TPTP Problem File: ITP270^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP270^1 : TPTP v9.0.0. Released v8.1.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer problem VEBT_DeleteBounds 00283_015243
% Version  : [Des22] axioms.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source   : [Des22]
% Names    : 0074_VEBT_DeleteBounds_00283_015243 [Des22]

% Status   : Theorem
% Rating   : 0.50 v9.0.0, 0.80 v8.2.0, 0.85 v8.1.0
% Syntax   : Number of formulae    : 11424 (5763 unt;1171 typ;   0 def)
%            Number of atoms       : 30127 (13070 equ;   0 cnn)
%            Maximal formula atoms :   71 (   2 avg)
%            Number of connectives : 126577 (2956   ~; 504   |;1884   &;109891   @)
%                                         (   0 <=>;11342  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   39 (   6 avg)
%            Number of types       :   99 (  98 usr)
%            Number of type conns  : 4573 (4573   >;   0   *;   0   +;   0  <<)
%            Number of symbols     : 1076 (1073 usr;  77 con; 0-8 aty)
%            Number of variables   : 25764 (2189   ^;22661   !; 914   ?;25764   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            from the van Emde Boas Trees session in the Archive of Formal
%            proofs - 
%            www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
%            2022-02-18 12:10:18.943
%------------------------------------------------------------------------------
% Could-be-implicit typings (98)
thf(ty_n_t__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J_J,type,
    produc1319942482725812455at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5542196010084753463at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5491161045314408544at_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    list_P5464809261938338413at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    set_Pr4329608150637261639at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
    produc1193250871479095198on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc8306885398267862888on_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc6121120109295599847at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
    produc7036089656553540234on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc2233624965454879586on_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc3843707927480180839at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_Pr8693737435421807431at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc859450856879609959at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J_J,type,
    set_fi4554929511873752355omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7413028617227757229T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc3447558737645232053on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4953844613479565601on_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J_J,type,
    set_fi7789364187291644575l_real: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    filter6041513312241820739omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
    list_P7037539587688870467BT_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    list_P4547456442757143711BT_int: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_li5450038453877631591at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    produc8243902056947475879T_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    set_Pr5085853215250843933omplex: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc8923325533196201883nteger: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Extended____Nat__Oenat_J,type,
    produc7272778201969148633d_enat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    list_P3126845725202233233VEBT_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7495141550334521929T_VEBT: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    filter2146258269922977983l_real: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    option4927543243414619207at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    set_Pr6218003697084177305l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    list_P3744719386663036955um_num: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    list_P1726324292696863441at_num: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    list_P6011104703257516679at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    produc9072475918466114483BT_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    produc4894624898956917775BT_int: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1261947904930325089at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    set_Pr958786334691620121nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    produc4411394909380815293omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J_J,type,
    list_P6285523579766656935_o_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    list_P3795440434834930179_o_int: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
    set_list_VEBT_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    produc334124729049499915VEBT_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    produc2504756804600209347T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc6271795597528267376eger_o: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Extended____Nat__Oenat_J_J,type,
    set_li5464603477888414924d_enat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    produc2422161461964618553l_real: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    product_prod_num_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    product_prod_nat_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    product_prod_int_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    list_P4002435161011370285od_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Complex__Ocomplex_J_J,type,
    set_list_complex: $tType ).

thf(ty_n_t__List__Olist_It__Option__Ooption_It__Nat__Onat_J_J,type,
    list_option_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Nat__Onat_J_J,type,
    set_option_nat: $tType ).

thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    list_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
    set_list_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
    product_prod_o_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    product_prod_o_int: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    list_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    set_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__Extended____Nat__Oenat_J,type,
    list_Extended_enat: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    set_Extended_enat: $tType ).

thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
    list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
    set_list_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    product_prod_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
    filter_real: $tType ).

thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
    option_num: $tType ).

thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
    option_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
    filter_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Int__Oint_J,type,
    filter_int: $tType ).

thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
    set_char: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Num__Onum_J,type,
    list_num: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__VEBT____Definitions__OVEBT,type,
    vEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
    set_rat: $tType ).

thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
    set_num: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Code____Numeral__Ointeger,type,
    code_integer: $tType ).

thf(ty_n_t__Product____Type__Ounit,type,
    product_unit: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__List__Olist_I_Eo_J,type,
    list_o: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__String__Oliteral,type,
    literal: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Rat__Orat,type,
    rat: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (1073)
thf(sy_c_Archimedean__Field_Oceiling_001t__Rat__Orat,type,
    archim2889992004027027881ng_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
    archim3151403230148437115or_rat: rat > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Rat__Orat,type,
    archimedean_frac_rat: rat > rat ).

thf(sy_c_Archimedean__Field_Ofrac_001t__Real__Oreal,type,
    archim2898591450579166408c_real: real > real ).

thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
    archim7778729529865785530nd_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
    archim8280529875227126926d_real: real > int ).

thf(sy_c_BNF__Cardinal__Order__Relation_OnatLeq,type,
    bNF_Ca8665028551170535155natLeq: set_Pr1261947904930325089at_nat ).

thf(sy_c_BNF__Cardinal__Order__Relation_OnatLess,type,
    bNF_Ca8459412986667044542atLess: set_Pr1261947904930325089at_nat ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J,type,
    bNF_re1962705104956426057at_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > nat > rat ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
    bNF_re895249473297799549at_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > nat > rat ) > ( ( nat > rat ) > nat > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_Eo_001_Eo,type,
    bNF_re728719798268516973at_o_o: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( $o > $o > $o ) > ( ( nat > rat ) > $o ) > ( ( nat > rat ) > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_It__Real__Oreal_Mt__Real__Oreal_J,type,
    bNF_re4695409256820837752l_real: ( ( nat > rat ) > real > $o ) > ( ( ( nat > rat ) > nat > rat ) > ( real > real ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > ( real > real > real ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_Eo_J_001_062_It__Real__Oreal_M_Eo_J,type,
    bNF_re4521903465945308077real_o: ( ( nat > rat ) > real > $o ) > ( ( ( nat > rat ) > $o ) > ( real > $o ) > $o ) > ( ( nat > rat ) > ( nat > rat ) > $o ) > ( real > real > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
    bNF_re3023117138289059399t_real: ( ( nat > rat ) > real > $o ) > ( ( nat > rat ) > real > $o ) > ( ( nat > rat ) > nat > rat ) > ( real > real ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal_001_Eo_001_Eo,type,
    bNF_re4297313714947099218al_o_o: ( ( nat > rat ) > real > $o ) > ( $o > $o > $o ) > ( ( nat > rat ) > $o ) > ( real > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Code____Numeral__Ointeger_001_062_It__Int__Oint_M_Eo_J_001_062_It__Code____Numeral__Ointeger_M_Eo_J,type,
    bNF_re6321650412969554871eger_o: ( int > code_integer > $o ) > ( ( int > $o ) > ( code_integer > $o ) > $o ) > ( int > int > $o ) > ( code_integer > code_integer > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Code____Numeral__Ointeger_001_Eo_001_Eo,type,
    bNF_re6574881592172037608er_o_o: ( int > code_integer > $o ) > ( $o > $o > $o ) > ( int > $o ) > ( code_integer > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Code____Numeral__Ointeger_001t__Nat__Onat_001t__Nat__Onat,type,
    bNF_re2807294637932363402at_nat: ( int > code_integer > $o ) > ( nat > nat > $o ) > ( int > nat ) > ( code_integer > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Code____Numeral__Ointeger_001t__Num__Onum_001t__Num__Onum,type,
    bNF_re6718328864250387230um_num: ( int > code_integer > $o ) > ( num > num > $o ) > ( int > num ) > ( code_integer > num ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
    bNF_re3403563459893282935_int_o: ( int > int > $o ) > ( ( int > $o ) > ( int > $o ) > $o ) > ( int > int > $o ) > ( int > int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    bNF_re157797125943740599nt_int: ( int > int > $o ) > ( ( int > product_prod_int_int ) > ( int > product_prod_int_int ) > $o ) > ( int > int > product_prod_int_int ) > ( int > int > product_prod_int_int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_062_It__Int__Oint_Mt__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J_001_062_It__Int__Oint_Mt__Rat__Orat_J,type,
    bNF_re3461391660133120880nt_rat: ( int > int > $o ) > ( ( int > product_prod_int_int ) > ( int > rat ) > $o ) > ( int > int > product_prod_int_int ) > ( int > int > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001_Eo_001_Eo,type,
    bNF_re5089333283451836215nt_o_o: ( int > int > $o ) > ( $o > $o > $o ) > ( int > $o ) > ( int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Nat__Onat_001t__Nat__Onat,type,
    bNF_re3715656647883201625at_nat: ( int > int > $o ) > ( nat > nat > $o ) > ( int > nat ) > ( int > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum_001t__Num__Onum,type,
    bNF_re7626690874201225453um_num: ( int > int > $o ) > ( num > num > $o ) > ( int > num ) > ( int > num ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re6250860962936578807nt_int: ( int > int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > ( int > product_prod_int_int ) > ( int > product_prod_int_int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
    bNF_re2214769303045360666nt_rat: ( int > int > $o ) > ( product_prod_int_int > rat > $o ) > ( int > product_prod_int_int ) > ( int > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Nat__Onat_M_Eo_J_001_062_It__Nat__Onat_M_Eo_J,type,
    bNF_re578469030762574527_nat_o: ( nat > nat > $o ) > ( ( nat > $o ) > ( nat > $o ) > $o ) > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001_Eo_001_Eo,type,
    bNF_re4705727531993890431at_o_o: ( nat > nat > $o ) > ( $o > $o > $o ) > ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    bNF_re4153400068438556298nteger: ( nat > nat > $o ) > ( int > code_integer > $o ) > ( nat > int ) > ( nat > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint_001t__Int__Oint,type,
    bNF_re6650684261131312217nt_int: ( nat > nat > $o ) > ( int > int > $o ) > ( nat > int ) > ( nat > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    bNF_re6830278522597306478at_int: ( nat > nat > $o ) > ( product_prod_nat_nat > int > $o ) > ( nat > product_prod_nat_nat ) > ( nat > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001_062_It__Num__Onum_Mt__Int__Oint_J_001_062_It__Num__Onum_Mt__Code____Numeral__Ointeger_J,type,
    bNF_re7876454716742015248nteger: ( num > num > $o ) > ( ( num > int ) > ( num > code_integer ) > $o ) > ( num > num > int ) > ( num > num > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001_062_It__Num__Onum_Mt__Int__Oint_J_001_062_It__Num__Onum_Mt__Int__Oint_J,type,
    bNF_re8402795839162346335um_int: ( num > num > $o ) > ( ( num > int ) > ( num > int ) > $o ) > ( num > num > int ) > ( num > num > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    bNF_re6501075790457514782nteger: ( num > num > $o ) > ( int > code_integer > $o ) > ( num > int ) > ( num > code_integer ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Num__Onum_001t__Num__Onum_001t__Int__Oint_001t__Int__Oint,type,
    bNF_re1822329894187522285nt_int: ( num > num > $o ) > ( int > int > $o ) > ( num > int ) > ( num > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_Eo_001_Eo,type,
    bNF_re8699439704749558557nt_o_o: ( product_prod_int_int > product_prod_int_int > $o ) > ( $o > $o > $o ) > ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re7145576690424134365nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int ) > ( product_prod_int_int > product_prod_int_int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001_Eo_001_Eo,type,
    bNF_re1494630372529172596at_o_o: ( product_prod_int_int > rat > $o ) > ( $o > $o > $o ) > ( product_prod_int_int > $o ) > ( rat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
    bNF_re8279943556446156061nt_rat: ( product_prod_int_int > rat > $o ) > ( product_prod_int_int > rat > $o ) > ( product_prod_int_int > product_prod_int_int ) > ( rat > rat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
    bNF_re717283939379294677_int_o: ( product_prod_nat_nat > int > $o ) > ( ( product_prod_nat_nat > $o ) > ( int > $o ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( int > int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    bNF_re7408651293131936558nt_int: ( product_prod_nat_nat > int > $o ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > ( int > int ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > ( int > int > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001_Eo_001_Eo,type,
    bNF_re6644619430987730960nt_o_o: ( product_prod_nat_nat > int > $o ) > ( $o > $o > $o ) > ( product_prod_nat_nat > $o ) > ( int > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001t__Nat__Onat_001t__Nat__Onat,type,
    bNF_re4555766996558763186at_nat: ( product_prod_nat_nat > int > $o ) > ( nat > nat > $o ) > ( product_prod_nat_nat > nat ) > ( int > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    bNF_re7400052026677387805at_int: ( product_prod_nat_nat > int > $o ) > ( product_prod_nat_nat > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat ) > ( int > int ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    bNF_re4202695980764964119_nat_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bNF_re3099431351363272937at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat ) > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
    bNF_re3666534408544137501at_o_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( $o > $o > $o ) > ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
    bNF_re8246922863344978751at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( nat > nat > $o ) > ( product_prod_nat_nat > nat ) > ( product_prod_nat_nat > nat ) > $o ).

thf(sy_c_BNF__Def_Orel__fun_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    bNF_re2241393799969408733at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat ) > ( product_prod_nat_nat > product_prod_nat_nat ) > $o ).

thf(sy_c_Binomial_Obinomial,type,
    binomial: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
    gbinomial_complex: complex > nat > complex ).

thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
    gbinomial_int: int > nat > int ).

thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
    gbinomial_nat: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
    gbinomial_rat: rat > nat > rat ).

thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
    gbinomial_real: real > nat > real ).

thf(sy_c_Bit__Operations_Oand__int__rel,type,
    bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Bit__Operations_Oand__not__num,type,
    bit_and_not_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Oand__not__num__rel,type,
    bit_and_not_num_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Oconcat__bit,type,
    bit_concat_bit: nat > int > int > int ).

thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
    bit_or_not_num_neg: num > num > num ).

thf(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
    bit_or3848514188828904588eg_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Code____Numeral__Ointeger,type,
    bit_ri7632146776885996613nteger: code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
    bit_ri7919022796975470100ot_int: int > int ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
    bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
    bit_se725231765392027082nd_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
    bit_se727722235901077358nd_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
    bit_se8568078237143864401it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
    bit_se8570568707652914677it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1345352211410354436nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
    bit_se2159334234014336723it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
    bit_se2161824704523386999it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Code____Numeral__Ointeger,type,
    bit_se1080825931792720795nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
    bit_se1409905431419307370or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
    bit_se1412395901928357646or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
    bit_se545348938243370406it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
    bit_se547839408752420682it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se2793503036327961859nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
    bit_se7882103937844011126it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1745604003318907178nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
    bit_se2923211474154528505it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
    bit_se2925701944663578781it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se8260200283734997820nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
    bit_se4203085406695923979it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
    bit_se4205575877204974255it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Code____Numeral__Ointeger,type,
    bit_se3222712562003087583nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
    bit_se6526347334894502574or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
    bit_se6528837805403552850or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
    bit_se1146084159140164899it_int: int > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
    bit_se1148574629649215175it_nat: nat > nat > $o ).

thf(sy_c_Bit__Operations_Otake__bit__num,type,
    bit_take_bit_num: nat > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num,type,
    bit_un1837492267222099188nd_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oand__num__rel,type,
    bit_un5425074673868309765um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oor__num,type,
    bit_un2785000775030745342or_num: num > num > num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oor__num__rel,type,
    bit_un6909899581280750971um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num,type,
    bit_un6178654185764691216or_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations_Oxor__num__rel,type,
    bit_un3595099601533988841um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num,type,
    bit_un7362597486090784418nd_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oand__num__rel,type,
    bit_un4731106466462545111um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oor__num,type,
    bit_un6697907153464112080or_num: num > num > num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oor__num__rel,type,
    bit_un4773296044027857193um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num,type,
    bit_un2480387367778600638or_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Ounique__euclidean__semiring__with__bit__operations__class_Oxor__num__rel,type,
    bit_un2901131394128224187um_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Code__Numeral_ONeg,type,
    code_Neg: num > code_integer ).

thf(sy_c_Code__Numeral_OPos,type,
    code_Pos: num > code_integer ).

thf(sy_c_Code__Numeral_Obit__cut__integer,type,
    code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).

thf(sy_c_Code__Numeral_Odivmod__abs,type,
    code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odivmod__integer,type,
    code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odup,type,
    code_dup: code_integer > code_integer ).

thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
    code_int_of_integer: code_integer > int ).

thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
    code_integer_of_int: int > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__nat,type,
    code_integer_of_nat: nat > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__num,type,
    code_integer_of_num: num > code_integer ).

thf(sy_c_Code__Numeral_Onat__of__integer,type,
    code_nat_of_integer: code_integer > nat ).

thf(sy_c_Code__Numeral_Onum__of__integer,type,
    code_num_of_integer: code_integer > num ).

thf(sy_c_Code__Numeral_Opcr__integer,type,
    code_pcr_integer: int > code_integer > $o ).

thf(sy_c_Code__Numeral_Osub,type,
    code_sub: num > num > code_integer ).

thf(sy_c_Code__Target__Int_Onegative,type,
    code_Target_negative: num > int ).

thf(sy_c_Code__Target__Int_Opositive,type,
    code_Target_positive: num > int ).

thf(sy_c_Code__Target__Nat_ONat,type,
    code_Target_Nat: code_integer > nat ).

thf(sy_c_Code__Target__Nat_Oint__of__nat,type,
    code_T6385005292777649522of_nat: nat > int ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Extended____Nat__Oenat,type,
    comple2295165028678016749d_enat: set_Extended_enat > extended_enat ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    comple8358262395181532106omplex: set_fi4554929511873752355omplex > filter6041513312241820739omplex ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    comple2936214249959783750l_real: set_fi7789364187291644575l_real > filter2146258269922977983l_real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Int__Oint,type,
    complete_Inf_Inf_int: set_int > int ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Nat__Onat,type,
    complete_Inf_Inf_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Real__Oreal,type,
    comple4887499456419720421f_real: set_real > real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7806235888213564991et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Extended____Nat__Oenat,type,
    comple4398354569131411667d_enat: set_Extended_enat > extended_enat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Int__Oint,type,
    complete_Sup_Sup_int: set_int > int ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
    complete_Sup_Sup_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
    comple1385675409528146559p_real: set_real > real ).

thf(sy_c_Complex_OArg,type,
    arg: complex > real ).

thf(sy_c_Complex_Ocis,type,
    cis: real > complex ).

thf(sy_c_Complex_Ocnj,type,
    cnj: complex > complex ).

thf(sy_c_Complex_Ocomplex_OComplex,type,
    complex2: real > real > complex ).

thf(sy_c_Complex_Ocomplex_OIm,type,
    im: complex > real ).

thf(sy_c_Complex_Ocomplex_ORe,type,
    re: complex > real ).

thf(sy_c_Complex_Ocsqrt,type,
    csqrt: complex > complex ).

thf(sy_c_Complex_Oimaginary__unit,type,
    imaginary_unit: complex ).

thf(sy_c_Complex_Orcis,type,
    rcis: real > real > complex ).

thf(sy_c_Conditionally__Complete__Lattices_Opreorder__class_Obdd__above_001t__Nat__Onat,type,
    condit2214826472909112428ve_nat: set_nat > $o ).

thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
    differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
    has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
    has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).

thf(sy_c_Divides_Oadjust__div,type,
    adjust_div: product_prod_int_int > int ).

thf(sy_c_Divides_Oadjust__mod,type,
    adjust_mod: int > int > int ).

