
thf(fact_10102_rat__floor__code,axiom,
( archim3151403230148437115or_rat
= ( ^ [P6: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P6 ) ) ) ) ).
% rat_floor_code
thf(fact_10103_Divides_Oadjust__div__def,axiom,
( adjust_div
= ( produc8211389475949308722nt_int
@ ^ [Q3: int,R5: int] : ( plus_plus_int @ Q3 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).
% Divides.adjust_div_def
thf(fact_10104_Real_Opositive_Otransfer,axiom,
( bNF_re4297313714947099218al_o_o @ pcr_real
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 )
@ ^ [X8: nat > rat] :
? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ R5 @ ( X8 @ N4 ) ) ) )
@ positive2 ) ).
% Real.positive.transfer
thf(fact_10105_times__int_Orsp,axiom,
( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U3 ) @ ( times_times_nat @ Y6 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y6 @ U3 ) ) ) ) ) ) ).
% times_int.rsp
thf(fact_10106_intrel__iff,axiom,
! [X: nat,Y4: nat,U: nat,V: nat] :
( ( intrel @ ( product_Pair_nat_nat @ X @ Y4 ) @ ( product_Pair_nat_nat @ U @ V ) )
= ( ( plus_plus_nat @ X @ V )
= ( plus_plus_nat @ U @ Y4 ) ) ) ).
% intrel_iff
thf(fact_10107_uminus__int_Orsp,axiom,
( bNF_re2241393799969408733at_nat @ intrel @ intrel
@ ( produc2626176000494625587at_nat
@ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) )
@ ( produc2626176000494625587at_nat
@ ^ [X3: nat,Y6: nat] : ( product_Pair_nat_nat @ Y6 @ X3 ) ) ) ).
% uminus_int.rsp
thf(fact_10108_zero__int_Orsp,axiom,
intrel @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ).
% zero_int.rsp
thf(fact_10109_int_Oabs__eq__iff,axiom,
! [X: product_prod_nat_nat,Y4: product_prod_nat_nat] :
( ( ( abs_Integ @ X )
= ( abs_Integ @ Y4 ) )
= ( intrel @ X @ Y4 ) ) ).
% int.abs_eq_iff
thf(fact_10110_Real_Opositive__mult,axiom,
! [X: real,Y4: real] :
( ( positive2 @ X )
=> ( ( positive2 @ Y4 )
=> ( positive2 @ ( times_times_real @ X @ Y4 ) ) ) ) ).
% Real.positive_mult
thf(fact_10111_Real_Opositive__zero,axiom,
~ ( positive2 @ zero_zero_real ) ).
% Real.positive_zero
thf(fact_10112_Real_Opositive__add,axiom,
! [X: real,Y4: real] :
( ( positive2 @ X )
=> ( ( positive2 @ Y4 )
=> ( positive2 @ ( plus_plus_real @ X @ Y4 ) ) ) ) ).
% Real.positive_add
thf(fact_10113_Real_Opositive__minus,axiom,
! [X: real] :
( ~ ( positive2 @ X )
=> ( ( X != zero_zero_real )
=> ( positive2 @ ( uminus_uminus_real @ X ) ) ) ) ).
% Real.positive_minus
thf(fact_10114_nat_Orsp,axiom,
( bNF_re8246922863344978751at_nat @ intrel
@ ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 )
@ ( produc6842872674320459806at_nat @ minus_minus_nat )
@ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ).
% nat.rsp
thf(fact_10115_less__real__def,axiom,
( ord_less_real
= ( ^ [X3: real,Y6: real] : ( positive2 @ ( minus_minus_real @ Y6 @ X3 ) ) ) ) ).
% less_real_def
thf(fact_10116_one__int_Orsp,axiom,
intrel @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ).
% one_int.rsp
thf(fact_10117_intrel__def,axiom,
( intrel
= ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] :
( ( plus_plus_nat @ X3 @ V4 )
= ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ).
% intrel_def
thf(fact_10118_less__int_Orsp,axiom,
( bNF_re4202695980764964119_nat_o @ intrel
@ ( bNF_re3666534408544137501at_o_o @ intrel
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ).
% less_int.rsp
thf(fact_10119_less__eq__int_Orsp,axiom,
( bNF_re4202695980764964119_nat_o @ intrel
@ ( bNF_re3666534408544137501at_o_o @ intrel
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) )
@ ( produc8739625826339149834_nat_o
@ ^ [X3: nat,Y6: nat] :
( produc6081775807080527818_nat_o
@ ^ [U3: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U3 @ Y6 ) ) ) ) ) ).
% less_eq_int.rsp
thf(fact_10120_int_Orel__eq__transfer,axiom,
( bNF_re717283939379294677_int_o @ pcr_int
@ ( bNF_re6644619430987730960nt_o_o @ pcr_int
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ intrel
@ ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) ) ).
% int.rel_eq_transfer
thf(fact_10121_plus__int_Orsp,axiom,
( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U3 ) @ ( plus_plus_nat @ Y6 @ V4 ) ) ) ) ) ).