thf(sy_c_Divides_Odivmod__nat,type,
    divmod_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Divides_Oeucl__rel__int,type,
    eucl_rel_int: int > int > product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Code____Numeral__Ointeger,type,
    unique5706413561485394159nteger: produc8923325533196201883nteger > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Int__Oint,type,
    unique6319869463603278526ux_int: product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Nat__Onat,type,
    unique6322359934112328802ux_nat: product_prod_nat_nat > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Code____Numeral__Ointeger,type,
    unique3479559517661332726nteger: num > num > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
    unique5052692396658037445od_int: num > num > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
    unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
    unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
    unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
    unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Euclidean__Division_Oeuclidean__semiring__class_Oeuclidean__size_001t__Int__Oint,type,
    euclid4774559944035922753ze_int: int > nat ).

thf(sy_c_Euclidean__Division_Ounique__euclidean__semiring__class_Odivision__segment_001t__Int__Oint,type,
    euclid3395696857347342551nt_int: int > int ).

thf(sy_c_Extended__Nat_OeSuc,type,
    extended_eSuc: extended_enat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat,type,
    extended_enat2: nat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat_OAbs__enat,type,
    extended_Abs_enat: option_nat > extended_enat ).

thf(sy_c_Extended__Nat_Oenat_ORep__enat,type,
    extended_Rep_enat: extended_enat > option_nat ).

thf(sy_c_Extended__Nat_Oenat_Ocase__enat_001_Eo,type,
    extended_case_enat_o: ( nat > $o ) > $o > extended_enat > $o ).

thf(sy_c_Extended__Nat_Oenat_Ocase__enat_001t__Extended____Nat__Oenat,type,
    extend3600170679010898289d_enat: ( nat > extended_enat ) > extended_enat > extended_enat > extended_enat ).

thf(sy_c_Extended__Nat_Oinfinity__class_Oinfinity_001t__Extended____Nat__Oenat,type,
    extend5688581933313929465d_enat: extended_enat ).

thf(sy_c_Extended__Nat_Othe__enat,type,
    extended_the_enat: extended_enat > nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
    comm_s8582702949713902594nteger: code_integer > nat > code_integer ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
    comm_s2602460028002588243omplex: complex > nat > complex ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
    comm_s4660882817536571857er_int: int > nat > int ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
    comm_s4663373288045622133er_nat: nat > nat > nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
    comm_s4028243227959126397er_rat: rat > nat > rat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
    comm_s7457072308508201937r_real: real > nat > real ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
    semiri5044797733671781792omplex: nat > complex ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
    semiri2265585572941072030t_real: nat > real ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
    invers8013647133539491842omplex: complex > complex ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
    inverse_inverse_rat: rat > rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
    at_bot_real: filter_real ).

thf(sy_c_Filter_Oat__top_001t__Int__Oint,type,
    at_top_int: filter_int ).

thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
    at_top_nat: filter_nat ).

thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
    at_top_real: filter_real ).

thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
    eventually_nat: ( nat > $o ) > filter_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
    eventually_real: ( real > $o ) > filter_real > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Int__Oint_001t__Nat__Onat,type,
    filterlim_int_nat: ( int > nat ) > filter_nat > filter_int > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Int__Oint,type,
    filterlim_nat_int: ( nat > int ) > filter_int > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
    filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
    filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
    filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).

thf(sy_c_Filter_Ofiltermap_001t__Real__Oreal_001t__Real__Oreal,type,
    filtermap_real_real: ( real > real ) > filter_real > filter_real ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    princi3496590319149328850omplex: set_Pr5085853215250843933omplex > filter6041513312241820739omplex ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    princi6114159922880469582l_real: set_Pr6218003697084177305l_real > filter2146258269922977983l_real ).

thf(sy_c_Finite__Set_Ocard_001_Eo,type,
    finite_card_o: set_o > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
    finite_card_complex: set_complex > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
    finite_card_int: set_int > nat ).

thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Nat__Onat_J,type,
    finite_card_list_nat: set_list_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
    finite_card_set_nat: set_set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
    finite_card_char: set_char > nat ).

thf(sy_c_Finite__Set_Ofinite_001_Eo,type,
    finite_finite_o: set_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
    finite3207457112153483333omplex: set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Extended____Nat__Oenat,type,
    finite4001608067531595151d_enat: set_Extended_enat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
    finite_finite_int: set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_I_Eo_J,type,
    finite_finite_list_o: set_list_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Complex__Ocomplex_J,type,
    finite8712137658972009173omplex: set_list_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Extended____Nat__Oenat_J,type,
    finite1862508098717546133d_enat: set_li5464603477888414924d_enat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Int__Oint_J,type,
    finite3922522038869484883st_int: set_list_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
    finite8100373058378681591st_nat: set_list_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    finite500796754983035824at_nat: set_li5450038453877631591at_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    finite3004134309566078307T_VEBT: set_list_VEBT_VEBT > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
    finite_finite_num: set_num > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Option__Ooption_It__Nat__Onat_J,type,
    finite5523153139673422903on_nat: set_option_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    finite6177210948735845034at_nat: set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Rat__Orat,type,
    finite_finite_rat: set_rat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
    finite_finite_real: set_real > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
    finite1152437895449049373et_nat: set_set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__VEBT____Definitions__OVEBT,type,
    finite5795047828879050333T_VEBT: set_VEBT_VEBT > $o ).

thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
    bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).

thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
    comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
    comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).

thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Num__Onum_001t__Int__Oint,type,
    comp_nat_num_int: ( nat > num ) > ( int > nat ) > int > num ).

thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Real__Oreal_001t__Nat__Onat,type,
    comp_nat_real_nat: ( nat > real ) > ( nat > nat ) > nat > real ).

thf(sy_c_Fun_Oid_001_Eo,type,
    id_o: $o > $o ).

thf(sy_c_Fun_Oid_001t__Nat__Onat,type,
    id_nat: nat > nat ).

thf(sy_c_Fun_Oid_001t__Num__Onum,type,
    id_num: num > num ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Nat__Onat,type,
    inj_on_nat_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__String__Ochar,type,
    inj_on_nat_char: ( nat > char ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Real__Oreal_001t__Real__Oreal,type,
    inj_on_real_real: ( real > real ) > set_real > $o ).

thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001t__Nat__Onat_001t__Nat__Onat,type,
    map_fu6539832666145259331at_nat: ( code_integer > int ) > ( nat > nat ) > ( int > nat ) > code_integer > nat ).

thf(sy_c_Fun_Omap__fun_001t__Code____Numeral__Ointeger_001t__Int__Oint_001t__Num__Onum_001t__Num__Onum,type,
    map_fu1227494855608507351um_num: ( code_integer > int ) > ( num > num ) > ( int > num ) > code_integer > num ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_001_062_It__Int__Oint_M_Eo_J,type,
    map_fu434086159418415080_int_o: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > $o ) > int > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > int > int > $o ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    map_fu4960017516451851995nt_int: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > int > int > int ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_Eo_001_Eo,type,
    map_fu4826362097070443709at_o_o: ( int > product_prod_nat_nat ) > ( $o > $o ) > ( product_prod_nat_nat > $o ) > int > $o ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat_001t__Nat__Onat,type,
    map_fu2345160673673942751at_nat: ( int > product_prod_nat_nat ) > ( nat > nat ) > ( product_prod_nat_nat > nat ) > int > nat ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).

thf(sy_c_Fun_Omap__fun_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    map_fu6290471996055670595nteger: ( nat > nat ) > ( int > code_integer ) > ( nat > int ) > nat > code_integer ).

thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001_Eo_001_Eo,type,
    map_fu898904425404107465nt_o_o: ( rat > product_prod_int_int ) > ( $o > $o ) > ( product_prod_int_int > $o ) > rat > $o ).

thf(sy_c_Fun_Omap__fun_001t__Rat__Orat_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_001t__Rat__Orat,type,
    map_fu5673905371560938248nt_rat: ( rat > product_prod_int_int ) > ( product_prod_int_int > rat ) > ( product_prod_int_int > product_prod_int_int ) > rat > rat ).

thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_I_062_It__Nat__Onat_Mt__Rat__Orat_J_M_062_It__Nat__Onat_Mt__Rat__Orat_J_J_001_062_It__Real__Oreal_Mt__Real__Oreal_J,type,
    map_fu1532550112467129777l_real: ( real > nat > rat ) > ( ( ( nat > rat ) > nat > rat ) > real > real ) > ( ( nat > rat ) > ( nat > rat ) > nat > rat ) > real > real > real ).

thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
    map_fu7146612038024189824t_real: ( real > nat > rat ) > ( ( nat > rat ) > real ) > ( ( nat > rat ) > nat > rat ) > real > real ).

thf(sy_c_Fun_Omap__fun_001t__Real__Oreal_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001_Eo_001_Eo,type,
    map_fu1856342031159181835at_o_o: ( real > nat > rat ) > ( $o > $o ) > ( ( nat > rat ) > $o ) > real > $o ).

thf(sy_c_Fun_Ostrict__mono__on_001t__Nat__Onat_001t__Nat__Onat,type,
    strict1292158309912662752at_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
    the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).

thf(sy_c_Fun__Def_Ois__measure_001t__Int__Oint,type,
    fun_is_measure_int: ( int > nat ) > $o ).

thf(sy_c_Fun__Def_Omax__strict,type,
    fun_max_strict: set_Pr4329608150637261639at_nat ).

thf(sy_c_Fun__Def_Omax__weak,type,
    fun_max_weak: set_Pr4329608150637261639at_nat ).

thf(sy_c_Fun__Def_Omin__strict,type,
    fun_min_strict: set_Pr4329608150637261639at_nat ).

thf(sy_c_Fun__Def_Omin__weak,type,
    fun_min_weak: set_Pr4329608150637261639at_nat ).

thf(sy_c_Fun__Def_Opair__leq,type,
    fun_pair_leq: set_Pr8693737435421807431at_nat ).

thf(sy_c_Fun__Def_Opair__less,type,
    fun_pair_less: set_Pr8693737435421807431at_nat ).

thf(sy_c_Fun__Def_Oreduction__pair_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    fun_re2478310338295953701at_nat: produc1319942482725812455at_nat > $o ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Int__Oint,type,
    gcd_Gcd_int: set_int > int ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
    gcd_Gcd_nat: set_nat > nat ).

thf(sy_c_GCD_Obezw,type,
    bezw: nat > nat > product_prod_int_int ).

thf(sy_c_GCD_Obezw__rel,type,
    bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Code____Numeral__Ointeger,type,
    gcd_gcd_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
    gcd_gcd_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
    gcd_gcd_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__class_Olcm_001t__Int__Oint,type,
    gcd_lcm_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Olcm_001t__Nat__Onat,type,
    gcd_lcm_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__nat__rel,type,
    gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
    abs_abs_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
    abs_abs_rat: rat > rat ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ocomm__monoid_001t__Nat__Onat,type,
    comm_monoid_nat: ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
    minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
    minus_minus_complex: complex > complex > complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
    minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
    minus_minus_rat: rat > rat > rat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    minus_811609699411566653omplex: set_complex > set_complex > set_complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    minus_925952699566721837d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
    minus_minus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Omonoid_001t__Nat__Onat,type,
    monoid_nat: ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
    one_one_Code_integer: code_integer ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
    one_one_rat: rat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
    plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
    plus_plus_complex: complex > complex > complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
    plus_plus_rat: rat > rat > rat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__String__Oliteral,type,
    plus_plus_literal: literal > literal > literal ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
    sgn_sgn_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
    sgn_sgn_complex: complex > complex ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
    sgn_sgn_int: int > int ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
    sgn_sgn_rat: rat > rat ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
    sgn_sgn_real: real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
    times_3573771949741848930nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
    times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
    times_times_rat: rat > rat > rat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
    uminus1351360451143612070nteger: code_integer > code_integer ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
    uminus1482373934393186551omplex: complex > complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
    uminus_uminus_rat: rat > rat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
    uminus5710092332889474511et_nat: set_nat > set_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
    zero_z3403309356797280102nteger: code_integer ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
    zero_zero_rat: rat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__String__Oliteral,type,
    zero_zero_literal: literal ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
    groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Rat__Orat,type,
    groups5058264527183730370ex_rat: ( complex > rat ) > set_complex > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Extended____Nat__Oenat_001t__Int__Oint,type,
    groups2025484359314973016at_int: ( extended_enat > int ) > set_Extended_enat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Extended____Nat__Oenat_001t__Nat__Onat,type,
    groups2027974829824023292at_nat: ( extended_enat > nat ) > set_Extended_enat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Extended____Nat__Oenat_001t__Rat__Orat,type,
    groups1392844769737527556at_rat: ( extended_enat > rat ) > set_Extended_enat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Extended____Nat__Oenat_001t__Real__Oreal,type,
    groups4148127829035722712t_real: ( extended_enat > real ) > set_Extended_enat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    groups7873554091576472773nteger: ( int > code_integer ) > set_int > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
    groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
    groups4538972089207619220nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
    groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
    groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
    groups8778361861064173332t_real: ( int > real ) > set_int > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
    groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
    groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Option__Ooption_It__Nat__Onat_J_001t__Complex__Ocomplex,type,
    groups3209896439523537802omplex: ( option_nat > complex ) > set_option_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Option__Ooption_It__Nat__Onat_J_001t__Nat__Onat,type,
    groups1921984841883549356at_nat: ( option_nat > nat ) > set_option_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Option__Ooption_It__Nat__Onat_J_001t__Real__Oreal,type,
    groups4518532050878116744t_real: ( option_nat > real ) > set_option_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    groups977919841031483927at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Real__Oreal,type,
    groups4567486121110086003t_real: ( product_prod_nat_nat > real ) > set_Pr1261947904930325089at_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
    groups7713935264441627589nteger: ( real > code_integer ) > set_real > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
    groups1932886352136224148al_int: ( real > int ) > set_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
    groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Rat__Orat,type,
    groups1300246762558778688al_rat: ( real > rat ) > set_real > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
    groups8097168146408367636l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Complex__Ocomplex,type,
    groups8255218700646806128omplex: ( set_nat > complex ) > set_set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
    groups8294997508430121362at_nat: ( set_nat > nat ) > set_set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
    groups5107569545109728110t_real: ( set_nat > real ) > set_set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Code____Numeral__Ointeger,type,
    groups8682486955453173170nteger: ( complex > code_integer ) > set_complex > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups3708469109370488835omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Int__Oint,type,
    groups858564598930262913ex_int: ( complex > int ) > set_complex > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    groups861055069439313189ex_nat: ( complex > nat ) > set_complex > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Rat__Orat,type,
    groups225925009352817453ex_rat: ( complex > rat ) > set_complex > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    groups766887009212190081x_real: ( complex > real ) > set_complex > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Extended____Nat__Oenat_001t__Code____Numeral__Ointeger,type,
    groups845124408420398302nteger: ( extended_enat > code_integer ) > set_Extended_enat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Extended____Nat__Oenat_001t__Complex__Ocomplex,type,
    groups4622424608036095791omplex: ( extended_enat > complex ) > set_Extended_enat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Extended____Nat__Oenat_001t__Int__Oint,type,
    groups2878480467620962989at_int: ( extended_enat > int ) > set_Extended_enat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Extended____Nat__Oenat_001t__Nat__Onat,type,
    groups2880970938130013265at_nat: ( extended_enat > nat ) > set_Extended_enat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Extended____Nat__Oenat_001t__Rat__Orat,type,
    groups2245840878043517529at_rat: ( extended_enat > rat ) > set_Extended_enat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Extended____Nat__Oenat_001t__Real__Oreal,type,
    groups97031904164794029t_real: ( extended_enat > real ) > set_Extended_enat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    groups3827104343326376752nteger: ( int > code_integer ) > set_int > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Complex__Ocomplex,type,
    groups7440179247065528705omplex: ( int > complex ) > set_int > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
    groups1705073143266064639nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Nat__Onat,type,
    groups1707563613775114915nt_nat: ( int > nat ) > set_int > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Rat__Orat,type,
    groups1072433553688619179nt_rat: ( int > rat ) > set_int > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Real__Oreal,type,
    groups2316167850115554303t_real: ( int > real ) > set_int > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    groups3455450783089532116nteger: ( nat > code_integer ) > set_nat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups6464643781859351333omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
    groups705719431365010083at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
    groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Rat__Orat,type,
    groups73079841787564623at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Real__Oreal,type,
    groups129246275422532515t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Option__Ooption_It__Nat__Onat_J_001t__Complex__Ocomplex,type,
    groups1917955009447795573omplex: ( option_nat > complex ) > set_option_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Option__Ooption_It__Nat__Onat_J_001t__Real__Oreal,type,
    groups6579596140936342515t_real: ( option_nat > real ) > set_option_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    groups4077766827762148844at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Real__Oreal,type,
    groups6036352826371341000t_real: ( product_prod_nat_nat > real ) > set_Pr1261947904930325089at_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    groups713298508707869441omplex: ( real > complex ) > set_real > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Int__Oint,type,
    groups4694064378042380927al_int: ( real > int ) > set_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Nat__Onat,type,
    groups4696554848551431203al_nat: ( real > nat ) > set_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Rat__Orat,type,
    groups4061424788464935467al_rat: ( real > rat ) > set_real > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Real__Oreal_001t__Real__Oreal,type,
    groups1681761925125756287l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Set__Oset_It__Nat__Onat_J_001t__Complex__Ocomplex,type,
    groups1092910753850256091omplex: ( set_nat > complex ) > set_set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
    groups3619160379726066777t_real: ( set_nat > real ) > set_set_nat > real ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
    groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).

thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
    groups4561878855575611511st_nat: list_nat > nat ).

thf(sy_c_HOL_OThe_001t__Int__Oint,type,
    the_int: ( int > $o ) > int ).

thf(sy_c_HOL_OThe_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    the_Pr4378521158711661632nt_int: ( product_prod_int_int > $o ) > product_prod_int_int ).

thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
    the_real: ( real > $o ) > real ).

thf(sy_c_If_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    if_int_int: $o > ( int > int ) > ( int > int ) > int > int ).

thf(sy_c_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
    if_nat_rat: $o > ( nat > rat ) > ( nat > rat ) > nat > rat ).

thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
    if_Code_integer: $o > code_integer > code_integer > code_integer ).

thf(sy_c_If_001t__Complex__Ocomplex,type,
    if_complex: $o > complex > complex > complex ).

thf(sy_c_If_001t__Extended____Nat__Oenat,type,
    if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__List__Olist_It__Nat__Onat_J,type,
    if_list_nat: $o > list_nat > list_nat > list_nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Num__Onum,type,
    if_num: $o > num > num > num ).

thf(sy_c_If_001t__Option__Ooption_It__Nat__Onat_J,type,
    if_option_nat: $o > option_nat > option_nat > option_nat ).

thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
    if_option_num: $o > option_num > option_num > option_num ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_If_001t__Rat__Orat,type,
    if_rat: $o > rat > rat > rat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
    if_set_int: $o > set_int > set_int > set_int ).

thf(sy_c_If_001t__Set__Oset_It__Nat__Onat_J,type,
    if_set_nat: $o > set_nat > set_nat > set_nat ).

thf(sy_c_If_001t__VEBT____Definitions__OVEBT,type,
    if_VEBT_VEBT: $o > vEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_Infinite__Set_Owellorder__class_Oenumerate_001t__Nat__Onat,type,
    infini8530281810654367211te_nat: set_nat > nat > nat ).

thf(sy_c_Int_OAbs__Integ,type,
    abs_Integ: product_prod_nat_nat > int ).

thf(sy_c_Int_ORep__Integ,type,
    rep_Integ: int > product_prod_nat_nat ).

thf(sy_c_Int_Ocr__int,type,
    cr_int: product_prod_nat_nat > int > $o ).

thf(sy_c_Int_Oint__ge__less__than,type,
    int_ge_less_than: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Oint__ge__less__than2,type,
    int_ge_less_than2: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Ointrel,type,
    intrel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Int_Opcr__int,type,
    pcr_int: product_prod_nat_nat > int > $o ).

thf(sy_c_Int_Opower__int_001t__Real__Oreal,type,
    power_int_real: real > int > real ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Complex__Ocomplex,type,
    ring_1_Ints_complex: set_complex ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
    ring_1_Ints_real: set_real ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
    ring_18347121197199848620nteger: int > code_integer ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
    ring_17405671764205052669omplex: int > complex ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
    ring_1_of_int_int: int > int ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
    ring_1_of_int_rat: int > rat ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Extended____Nat__Oenat,type,
    inf_in1870772243966228564d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Int__Oint,type,
    inf_inf_int: int > int > int ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    inf_in2572325071724192079at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Lattices_Osemilattice__neutr_001t__Nat__Onat,type,
    semila9081495762789891438tr_nat: ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
    semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Extended____Nat__Oenat,type,
    sup_su3973961784419623482d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Int__Oint,type,
    sup_sup_int: int > int > int ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    sup_su5525570899277871387at_nat: set_Pr4329608150637261639at_nat > set_Pr4329608150637261639at_nat > set_Pr4329608150637261639at_nat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Extended____Nat__Oenat,type,
    lattic921264341876707157d_enat: set_Extended_enat > extended_enat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
    lattic8263393255366662781ax_int: set_int > int ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
    lattic8265883725875713057ax_nat: set_nat > nat ).

thf(sy_c_Lifting_OQuotient_001_062_It__Nat__Onat_Mt__Rat__Orat_J_001t__Real__Oreal,type,
    quotie3684837364556693515t_real: ( ( nat > rat ) > ( nat > rat ) > $o ) > ( ( nat > rat ) > real ) > ( real > nat > rat ) > ( ( nat > rat ) > real > $o ) > $o ).

thf(sy_c_Lifting_OQuotient_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    quotie1194848508323700631at_int: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > int ) > ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int > $o ) > $o ).

thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
    bfun_nat_real: ( nat > real ) > filter_nat > $o ).

thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
    at_infinity_real: filter_real ).

thf(sy_c_List_Oappend_001t__Int__Oint,type,
    append_int: list_int > list_int > list_int ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Ofold_001t__Int__Oint_001t__Int__Oint,type,
    fold_int_int: ( int > int > int ) > list_int > int > int ).

thf(sy_c_List_Ofold_001t__Nat__Onat_001t__Nat__Onat,type,
    fold_nat_nat: ( nat > nat > nat ) > list_nat > nat > nat ).

thf(sy_c_List_Olast_001t__Nat__Onat,type,
    last_nat: list_nat > nat ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
    linord2614967742042102400et_nat: set_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
    nil_int: list_int ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_Ohd_001t__Nat__Onat,type,
    hd_nat: list_nat > nat ).

thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
    map_nat_nat: ( nat > nat ) > list_nat > list_nat ).

thf(sy_c_List_Olist_Omap_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    map_VE8901447254227204932T_VEBT: ( vEBT_VEBT > vEBT_VEBT ) > list_VEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Olist_Oset_001_Eo,type,
    set_o2: list_o > set_o ).

thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
    set_complex2: list_complex > set_complex ).

thf(sy_c_List_Olist_Oset_001t__Extended____Nat__Oenat,type,
    set_Extended_enat2: list_Extended_enat > set_Extended_enat ).

thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
    set_int2: list_int > set_int ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Option__Ooption_It__Nat__Onat_J,type,
    set_option_nat2: list_option_nat > set_option_nat ).

thf(sy_c_List_Olist_Oset_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    set_Pr5648618587558075414at_nat: list_P6011104703257516679at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_List_Olist_Oset_001t__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_Pr3765526544606949372at_nat: list_P5464809261938338413at_nat > set_Pr4329608150637261639at_nat ).

thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
    set_real2: list_real > set_real ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
    set_set_nat2: list_set_nat > set_set_nat ).

thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
    set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
    size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).

thf(sy_c_List_Olist__update_001_Eo,type,
    list_update_o: list_o > nat > $o > list_o ).

thf(sy_c_List_Olist__update_001t__Int__Oint,type,
    list_update_int: list_int > nat > int > list_int ).

thf(sy_c_List_Olist__update_001t__Nat__Onat,type,
    list_update_nat: list_nat > nat > nat > list_nat ).

thf(sy_c_List_Olist__update_001t__Option__Ooption_It__Nat__Onat_J,type,
    list_u3411377215356412978on_nat: list_option_nat > nat > option_nat > list_option_nat ).

thf(sy_c_List_Olist__update_001t__Real__Oreal,type,
    list_update_real: list_real > nat > real > list_real ).

thf(sy_c_List_Olist__update_001t__Set__Oset_It__Nat__Onat_J,type,
    list_update_set_nat: list_set_nat > nat > set_nat > list_set_nat ).

thf(sy_c_List_Olist__update_001t__VEBT____Definitions__OVEBT,type,
    list_u1324408373059187874T_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Onth_001_Eo,type,
    nth_o: list_o > nat > $o ).

thf(sy_c_List_Onth_001t__Int__Oint,type,
    nth_int: list_int > nat > int ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001t__Num__Onum,type,
    nth_num: list_num > nat > num ).

thf(sy_c_List_Onth_001t__Option__Ooption_It__Nat__Onat_J,type,
    nth_option_nat: list_option_nat > nat > option_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    nth_Product_prod_o_o: list_P4002435161011370285od_o_o > nat > product_prod_o_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    nth_Pr1649062631805364268_o_int: list_P3795440434834930179_o_int > nat > product_prod_o_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Nat__Onat_J,type,
    nth_Pr5826913651314560976_o_nat: list_P6285523579766656935_o_nat > nat > product_prod_o_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr6777367263587873994T_VEBT: list_P7495141550334521929T_VEBT > nat > produc2504756804600209347T_VEBT ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    nth_Pr8326237132889035090at_num: list_P1726324292696863441at_num > nat > product_prod_nat_num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    nth_Pr6456567536196504476um_num: list_P3744719386663036955um_num > nat > product_prod_num_num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    nth_Pr4606735188037164562VEBT_o: list_P3126845725202233233VEBT_o > nat > produc334124729049499915VEBT_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    nth_Pr6837108013167703752BT_int: list_P4547456442757143711BT_int > nat > produc4894624898956917775BT_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    nth_Pr1791586995822124652BT_nat: list_P7037539587688870467BT_nat > nat > produc9072475918466114483BT_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr4953567300277697838T_VEBT: list_P7413028617227757229T_VEBT > nat > produc8243902056947475879T_VEBT ).

thf(sy_c_List_Onth_001t__Real__Oreal,type,
    nth_real: list_real > nat > real ).

thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
    nth_set_nat: list_set_nat > nat > set_nat ).

thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
    nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_List_Oproduct_001_Eo_001_Eo,type,
    product_o_o: list_o > list_o > list_P4002435161011370285od_o_o ).

thf(sy_c_List_Oproduct_001_Eo_001t__Int__Oint,type,
    product_o_int: list_o > list_int > list_P3795440434834930179_o_int ).

thf(sy_c_List_Oproduct_001_Eo_001t__Nat__Onat,type,
    product_o_nat: list_o > list_nat > list_P6285523579766656935_o_nat ).

thf(sy_c_List_Oproduct_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    product_o_VEBT_VEBT: list_o > list_VEBT_VEBT > list_P7495141550334521929T_VEBT ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Num__Onum,type,
    product_nat_num: list_nat > list_num > list_P1726324292696863441at_num ).

thf(sy_c_List_Oproduct_001t__Num__Onum_001t__Num__Onum,type,
    product_num_num: list_num > list_num > list_P3744719386663036955um_num ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    product_VEBT_VEBT_o: list_VEBT_VEBT > list_o > list_P3126845725202233233VEBT_o ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc7292646706713671643BT_int: list_VEBT_VEBT > list_int > list_P4547456442757143711BT_int ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc7295137177222721919BT_nat: list_VEBT_VEBT > list_nat > list_P7037539587688870467BT_nat ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc4743750530478302277T_VEBT: list_VEBT_VEBT > list_VEBT_VEBT > list_P7413028617227757229T_VEBT ).

thf(sy_c_List_Oreplicate_001t__Extended____Nat__Oenat,type,
    replic7216382294607269926d_enat: nat > extended_enat > list_Extended_enat ).

thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
    replicate_int: nat > int > list_int ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001t__Option__Ooption_It__Nat__Onat_J,type,
    replicate_option_nat: nat > option_nat > list_option_nat ).

thf(sy_c_List_Oreplicate_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    replic4235873036481779905at_nat: nat > product_prod_nat_nat > list_P6011104703257516679at_nat ).

thf(sy_c_List_Oreplicate_001t__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    replic2264142908078655527at_nat: nat > produc3843707927480180839at_nat > list_P5464809261938338413at_nat ).

thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
    replicate_real: nat > real > list_real ).

thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
    replicate_set_nat: nat > set_nat > list_set_nat ).

thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
    replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Osorted__wrt_001t__Int__Oint,type,
    sorted_wrt_int: ( int > int > $o ) > list_int > $o ).

thf(sy_c_List_Osorted__wrt_001t__Nat__Onat,type,
    sorted_wrt_nat: ( nat > nat > $o ) > list_nat > $o ).

thf(sy_c_List_Otake_001t__Nat__Onat,type,
    take_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Otake_001t__VEBT____Definitions__OVEBT,type,
    take_VEBT_VEBT: nat > list_VEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Oupt,type,
    upt: nat > nat > list_nat ).

thf(sy_c_List_Oupto,type,
    upto: int > int > list_int ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_List_Oupto__rel,type,
    upto_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    compow_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
    case_nat_o: $o > ( nat > $o ) > nat > $o ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
    case_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
    case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).

thf(sy_c_Nat_Onat_Opred,type,
    pred: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_ONats_001t__Complex__Ocomplex,type,
    semiri3842193898606819883omplex: set_complex ).

thf(sy_c_Nat_Osemiring__1__class_ONats_001t__Int__Oint,type,
    semiring_1_Nats_int: set_int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
    semiri4939895301339042750nteger: nat > code_integer ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
    semiri8010041392384452111omplex: nat > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
    semiri4216267220026989637d_enat: nat > extended_enat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
    semiri681578069525770553at_rat: nat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
    size_size_list_o: list_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
    size_s3451745648224563538omplex: list_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Extended____Nat__Oenat_J,type,
    size_s3941691890525107288d_enat: list_Extended_enat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Num__Onum_J,type,
    size_size_list_num: list_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Option__Ooption_It__Nat__Onat_J_J,type,
    size_s6086282163384603972on_nat: list_option_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s5460976970255530739at_nat: list_P6011104703257516679at_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    size_s3254054031482475050et_nat: list_set_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Nat__Onat_J,type,
    size_size_option_nat: option_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Num__Onum_J,type,
    size_size_option_num: option_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s170228958280169651at_nat: option4927543243414619207at_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
    size_size_VEBT_VEBT: vEBT_VEBT > nat ).

thf(sy_c_Nat__Bijection_Olist__decode,type,
    nat_list_decode: nat > list_nat ).

thf(sy_c_Nat__Bijection_Olist__decode__rel,type,
    nat_list_decode_rel: nat > nat > $o ).

thf(sy_c_Nat__Bijection_Olist__encode,type,
    nat_list_encode: list_nat > nat ).

thf(sy_c_Nat__Bijection_Olist__encode__rel,type,
    nat_list_encode_rel: list_nat > list_nat > $o ).

thf(sy_c_Nat__Bijection_Oprod__decode,type,
    nat_prod_decode: nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
    nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
    nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Nat__Bijection_Oprod__encode,type,
    nat_prod_encode: product_prod_nat_nat > nat ).

thf(sy_c_Nat__Bijection_Oset__decode,type,
    nat_set_decode: nat > set_nat ).

thf(sy_c_Nat__Bijection_Oset__encode,type,
    nat_set_encode: set_nat > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_NthRoot_Oroot,type,
    root: nat > real > real ).

thf(sy_c_NthRoot_Osqrt,type,
    sqrt: real > real ).

thf(sy_c_Num_OBitM,type,
    bitM: num > num ).

thf(sy_c_Num_Oinc,type,
    inc: num > num ).

thf(sy_c_Num_Onat__of__num,type,
    nat_of_num: num > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
    neg_nu8804712462038260780nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
    neg_nu7009210354673126013omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
    neg_numeral_dbl_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
    neg_nu7757733837767384882nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
    neg_nu6511756317524482435omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
    neg_nu3179335615603231917ec_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
    neg_nu5831290666863070958nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
    neg_nu8557863876264182079omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
    neg_nu5219082963157363817nc_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
    neg_numeral_sub_int: num > num > int ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OBit1,type,
    bit1: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
    case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onum__of__nat,type,
    num_of_nat: nat > num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
    numera6620942414471956472nteger: num > code_integer ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
    numera6690914467698888265omplex: num > complex ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
    numeral_numeral_rat: num > rat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Num_Opred__numeral,type,
    pred_numeral: num > nat ).

thf(sy_c_Num_Osqr,type,
    sqr: num > num ).

thf(sy_c_Option_Ooption_ONone_001t__Nat__Onat,type,
    none_nat: option_nat ).

thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
    none_num: option_num ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    none_P5556105721700978146at_nat: option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Nat__Onat,type,
    some_nat: nat > option_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
    some_num: num > option_num ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
    case_option_int_num: int > ( num > int ) > option_num > int ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
    case_option_num_num: num > ( num > num ) > option_num > num ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
    case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Omap__option_001t__Num__Onum_001t__Num__Onum,type,
    map_option_num_num: ( num > num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Othe_001t__Nat__Onat,type,
    the_nat: option_nat > nat ).

thf(sy_c_Option_Ooption_Othe_001t__Num__Onum,type,
    the_num: option_num > num ).

thf(sy_c_Option_Ooption_Othe_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    the_Pr8591224930841456533at_nat: option4927543243414619207at_nat > product_prod_nat_nat ).

thf(sy_c_Order__Relation_OunderS_001t__Nat__Onat,type,
    order_underS_nat: set_Pr1261947904930325089at_nat > nat > set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
    bot_bo4199563552545308370d_enat: extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    bot_bot_set_complex: set_complex ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    bot_bo7653980558646680370d_enat: set_Extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
    bot_bot_set_int: set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Num__Onum_J,type,
    bot_bot_set_num: set_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bot_bo2099793752762293965at_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    bot_bo228742789529271731at_nat: set_Pr4329608150637261639at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Rat__Orat_J,type,
    bot_bot_set_rat: set_rat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    bot_bo8194388402131092736T_VEBT: set_VEBT_VEBT ).

thf(sy_c_Orderings_Oord__class_OLeast_001t__Extended____Nat__Oenat,type,
    ord_Le1955565732374568822d_enat: ( extended_enat > $o ) > extended_enat ).

thf(sy_c_Orderings_Oord__class_OLeast_001t__Nat__Onat,type,
    ord_Least_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oord__class_OLeast_001t__Real__Oreal,type,
    ord_Least_real: ( real > $o ) > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
    ord_le6747313008572928689nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
    ord_less_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    ord_le2529575680413868914d_enat: set_Extended_enat > set_Extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
    ord_le3102999989581377725nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
    ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
    ord_less_eq_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
    ord_less_eq_set_o: set_o > set_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_le211207098394363844omplex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    ord_le7203529160286727270d_enat: set_Extended_enat > set_Extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_eq_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le3146513528884898305at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_eq_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
    ord_max_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
    ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
    ord_max_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
    ord_max_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
    ord_max_num: num > num > num ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
    ord_max_rat: rat > rat > rat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
    ord_max_real: real > real > real ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    ord_ma4205026669011143323d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Int__Oint_J,type,
    ord_max_set_int: set_int > set_int > set_int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_max_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_max_set_real: set_real > set_real > set_real ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Extended____Nat__Oenat,type,
    ord_mi8085742599997312461d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Int__Oint,type,
    ord_min_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Nat__Onat,type,
    ord_min_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_Oantimono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_9091379641038594480t_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Extended____Nat__Oenat_001t__Extended____Nat__Oenat,type,
    order_4130057895858720880d_enat: ( extended_enat > extended_enat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_mono_nat_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_mono_nat_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Real__Oreal_001t__Real__Oreal,type,
    order_mono_real_real: ( real > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_5726023648592871131at_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Real__Oreal_001t__Real__Oreal,type,
    order_7092887310737990675l_real: ( real > real ) > $o ).

thf(sy_c_Orderings_Oordering__top_001t__Nat__Onat,type,
    ordering_top_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Extended____Nat__Oenat,type,
    top_to3028658606643905974d_enat: extended_enat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
    top_top_set_int: set_int ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Option__Ooption_It__Nat__Onat_J_J,type,
    top_to8920198386146353926on_nat: set_option_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
    top_top_set_char: set_char ).

thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
    power_8256067586552552935nteger: code_integer > nat > code_integer ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
    power_power_rat: rat > nat > rat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4035269172776083154on_nat: ( nat > nat > $o ) > produc4953844613479565601on_nat > produc2233624965454879586on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc8929957630744042906on_nat: ( nat > nat > nat ) > produc4953844613479565601on_nat > produc8306885398267862888on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc3576312749637752826on_num: ( num > num > $o ) > produc3447558737645232053on_num > produc7036089656553540234on_num ).

thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc5778274026573060048on_num: ( num > num > num ) > produc3447558737645232053on_num > produc1193250871479095198on_num ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc3994169339658061776at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > produc6121120109295599847at_nat > produc5491161045314408544at_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc2899441246263362727at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > produc6121120109295599847at_nat > produc5542196010084753463at_nat ).

thf(sy_c_Product__Type_OPair_001_Eo_001_Eo,type,
    product_Pair_o_o: $o > $o > product_prod_o_o ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Int__Oint,type,
    product_Pair_o_int: $o > int > product_prod_o_int ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Nat__Onat,type,
    product_Pair_o_nat: $o > nat > product_prod_o_nat ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    produc2982872950893828659T_VEBT: $o > vEBT_VEBT > produc2504756804600209347T_VEBT ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
    product_Pair_int_int: int > int > product_prod_int_int ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
    product_Pair_nat_num: nat > num > product_prod_nat_num ).

thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
    product_Pair_num_num: num > num > product_prod_num_num ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Nat__Onat_J_001t__Option__Ooption_It__Nat__Onat_J,type,
    produc5098337634421038937on_nat: option_nat > option_nat > produc4953844613479565601on_nat ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Num__Onum_J_001t__Option__Ooption_It__Num__Onum_J,type,
    produc8585076106096196333on_num: option_num > option_num > produc3447558737645232053on_num ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc488173922507101015at_nat: option4927543243414619207at_nat > option4927543243414619207at_nat > produc6121120109295599847at_nat ).