% plus_int.rsp
thf(fact_10122_minus__int_Orsp,axiom,
( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) )
@ ( produc27273713700761075at_nat
@ ^ [X3: nat,Y6: nat] :
( produc2626176000494625587at_nat
@ ^ [U3: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y6 @ U3 ) ) ) ) ) ).
% minus_int.rsp
thf(fact_10123_Real_Opositive_Orep__eq,axiom,
( positive2
= ( ^ [X3: real] :
? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ R5 @ ( rep_real @ X3 @ N4 ) ) ) ) ) ) ).
% Real.positive.rep_eq
thf(fact_10124_Real_Opositive_Orsp,axiom,
( bNF_re728719798268516973at_o_o @ realrel
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 )
@ ^ [X8: nat > rat] :
? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ R5 @ ( X8 @ N4 ) ) ) )
@ ^ [X8: nat > rat] :
? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ R5 @ ( X8 @ N4 ) ) ) ) ) ).
% Real.positive.rsp
thf(fact_10125_times__real_Orsp,axiom,
( bNF_re1962705104956426057at_rat @ realrel @ ( bNF_re895249473297799549at_rat @ realrel @ realrel )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( times_times_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( times_times_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) ) ) ).
% times_real.rsp
thf(fact_10126_plus__real_Orsp,axiom,
( bNF_re1962705104956426057at_rat @ realrel @ ( bNF_re895249473297799549at_rat @ realrel @ realrel )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( plus_plus_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( plus_plus_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) ) ) ).
% plus_real.rsp
thf(fact_10127_uminus__real_Orsp,axiom,
( bNF_re895249473297799549at_rat @ realrel @ realrel
@ ^ [X8: nat > rat,N4: nat] : ( uminus_uminus_rat @ ( X8 @ N4 ) )
@ ^ [X8: nat > rat,N4: nat] : ( uminus_uminus_rat @ ( X8 @ N4 ) ) ) ).
% uminus_real.rsp
thf(fact_10128_zero__real_Orsp,axiom,
( realrel
@ ^ [N4: nat] : zero_zero_rat
@ ^ [N4: nat] : zero_zero_rat ) ).
% zero_real.rsp
thf(fact_10129_one__real_Orsp,axiom,
( realrel
@ ^ [N4: nat] : one_one_rat
@ ^ [N4: nat] : one_one_rat ) ).
% one_real.rsp
thf(fact_10130_real_Orel__eq__transfer,axiom,
( bNF_re4521903465945308077real_o @ pcr_real
@ ( bNF_re4297313714947099218al_o_o @ pcr_real
@ ^ [Y5: $o,Z4: $o] : ( Y5 = Z4 ) )
@ realrel
@ ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) ) ).
% real.rel_eq_transfer
thf(fact_10131_inverse__real_Orsp,axiom,
( bNF_re895249473297799549at_rat @ realrel @ realrel
@ ^ [X8: nat > rat] :
( if_nat_rat @ ( vanishes @ X8 )
@ ^ [N4: nat] : zero_zero_rat
@ ^ [N4: nat] : ( inverse_inverse_rat @ ( X8 @ N4 ) ) )
@ ^ [X8: nat > rat] :
( if_nat_rat @ ( vanishes @ X8 )
@ ^ [N4: nat] : zero_zero_rat
@ ^ [N4: nat] : ( inverse_inverse_rat @ ( X8 @ N4 ) ) ) ) ).
% inverse_real.rsp
thf(fact_10132_Real_Opositive__def,axiom,
( positive2
= ( map_fu1856342031159181835at_o_o @ rep_real @ id_o
@ ^ [X8: nat > rat] :
? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ R5 @ ( X8 @ N4 ) ) ) ) ) ) ).
% Real.positive_def
thf(fact_10133_inverse__real_Oabs__eq,axiom,
! [X: nat > rat] :
( ( realrel @ X @ X )
=> ( ( inverse_inverse_real @ ( real2 @ X ) )
= ( real2
@ ( if_nat_rat @ ( vanishes @ X )
@ ^ [N4: nat] : zero_zero_rat
@ ^ [N4: nat] : ( inverse_inverse_rat @ ( X @ N4 ) ) ) ) ) ) ).
% inverse_real.abs_eq
thf(fact_10134_real_Oabs__induct,axiom,
! [P: real > $o,X: real] :
( ! [Y: nat > rat] :
( ( realrel @ Y @ Y )
=> ( P @ ( real2 @ Y ) ) )
=> ( P @ X ) ) ).
% real.abs_induct
thf(fact_10135_of__int__Real,axiom,
( ring_1_of_int_real
= ( ^ [X3: int] :
( real2
@ ^ [N4: nat] : ( ring_1_of_int_rat @ X3 ) ) ) ) ).