thf(sy_c_Product__Type_OPair_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc6161850002892822231at_nat: product_prod_nat_nat > product_prod_nat_nat > produc859450856879609959at_nat ).

thf(sy_c_Product__Type_OPair_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc2922128104949294807at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > produc3843707927480180839at_nat ).

thf(sy_c_Product__Type_OPair_001t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J_001t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc9060074326276436823at_nat: set_Pr4329608150637261639at_nat > set_Pr4329608150637261639at_nat > produc1319942482725812455at_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    produc8721562602347293563VEBT_o: vEBT_VEBT > $o > produc334124729049499915VEBT_o ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Extended____Nat__Oenat,type,
    produc581526299967858633d_enat: vEBT_VEBT > extended_enat > produc7272778201969148633d_enat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc736041933913180425BT_int: vEBT_VEBT > int > produc4894624898956917775BT_int ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc537772716801021591T_VEBT: vEBT_VEBT > vEBT_VEBT > produc8243902056947475879T_VEBT ).

thf(sy_c_Product__Type_OSigma_001t__Nat__Onat_001t__Nat__Onat,type,
    produc457027306803732586at_nat: set_nat > ( nat > set_nat ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Omap__prod_001t__Code____Numeral__Ointeger_001t__Nat__Onat_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
    produc8678311845419106900er_nat: ( code_integer > nat ) > ( code_integer > nat ) > produc8923325533196201883nteger > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
    produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
    produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Complex__Ocomplex_001t__Complex__Ocomplex_001_Eo,type,
    produc6771430404735790350plex_o: ( complex > complex > $o ) > produc4411394909380815293omplex > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
    produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
    produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
    produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__List__Olist_It__Nat__Onat_J,type,
    produc2761476792215241774st_nat: ( nat > nat > list_nat ) > product_prod_nat_nat > list_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
    produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Real__Oreal_001t__Real__Oreal_001_Eo,type,
    produc5414030515140494994real_o: ( real > real > $o ) > produc2422161461964618553l_real > $o ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
    product_fst_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
    product_fst_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
    product_snd_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
    product_snd_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Rat_OAbs__Rat,type,
    abs_Rat: product_prod_int_int > rat ).

thf(sy_c_Rat_OFract,type,
    fract: int > int > rat ).

thf(sy_c_Rat_OFrct,type,
    frct: product_prod_int_int > rat ).

thf(sy_c_Rat_ORep__Rat,type,
    rep_Rat: rat > product_prod_int_int ).

thf(sy_c_Rat_Ofield__char__0__class_ORats_001t__Real__Oreal,type,
    field_5140801741446780682s_real: set_real ).

thf(sy_c_Rat_Ofield__char__0__class_Oof__rat_001t__Real__Oreal,type,
    field_7254667332652039916t_real: rat > real ).

thf(sy_c_Rat_Onormalize,type,
    normalize: product_prod_int_int > product_prod_int_int ).

thf(sy_c_Rat_Opcr__rat,type,
    pcr_rat: product_prod_int_int > rat > $o ).

thf(sy_c_Rat_Opositive,type,
    positive: rat > $o ).

thf(sy_c_Rat_Oquotient__of,type,
    quotient_of: rat > product_prod_int_int ).

thf(sy_c_Rat_Oratrel,type,
    ratrel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Real_OReal,type,
    real2: ( nat > rat ) > real ).

thf(sy_c_Real_Ocauchy,type,
    cauchy: ( nat > rat ) > $o ).

thf(sy_c_Real_Ocr__real,type,
    cr_real: ( nat > rat ) > real > $o ).

thf(sy_c_Real_Opcr__real,type,
    pcr_real: ( nat > rat ) > real > $o ).

thf(sy_c_Real_Opositive,type,
    positive2: real > $o ).

thf(sy_c_Real_Orealrel,type,
    realrel: ( nat > rat ) > ( nat > rat ) > $o ).

thf(sy_c_Real_Orep__real,type,
    rep_real: real > nat > rat ).

thf(sy_c_Real_Ovanishes,type,
    vanishes: ( nat > rat ) > $o ).

thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
    real_V2521375963428798218omplex: set_complex ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
    real_V3694042436643373181omplex: complex > complex > real ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
    real_V975177566351809787t_real: real > real > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
    real_V1022390504157884413omplex: complex > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
    real_V7735802525324610683m_real: real > real ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
    real_V4546457046886955230omplex: real > complex ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Real__Oreal,type,
    real_V1803761363581548252l_real: real > real ).

thf(sy_c_Relation_Otransp_001_062_It__Nat__Onat_Mt__Rat__Orat_J,type,
    transp_nat_rat: ( ( nat > rat ) > ( nat > rat ) > $o ) > $o ).

thf(sy_c_Rings_Oalgebraic__semidom__class_Ocoprime_001t__Int__Oint,type,
    algebr932160517623751201me_int: int > int > $o ).

thf(sy_c_Rings_Oalgebraic__semidom__class_Ocoprime_001t__Nat__Onat,type,
    algebr934650988132801477me_nat: nat > nat > $o ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
    divide6298287555418463151nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
    divide1717551699836669952omplex: complex > complex > complex ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
    divide_divide_rat: rat > rat > rat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
    dvd_dvd_Code_integer: code_integer > code_integer > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
    dvd_dvd_complex: complex > complex > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
    dvd_dvd_rat: rat > rat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
    dvd_dvd_real: real > real > $o ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
    modulo364778990260209775nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
    modulo_modulo_int: int > int > int ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Rings_Ounit__factor__class_Ounit__factor_001t__Nat__Onat,type,
    unit_f2748546683901255202or_nat: nat > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
    zero_n356916108424825756nteger: $o > code_integer ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
    zero_n2684676970156552555ol_int: $o > int ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
    zero_n2687167440665602831ol_nat: $o > nat ).

thf(sy_c_Series_Osuminf_001t__Complex__Ocomplex,type,
    suminf_complex: ( nat > complex ) > complex ).

thf(sy_c_Series_Osuminf_001t__Int__Oint,type,
    suminf_int: ( nat > int ) > int ).

thf(sy_c_Series_Osuminf_001t__Nat__Onat,type,
    suminf_nat: ( nat > nat ) > nat ).

thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
    suminf_real: ( nat > real ) > real ).

thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
    summable_complex: ( nat > complex ) > $o ).

thf(sy_c_Series_Osummable_001t__Int__Oint,type,
    summable_int: ( nat > int ) > $o ).

thf(sy_c_Series_Osummable_001t__Nat__Onat,type,
    summable_nat: ( nat > nat ) > $o ).

thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
    summable_real: ( nat > real ) > $o ).

thf(sy_c_Series_Osums_001t__Real__Oreal,type,
    sums_real: ( nat > real ) > real > $o ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Extended____Nat__Oenat,type,
    collec4429806609662206161d_enat: ( extended_enat > $o ) > set_Extended_enat ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_I_Eo_J,type,
    collect_list_o: ( list_o > $o ) > set_list_o ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Complex__Ocomplex_J,type,
    collect_list_complex: ( list_complex > $o ) > set_list_complex ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Extended____Nat__Oenat_J,type,
    collec8433460942617342167d_enat: ( list_Extended_enat > $o ) > set_li5464603477888414924d_enat ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Int__Oint_J,type,
    collect_list_int: ( list_int > $o ) > set_list_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
    collect_list_nat: ( list_nat > $o ) > set_list_nat ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    collec3343600615725829874at_nat: ( list_P6011104703257516679at_nat > $o ) > set_li5450038453877631591at_nat ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    collec5608196760682091941T_VEBT: ( list_VEBT_VEBT > $o ) > set_list_VEBT_VEBT ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Num__Onum,type,
    collect_num: ( num > $o ) > set_num ).

thf(sy_c_Set_OCollect_001t__Option__Ooption_It__Nat__Onat_J,type,
    collect_option_nat: ( option_nat > $o ) > set_option_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    collec8663557070575231912omplex: ( produc4411394909380815293omplex > $o ) > set_Pr5085853215250843933omplex ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    collec3392354462482085612at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    collec3799799289383736868l_real: ( produc2422161461964618553l_real > $o ) > set_Pr6218003697084177305l_real ).

thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
    collect_rat: ( rat > $o ) > set_rat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OPow_001t__Nat__Onat,type,
    pow_nat: set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Extended____Nat__Oenat_001t__Extended____Nat__Oenat,type,
    image_80655429650038917d_enat: ( extended_enat > extended_enat ) > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
    image_int_int: ( int > int ) > set_int > set_int ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
    image_int_nat: ( int > nat ) > set_int > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
    image_nat_int: ( nat > int ) > set_nat > set_int ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Real__Oreal,type,
    image_nat_real: ( nat > real ) > set_nat > set_real ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
    image_nat_char: ( nat > char ) > set_nat > set_char ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    image_5971271580939081552omplex: ( real > filter6041513312241820739omplex ) > set_real > set_fi4554929511873752355omplex ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    image_2178119161166701260l_real: ( real > filter2146258269922977983l_real ) > set_real > set_fi7789364187291644575l_real ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
    image_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
    image_char_nat: ( char > nat ) > set_char > set_nat ).

thf(sy_c_Set_Oimage_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    image_VEBT_VEBT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > set_nat ).

thf(sy_c_Set_Oinsert_001t__Complex__Ocomplex,type,
    insert_complex: complex > set_complex > set_complex ).

thf(sy_c_Set_Oinsert_001t__Extended____Nat__Oenat,type,
    insert_Extended_enat: extended_enat > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
    insert_int: int > set_int > set_int ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Num__Onum,type,
    insert_num: num > set_num > set_num ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    insert8211810215607154385at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    insert9069300056098147895at_nat: produc3843707927480180839at_nat > set_Pr4329608150637261639at_nat > set_Pr4329608150637261639at_nat ).

thf(sy_c_Set_Oinsert_001t__Rat__Orat,type,
    insert_rat: rat > set_rat > set_rat ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set_Oinsert_001t__VEBT____Definitions__OVEBT,type,
    insert_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_Set_Ovimage_001t__Nat__Onat_001t__Nat__Onat,type,
    vimage_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Complex__Ocomplex,type,
    set_fo1517530859248394432omplex: ( nat > complex > complex ) > nat > nat > complex > complex ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Int__Oint,type,
    set_fo2581907887559384638at_int: ( nat > int > int ) > nat > nat > int > int ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
    set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Rat__Orat,type,
    set_fo1949268297981939178at_rat: ( nat > rat > rat ) > nat > nat > rat > rat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Real__Oreal,type,
    set_fo3111899725591712190t_real: ( nat > real > real ) > nat > nat > real > real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Extended____Nat__Oenat,type,
    set_or5403411693681687835d_enat: extended_enat > extended_enat > set_Extended_enat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
    set_or7049704709247886629st_num: num > num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Rat__Orat,type,
    set_or633870826150836451st_rat: rat > rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
    set_or1222579329274155063t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4548717258645045905et_nat: set_nat > set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
    set_ord_atLeast_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
    set_ord_atMost_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Num__Onum,type,
    set_ord_atMost_num: num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Rat__Orat,type,
    set_ord_atMost_rat: rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
    set_ord_atMost_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4236626031148496127et_nat: set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
    set_or6656581121297822940st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
    set_or6659071591806873216st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
    set_or5832277885323065728an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
    set_or5834768355832116004an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
    set_or1633881224788618240n_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
    set_or1210151606488870762an_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
    set_or5849166863359141190n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
    set_ord_lessThan_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
    set_ord_lessThan_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Num__Onum,type,
    set_ord_lessThan_num: num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Rat__Orat,type,
    set_ord_lessThan_rat: rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
    set_or5984915006950818249n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or890127255671739683et_nat: set_nat > set_set_nat ).

thf(sy_c_String_OCode_Oabort_001t__Real__Oreal,type,
    abort_real: literal > ( product_unit > real ) > real ).

thf(sy_c_String_OLiteral,type,
    literal2: $o > $o > $o > $o > $o > $o > $o > literal > literal ).

thf(sy_c_String_Oascii__of,type,
    ascii_of: char > char ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
    comm_s629917340098488124ar_nat: char > nat ).

thf(sy_c_String_Ointeger__of__char,type,
    integer_of_char: char > code_integer ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
    unique3096191561947761185of_nat: nat > char ).

thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
    topolo6980174941875973593q_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
    topolo2177554685111907308n_real: real > set_real > filter_real ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oconvergent_001t__Real__Oreal,type,
    topolo7531315842566124627t_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
    topolo2815343760600316023s_real: real > filter_real ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
    topolo4055970368930404560y_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Complex__Ocomplex,type,
    topolo896644834953643431omplex: filter6041513312241820739omplex ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Real__Oreal,type,
    topolo1511823702728130853y_real: filter2146258269922977983l_real ).

thf(sy_c_Transcendental_Oarccos,type,
    arccos: real > real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarcsin,type,
    arcsin: real > real ).

thf(sy_c_Transcendental_Oarctan,type,
    arctan: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
    cos_complex: complex > complex ).

thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
    cos_real: real > real ).

thf(sy_c_Transcendental_Ocos__coeff,type,
    cos_coeff: nat > real ).

thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
    cosh_real: real > real ).

thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
    cot_real: real > real ).

thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
    exp_complex: complex > complex ).

thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
    exp_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Olog,type,
    log: real > real > real ).

thf(sy_c_Transcendental_Opi,type,
    pi: real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_Transcendental_Opowr__real,type,
    powr_real2: real > real > real ).

thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
    sin_complex: complex > complex ).

thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
    sin_real: real > real ).

thf(sy_c_Transcendental_Osin__coeff,type,
    sin_coeff: nat > real ).

thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
    sinh_real: real > real ).

thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
    tan_complex: complex > complex ).

thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
    tan_real: real > real ).

thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
    tanh_real: real > real ).

thf(sy_c_Transfer_Obi__total_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    bi_tot896582865486249351at_int: ( product_prod_nat_nat > int > $o ) > $o ).

thf(sy_c_Transitive__Closure_Ortrancl_001t__Nat__Onat,type,
    transi2905341329935302413cl_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Transitive__Closure_Otrancl_001t__Nat__Onat,type,
    transi6264000038957366511cl_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_Typedef_Otype__definition_001t__Extended____Nat__Oenat_001t__Option__Ooption_It__Nat__Onat_J,type,
    type_d7649664348572268762on_nat: ( extended_enat > option_nat ) > ( option_nat > extended_enat ) > set_option_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t,type,
    vEBT_T_i_n_s_e_r_t: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H,type,
    vEBT_T_i_n_s_e_r_t2: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H__rel,type,
    vEBT_T5076183648494686801_t_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t__rel,type,
    vEBT_T9217963907923527482_t_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062x_092_060_094sub_062t,type,
    vEBT_T_m_a_x_t: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r,type,
    vEBT_T_m_e_m_b_e_r: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H,type,
    vEBT_T_m_e_m_b_e_r2: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H__rel,type,
    vEBT_T8099345112685741742_r_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r__rel,type,
    vEBT_T5837161174952499735_r_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062N_092_060_094sub_062u_092_060_094sub_062l_092_060_094sub_062l,type,
    vEBT_T_m_i_n_N_u_l_l: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t,type,
    vEBT_T_m_i_n_t: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t__rel,type,
    vEBT_T_m_i_n_t_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d,type,
    vEBT_T_p_r_e_d: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H,type,
    vEBT_T_p_r_e_d2: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H__rel,type,
    vEBT_T_p_r_e_d_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d__rel,type,
    vEBT_T_p_r_e_d_rel2: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c,type,
    vEBT_T_s_u_c_c: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H,type,
    vEBT_T_s_u_c_c2: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H__rel,type,
    vEBT_T_s_u_c_c_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c__rel,type,
    vEBT_T_s_u_c_c_rel2: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
    vEBT_Leaf: $o > $o > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
    vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
    vEBT_size_VEBT: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
    vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oelim__dead,type,
    vEBT_VEBT_elim_dead: vEBT_VEBT > extended_enat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oelim__dead__rel,type,
    vEBT_V312737461966249ad_rel: produc7272778201969148633d_enat > produc7272778201969148633d_enat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
    vEBT_VEBT_high: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
    vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
    vEBT_VEBT_low: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
    vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
    vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
    vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
    vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
    vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
    vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
    vEBT_invar_vebt: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_Oset__vebt,type,
    vEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
    vEBT_vebt_buildup: nat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
    vEBT_v4011308405150292612up_rel: nat > nat > $o ).

thf(sy_c_VEBT__DeleteBounds_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e,type,
    vEBT_T_d_e_l_e_t_e: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__DeleteBounds_OT_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e__rel,type,
    vEBT_T8441311223069195367_e_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Delete_Ovebt__delete,type,
    vEBT_vebt_delete: vEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_VEBT__Delete_Ovebt__delete__rel,type,
    vEBT_vebt_delete_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Height_OVEBT__internal_Oheight,type,
    vEBT_VEBT_height: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Height_OVEBT__internal_Oheight__rel,type,
    vEBT_VEBT_height_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Insert_Ovebt__insert,type,
    vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
    vEBT_vebt_insert_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
    vEBT_VEBT_bit_concat: nat > nat > nat > nat ).

thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
    vEBT_VEBT_minNull: vEBT_VEBT > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
    vEBT_VEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Member_Ovebt__member,type,
    vEBT_vebt_member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
    vEBT_vebt_member_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
    vEBT_VEBT_add: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
    vEBT_VEBT_greater: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
    vEBT_VEBT_less: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
    vEBT_VEBT_lesseq: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
    vEBT_VEBT_max_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
    vEBT_VEBT_min_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
    vEBT_VEBT_mul: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__comp__shift_001t__Nat__Onat,type,
    vEBT_V2881884560877996034ft_nat: ( nat > nat > $o ) > option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Nat__Onat,type,
    vEBT_V4262088993061758097ft_nat: ( nat > nat > nat ) > option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Num__Onum,type,
    vEBT_V819420779217536731ft_num: ( num > num > num ) > option_num > option_num > option_num ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    vEBT_V1502963449132264192at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > option4927543243414619207at_nat > option4927543243414619207at_nat > option4927543243414619207at_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
    vEBT_VEBT_power: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
    vEBT_vebt_maxt: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
    vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
    vEBT_vebt_mint: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
    vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Pred_Ois__pred__in__set,type,
    vEBT_is_pred_in_set: set_nat > nat > nat > $o ).

thf(sy_c_VEBT__Pred_Ovebt__pred,type,
    vEBT_vebt_pred: vEBT_VEBT > nat > option_nat ).

thf(sy_c_VEBT__Pred_Ovebt__pred__rel,type,
    vEBT_vebt_pred_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
    vEBT_is_succ_in_set: set_nat > nat > nat > $o ).

thf(sy_c_VEBT__Succ_Ovebt__succ,type,
    vEBT_vebt_succ: vEBT_VEBT > nat > option_nat ).

thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
    vEBT_vebt_succ_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__Nat__Onat_J,type,
    accp_list_nat: ( list_nat > list_nat > $o ) > list_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
    accp_nat: ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    accp_P3113834385874906142um_num: ( product_prod_num_num > product_prod_num_num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Extended____Nat__Oenat_J,type,
    accp_P6183159247885693666d_enat: ( produc7272778201969148633d_enat > produc7272778201969148633d_enat > $o ) > produc7272778201969148633d_enat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__VEBT____Definitions__OVEBT,type,
    accp_VEBT_VEBT: ( vEBT_VEBT > vEBT_VEBT > $o ) > vEBT_VEBT > $o ).

thf(sy_c_Wellfounded_Oless__than,type,
    less_than: set_Pr1261947904930325089at_nat ).

thf(sy_c_Wellfounded_Olex__prod_001t__Nat__Onat_001t__Nat__Onat,type,
    lex_prod_nat_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > set_Pr8693737435421807431at_nat ).

thf(sy_c_Wellfounded_Omax__ext_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    max_ex8135407076693332796at_nat: set_Pr8693737435421807431at_nat > set_Pr4329608150637261639at_nat ).

thf(sy_c_Wellfounded_Omin__ext_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    min_ex6901939911449802026at_nat: set_Pr8693737435421807431at_nat > set_Pr4329608150637261639at_nat ).

thf(sy_c_Wellfounded_Opred__nat,type,
    pred_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_Wellfounded_Owf_001t__Int__Oint,type,
    wf_int: set_Pr958786334691620121nt_int > $o ).

thf(sy_c_Wellfounded_Owf_001t__Nat__Onat,type,
    wf_nat: set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Wellfounded_Owf_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    wf_Pro7803398752247294826at_nat: set_Pr8693737435421807431at_nat > $o ).

thf(sy_c_fChoice_001t__Real__Oreal,type,
    fChoice_real: ( real > $o ) > real ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Extended____Nat__Oenat,type,
    member_Extended_enat: extended_enat > set_Extended_enat > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__List__Olist_I_Eo_J,type,
    member_list_o: list_o > set_list_o > $o ).

thf(sy_c_member_001t__List__Olist_It__Int__Oint_J,type,
    member_list_int: list_int > set_list_int > $o ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    member2936631157270082147T_VEBT: list_VEBT_VEBT > set_list_VEBT_VEBT > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Num__Onum,type,
    member_num: num > set_num > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Nat__Onat_J,type,
    member_option_nat: option_nat > set_option_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member8206827879206165904at_nat: produc859450856879609959at_nat > set_Pr8693737435421807431at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    member8757157785044589968at_nat: produc3843707927480180839at_nat > set_Pr4329608150637261639at_nat > $o ).

thf(sy_c_member_001t__Rat__Orat,type,
    member_rat: rat > set_rat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
    member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_v_deg____,type,
    deg: nat ).

thf(sy_v_m____,type,
    m: nat ).

thf(sy_v_ma____,type,
    ma: nat ).

thf(sy_v_mi____,type,
    mi: nat ).

thf(sy_v_na____,type,
    na: nat ).

thf(sy_v_summary____,type,
    summary: vEBT_VEBT ).

thf(sy_v_treeList____,type,
    treeList: list_VEBT_VEBT ).

thf(sy_v_x,type,
    x: nat ).