% of_int_Real
thf(fact_10136_of__rat__Real,axiom,
( field_7254667332652039916t_real
= ( ^ [X3: rat] :
( real2
@ ^ [N4: nat] : X3 ) ) ) ).
% of_rat_Real
thf(fact_10137_one__real__def,axiom,
( one_one_real
= ( real2
@ ^ [N4: nat] : one_one_rat ) ) ).
% one_real_def
thf(fact_10138_zero__real__def,axiom,
( zero_zero_real
= ( real2
@ ^ [N4: nat] : zero_zero_rat ) ) ).
% zero_real_def
thf(fact_10139_of__nat__Real,axiom,
( semiri5074537144036343181t_real
= ( ^ [X3: nat] :
( real2
@ ^ [N4: nat] : ( semiri681578069525770553at_rat @ X3 ) ) ) ) ).
% of_nat_Real
thf(fact_10140_uminus__real_Oabs__eq,axiom,
! [X: nat > rat] :
( ( realrel @ X @ X )
=> ( ( uminus_uminus_real @ ( real2 @ X ) )
= ( real2
@ ^ [N4: nat] : ( uminus_uminus_rat @ ( X @ N4 ) ) ) ) ) ).
% uminus_real.abs_eq
thf(fact_10141_plus__real_Oabs__eq,axiom,
! [Xa: nat > rat,X: nat > rat] :
( ( realrel @ Xa @ Xa )
=> ( ( realrel @ X @ X )
=> ( ( plus_plus_real @ ( real2 @ Xa ) @ ( real2 @ X ) )
= ( real2
@ ^ [N4: nat] : ( plus_plus_rat @ ( Xa @ N4 ) @ ( X @ N4 ) ) ) ) ) ) ).
% plus_real.abs_eq
thf(fact_10142_times__real_Oabs__eq,axiom,
! [Xa: nat > rat,X: nat > rat] :
( ( realrel @ Xa @ Xa )
=> ( ( realrel @ X @ X )
=> ( ( times_times_real @ ( real2 @ Xa ) @ ( real2 @ X ) )
= ( real2
@ ^ [N4: nat] : ( times_times_rat @ ( Xa @ N4 ) @ ( X @ N4 ) ) ) ) ) ) ).
% times_real.abs_eq
thf(fact_10143_Real_Opositive_Oabs__eq,axiom,
! [X: nat > rat] :
( ( realrel @ X @ X )
=> ( ( positive2 @ ( real2 @ X ) )
= ( ? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ R5 @ ( X @ N4 ) ) ) ) ) ) ) ).
% Real.positive.abs_eq
thf(fact_10144_inverse__real__def,axiom,
( inverse_inverse_real
= ( map_fu7146612038024189824t_real @ rep_real @ real2
@ ^ [X8: nat > rat] :
( if_nat_rat @ ( vanishes @ X8 )
@ ^ [N4: nat] : zero_zero_rat
@ ^ [N4: nat] : ( inverse_inverse_rat @ ( X8 @ N4 ) ) ) ) ) ).
% inverse_real_def
thf(fact_10145_le__Real,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( ( ord_less_eq_real @ ( real2 @ X9 ) @ ( real2 @ Y7 ) )
= ( ! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_eq_rat @ ( X9 @ N4 ) @ ( plus_plus_rat @ ( Y7 @ N4 ) @ R5 ) ) ) ) ) ) ) ) ).
% le_Real
thf(fact_10146_cr__real__eq,axiom,
( pcr_real
= ( ^ [X3: nat > rat,Y6: real] :
( ( cauchy @ X3 )
& ( ( real2 @ X3 )
= Y6 ) ) ) ) ).
% cr_real_eq
thf(fact_10147_Real__induct,axiom,
! [P: real > $o,X: real] :
( ! [X15: nat > rat] :
( ( cauchy @ X15 )
=> ( P @ ( real2 @ X15 ) ) )
=> ( P @ X ) ) ).
% Real_induct
thf(fact_10148_cauchy__inverse,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( ~ ( vanishes @ X9 )
=> ( cauchy
@ ^ [N4: nat] : ( inverse_inverse_rat @ ( X9 @ N4 ) ) ) ) ) ).
% cauchy_inverse
thf(fact_10149_cauchy__add,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( cauchy
@ ^ [N4: nat] : ( plus_plus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ).
% cauchy_add
thf(fact_10150_cauchy__minus,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( cauchy
@ ^ [N4: nat] : ( uminus_uminus_rat @ ( X9 @ N4 ) ) ) ) ).
% cauchy_minus
thf(fact_10151_cauchy__const,axiom,
! [X: rat] :
( cauchy
@ ^ [N4: nat] : X ) ).
% cauchy_const
thf(fact_10152_cauchy__mult,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( cauchy
@ ^ [N4: nat] : ( times_times_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ).
% cauchy_mult
thf(fact_10153_cauchy__diff,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( cauchy
@ ^ [N4: nat] : ( minus_minus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ).
% cauchy_diff
thf(fact_10154_realrel__refl,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( realrel @ X9 @ X9 ) ) ).
% realrel_refl
thf(fact_10155_cauchy__imp__bounded,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ? [B3: rat] :
( ( ord_less_rat @ zero_zero_rat @ B3 )
& ! [N6: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N6 ) ) @ B3 ) ) ) ).
% cauchy_imp_bounded
thf(fact_10156_less__RealD,axiom,
! [Y7: nat > rat,X: real] :
( ( cauchy @ Y7 )
=> ( ( ord_less_real @ X @ ( real2 @ Y7 ) )
=> ? [N2: nat] : ( ord_less_real @ X @ ( field_7254667332652039916t_real @ ( Y7 @ N2 ) ) ) ) ) ).
% less_RealD
thf(fact_10157_Real__leI,axiom,
! [X9: nat > rat,Y4: real] :
( ( cauchy @ X9 )
=> ( ! [N2: nat] : ( ord_less_eq_real @ ( field_7254667332652039916t_real @ ( X9 @ N2 ) ) @ Y4 )
=> ( ord_less_eq_real @ ( real2 @ X9 ) @ Y4 ) ) ) ).
% Real_leI
thf(fact_10158_le__RealI,axiom,
! [Y7: nat > rat,X: real] :
( ( cauchy @ Y7 )
=> ( ! [N2: nat] : ( ord_less_eq_real @ X @ ( field_7254667332652039916t_real @ ( Y7 @ N2 ) ) )
=> ( ord_less_eq_real @ X @ ( real2 @ Y7 ) ) ) ) ).
% le_RealI
thf(fact_10159_minus__Real,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( ( uminus_uminus_real @ ( real2 @ X9 ) )
= ( real2
@ ^ [N4: nat] : ( uminus_uminus_rat @ ( X9 @ N4 ) ) ) ) ) ).
% minus_Real
thf(fact_10160_add__Real,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( ( plus_plus_real @ ( real2 @ X9 ) @ ( real2 @ Y7 ) )
= ( real2
@ ^ [N4: nat] : ( plus_plus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ) ).
% add_Real
thf(fact_10161_mult__Real,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( ( times_times_real @ ( real2 @ X9 ) @ ( real2 @ Y7 ) )
= ( real2
@ ^ [N4: nat] : ( times_times_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ) ).
% mult_Real
thf(fact_10162_diff__Real,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( ( minus_minus_real @ ( real2 @ X9 ) @ ( real2 @ Y7 ) )
= ( real2
@ ^ [N4: nat] : ( minus_minus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ) ).
% diff_Real
thf(fact_10163_realrelI,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( ( vanishes
@ ^ [N4: nat] : ( minus_minus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) )
=> ( realrel @ X9 @ Y7 ) ) ) ) ).
% realrelI
thf(fact_10164_eq__Real,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ( cauchy @ Y7 )
=> ( ( ( real2 @ X9 )
= ( real2 @ Y7 ) )
= ( vanishes
@ ^ [N4: nat] : ( minus_minus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) ) ) ) ) ).
% eq_Real
thf(fact_10165_vanishes__diff__inverse,axiom,
! [X9: nat > rat,Y7: nat > rat] :
( ( cauchy @ X9 )
=> ( ~ ( vanishes @ X9 )
=> ( ( cauchy @ Y7 )
=> ( ~ ( vanishes @ Y7 )
=> ( ( vanishes
@ ^ [N4: nat] : ( minus_minus_rat @ ( X9 @ N4 ) @ ( Y7 @ N4 ) ) )
=> ( vanishes
@ ^ [N4: nat] : ( minus_minus_rat @ ( inverse_inverse_rat @ ( X9 @ N4 ) ) @ ( inverse_inverse_rat @ ( Y7 @ N4 ) ) ) ) ) ) ) ) ) ).
% vanishes_diff_inverse
thf(fact_10166_realrel__def,axiom,
( realrel
= ( ^ [X8: nat > rat,Y8: nat > rat] :
( ( cauchy @ X8 )
& ( cauchy @ Y8 )
& ( vanishes
@ ^ [N4: nat] : ( minus_minus_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) ) ) ) ) ) ).
% realrel_def
thf(fact_10167_cauchy__not__vanishes__cases,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( ~ ( vanishes @ X9 )
=> ? [B3: rat] :
( ( ord_less_rat @ zero_zero_rat @ B3 )
& ? [K2: nat] :
( ! [N6: nat] :
( ( ord_less_eq_nat @ K2 @ N6 )
=> ( ord_less_rat @ B3 @ ( uminus_uminus_rat @ ( X9 @ N6 ) ) ) )
| ! [N6: nat] :
( ( ord_less_eq_nat @ K2 @ N6 )
=> ( ord_less_rat @ B3 @ ( X9 @ N6 ) ) ) ) ) ) ) ).