% Relevant facts (10208)
thf(fact_0_False,axiom,
    x != mi ).

% False
thf(fact_1__C5_Ohyps_C_I8_J,axiom,
    ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).

% "5.hyps"(8)
thf(fact_2__092_060open_062mi_A_060_Ax_092_060close_062,axiom,
    ord_less_nat @ mi @ x ).

% \<open>mi < x\<close>
thf(fact_3_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_4_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_5_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_6_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_7_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_8_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_9_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_10__092_060open_0622_A_092_060le_062_Adeg_092_060close_062,axiom,
    ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ).

% \<open>2 \<le> deg\<close>
thf(fact_11_verit__eq__simplify_I8_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( ( bit0 @ X2 )
        = ( bit0 @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% verit_eq_simplify(8)
thf(fact_12_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_13_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera6690914467698888265omplex @ M )
        = ( numera6690914467698888265omplex @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_14_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_15_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_rat @ M )
        = ( numeral_numeral_rat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_16_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_17_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_18_verit__eq__simplify_I10_J,axiom,
    ! [X2: num] :
      ( one
     != ( bit0 @ X2 ) ) ).

% verit_eq_simplify(10)
thf(fact_19_local_Opower__def,axiom,
    ( vEBT_VEBT_power
    = ( vEBT_V4262088993061758097ft_nat @ power_power_nat ) ) ).

% local.power_def
thf(fact_20__C5_Ohyps_C_I7_J,axiom,
    ord_less_eq_nat @ mi @ ma ).

% "5.hyps"(7)
thf(fact_21__092_060open_062_092_060not_062_A_Ix_A_061_Ami_A_092_060and_062_Ax_A_061_Ama_J_092_060close_062,axiom,
    ~ ( ( x = mi )
      & ( x = ma ) ) ).

% \<open>\<not> (x = mi \<and> x = ma)\<close>
thf(fact_22_max__in__set__def,axiom,
    ( vEBT_VEBT_max_in_set
    = ( ^ [Xs: set_nat,X: nat] :
          ( ( member_nat @ X @ Xs )
          & ! [Y: nat] :
              ( ( member_nat @ Y @ Xs )
             => ( ord_less_eq_nat @ Y @ X ) ) ) ) ) ).

% max_in_set_def
thf(fact_23_min__in__set__def,axiom,
    ( vEBT_VEBT_min_in_set
    = ( ^ [Xs: set_nat,X: nat] :
          ( ( member_nat @ X @ Xs )
          & ! [Y: nat] :
              ( ( member_nat @ Y @ Xs )
             => ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ).

% min_in_set_def
thf(fact_24__092_060open_062x_A_092_060le_062_Ama_A_092_060and_062_Ami_A_092_060le_062_Ax_092_060close_062,axiom,
    ( ( ord_less_eq_nat @ x @ ma )
    & ( ord_less_eq_nat @ mi @ x ) ) ).

% \<open>x \<le> ma \<and> mi \<le> x\<close>
thf(fact_25_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_26_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_27_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_28_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_29_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_30_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_31_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_32_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_33_verit__comp__simplify1_I2_J,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_34_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_35_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_36_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_37_verit__la__disequality,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
      | ~ ( ord_less_eq_rat @ A @ B )
      | ~ ( ord_less_eq_rat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_38_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_39_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_40_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_41_verit__comp__simplify1_I3_J,axiom,
    ! [B2: real,A2: real] :
      ( ( ~ ( ord_less_eq_real @ B2 @ A2 ) )
      = ( ord_less_real @ A2 @ B2 ) ) ).

% verit_comp_simplify1(3)
thf(fact_42_verit__comp__simplify1_I3_J,axiom,
    ! [B2: rat,A2: rat] :
      ( ( ~ ( ord_less_eq_rat @ B2 @ A2 ) )
      = ( ord_less_rat @ A2 @ B2 ) ) ).

% verit_comp_simplify1(3)
thf(fact_43_verit__comp__simplify1_I3_J,axiom,
    ! [B2: num,A2: num] :
      ( ( ~ ( ord_less_eq_num @ B2 @ A2 ) )
      = ( ord_less_num @ A2 @ B2 ) ) ).

% verit_comp_simplify1(3)
thf(fact_44_verit__comp__simplify1_I3_J,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ~ ( ord_less_eq_nat @ B2 @ A2 ) )
      = ( ord_less_nat @ A2 @ B2 ) ) ).

% verit_comp_simplify1(3)
thf(fact_45_verit__comp__simplify1_I3_J,axiom,
    ! [B2: int,A2: int] :
      ( ( ~ ( ord_less_eq_int @ B2 @ A2 ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% verit_comp_simplify1(3)
thf(fact_46_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le
thf(fact_47_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_48_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_49_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_50_verit__comp__simplify1_I1_J,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_51_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_52_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_53_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_54_enat__ord__number_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(2)
thf(fact_55_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_complex @ ( numera6690914467698888265omplex @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numera6690914467698888265omplex @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_56_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_57_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_rat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_58_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_59_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_60_order__refl,axiom,
    ! [X3: set_nat] : ( ord_less_eq_set_nat @ X3 @ X3 ) ).

% order_refl
thf(fact_61_order__refl,axiom,
    ! [X3: rat] : ( ord_less_eq_rat @ X3 @ X3 ) ).

% order_refl
thf(fact_62_order__refl,axiom,
    ! [X3: num] : ( ord_less_eq_num @ X3 @ X3 ) ).

% order_refl
thf(fact_63_order__refl,axiom,
    ! [X3: nat] : ( ord_less_eq_nat @ X3 @ X3 ) ).

% order_refl
thf(fact_64_order__refl,axiom,
    ! [X3: int] : ( ord_less_eq_int @ X3 @ X3 ) ).

% order_refl
thf(fact_65_dual__order_Orefl,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% dual_order.refl
thf(fact_66_dual__order_Orefl,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% dual_order.refl
thf(fact_67_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_68_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_69_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_70_power__shift,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ( power_power_nat @ X3 @ Y3 )
        = Z )
      = ( ( vEBT_VEBT_power @ ( some_nat @ X3 ) @ ( some_nat @ Y3 ) )
        = ( some_nat @ Z ) ) ) ).

% power_shift
thf(fact_71_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_72_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_73_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_74_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_75_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_76_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_77_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_78_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_79_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_80_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_81_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_82_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X3: nat,I: num,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_83_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_84_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I ) @ N ) @ ( semiri681578069525770553at_rat @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_85_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_86_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I: num,N: nat,X3: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X3 ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_87_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K2 @ I2 )
                 => ( P @ I2 ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_88_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_89_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = ( semiri8010041392384452111omplex @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_90_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_91_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri681578069525770553at_rat @ M )
        = ( semiri681578069525770553at_rat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_92_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_93_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_94_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_95_mem__Collect__eq,axiom,
    ! [A: option_nat,P: option_nat > $o] :
      ( ( member_option_nat @ A @ ( collect_option_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_96_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_97_mem__Collect__eq,axiom,
    ! [A: list_nat,P: list_nat > $o] :
      ( ( member_list_nat @ A @ ( collect_list_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_98_mem__Collect__eq,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_99_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_100_mem__Collect__eq,axiom,
    ! [A: int,P: int > $o] :
      ( ( member_int @ A @ ( collect_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_101_Collect__mem__eq,axiom,
    ! [A3: set_option_nat] :
      ( ( collect_option_nat
        @ ^ [X: option_nat] : ( member_option_nat @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_102_Collect__mem__eq,axiom,
    ! [A3: set_real] :
      ( ( collect_real
        @ ^ [X: real] : ( member_real @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_103_Collect__mem__eq,axiom,
    ! [A3: set_list_nat] :
      ( ( collect_list_nat
        @ ^ [X: list_nat] : ( member_list_nat @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_104_Collect__mem__eq,axiom,
    ! [A3: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X: set_nat] : ( member_set_nat @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_105_Collect__mem__eq,axiom,
    ! [A3: set_nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( member_nat @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_106_Collect__mem__eq,axiom,
    ! [A3: set_int] :
      ( ( collect_int
        @ ^ [X: int] : ( member_int @ X @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_107_Collect__cong,axiom,
    ! [P: real > $o,Q: real > $o] :
      ( ! [X4: real] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_real @ P )
        = ( collect_real @ Q ) ) ) ).

% Collect_cong
thf(fact_108_Collect__cong,axiom,
    ! [P: list_nat > $o,Q: list_nat > $o] :
      ( ! [X4: list_nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_list_nat @ P )
        = ( collect_list_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_109_Collect__cong,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ! [X4: set_nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_set_nat @ P )
        = ( collect_set_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_110_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X4: nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_111_Collect__cong,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_int @ P )
        = ( collect_int @ Q ) ) ) ).

% Collect_cong
thf(fact_112_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_113_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N ) )
      = ( numera6690914467698888265omplex @ N ) ) ).

% of_nat_numeral
thf(fact_114_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% of_nat_numeral
thf(fact_115_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_rat @ N ) ) ).

% of_nat_numeral
thf(fact_116_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ N ) ) ).

% of_nat_numeral
thf(fact_117_of__nat__numeral,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% of_nat_numeral
thf(fact_118_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_119_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_120_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_121_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_122_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_123_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_124_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_125_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_126_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N ) )
      = ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N ) ) ).

% of_nat_power
thf(fact_127_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).

% of_nat_power
thf(fact_128_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( power_power_nat @ M @ N ) )
      = ( power_power_rat @ ( semiri681578069525770553at_rat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_129_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_130_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).

% of_nat_power
thf(fact_131_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
        = ( semiri8010041392384452111omplex @ X3 ) )
      = ( ( power_power_nat @ B @ W )
        = X3 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_132_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X3 ) )
      = ( ( power_power_nat @ B @ W )
        = X3 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_133_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W )
        = ( semiri681578069525770553at_rat @ X3 ) )
      = ( ( power_power_nat @ B @ W )
        = X3 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_134_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X3 ) )
      = ( ( power_power_nat @ B @ W )
        = X3 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_135_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X3 ) )
      = ( ( power_power_nat @ B @ W )
        = X3 ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_136_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ( semiri8010041392384452111omplex @ X3 )
        = ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
      = ( X3
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_137_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X3 )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X3
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_138_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ( semiri681578069525770553at_rat @ X3 )
        = ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( X3
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_139_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X3 )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X3
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_140_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X3 )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X3
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_141_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_142_enat__ord__number_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(1)
thf(fact_143_lesseq__shift,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] : ( vEBT_VEBT_lesseq @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).

% lesseq_shift
thf(fact_144_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: nat] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X3 ) @ N )
        = ( semiri8010041392384452111omplex @ Y3 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_145_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: nat] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N )
        = ( semiri5074537144036343181t_real @ Y3 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_146_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: nat] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N )
        = ( semiri681578069525770553at_rat @ Y3 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_147_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N )
        = ( semiri1316708129612266289at_nat @ Y3 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_148_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N )
        = ( semiri1314217659103216013at_int @ Y3 ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_149_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: nat,X3: num,N: nat] :
      ( ( ( semiri8010041392384452111omplex @ Y3 )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_150_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: nat,X3: num,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ Y3 )
        = ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_151_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: nat,X3: num,N: nat] :
      ( ( ( semiri681578069525770553at_rat @ Y3 )
        = ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_152_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: nat,X3: num,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ Y3 )
        = ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_153_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: nat,X3: num,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ Y3 )
        = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_154_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_155_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_156_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_157_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X3 ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_158_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_159_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_160_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_161_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_162_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_163_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_164_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_165_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X3: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X3 ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X3 ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_166_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_167_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_168_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_169_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X3: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X3 @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_170_enat__less__induct,axiom,
    ! [P: extended_enat > $o,N: extended_enat] :
      ( ! [N2: extended_enat] :
          ( ! [M2: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ M2 @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% enat_less_induct
thf(fact_171_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_172_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_173_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_174_le__num__One__iff,axiom,
    ! [X3: num] :
      ( ( ord_less_eq_num @ X3 @ one )
      = ( X3 = one ) ) ).

% le_num_One_iff
thf(fact_175_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_176_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_177_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_178_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_179_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_180_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_181_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_182_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_183_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_184_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).

% of_nat_mono
thf(fact_185_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_186_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_187_pow_Osimps_I1_J,axiom,
    ! [X3: num] :
      ( ( pow @ X3 @ one )
      = X3 ) ).

% pow.simps(1)
thf(fact_188_order__antisym__conv,axiom,
    ! [Y3: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ Y3 @ X3 )
     => ( ( ord_less_eq_set_nat @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_189_order__antisym__conv,axiom,
    ! [Y3: rat,X3: rat] :
      ( ( ord_less_eq_rat @ Y3 @ X3 )
     => ( ( ord_less_eq_rat @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_190_order__antisym__conv,axiom,
    ! [Y3: num,X3: num] :
      ( ( ord_less_eq_num @ Y3 @ X3 )
     => ( ( ord_less_eq_num @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_191_order__antisym__conv,axiom,
    ! [Y3: nat,X3: nat] :
      ( ( ord_less_eq_nat @ Y3 @ X3 )
     => ( ( ord_less_eq_nat @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_192_order__antisym__conv,axiom,
    ! [Y3: int,X3: int] :
      ( ( ord_less_eq_int @ Y3 @ X3 )
     => ( ( ord_less_eq_int @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_193_linorder__le__cases,axiom,
    ! [X3: rat,Y3: rat] :
      ( ~ ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ord_less_eq_rat @ Y3 @ X3 ) ) ).

% linorder_le_cases
thf(fact_194_linorder__le__cases,axiom,
    ! [X3: num,Y3: num] :
      ( ~ ( ord_less_eq_num @ X3 @ Y3 )
     => ( ord_less_eq_num @ Y3 @ X3 ) ) ).

% linorder_le_cases
thf(fact_195_linorder__le__cases,axiom,
    ! [X3: nat,Y3: nat] :
      ( ~ ( ord_less_eq_nat @ X3 @ Y3 )
     => ( ord_less_eq_nat @ Y3 @ X3 ) ) ).

% linorder_le_cases
thf(fact_196_linorder__le__cases,axiom,
    ! [X3: int,Y3: int] :
      ( ~ ( ord_less_eq_int @ X3 @ Y3 )
     => ( ord_less_eq_int @ Y3 @ X3 ) ) ).

% linorder_le_cases
thf(fact_197_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_198_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_199_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_200_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_201_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_202_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_203_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_204_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_205_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_206_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_207_ord__eq__le__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_208_ord__eq__le__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_209_ord__eq__le__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_210_ord__eq__le__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_211_ord__eq__le__subst,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_212_ord__eq__le__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_213_ord__eq__le__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_214_ord__eq__le__subst,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_215_ord__eq__le__subst,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_216_ord__eq__le__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_217_linorder__linear,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
      | ( ord_less_eq_rat @ Y3 @ X3 ) ) ).

% linorder_linear
thf(fact_218_linorder__linear,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
      | ( ord_less_eq_num @ Y3 @ X3 ) ) ).

% linorder_linear
thf(fact_219_linorder__linear,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
      | ( ord_less_eq_nat @ Y3 @ X3 ) ) ).

% linorder_linear
thf(fact_220_linorder__linear,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
      | ( ord_less_eq_int @ Y3 @ X3 ) ) ).

% linorder_linear
thf(fact_221_order__eq__refl,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( X3 = Y3 )
     => ( ord_less_eq_set_nat @ X3 @ Y3 ) ) ).

% order_eq_refl
thf(fact_222_order__eq__refl,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( X3 = Y3 )
     => ( ord_less_eq_rat @ X3 @ Y3 ) ) ).

% order_eq_refl
thf(fact_223_order__eq__refl,axiom,
    ! [X3: num,Y3: num] :
      ( ( X3 = Y3 )
     => ( ord_less_eq_num @ X3 @ Y3 ) ) ).

% order_eq_refl
thf(fact_224_order__eq__refl,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( X3 = Y3 )
     => ( ord_less_eq_nat @ X3 @ Y3 ) ) ).

% order_eq_refl
thf(fact_225_order__eq__refl,axiom,
    ! [X3: int,Y3: int] :
      ( ( X3 = Y3 )
     => ( ord_less_eq_int @ X3 @ Y3 ) ) ).