% cauchy_not_vanishes_cases
thf(fact_10168_positive__Real,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( ( positive2 @ ( real2 @ X9 ) )
= ( ? [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
& ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ R5 @ ( X9 @ N4 ) ) ) ) ) ) ) ).
% positive_Real
thf(fact_10169_uminus__real__def,axiom,
( uminus_uminus_real
= ( map_fu7146612038024189824t_real @ rep_real @ real2
@ ^ [X8: nat > rat,N4: nat] : ( uminus_uminus_rat @ ( X8 @ N4 ) ) ) ) ).
% uminus_real_def
thf(fact_10170_cauchy__not__vanishes,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( ~ ( vanishes @ X9 )
=> ? [B3: rat] :
( ( ord_less_rat @ zero_zero_rat @ B3 )
& ? [K2: nat] :
! [N6: nat] :
( ( ord_less_eq_nat @ K2 @ N6 )
=> ( ord_less_rat @ B3 @ ( abs_abs_rat @ ( X9 @ N6 ) ) ) ) ) ) ) ).
% cauchy_not_vanishes
thf(fact_10171_cauchyD,axiom,
! [X9: nat > rat,R2: rat] :
( ( cauchy @ X9 )
=> ( ( ord_less_rat @ zero_zero_rat @ R2 )
=> ? [K2: nat] :
! [M2: nat] :
( ( ord_less_eq_nat @ K2 @ M2 )
=> ! [N6: nat] :
( ( ord_less_eq_nat @ K2 @ N6 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X9 @ M2 ) @ ( X9 @ N6 ) ) ) @ R2 ) ) ) ) ) ).
% cauchyD
thf(fact_10172_cauchyI,axiom,
! [X9: nat > rat] :
( ! [R3: rat] :
( ( ord_less_rat @ zero_zero_rat @ R3 )
=> ? [K4: nat] :
! [M4: nat] :
( ( ord_less_eq_nat @ K4 @ M4 )
=> ! [N2: nat] :
( ( ord_less_eq_nat @ K4 @ N2 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X9 @ M4 ) @ ( X9 @ N2 ) ) ) @ R3 ) ) ) )
=> ( cauchy @ X9 ) ) ).
% cauchyI
thf(fact_10173_cauchy__def,axiom,
( cauchy
= ( ^ [X8: nat > rat] :
! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K3: nat] :
! [M5: nat] :
( ( ord_less_eq_nat @ K3 @ M5 )
=> ! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X8 @ M5 ) @ ( X8 @ N4 ) ) ) @ R5 ) ) ) ) ) ) ).
% cauchy_def
thf(fact_10174_inverse__Real,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( ( ( vanishes @ X9 )
=> ( ( inverse_inverse_real @ ( real2 @ X9 ) )
= zero_zero_real ) )
& ( ~ ( vanishes @ X9 )
=> ( ( inverse_inverse_real @ ( real2 @ X9 ) )
= ( real2
@ ^ [N4: nat] : ( inverse_inverse_rat @ ( X9 @ N4 ) ) ) ) ) ) ) ).
% inverse_Real
thf(fact_10175_not__positive__Real,axiom,
! [X9: nat > rat] :
( ( cauchy @ X9 )
=> ( ( ~ ( positive2 @ ( real2 @ X9 ) ) )
= ( ! [R5: rat] :
( ( ord_less_rat @ zero_zero_rat @ R5 )
=> ? [K3: nat] :
! [N4: nat] :
( ( ord_less_eq_nat @ K3 @ N4 )
=> ( ord_less_eq_rat @ ( X9 @ N4 ) @ R5 ) ) ) ) ) ) ).
% not_positive_Real
thf(fact_10176_times__real__def,axiom,
( times_times_real
= ( map_fu1532550112467129777l_real @ rep_real @ ( map_fu7146612038024189824t_real @ rep_real @ real2 )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( times_times_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) ) ) ) ).
% times_real_def
thf(fact_10177_plus__real__def,axiom,
( plus_plus_real
= ( map_fu1532550112467129777l_real @ rep_real @ ( map_fu7146612038024189824t_real @ rep_real @ real2 )
@ ^ [X8: nat > rat,Y8: nat > rat,N4: nat] : ( plus_plus_rat @ ( X8 @ N4 ) @ ( Y8 @ N4 ) ) ) ) ).
% plus_real_def
thf(fact_10178_cr__real__def,axiom,
( cr_real
= ( ^ [X3: nat > rat,Y6: real] :
( ( realrel @ X3 @ X3 )
& ( ( real2 @ X3 )
= Y6 ) ) ) ) ).
% cr_real_def
thf(fact_10179_int_Obi__total,axiom,
bi_tot896582865486249351at_int @ pcr_int ).
% int.bi_total
thf(fact_10180_real_Opcr__cr__eq,axiom,
pcr_real = cr_real ).
% real.pcr_cr_eq
thf(fact_10181_rcis__inverse,axiom,
! [R2: real,A: real] :
( ( invers8013647133539491842omplex @ ( rcis @ R2 @ A ) )
= ( rcis @ ( divide_divide_real @ one_one_real @ R2 ) @ ( uminus_uminus_real @ A ) ) ) ).
% rcis_inverse
thf(fact_10182_rcis__zero__arg,axiom,
! [R2: real] :
( ( rcis @ R2 @ zero_zero_real )
= ( real_V4546457046886955230omplex @ R2 ) ) ).
% rcis_zero_arg
thf(fact_10183_rcis__eq__zero__iff,axiom,
! [R2: real,A: real] :
( ( ( rcis @ R2 @ A )
= zero_zero_complex )
= ( R2 = zero_zero_real ) ) ).
% rcis_eq_zero_iff
thf(fact_10184_rcis__zero__mod,axiom,
! [A: real] :
( ( rcis @ zero_zero_real @ A )
= zero_zero_complex ) ).
% rcis_zero_mod
thf(fact_10185_Re__rcis,axiom,
! [R2: real,A: real] :
( ( re @ ( rcis @ R2 @ A ) )
= ( times_times_real @ R2 @ ( cos_real @ A ) ) ) ).
% Re_rcis
thf(fact_10186_Im__rcis,axiom,
! [R2: real,A: real] :
( ( im @ ( rcis @ R2 @ A ) )
= ( times_times_real @ R2 @ ( sin_real @ A ) ) ) ).
% Im_rcis
thf(fact_10187_rcis__mult,axiom,
! [R1: real,A: real,R22: real,B: real] :
( ( times_times_complex @ ( rcis @ R1 @ A ) @ ( rcis @ R22 @ B ) )
= ( rcis @ ( times_times_real @ R1 @ R22 ) @ ( plus_plus_real @ A @ B ) ) ) ).
% rcis_mult
thf(fact_10188_rcis__divide,axiom,
! [R1: real,A: real,R22: real,B: real] :
( ( divide1717551699836669952omplex @ ( rcis @ R1 @ A ) @ ( rcis @ R22 @ B ) )
= ( rcis @ ( divide_divide_real @ R1 @ R22 ) @ ( minus_minus_real @ A @ B ) ) ) ).
% rcis_divide
thf(fact_10189_DeMoivre2,axiom,
! [R2: real,A: real,N: nat] :
( ( power_power_complex @ ( rcis @ R2 @ A ) @ N )
= ( rcis @ ( power_power_real @ R2 @ N ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).
% DeMoivre2
thf(fact_10190_pred__nat__trancl__eq__le,axiom,
! [M: nat,N: nat] :
( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ M @ N ) @ ( transi2905341329935302413cl_nat @ pred_nat ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% pred_nat_trancl_eq_le
thf(fact_10191_le__enumerate,axiom,
! [S: set_nat,N: nat] :
( ~ ( finite_finite_nat @ S )
=> ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S @ N ) ) ) ).
% le_enumerate
thf(fact_10192_finite__le__enumerate,axiom,
! [S: set_nat,N: nat] :
( ( finite_finite_nat @ S )
=> ( ( ord_less_nat @ N @ ( finite_card_nat @ S ) )
=> ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S @ N ) ) ) ) ).
% finite_le_enumerate
thf(fact_10193_Least__eq__0,axiom,
! [P: nat > $o] :
( ( P @ zero_zero_nat )
=> ( ( ord_Least_nat @ P )
= zero_zero_nat ) ) ).
% Least_eq_0
thf(fact_10194_Least__Suc2,axiom,
! [P: nat > $o,N: nat,Q: nat > $o,M: nat] :
( ( P @ N )
=> ( ( Q @ M )
=> ( ~ ( P @ zero_zero_nat )
=> ( ! [K2: nat] :
( ( P @ ( suc @ K2 ) )
= ( Q @ K2 ) )
=> ( ( ord_Least_nat @ P )
= ( suc @ ( ord_Least_nat @ Q ) ) ) ) ) ) ) ).
% Least_Suc2
thf(fact_10195_Least__Suc,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ( ( ord_Least_nat @ P )
= ( suc
@ ( ord_Least_nat
@ ^ [M5: nat] : ( P @ ( suc @ M5 ) ) ) ) ) ) ) ).
% Least_Suc
thf(fact_10196_Sup__real__def,axiom,
( comple1385675409528146559p_real
= ( ^ [X8: set_real] :
( ord_Least_real
@ ^ [Z5: real] :
! [X3: real] :
( ( member_real @ X3 @ X8 )
=> ( ord_less_eq_real @ X3 @ Z5 ) ) ) ) ) ).
% Sup_real_def
thf(fact_10197_last__upt,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( last_nat @ ( upt @ I @ J ) )
= ( minus_minus_nat @ J @ one_one_nat ) ) ) ).
% last_upt
thf(fact_10198_vimage__Suc__insert__0,axiom,
! [A2: set_nat] :
( ( vimage_nat_nat @ suc @ ( insert_nat @ zero_zero_nat @ A2 ) )
= ( vimage_nat_nat @ suc @ A2 ) ) ).