% order_eq_refl
thf(fact_226_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_227_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_228_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_229_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_230_order__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_231_order__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_232_order__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_233_order__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_234_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_235_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_236_order__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_237_order__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_238_order__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_239_order__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_eq_int @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_240_order__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_241_order__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_242_order__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_243_order__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_eq_int @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_244_order__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_245_order__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_246_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z2: set_nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B3 )
          & ( ord_less_eq_set_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_247_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: rat,Z2: rat] : ( Y5 = Z2 ) )
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ A4 @ B3 )
          & ( ord_less_eq_rat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_248_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: num,Z2: num] : ( Y5 = Z2 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_249_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_250_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_251_antisym,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_252_antisym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_253_antisym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_254_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_255_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_256_dual__order_Otrans,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ C @ B )
       => ( ord_less_eq_set_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_257_dual__order_Otrans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_258_dual__order_Otrans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_eq_num @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_259_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_260_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_261_dual__order_Oantisym,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_262_dual__order_Oantisym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_263_dual__order_Oantisym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_264_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_265_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_266_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z2: set_nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A4 )
          & ( ord_less_eq_set_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_267_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: rat,Z2: rat] : ( Y5 = Z2 ) )
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ B3 @ A4 )
          & ( ord_less_eq_rat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_268_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: num,Z2: num] : ( Y5 = Z2 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_269_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_270_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_271_linorder__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A5: rat,B4: rat] :
          ( ( ord_less_eq_rat @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: rat,B4: rat] :
            ( ( P @ B4 @ A5 )
           => ( P @ A5 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_272_linorder__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A5: num,B4: num] :
          ( ( ord_less_eq_num @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: num,B4: num] :
            ( ( P @ B4 @ A5 )
           => ( P @ A5 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_273_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: nat,B4: nat] :
            ( ( P @ B4 @ A5 )
           => ( P @ A5 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_274_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A5: int,B4: int] :
          ( ( ord_less_eq_int @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: int,B4: int] :
            ( ( P @ B4 @ A5 )
           => ( P @ A5 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_275_order__trans,axiom,
    ! [X3: set_nat,Y3: set_nat,Z: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_set_nat @ Y3 @ Z )
       => ( ord_less_eq_set_nat @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_276_order__trans,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ( ord_less_eq_rat @ Y3 @ Z )
       => ( ord_less_eq_rat @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_277_order__trans,axiom,
    ! [X3: num,Y3: num,Z: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
     => ( ( ord_less_eq_num @ Y3 @ Z )
       => ( ord_less_eq_num @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_278_order__trans,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ Z )
       => ( ord_less_eq_nat @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_279_order__trans,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ Z )
       => ( ord_less_eq_int @ X3 @ Z ) ) ) ).

% order_trans
thf(fact_280_order_Otrans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_281_order_Otrans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% order.trans
thf(fact_282_order_Otrans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% order.trans
thf(fact_283_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_284_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_285_order__antisym,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_set_nat @ Y3 @ X3 )
       => ( X3 = Y3 ) ) ) ).

% order_antisym
thf(fact_286_order__antisym,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ( ord_less_eq_rat @ Y3 @ X3 )
       => ( X3 = Y3 ) ) ) ).

% order_antisym
thf(fact_287_order__antisym,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
     => ( ( ord_less_eq_num @ Y3 @ X3 )
       => ( X3 = Y3 ) ) ) ).

% order_antisym
thf(fact_288_order__antisym,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ X3 )
       => ( X3 = Y3 ) ) ) ).

% order_antisym
thf(fact_289_order__antisym,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ X3 )
       => ( X3 = Y3 ) ) ) ).

% order_antisym
thf(fact_290_ord__le__eq__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_291_ord__le__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_292_ord__le__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_293_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_294_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_295_ord__eq__le__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( A = B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_296_ord__eq__le__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_297_ord__eq__le__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_298_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_299_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_300_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_nat,Z2: set_nat] : ( Y5 = Z2 ) )
    = ( ^ [X: set_nat,Y: set_nat] :
          ( ( ord_less_eq_set_nat @ X @ Y )
          & ( ord_less_eq_set_nat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_301_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: rat,Z2: rat] : ( Y5 = Z2 ) )
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X @ Y )
          & ( ord_less_eq_rat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_302_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: num,Z2: num] : ( Y5 = Z2 ) )
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_eq_num @ X @ Y )
          & ( ord_less_eq_num @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_303_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_304_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ( ord_less_eq_int @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_305_le__cases3,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( ( ord_less_eq_rat @ X3 @ Y3 )
       => ~ ( ord_less_eq_rat @ Y3 @ Z ) )
     => ( ( ( ord_less_eq_rat @ Y3 @ X3 )
         => ~ ( ord_less_eq_rat @ X3 @ Z ) )
       => ( ( ( ord_less_eq_rat @ X3 @ Z )
           => ~ ( ord_less_eq_rat @ Z @ Y3 ) )
         => ( ( ( ord_less_eq_rat @ Z @ Y3 )
             => ~ ( ord_less_eq_rat @ Y3 @ X3 ) )
           => ( ( ( ord_less_eq_rat @ Y3 @ Z )
               => ~ ( ord_less_eq_rat @ Z @ X3 ) )
             => ~ ( ( ord_less_eq_rat @ Z @ X3 )
                 => ~ ( ord_less_eq_rat @ X3 @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_306_le__cases3,axiom,
    ! [X3: num,Y3: num,Z: num] :
      ( ( ( ord_less_eq_num @ X3 @ Y3 )
       => ~ ( ord_less_eq_num @ Y3 @ Z ) )
     => ( ( ( ord_less_eq_num @ Y3 @ X3 )
         => ~ ( ord_less_eq_num @ X3 @ Z ) )
       => ( ( ( ord_less_eq_num @ X3 @ Z )
           => ~ ( ord_less_eq_num @ Z @ Y3 ) )
         => ( ( ( ord_less_eq_num @ Z @ Y3 )
             => ~ ( ord_less_eq_num @ Y3 @ X3 ) )
           => ( ( ( ord_less_eq_num @ Y3 @ Z )
               => ~ ( ord_less_eq_num @ Z @ X3 ) )
             => ~ ( ( ord_less_eq_num @ Z @ X3 )
                 => ~ ( ord_less_eq_num @ X3 @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_307_le__cases3,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X3 @ Y3 )
       => ~ ( ord_less_eq_nat @ Y3 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y3 @ X3 )
         => ~ ( ord_less_eq_nat @ X3 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X3 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y3 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y3 )
             => ~ ( ord_less_eq_nat @ Y3 @ X3 ) )
           => ( ( ( ord_less_eq_nat @ Y3 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X3 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X3 )
                 => ~ ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_308_le__cases3,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( ( ord_less_eq_int @ X3 @ Y3 )
       => ~ ( ord_less_eq_int @ Y3 @ Z ) )
     => ( ( ( ord_less_eq_int @ Y3 @ X3 )
         => ~ ( ord_less_eq_int @ X3 @ Z ) )
       => ( ( ( ord_less_eq_int @ X3 @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y3 ) )
         => ( ( ( ord_less_eq_int @ Z @ Y3 )
             => ~ ( ord_less_eq_int @ Y3 @ X3 ) )
           => ( ( ( ord_less_eq_int @ Y3 @ Z )
               => ~ ( ord_less_eq_int @ Z @ X3 ) )
             => ~ ( ( ord_less_eq_int @ Z @ X3 )
                 => ~ ( ord_less_eq_int @ X3 @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_309_nle__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_eq_rat @ A @ B ) )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_310_nle__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B ) )
      = ( ( ord_less_eq_num @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_311_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_312_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_313_lt__ex,axiom,
    ! [X3: real] :
    ? [Y4: real] : ( ord_less_real @ Y4 @ X3 ) ).

% lt_ex
thf(fact_314_lt__ex,axiom,
    ! [X3: rat] :
    ? [Y4: rat] : ( ord_less_rat @ Y4 @ X3 ) ).

% lt_ex
thf(fact_315_lt__ex,axiom,
    ! [X3: int] :
    ? [Y4: int] : ( ord_less_int @ Y4 @ X3 ) ).

% lt_ex
thf(fact_316_gt__ex,axiom,
    ! [X3: real] :
    ? [X_1: real] : ( ord_less_real @ X3 @ X_1 ) ).

% gt_ex
thf(fact_317_gt__ex,axiom,
    ! [X3: rat] :
    ? [X_1: rat] : ( ord_less_rat @ X3 @ X_1 ) ).

% gt_ex
thf(fact_318_gt__ex,axiom,
    ! [X3: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X3 @ X_1 ) ).

% gt_ex
thf(fact_319_gt__ex,axiom,
    ! [X3: int] :
    ? [X_1: int] : ( ord_less_int @ X3 @ X_1 ) ).

% gt_ex
thf(fact_320_dense,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ? [Z3: real] :
          ( ( ord_less_real @ X3 @ Z3 )
          & ( ord_less_real @ Z3 @ Y3 ) ) ) ).

% dense
thf(fact_321_dense,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ? [Z3: rat] :
          ( ( ord_less_rat @ X3 @ Z3 )
          & ( ord_less_rat @ Z3 @ Y3 ) ) ) ).

% dense
thf(fact_322_less__imp__neq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% less_imp_neq
thf(fact_323_less__imp__neq,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% less_imp_neq
thf(fact_324_less__imp__neq,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% less_imp_neq
thf(fact_325_less__imp__neq,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% less_imp_neq
thf(fact_326_less__imp__neq,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% less_imp_neq
thf(fact_327_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_328_order_Oasym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order.asym
thf(fact_329_order_Oasym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order.asym
thf(fact_330_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_331_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_332_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_333_ord__eq__less__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_334_ord__eq__less__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_335_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_336_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_337_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_338_ord__less__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_339_ord__less__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_340_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_341_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_342_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X4: nat] :
          ( ! [Y6: nat] :
              ( ( ord_less_nat @ Y6 @ X4 )
             => ( P @ Y6 ) )
         => ( P @ X4 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_343_antisym__conv3,axiom,
    ! [Y3: real,X3: real] :
      ( ~ ( ord_less_real @ Y3 @ X3 )
     => ( ( ~ ( ord_less_real @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv3
thf(fact_344_antisym__conv3,axiom,
    ! [Y3: rat,X3: rat] :
      ( ~ ( ord_less_rat @ Y3 @ X3 )
     => ( ( ~ ( ord_less_rat @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv3
thf(fact_345_antisym__conv3,axiom,
    ! [Y3: num,X3: num] :
      ( ~ ( ord_less_num @ Y3 @ X3 )
     => ( ( ~ ( ord_less_num @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv3
thf(fact_346_antisym__conv3,axiom,
    ! [Y3: nat,X3: nat] :
      ( ~ ( ord_less_nat @ Y3 @ X3 )
     => ( ( ~ ( ord_less_nat @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv3
thf(fact_347_antisym__conv3,axiom,
    ! [Y3: int,X3: int] :
      ( ~ ( ord_less_int @ Y3 @ X3 )
     => ( ( ~ ( ord_less_int @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv3
thf(fact_348_linorder__cases,axiom,
    ! [X3: real,Y3: real] :
      ( ~ ( ord_less_real @ X3 @ Y3 )
     => ( ( X3 != Y3 )
       => ( ord_less_real @ Y3 @ X3 ) ) ) ).

% linorder_cases
thf(fact_349_linorder__cases,axiom,
    ! [X3: rat,Y3: rat] :
      ( ~ ( ord_less_rat @ X3 @ Y3 )
     => ( ( X3 != Y3 )
       => ( ord_less_rat @ Y3 @ X3 ) ) ) ).

% linorder_cases
thf(fact_350_linorder__cases,axiom,
    ! [X3: num,Y3: num] :
      ( ~ ( ord_less_num @ X3 @ Y3 )
     => ( ( X3 != Y3 )
       => ( ord_less_num @ Y3 @ X3 ) ) ) ).

% linorder_cases
thf(fact_351_linorder__cases,axiom,
    ! [X3: nat,Y3: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y3 )
     => ( ( X3 != Y3 )
       => ( ord_less_nat @ Y3 @ X3 ) ) ) ).

% linorder_cases
thf(fact_352_linorder__cases,axiom,
    ! [X3: int,Y3: int] :
      ( ~ ( ord_less_int @ X3 @ Y3 )
     => ( ( X3 != Y3 )
       => ( ord_less_int @ Y3 @ X3 ) ) ) ).

% linorder_cases
thf(fact_353_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_354_dual__order_Oasym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ~ ( ord_less_rat @ A @ B ) ) ).

% dual_order.asym
thf(fact_355_dual__order_Oasym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ~ ( ord_less_num @ A @ B ) ) ).

% dual_order.asym
thf(fact_356_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_357_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_358_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_359_dual__order_Oirrefl,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% dual_order.irrefl
thf(fact_360_dual__order_Oirrefl,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% dual_order.irrefl
thf(fact_361_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_362_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_363_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N3: nat] :
          ( ( P3 @ N3 )
          & ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ~ ( P3 @ M3 ) ) ) ) ) ).

% exists_least_iff
thf(fact_364_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A5: real,B4: real] :
          ( ( ord_less_real @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: real] : ( P @ A5 @ A5 )
       => ( ! [A5: real,B4: real] :
              ( ( P @ B4 @ A5 )
             => ( P @ A5 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_365_linorder__less__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A5: rat,B4: rat] :
          ( ( ord_less_rat @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: rat] : ( P @ A5 @ A5 )
       => ( ! [A5: rat,B4: rat] :
              ( ( P @ B4 @ A5 )
             => ( P @ A5 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_366_linorder__less__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A5: num,B4: num] :
          ( ( ord_less_num @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: num] : ( P @ A5 @ A5 )
       => ( ! [A5: num,B4: num] :
              ( ( P @ B4 @ A5 )
             => ( P @ A5 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_367_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( ord_less_nat @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: nat] : ( P @ A5 @ A5 )
       => ( ! [A5: nat,B4: nat] :
              ( ( P @ B4 @ A5 )
             => ( P @ A5 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_368_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A5: int,B4: int] :
          ( ( ord_less_int @ A5 @ B4 )
         => ( P @ A5 @ B4 ) )
     => ( ! [A5: int] : ( P @ A5 @ A5 )
       => ( ! [A5: int,B4: int] :
              ( ( P @ B4 @ A5 )
             => ( P @ A5 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_369_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_370_order_Ostrict__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_371_order_Ostrict__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_372_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_373_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_374_not__less__iff__gr__or__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ~ ( ord_less_real @ X3 @ Y3 ) )
      = ( ( ord_less_real @ Y3 @ X3 )
        | ( X3 = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_375_not__less__iff__gr__or__eq,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ~ ( ord_less_rat @ X3 @ Y3 ) )
      = ( ( ord_less_rat @ Y3 @ X3 )
        | ( X3 = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_376_not__less__iff__gr__or__eq,axiom,
    ! [X3: num,Y3: num] :
      ( ( ~ ( ord_less_num @ X3 @ Y3 ) )
      = ( ( ord_less_num @ Y3 @ X3 )
        | ( X3 = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_377_not__less__iff__gr__or__eq,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ~ ( ord_less_nat @ X3 @ Y3 ) )
      = ( ( ord_less_nat @ Y3 @ X3 )
        | ( X3 = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_378_not__less__iff__gr__or__eq,axiom,
    ! [X3: int,Y3: int] :
      ( ( ~ ( ord_less_int @ X3 @ Y3 ) )
      = ( ( ord_less_int @ Y3 @ X3 )
        | ( X3 = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_379_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_380_dual__order_Ostrict__trans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_381_dual__order_Ostrict__trans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_382_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_383_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_384_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_385_order_Ostrict__implies__not__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_386_order_Ostrict__implies__not__eq,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_387_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_388_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_389_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_390_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_391_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_392_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_393_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_394_linorder__neqE,axiom,
    ! [X3: real,Y3: real] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_real @ X3 @ Y3 )
       => ( ord_less_real @ Y3 @ X3 ) ) ) ).

% linorder_neqE
thf(fact_395_linorder__neqE,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_rat @ X3 @ Y3 )
       => ( ord_less_rat @ Y3 @ X3 ) ) ) ).

% linorder_neqE
thf(fact_396_linorder__neqE,axiom,
    ! [X3: num,Y3: num] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_num @ X3 @ Y3 )
       => ( ord_less_num @ Y3 @ X3 ) ) ) ).

% linorder_neqE
thf(fact_397_linorder__neqE,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_nat @ X3 @ Y3 )
       => ( ord_less_nat @ Y3 @ X3 ) ) ) ).

% linorder_neqE
thf(fact_398_linorder__neqE,axiom,
    ! [X3: int,Y3: int] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_int @ X3 @ Y3 )
       => ( ord_less_int @ Y3 @ X3 ) ) ) ).

% linorder_neqE
thf(fact_399_order__less__asym,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ~ ( ord_less_real @ Y3 @ X3 ) ) ).

% order_less_asym
thf(fact_400_order__less__asym,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ~ ( ord_less_rat @ Y3 @ X3 ) ) ).

% order_less_asym
thf(fact_401_order__less__asym,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ~ ( ord_less_num @ Y3 @ X3 ) ) ).

% order_less_asym
thf(fact_402_order__less__asym,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ~ ( ord_less_nat @ Y3 @ X3 ) ) ).

% order_less_asym
thf(fact_403_order__less__asym,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ~ ( ord_less_int @ Y3 @ X3 ) ) ).

% order_less_asym
thf(fact_404_linorder__neq__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( X3 != Y3 )
      = ( ( ord_less_real @ X3 @ Y3 )
        | ( ord_less_real @ Y3 @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_405_linorder__neq__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( X3 != Y3 )
      = ( ( ord_less_rat @ X3 @ Y3 )
        | ( ord_less_rat @ Y3 @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_406_linorder__neq__iff,axiom,
    ! [X3: num,Y3: num] :
      ( ( X3 != Y3 )
      = ( ( ord_less_num @ X3 @ Y3 )
        | ( ord_less_num @ Y3 @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_407_linorder__neq__iff,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( X3 != Y3 )
      = ( ( ord_less_nat @ X3 @ Y3 )
        | ( ord_less_nat @ Y3 @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_408_linorder__neq__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( X3 != Y3 )
      = ( ( ord_less_int @ X3 @ Y3 )
        | ( ord_less_int @ Y3 @ X3 ) ) ) ).

% linorder_neq_iff
thf(fact_409_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_410_order__less__asym_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order_less_asym'
thf(fact_411_order__less__asym_H,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order_less_asym'
thf(fact_412_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_413_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_414_order__less__trans,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ( ord_less_real @ Y3 @ Z )
       => ( ord_less_real @ X3 @ Z ) ) ) ).

% order_less_trans
thf(fact_415_order__less__trans,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( ( ord_less_rat @ Y3 @ Z )
       => ( ord_less_rat @ X3 @ Z ) ) ) ).

% order_less_trans
thf(fact_416_order__less__trans,axiom,
    ! [X3: num,Y3: num,Z: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ( ( ord_less_num @ Y3 @ Z )
       => ( ord_less_num @ X3 @ Z ) ) ) ).

% order_less_trans
thf(fact_417_order__less__trans,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ( ( ord_less_nat @ Y3 @ Z )
       => ( ord_less_nat @ X3 @ Z ) ) ) ).

% order_less_trans
thf(fact_418_order__less__trans,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ( ( ord_less_int @ Y3 @ Z )
       => ( ord_less_int @ X3 @ Z ) ) ) ).

% order_less_trans
thf(fact_419_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_420_ord__eq__less__subst,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_421_ord__eq__less__subst,axiom,
    ! [A: num,F: real > num,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_422_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_423_ord__eq__less__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_424_ord__eq__less__subst,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_425_ord__eq__less__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_426_ord__eq__less__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_427_ord__eq__less__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_428_ord__eq__less__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_429_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_430_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_431_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_432_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_433_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_434_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_435_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_436_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_437_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_438_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_439_order__less__irrefl,axiom,
    ! [X3: real] :
      ~ ( ord_less_real @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_440_order__less__irrefl,axiom,
    ! [X3: rat] :
      ~ ( ord_less_rat @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_441_order__less__irrefl,axiom,
    ! [X3: num] :
      ~ ( ord_less_num @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_442_order__less__irrefl,axiom,
    ! [X3: nat] :
      ~ ( ord_less_nat @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_443_order__less__irrefl,axiom,
    ! [X3: int] :
      ~ ( ord_less_int @ X3 @ X3 ) ).