% vimage_Suc_insert_0
thf(fact_10199_vimage__Suc__insert__Suc,axiom,
! [N: nat,A2: set_nat] :
( ( vimage_nat_nat @ suc @ ( insert_nat @ ( suc @ N ) @ A2 ) )
= ( insert_nat @ N @ ( vimage_nat_nat @ suc @ A2 ) ) ) ).
% vimage_Suc_insert_Suc
thf(fact_10200_finite__vimage__Suc__iff,axiom,
! [F4: set_nat] :
( ( finite_finite_nat @ ( vimage_nat_nat @ suc @ F4 ) )
= ( finite_finite_nat @ F4 ) ) ).
% finite_vimage_Suc_iff
thf(fact_10201_set__decode__div__2,axiom,
! [X: nat] :
( ( nat_set_decode @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( vimage_nat_nat @ suc @ ( nat_set_decode @ X ) ) ) ).
% set_decode_div_2
thf(fact_10202_set__encode__vimage__Suc,axiom,
! [A2: set_nat] :
( ( nat_set_encode @ ( vimage_nat_nat @ suc @ A2 ) )
= ( divide_divide_nat @ ( nat_set_encode @ A2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% set_encode_vimage_Suc
thf(fact_10203_Bseq__monoseq__convergent_H__dec,axiom,
! [F: nat > real,M10: nat] :
( ( bfun_nat_real
@ ^ [N4: nat] : ( F @ ( plus_plus_nat @ N4 @ M10 ) )
@ at_top_nat )
=> ( ! [M4: nat,N2: nat] :
( ( ord_less_eq_nat @ M10 @ M4 )
=> ( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ M4 ) ) ) )
=> ( topolo7531315842566124627t_real @ F ) ) ) ).
% Bseq_monoseq_convergent'_dec
thf(fact_10204_Bseq__mono__convergent,axiom,
! [X9: nat > real] :
( ( bfun_nat_real @ X9 @ at_top_nat )
=> ( ! [M4: nat,N2: nat] :
( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ord_less_eq_real @ ( X9 @ M4 ) @ ( X9 @ N2 ) ) )
=> ( topolo7531315842566124627t_real @ X9 ) ) ) ).
% Bseq_mono_convergent
thf(fact_10205_convergent__realpow,axiom,
! [X: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( topolo7531315842566124627t_real @ ( power_power_real @ X ) ) ) ) ).
% convergent_realpow
thf(fact_10206_Bseq__monoseq__convergent_H__inc,axiom,
! [F: nat > real,M10: nat] :
( ( bfun_nat_real
@ ^ [N4: nat] : ( F @ ( plus_plus_nat @ N4 @ M10 ) )
@ at_top_nat )
=> ( ! [M4: nat,N2: nat] :
( ( ord_less_eq_nat @ M10 @ M4 )
=> ( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ord_less_eq_real @ ( F @ M4 ) @ ( F @ N2 ) ) ) )
=> ( topolo7531315842566124627t_real @ F ) ) ) ).
% Bseq_monoseq_convergent'_inc
thf(fact_10207_pair__lessI2,axiom,
! [A: nat,B: nat,S2: nat,T: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ S2 @ T )
=> ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ ( product_Pair_nat_nat @ A @ S2 ) @ ( product_Pair_nat_nat @ B @ T ) ) @ fun_pair_less ) ) ) ).
% pair_lessI2
thf(fact_10208_pair__leqI2,axiom,
! [A: nat,B: nat,S2: nat,T: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ S2 @ T )
=> ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ ( product_Pair_nat_nat @ A @ S2 ) @ ( product_Pair_nat_nat @ B @ T ) ) @ fun_pair_leq ) ) ) ).
% pair_leqI2
thf(fact_10209_filtermap__at__right__shift,axiom,
! [D: real,A: real] :
( ( filtermap_real_real
@ ^ [X3: real] : ( minus_minus_real @ X3 @ D )
@ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
= ( topolo2177554685111907308n_real @ ( minus_minus_real @ A @ D ) @ ( set_or5849166863359141190n_real @ ( minus_minus_real @ A @ D ) ) ) ) ).
% filtermap_at_right_shift
thf(fact_10210_at__right__to__0,axiom,
! [A: real] :
( ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) )
= ( filtermap_real_real
@ ^ [X3: real] : ( plus_plus_real @ X3 @ A )
@ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% at_right_to_0
thf(fact_10211_at__right__to__top,axiom,
( ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) )
= ( filtermap_real_real @ inverse_inverse_real @ at_top_real ) ) ).
% at_right_to_top
thf(fact_10212_at__top__to__right,axiom,
( at_top_real
= ( filtermap_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).
% at_top_to_right
thf(fact_10213_filtermap__ln__at__right,axiom,
( ( filtermap_real_real @ ln_ln_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
= at_bot_real ) ).