% order_less_irrefl
thf(fact_444_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_445_order__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_446_order__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_num @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_447_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_448_order__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_int @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_449_order__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_450_order__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_451_order__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_num @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_452_order__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_453_order__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_int @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_454_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_455_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_456_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_457_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_458_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_459_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_460_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_461_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_462_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_463_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_464_order__less__not__sym,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ~ ( ord_less_real @ Y3 @ X3 ) ) ).

% order_less_not_sym
thf(fact_465_order__less__not__sym,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ~ ( ord_less_rat @ Y3 @ X3 ) ) ).

% order_less_not_sym
thf(fact_466_order__less__not__sym,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ~ ( ord_less_num @ Y3 @ X3 ) ) ).

% order_less_not_sym
thf(fact_467_order__less__not__sym,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ~ ( ord_less_nat @ Y3 @ X3 ) ) ).

% order_less_not_sym
thf(fact_468_order__less__not__sym,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ~ ( ord_less_int @ Y3 @ X3 ) ) ).

% order_less_not_sym
thf(fact_469_order__less__imp__triv,axiom,
    ! [X3: real,Y3: real,P: $o] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ( ord_less_real @ Y3 @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_470_order__less__imp__triv,axiom,
    ! [X3: rat,Y3: rat,P: $o] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( ( ord_less_rat @ Y3 @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_471_order__less__imp__triv,axiom,
    ! [X3: num,Y3: num,P: $o] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ( ( ord_less_num @ Y3 @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_472_order__less__imp__triv,axiom,
    ! [X3: nat,Y3: nat,P: $o] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ( ( ord_less_nat @ Y3 @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_473_order__less__imp__triv,axiom,
    ! [X3: int,Y3: int,P: $o] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ( ( ord_less_int @ Y3 @ X3 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_474_linorder__less__linear,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
      | ( X3 = Y3 )
      | ( ord_less_real @ Y3 @ X3 ) ) ).

% linorder_less_linear
thf(fact_475_linorder__less__linear,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
      | ( X3 = Y3 )
      | ( ord_less_rat @ Y3 @ X3 ) ) ).

% linorder_less_linear
thf(fact_476_linorder__less__linear,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
      | ( X3 = Y3 )
      | ( ord_less_num @ Y3 @ X3 ) ) ).

% linorder_less_linear
thf(fact_477_linorder__less__linear,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
      | ( X3 = Y3 )
      | ( ord_less_nat @ Y3 @ X3 ) ) ).

% linorder_less_linear
thf(fact_478_linorder__less__linear,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
      | ( X3 = Y3 )
      | ( ord_less_int @ Y3 @ X3 ) ) ).

% linorder_less_linear
thf(fact_479_order__less__imp__not__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_480_order__less__imp__not__eq,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_481_order__less__imp__not__eq,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_482_order__less__imp__not__eq,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_483_order__less__imp__not__eq,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ( X3 != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_484_order__less__imp__not__eq2,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( Y3 != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_485_order__less__imp__not__eq2,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( Y3 != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_486_order__less__imp__not__eq2,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ( Y3 != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_487_order__less__imp__not__eq2,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ( Y3 != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_488_order__less__imp__not__eq2,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ( Y3 != X3 ) ) ).

% order_less_imp_not_eq2
thf(fact_489_order__less__imp__not__less,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ~ ( ord_less_real @ Y3 @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_490_order__less__imp__not__less,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ~ ( ord_less_rat @ Y3 @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_491_order__less__imp__not__less,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ~ ( ord_less_num @ Y3 @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_492_order__less__imp__not__less,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ~ ( ord_less_nat @ Y3 @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_493_order__less__imp__not__less,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ~ ( ord_less_int @ Y3 @ X3 ) ) ).

% order_less_imp_not_less
thf(fact_494_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_495_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_496_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_497_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_498_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_499_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_500_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_501_linorder__neqE__nat,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_nat @ X3 @ Y3 )
       => ( ord_less_nat @ Y3 @ X3 ) ) ) ).

% linorder_neqE_nat
thf(fact_502_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y6: nat] :
                ( ( P @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_503_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_504_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_505_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_506_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_507_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_508_leD,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ Y3 @ X3 )
     => ~ ( ord_less_real @ X3 @ Y3 ) ) ).

% leD
thf(fact_509_leD,axiom,
    ! [Y3: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ Y3 @ X3 )
     => ~ ( ord_less_set_nat @ X3 @ Y3 ) ) ).

% leD
thf(fact_510_leD,axiom,
    ! [Y3: rat,X3: rat] :
      ( ( ord_less_eq_rat @ Y3 @ X3 )
     => ~ ( ord_less_rat @ X3 @ Y3 ) ) ).

% leD
thf(fact_511_leD,axiom,
    ! [Y3: num,X3: num] :
      ( ( ord_less_eq_num @ Y3 @ X3 )
     => ~ ( ord_less_num @ X3 @ Y3 ) ) ).

% leD
thf(fact_512_leD,axiom,
    ! [Y3: nat,X3: nat] :
      ( ( ord_less_eq_nat @ Y3 @ X3 )
     => ~ ( ord_less_nat @ X3 @ Y3 ) ) ).

% leD
thf(fact_513_leD,axiom,
    ! [Y3: int,X3: int] :
      ( ( ord_less_eq_int @ Y3 @ X3 )
     => ~ ( ord_less_int @ X3 @ Y3 ) ) ).

% leD
thf(fact_514_leI,axiom,
    ! [X3: real,Y3: real] :
      ( ~ ( ord_less_real @ X3 @ Y3 )
     => ( ord_less_eq_real @ Y3 @ X3 ) ) ).

% leI
thf(fact_515_leI,axiom,
    ! [X3: rat,Y3: rat] :
      ( ~ ( ord_less_rat @ X3 @ Y3 )
     => ( ord_less_eq_rat @ Y3 @ X3 ) ) ).

% leI
thf(fact_516_leI,axiom,
    ! [X3: num,Y3: num] :
      ( ~ ( ord_less_num @ X3 @ Y3 )
     => ( ord_less_eq_num @ Y3 @ X3 ) ) ).

% leI
thf(fact_517_leI,axiom,
    ! [X3: nat,Y3: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y3 )
     => ( ord_less_eq_nat @ Y3 @ X3 ) ) ).

% leI
thf(fact_518_leI,axiom,
    ! [X3: int,Y3: int] :
      ( ~ ( ord_less_int @ X3 @ Y3 )
     => ( ord_less_eq_int @ Y3 @ X3 ) ) ).

% leI
thf(fact_519_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_520_nless__le,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ~ ( ord_less_set_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_set_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_521_nless__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_522_nless__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_523_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_524_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_525_antisym__conv1,axiom,
    ! [X3: real,Y3: real] :
      ( ~ ( ord_less_real @ X3 @ Y3 )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv1
thf(fact_526_antisym__conv1,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ~ ( ord_less_set_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_set_nat @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv1
thf(fact_527_antisym__conv1,axiom,
    ! [X3: rat,Y3: rat] :
      ( ~ ( ord_less_rat @ X3 @ Y3 )
     => ( ( ord_less_eq_rat @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv1
thf(fact_528_antisym__conv1,axiom,
    ! [X3: num,Y3: num] :
      ( ~ ( ord_less_num @ X3 @ Y3 )
     => ( ( ord_less_eq_num @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv1
thf(fact_529_antisym__conv1,axiom,
    ! [X3: nat,Y3: nat] :
      ( ~ ( ord_less_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv1
thf(fact_530_antisym__conv1,axiom,
    ! [X3: int,Y3: int] :
      ( ~ ( ord_less_int @ X3 @ Y3 )
     => ( ( ord_less_eq_int @ X3 @ Y3 )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv1
thf(fact_531_antisym__conv2,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ Y3 )
     => ( ( ~ ( ord_less_real @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv2
thf(fact_532_antisym__conv2,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y3 )
     => ( ( ~ ( ord_less_set_nat @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv2
thf(fact_533_antisym__conv2,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ( ~ ( ord_less_rat @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv2
thf(fact_534_antisym__conv2,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
     => ( ( ~ ( ord_less_num @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv2
thf(fact_535_antisym__conv2,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
     => ( ( ~ ( ord_less_nat @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv2
thf(fact_536_antisym__conv2,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
     => ( ( ~ ( ord_less_int @ X3 @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% antisym_conv2
thf(fact_537_dense__ge,axiom,
    ! [Z: real,Y3: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ Z @ X4 )
         => ( ord_less_eq_real @ Y3 @ X4 ) )
     => ( ord_less_eq_real @ Y3 @ Z ) ) ).

% dense_ge
thf(fact_538_dense__ge,axiom,
    ! [Z: rat,Y3: rat] :
      ( ! [X4: rat] :
          ( ( ord_less_rat @ Z @ X4 )
         => ( ord_less_eq_rat @ Y3 @ X4 ) )
     => ( ord_less_eq_rat @ Y3 @ Z ) ) ).

% dense_ge
thf(fact_539_dense__le,axiom,
    ! [Y3: real,Z: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ X4 @ Y3 )
         => ( ord_less_eq_real @ X4 @ Z ) )
     => ( ord_less_eq_real @ Y3 @ Z ) ) ).

% dense_le
thf(fact_540_dense__le,axiom,
    ! [Y3: rat,Z: rat] :
      ( ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Y3 )
         => ( ord_less_eq_rat @ X4 @ Z ) )
     => ( ord_less_eq_rat @ Y3 @ Z ) ) ).

% dense_le
thf(fact_541_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_eq_real @ X @ Y )
          & ~ ( ord_less_eq_real @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_542_less__le__not__le,axiom,
    ( ord_less_set_nat
    = ( ^ [X: set_nat,Y: set_nat] :
          ( ( ord_less_eq_set_nat @ X @ Y )
          & ~ ( ord_less_eq_set_nat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_543_less__le__not__le,axiom,
    ( ord_less_rat
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X @ Y )
          & ~ ( ord_less_eq_rat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_544_less__le__not__le,axiom,
    ( ord_less_num
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_eq_num @ X @ Y )
          & ~ ( ord_less_eq_num @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_545_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ~ ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_546_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ~ ( ord_less_eq_int @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_547_not__le__imp__less,axiom,
    ! [Y3: real,X3: real] :
      ( ~ ( ord_less_eq_real @ Y3 @ X3 )
     => ( ord_less_real @ X3 @ Y3 ) ) ).

% not_le_imp_less
thf(fact_548_not__le__imp__less,axiom,
    ! [Y3: rat,X3: rat] :
      ( ~ ( ord_less_eq_rat @ Y3 @ X3 )
     => ( ord_less_rat @ X3 @ Y3 ) ) ).

% not_le_imp_less
thf(fact_549_not__le__imp__less,axiom,
    ! [Y3: num,X3: num] :
      ( ~ ( ord_less_eq_num @ Y3 @ X3 )
     => ( ord_less_num @ X3 @ Y3 ) ) ).

% not_le_imp_less
thf(fact_550_not__le__imp__less,axiom,
    ! [Y3: nat,X3: nat] :
      ( ~ ( ord_less_eq_nat @ Y3 @ X3 )
     => ( ord_less_nat @ X3 @ Y3 ) ) ).

% not_le_imp_less
thf(fact_551_not__le__imp__less,axiom,
    ! [Y3: int,X3: int] :
      ( ~ ( ord_less_eq_int @ Y3 @ X3 )
     => ( ord_less_int @ X3 @ Y3 ) ) ).

% not_le_imp_less
thf(fact_552_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_real @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_553_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_set_nat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_554_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_rat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_555_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_num @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_556_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_nat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_557_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_int @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_558_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_559_order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_560_order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_561_order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_562_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_563_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_564_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_565_order_Ostrict__trans1,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_566_order_Ostrict__trans1,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_567_order_Ostrict__trans1,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_568_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_569_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_570_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_571_order_Ostrict__trans2,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_572_order_Ostrict__trans2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_573_order_Ostrict__trans2,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_574_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_575_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_576_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
          & ~ ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_577_order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B3 )
          & ~ ( ord_less_eq_set_nat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_578_order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_less_eq_rat @ A4 @ B3 )
          & ~ ( ord_less_eq_rat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_579_order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ~ ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_580_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_581_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
          & ~ ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_582_dense__ge__bounded,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( ord_less_real @ Z @ X3 )
     => ( ! [W2: real] :
            ( ( ord_less_real @ Z @ W2 )
           => ( ( ord_less_real @ W2 @ X3 )
             => ( ord_less_eq_real @ Y3 @ W2 ) ) )
       => ( ord_less_eq_real @ Y3 @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_583_dense__ge__bounded,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( ord_less_rat @ Z @ X3 )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ Z @ W2 )
           => ( ( ord_less_rat @ W2 @ X3 )
             => ( ord_less_eq_rat @ Y3 @ W2 ) ) )
       => ( ord_less_eq_rat @ Y3 @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_584_dense__le__bounded,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ! [W2: real] :
            ( ( ord_less_real @ X3 @ W2 )
           => ( ( ord_less_real @ W2 @ Y3 )
             => ( ord_less_eq_real @ W2 @ Z ) ) )
       => ( ord_less_eq_real @ Y3 @ Z ) ) ) ).

% dense_le_bounded
thf(fact_585_dense__le__bounded,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ X3 @ W2 )
           => ( ( ord_less_rat @ W2 @ Y3 )
             => ( ord_less_eq_rat @ W2 @ Z ) ) )
       => ( ord_less_eq_rat @ Y3 @ Z ) ) ) ).

% dense_le_bounded
thf(fact_586_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_real @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_587_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( ( ord_less_set_nat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_588_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( ord_less_rat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_589_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_num @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_590_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_nat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_591_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_int @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_592_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_eq_real @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_593_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_594_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_595_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_596_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_597_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_598_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_599_dual__order_Ostrict__trans1,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_set_nat @ C @ B )
       => ( ord_less_set_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_600_dual__order_Ostrict__trans1,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_601_dual__order_Ostrict__trans1,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_602_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_603_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_604_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_605_dual__order_Ostrict__trans2,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ C @ B )
       => ( ord_less_set_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_606_dual__order_Ostrict__trans2,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_607_dual__order_Ostrict__trans2,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_608_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_609_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_610_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A4: real] :
          ( ( ord_less_eq_real @ B3 @ A4 )
          & ~ ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_611_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A4 )
          & ~ ( ord_less_eq_set_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_612_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B3 @ A4 )
          & ~ ( ord_less_eq_rat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_613_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ~ ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_614_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_615_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_less_eq_int @ B3 @ A4 )
          & ~ ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_616_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_617_order_Ostrict__implies__order,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ord_less_eq_set_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_618_order_Ostrict__implies__order,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_619_order_Ostrict__implies__order,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ord_less_eq_num @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_620_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_621_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_622_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_623_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( ord_less_eq_set_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_624_dual__order_Ostrict__implies__order,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_625_dual__order_Ostrict__implies__order,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ord_less_eq_num @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_626_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_627_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_628_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_real @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_629_order__le__less,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [X: set_nat,Y: set_nat] :
          ( ( ord_less_set_nat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_630_order__le__less,axiom,
    ( ord_less_eq_rat
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_rat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_631_order__le__less,axiom,
    ( ord_less_eq_num
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_num @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_632_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_nat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_633_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_int @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_634_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_eq_real @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_635_order__less__le,axiom,
    ( ord_less_set_nat
    = ( ^ [X: set_nat,Y: set_nat] :
          ( ( ord_less_eq_set_nat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_636_order__less__le,axiom,
    ( ord_less_rat
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_637_order__less__le,axiom,
    ( ord_less_num
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_eq_num @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_638_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_639_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_640_linorder__not__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ~ ( ord_less_eq_real @ X3 @ Y3 ) )
      = ( ord_less_real @ Y3 @ X3 ) ) ).

% linorder_not_le
thf(fact_641_linorder__not__le,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ~ ( ord_less_eq_rat @ X3 @ Y3 ) )
      = ( ord_less_rat @ Y3 @ X3 ) ) ).

% linorder_not_le
thf(fact_642_linorder__not__le,axiom,
    ! [X3: num,Y3: num] :
      ( ( ~ ( ord_less_eq_num @ X3 @ Y3 ) )
      = ( ord_less_num @ Y3 @ X3 ) ) ).

% linorder_not_le
thf(fact_643_linorder__not__le,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ~ ( ord_less_eq_nat @ X3 @ Y3 ) )
      = ( ord_less_nat @ Y3 @ X3 ) ) ).

% linorder_not_le
thf(fact_644_linorder__not__le,axiom,
    ! [X3: int,Y3: int] :
      ( ( ~ ( ord_less_eq_int @ X3 @ Y3 ) )
      = ( ord_less_int @ Y3 @ X3 ) ) ).

% linorder_not_le
thf(fact_645_linorder__not__less,axiom,
    ! [X3: real,Y3: real] :
      ( ( ~ ( ord_less_real @ X3 @ Y3 ) )
      = ( ord_less_eq_real @ Y3 @ X3 ) ) ).

% linorder_not_less
thf(fact_646_linorder__not__less,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ~ ( ord_less_rat @ X3 @ Y3 ) )
      = ( ord_less_eq_rat @ Y3 @ X3 ) ) ).

% linorder_not_less
thf(fact_647_linorder__not__less,axiom,
    ! [X3: num,Y3: num] :
      ( ( ~ ( ord_less_num @ X3 @ Y3 ) )
      = ( ord_less_eq_num @ Y3 @ X3 ) ) ).

% linorder_not_less
thf(fact_648_linorder__not__less,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ~ ( ord_less_nat @ X3 @ Y3 ) )
      = ( ord_less_eq_nat @ Y3 @ X3 ) ) ).

% linorder_not_less
thf(fact_649_linorder__not__less,axiom,
    ! [X3: int,Y3: int] :
      ( ( ~ ( ord_less_int @ X3 @ Y3 ) )
      = ( ord_less_eq_int @ Y3 @ X3 ) ) ).

% linorder_not_less
thf(fact_650_order__less__imp__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% order_less_imp_le
thf(fact_651_order__less__imp__le,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_less_set_nat @ X3 @ Y3 )
     => ( ord_less_eq_set_nat @ X3 @ Y3 ) ) ).

% order_less_imp_le
thf(fact_652_order__less__imp__le,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( ord_less_eq_rat @ X3 @ Y3 ) ) ).

% order_less_imp_le
thf(fact_653_order__less__imp__le,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ( ord_less_eq_num @ X3 @ Y3 ) ) ).

% order_less_imp_le
thf(fact_654_order__less__imp__le,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ( ord_less_eq_nat @ X3 @ Y3 ) ) ).

% order_less_imp_le
thf(fact_655_order__less__imp__le,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ( ord_less_eq_int @ X3 @ Y3 ) ) ).