% filtermap_ln_at_right
thf(fact_10214_gcd__nat_Oordering__top__axioms,axiom,
( ordering_top_nat @ dvd_dvd_nat
@ ^ [M5: nat,N4: nat] :
( ( dvd_dvd_nat @ M5 @ N4 )
& ( M5 != N4 ) )
@ zero_zero_nat ) ).
% gcd_nat.ordering_top_axioms
thf(fact_10215_bot__nat__0_Oordering__top__axioms,axiom,
( ordering_top_nat
@ ^ [X3: nat,Y6: nat] : ( ord_less_eq_nat @ Y6 @ X3 )
@ ^ [X3: nat,Y6: nat] : ( ord_less_nat @ Y6 @ X3 )
@ zero_zero_nat ) ).
% bot_nat_0.ordering_top_axioms
% Helper facts (40)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y4: int] :
( ( if_int @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y4: int] :
( ( if_int @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y4: nat] :
( ( if_nat @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y4: nat] :
( ( if_nat @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
! [X: num,Y4: num] :
( ( if_num @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
! [X: num,Y4: num] :
( ( if_num @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
! [X: rat,Y4: rat] :
( ( if_rat @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
! [X: rat,Y4: rat] :
( ( if_rat @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y4: real] :
( ( if_real @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y4: real] :
( ( if_real @ $true @ X @ Y4 )
= X ) ).
thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
! [P: real > $o] :
( ( P @ ( fChoice_real @ P ) )
= ( ? [X8: real] : ( P @ X8 ) ) ) ).
thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
! [X: complex,Y4: complex] :
( ( if_complex @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
! [X: complex,Y4: complex] :
( ( if_complex @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X: code_integer,Y4: code_integer] :
( ( if_Code_integer @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
! [X: code_integer,Y4: code_integer] :
( ( if_Code_integer @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X: list_int,Y4: list_int] :
( ( if_list_int @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
! [X: list_int,Y4: list_int] :
( ( if_list_int @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
! [X: list_nat,Y4: list_nat] :
( ( if_list_nat @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
! [X: list_nat,Y4: list_nat] :
( ( if_list_nat @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X: int > int,Y4: int > int] :
( ( if_int_int @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X: int > int,Y4: int > int] :
( ( if_int_int @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J_T,axiom,
! [X: nat > rat,Y4: nat > rat] :
( ( if_nat_rat @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J_T,axiom,
! [X: nat > rat,Y4: nat > rat] :
( ( if_nat_rat @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X: option_num,Y4: option_num] :
( ( if_option_num @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
! [X: option_num,Y4: option_num] :
( ( if_option_num @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X: product_prod_int_int,Y4: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
! [X: product_prod_int_int,Y4: product_prod_int_int] :
( ( if_Pro3027730157355071871nt_int @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X: product_prod_nat_nat,Y4: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
! [X: product_prod_nat_nat,Y4: product_prod_nat_nat] :
( ( if_Pro6206227464963214023at_nat @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J_T,axiom,
! [X: nat > int > int,Y4: nat > int > int] :
( ( if_nat_int_int @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001_062_It__Nat__Onat_M_062_It__Int__Oint_Mt__Int__Oint_J_J_T,axiom,
! [X: nat > int > int,Y4: nat > int > int] :
( ( if_nat_int_int @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
! [X: nat > nat > nat,Y4: nat > nat > nat] :
( ( if_nat_nat_nat @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
! [X: nat > nat > nat,Y4: nat > nat > nat] :
( ( if_nat_nat_nat @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
! [X: produc6271795597528267376eger_o,Y4: produc6271795597528267376eger_o] :
( ( if_Pro5737122678794959658eger_o @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
! [X: produc6271795597528267376eger_o,Y4: produc6271795597528267376eger_o] :
( ( if_Pro5737122678794959658eger_o @ $true @ X @ Y4 )
= X ) ).
thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X: produc8923325533196201883nteger,Y4: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
! [X: produc8923325533196201883nteger,Y4: produc8923325533196201883nteger] :
( ( if_Pro6119634080678213985nteger @ $true @ X @ Y4 )
= X ) ).
thf(help_If_3_1_If_001_062_It__Nat__Onat_M_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001_062_It__Nat__Onat_M_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_T,axiom,
! [X: nat > code_integer > code_integer,Y4: nat > code_integer > code_integer] :
( ( if_nat5617392847756311170nteger @ $false @ X @ Y4 )
= Y4 ) ).
thf(help_If_1_1_If_001_062_It__Nat__Onat_M_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_T,axiom,
! [X: nat > code_integer > code_integer,Y4: nat > code_integer > code_integer] :
( ( if_nat5617392847756311170nteger @ $true @ X @ Y4 )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_V8646137997579335489_i_l_d @ ( suc @ ( suc @ ( divide_divide_nat @ va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( vEBT_VEBT_cnt @ ( vEBT_vebt_buildup @ ( suc @ ( suc @ ( divide_divide_nat @ va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------