% order_less_imp_le
thf(fact_656_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_657_order__le__neq__trans,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_658_order__le__neq__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( A != B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_659_order__le__neq__trans,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( A != B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_660_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_661_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_662_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_663_order__neq__le__trans,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( A != B )
     => ( ( ord_less_eq_set_nat @ A @ B )
       => ( ord_less_set_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_664_order__neq__le__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( A != B )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_665_order__neq__le__trans,axiom,
    ! [A: num,B: num] :
      ( ( A != B )
     => ( ( ord_less_eq_num @ A @ B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_666_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_667_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_668_order__le__less__trans,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( ord_less_eq_real @ X3 @ Y3 )
     => ( ( ord_less_real @ Y3 @ Z )
       => ( ord_less_real @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_669_order__le__less__trans,axiom,
    ! [X3: set_nat,Y3: set_nat,Z: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y3 )
     => ( ( ord_less_set_nat @ Y3 @ Z )
       => ( ord_less_set_nat @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_670_order__le__less__trans,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ( ord_less_rat @ Y3 @ Z )
       => ( ord_less_rat @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_671_order__le__less__trans,axiom,
    ! [X3: num,Y3: num,Z: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
     => ( ( ord_less_num @ Y3 @ Z )
       => ( ord_less_num @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_672_order__le__less__trans,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
     => ( ( ord_less_nat @ Y3 @ Z )
       => ( ord_less_nat @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_673_order__le__less__trans,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
     => ( ( ord_less_int @ Y3 @ Z )
       => ( ord_less_int @ X3 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_674_order__less__le__trans,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ Z )
       => ( ord_less_real @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_675_order__less__le__trans,axiom,
    ! [X3: set_nat,Y3: set_nat,Z: set_nat] :
      ( ( ord_less_set_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_set_nat @ Y3 @ Z )
       => ( ord_less_set_nat @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_676_order__less__le__trans,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( ( ord_less_eq_rat @ Y3 @ Z )
       => ( ord_less_rat @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_677_order__less__le__trans,axiom,
    ! [X3: num,Y3: num,Z: num] :
      ( ( ord_less_num @ X3 @ Y3 )
     => ( ( ord_less_eq_num @ Y3 @ Z )
       => ( ord_less_num @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_678_order__less__le__trans,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ord_less_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ Z )
       => ( ord_less_nat @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_679_order__less__le__trans,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( ord_less_int @ X3 @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ Z )
       => ( ord_less_int @ X3 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_680_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_681_order__le__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_682_order__le__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_num @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_683_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_684_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_int @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_685_order__le__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_686_order__le__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_687_order__le__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_num @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_688_order__le__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_689_order__le__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_int @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_690_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_691_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_692_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_693_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_694_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_695_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_696_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_697_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_698_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_699_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_700_order__less__le__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_701_order__less__le__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_702_order__less__le__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_703_order__less__le__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_704_order__less__le__subst1,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_705_order__less__le__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_706_order__less__le__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_707_order__less__le__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_708_order__less__le__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_709_order__less__le__subst1,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_eq_num @ X4 @ Y4 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_710_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_711_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_712_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_num @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_713_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_714_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_int @ X4 @ Y4 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_715_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y4: real] :
              ( ( ord_less_real @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_716_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y4: rat] :
              ( ( ord_less_rat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_717_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y4: num] :
              ( ( ord_less_num @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_718_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y4: nat] :
              ( ( ord_less_nat @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_719_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > rat,C: rat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: int,Y4: int] :
              ( ( ord_less_int @ X4 @ Y4 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y4 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_720_linorder__le__less__linear,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ Y3 )
      | ( ord_less_real @ Y3 @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_721_linorder__le__less__linear,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
      | ( ord_less_rat @ Y3 @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_722_linorder__le__less__linear,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
      | ( ord_less_num @ Y3 @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_723_linorder__le__less__linear,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
      | ( ord_less_nat @ Y3 @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_724_linorder__le__less__linear,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
      | ( ord_less_int @ Y3 @ X3 ) ) ).

% linorder_le_less_linear
thf(fact_725_order__le__imp__less__or__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ Y3 )
     => ( ( ord_less_real @ X3 @ Y3 )
        | ( X3 = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_726_order__le__imp__less__or__eq,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y3 )
     => ( ( ord_less_set_nat @ X3 @ Y3 )
        | ( X3 = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_727_order__le__imp__less__or__eq,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ( ord_less_rat @ X3 @ Y3 )
        | ( X3 = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_728_order__le__imp__less__or__eq,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
     => ( ( ord_less_num @ X3 @ Y3 )
        | ( X3 = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_729_order__le__imp__less__or__eq,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
     => ( ( ord_less_nat @ X3 @ Y3 )
        | ( X3 = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_730_order__le__imp__less__or__eq,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
     => ( ( ord_less_int @ X3 @ Y3 )
        | ( X3 = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_731_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M3 @ N3 )
          & ( M3 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_732_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_733_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
          | ( M3 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_734_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_735_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_736_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_737_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_738_of__nat__less__two__power,axiom,
    ! [N: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% of_nat_less_two_power
thf(fact_739_numeral__le__real__of__nat__iff,axiom,
    ! [N: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_740_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_741_real__of__nat__less__numeral__iff,axiom,
    ! [N: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_742_greater__shift,axiom,
    ( ord_less_nat
    = ( ^ [Y: nat,X: nat] : ( vEBT_VEBT_greater @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).

% greater_shift
thf(fact_743_less__shift,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] : ( vEBT_VEBT_less @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).

% less_shift
thf(fact_744_option_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( some_nat @ X2 )
        = ( some_nat @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% option.inject
thf(fact_745_option_Oinject,axiom,
    ! [X2: product_prod_nat_nat,Y2: product_prod_nat_nat] :
      ( ( ( some_P7363390416028606310at_nat @ X2 )
        = ( some_P7363390416028606310at_nat @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% option.inject
thf(fact_746_option_Oinject,axiom,
    ! [X2: num,Y2: num] :
      ( ( ( some_num @ X2 )
        = ( some_num @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% option.inject
thf(fact_747_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A: product_prod_nat_nat,B: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ F @ ( some_P7363390416028606310at_nat @ A ) @ ( some_P7363390416028606310at_nat @ B ) )
      = ( some_P7363390416028606310at_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_748_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: num > num > num,A: num,B: num] :
      ( ( vEBT_V819420779217536731ft_num @ F @ ( some_num @ A ) @ ( some_num @ B ) )
      = ( some_num @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_749_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: nat > nat > nat,A: nat,B: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ F @ ( some_nat @ A ) @ ( some_nat @ B ) )
      = ( some_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_750_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_751_reals__Archimedean2,axiom,
    ! [X3: real] :
    ? [N2: nat] : ( ord_less_real @ X3 @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% reals_Archimedean2
thf(fact_752_reals__Archimedean2,axiom,
    ! [X3: rat] :
    ? [N2: nat] : ( ord_less_rat @ X3 @ ( semiri681578069525770553at_rat @ N2 ) ) ).

% reals_Archimedean2
thf(fact_753_real__arch__simple,axiom,
    ! [X3: real] :
    ? [N2: nat] : ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% real_arch_simple
thf(fact_754_real__arch__simple,axiom,
    ! [X3: rat] :
    ? [N2: nat] : ( ord_less_eq_rat @ X3 @ ( semiri681578069525770553at_rat @ N2 ) ) ).

% real_arch_simple
thf(fact_755_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ~ ( ord_less_eq_real @ T @ X6 ) ) ).

% minf(8)
thf(fact_756_minf_I8_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ~ ( ord_less_eq_rat @ T @ X6 ) ) ).

% minf(8)
thf(fact_757_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ X6 @ Z3 )
     => ~ ( ord_less_eq_num @ T @ X6 ) ) ).

% minf(8)
thf(fact_758_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ~ ( ord_less_eq_nat @ T @ X6 ) ) ).

% minf(8)
thf(fact_759_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ~ ( ord_less_eq_int @ T @ X6 ) ) ).

% minf(8)
thf(fact_760_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( semiri1314217659103216013at_int @ A4 )
          = ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_761_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_762_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X6: real] : ( member_real @ X6 @ S2 )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( member_real @ X4 @ S2 )
           => ( ord_less_eq_real @ X4 @ Z4 ) )
       => ? [Y4: real] :
            ( ! [X6: real] :
                ( ( member_real @ X6 @ S2 )
               => ( ord_less_eq_real @ X6 @ Y4 ) )
            & ! [Z4: real] :
                ( ! [X4: real] :
                    ( ( member_real @ X4 @ S2 )
                   => ( ord_less_eq_real @ X4 @ Z4 ) )
               => ( ord_less_eq_real @ Y4 @ Z4 ) ) ) ) ) ).

% complete_real
thf(fact_763_verit__la__generic,axiom,
    ! [A: int,X3: int] :
      ( ( ord_less_eq_int @ A @ X3 )
      | ( A = X3 )
      | ( ord_less_eq_int @ X3 @ A ) ) ).

% verit_la_generic
thf(fact_764_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_real @ X @ Y )
          | ( X = Y ) ) ) ) ).

% less_eq_real_def
thf(fact_765_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_766_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_767_pinf_I1_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z4: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X6: rat] :
            ( ( ord_less_rat @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_768_pinf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X4: num] :
          ( ( ord_less_num @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X6: num] :
            ( ( ord_less_num @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_769_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_770_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_771_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_772_pinf_I2_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z4: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X6: rat] :
            ( ( ord_less_rat @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_773_pinf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X4: num] :
          ( ( ord_less_num @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X6: num] :
            ( ( ord_less_num @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_774_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_775_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z4 @ X4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z4 @ X4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_776_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_777_pinf_I3_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_778_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_779_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_780_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_781_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_782_pinf_I4_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_783_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_784_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_785_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_786_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ~ ( ord_less_real @ X6 @ T ) ) ).

% pinf(5)
thf(fact_787_pinf_I5_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ~ ( ord_less_rat @ X6 @ T ) ) ).

% pinf(5)
thf(fact_788_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ Z3 @ X6 )
     => ~ ( ord_less_num @ X6 @ T ) ) ).

% pinf(5)
thf(fact_789_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ~ ( ord_less_nat @ X6 @ T ) ) ).

% pinf(5)
thf(fact_790_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ~ ( ord_less_int @ X6 @ T ) ) ).

% pinf(5)
thf(fact_791_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( ord_less_real @ T @ X6 ) ) ).

% pinf(7)
thf(fact_792_pinf_I7_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ( ord_less_rat @ T @ X6 ) ) ).

% pinf(7)
thf(fact_793_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ Z3 @ X6 )
     => ( ord_less_num @ T @ X6 ) ) ).

% pinf(7)
thf(fact_794_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( ord_less_nat @ T @ X6 ) ) ).

% pinf(7)
thf(fact_795_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( ord_less_int @ T @ X6 ) ) ).

% pinf(7)
thf(fact_796_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_797_minf_I1_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z4: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X6: rat] :
            ( ( ord_less_rat @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_798_minf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X4: num] :
          ( ( ord_less_num @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X6: num] :
            ( ( ord_less_num @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_799_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_800_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_801_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_802_minf_I2_J,axiom,
    ! [P: rat > $o,P4: rat > $o,Q: rat > $o,Q2: rat > $o] :
      ( ? [Z4: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X6: rat] :
            ( ( ord_less_rat @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_803_minf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X4: num] :
          ( ( ord_less_num @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X6: num] :
            ( ( ord_less_num @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_804_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_805_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z4 )
         => ( ( P @ X4 )
            = ( P4 @ X4 ) ) )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z4 )
           => ( ( Q @ X4 )
              = ( Q2 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_806_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_807_minf_I3_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_808_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_809_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_810_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_811_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_812_minf_I4_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_813_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_814_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_815_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_816_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( ord_less_real @ X6 @ T ) ) ).

% minf(5)
thf(fact_817_minf_I5_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ( ord_less_rat @ X6 @ T ) ) ).

% minf(5)
thf(fact_818_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ X6 @ Z3 )
     => ( ord_less_num @ X6 @ T ) ) ).

% minf(5)
thf(fact_819_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( ord_less_nat @ X6 @ T ) ) ).

% minf(5)
thf(fact_820_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( ord_less_int @ X6 @ T ) ) ).

% minf(5)
thf(fact_821_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ~ ( ord_less_real @ T @ X6 ) ) ).

% minf(7)
thf(fact_822_minf_I7_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ~ ( ord_less_rat @ T @ X6 ) ) ).

% minf(7)
thf(fact_823_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ X6 @ Z3 )
     => ~ ( ord_less_num @ T @ X6 ) ) ).

% minf(7)
thf(fact_824_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ~ ( ord_less_nat @ T @ X6 ) ) ).

% minf(7)
thf(fact_825_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ~ ( ord_less_int @ T @ X6 ) ) ).

% minf(7)
thf(fact_826_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_827_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ~ ( ord_less_eq_real @ X6 @ T ) ) ).

% pinf(6)
thf(fact_828_pinf_I6_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ~ ( ord_less_eq_rat @ X6 @ T ) ) ).

% pinf(6)
thf(fact_829_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ Z3 @ X6 )
     => ~ ( ord_less_eq_num @ X6 @ T ) ) ).

% pinf(6)
thf(fact_830_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ~ ( ord_less_eq_nat @ X6 @ T ) ) ).

% pinf(6)
thf(fact_831_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ~ ( ord_less_eq_int @ X6 @ T ) ) ).

% pinf(6)
thf(fact_832_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( ord_less_eq_real @ T @ X6 ) ) ).

% pinf(8)
thf(fact_833_pinf_I8_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ( ord_less_eq_rat @ T @ X6 ) ) ).

% pinf(8)
thf(fact_834_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ Z3 @ X6 )
     => ( ord_less_eq_num @ T @ X6 ) ) ).

% pinf(8)
thf(fact_835_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( ord_less_eq_nat @ T @ X6 ) ) ).

% pinf(8)
thf(fact_836_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( ord_less_eq_int @ T @ X6 ) ) ).

% pinf(8)
thf(fact_837_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( ord_less_eq_real @ X6 @ T ) ) ).

% minf(6)
thf(fact_838_minf_I6_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ( ord_less_eq_rat @ X6 @ T ) ) ).

% minf(6)
thf(fact_839_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X6: num] :
      ( ( ord_less_num @ X6 @ Z3 )
     => ( ord_less_eq_num @ X6 @ T ) ) ).

% minf(6)
thf(fact_840_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( ord_less_eq_nat @ X6 @ T ) ) ).

% minf(6)
thf(fact_841_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( ord_less_eq_int @ X6 @ T ) ) ).

% minf(6)
thf(fact_842_complete__interval,axiom,
    ! [A: real,B: real,P: real > $o] :
      ( ( ord_less_real @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: real] :
              ( ( ord_less_eq_real @ A @ C2 )
              & ( ord_less_eq_real @ C2 @ B )
              & ! [X6: real] :
                  ( ( ( ord_less_eq_real @ A @ X6 )
                    & ( ord_less_real @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D: real] :
                  ( ! [X4: real] :
                      ( ( ( ord_less_eq_real @ A @ X4 )
                        & ( ord_less_real @ X4 @ D ) )
                     => ( P @ X4 ) )
                 => ( ord_less_eq_real @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_843_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X6: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X6 )
                    & ( ord_less_nat @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D: nat] :
                  ( ! [X4: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X4 )
                        & ( ord_less_nat @ X4 @ D ) )
                     => ( P @ X4 ) )
                 => ( ord_less_eq_nat @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_844_complete__interval,axiom,
    ! [A: int,B: int,P: int > $o] :
      ( ( ord_less_int @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: int] :
              ( ( ord_less_eq_int @ A @ C2 )
              & ( ord_less_eq_int @ C2 @ B )
              & ! [X6: int] :
                  ( ( ( ord_less_eq_int @ A @ X6 )
                    & ( ord_less_int @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D: int] :
                  ( ! [X4: int] :
                      ( ( ( ord_less_eq_int @ A @ X4 )
                        & ( ord_less_int @ X4 @ D ) )
                     => ( P @ X4 ) )
                 => ( ord_less_eq_int @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_845_zero__less__power2,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_power2
thf(fact_846_zero__less__power2,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_power2
thf(fact_847_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_848_power2__eq__iff__nonneg,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X3 = Y3 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_849_power2__eq__iff__nonneg,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ( ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X3 = Y3 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_850_power2__eq__iff__nonneg,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
       => ( ( ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X3 = Y3 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_851_power2__eq__iff__nonneg,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X3 = Y3 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_852_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_853_power2__less__eq__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% power2_less_eq_zero_iff
thf(fact_854_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_855_power2__less__imp__less,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ord_less_real @ X3 @ Y3 ) ) ) ).

% power2_less_imp_less
thf(fact_856_power2__less__imp__less,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_rat @ X3 @ Y3 ) ) ) ).

% power2_less_imp_less
thf(fact_857_power2__less__imp__less,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
       => ( ord_less_nat @ X3 @ Y3 ) ) ) ).

% power2_less_imp_less
thf(fact_858_power2__less__imp__less,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ord_less_int @ X3 @ Y3 ) ) ) ).

% power2_less_imp_less
thf(fact_859_nat__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% nat_le_numeral_power_cancel_iff
thf(fact_860_numeral__power__le__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_le_nat_cancel_iff
thf(fact_861_numeral__power__less__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_less_nat_cancel_iff
thf(fact_862_nat__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% nat_less_numeral_power_cancel_iff
thf(fact_863_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_864_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_865_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_866_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_867_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_868_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_869_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_870_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_871_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_872_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_873_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_874_of__int__eq__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ( ring_1_of_int_real @ W )
        = ( ring_1_of_int_real @ Z ) )
      = ( W = Z ) ) ).

% of_int_eq_iff
thf(fact_875_of__int__eq__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ( ring_17405671764205052669omplex @ W )
        = ( ring_17405671764205052669omplex @ Z ) )
      = ( W = Z ) ) ).

% of_int_eq_iff
thf(fact_876_of__int__eq__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ( ring_1_of_int_rat @ W )
        = ( ring_1_of_int_rat @ Z ) )
      = ( W = Z ) ) ).

% of_int_eq_iff
thf(fact_877_i0__less,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
      = ( N != zero_z5237406670263579293d_enat ) ) ).

% i0_less
thf(fact_878_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = zero_zero_complex )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_879_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_880_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri681578069525770553at_rat @ M )
        = zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_881_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_882_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_883_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_complex
        = ( semiri8010041392384452111omplex @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_884_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_885_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_rat
        = ( semiri681578069525770553at_rat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_886_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_887_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_888_of__nat__0,axiom,
    ( ( semiri8010041392384452111omplex @ zero_zero_nat )
    = zero_zero_complex ) ).

% of_nat_0
thf(fact_889_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_890_of__nat__0,axiom,
    ( ( semiri681578069525770553at_rat @ zero_zero_nat )
    = zero_zero_rat ) ).

% of_nat_0
thf(fact_891_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_892_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_893_of__int__0,axiom,
    ( ( ring_1_of_int_int @ zero_zero_int )
    = zero_zero_int ) ).

% of_int_0
thf(fact_894_of__int__0,axiom,
    ( ( ring_1_of_int_real @ zero_zero_int )
    = zero_zero_real ) ).

% of_int_0
thf(fact_895_of__int__0,axiom,
    ( ( ring_17405671764205052669omplex @ zero_zero_int )
    = zero_zero_complex ) ).

% of_int_0
thf(fact_896_of__int__0,axiom,
    ( ( ring_1_of_int_rat @ zero_zero_int )
    = zero_zero_rat ) ).

% of_int_0
thf(fact_897_of__int__0__eq__iff,axiom,
    ! [Z: int] :
      ( ( zero_zero_int
        = ( ring_1_of_int_int @ Z ) )
      = ( Z = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_898_of__int__0__eq__iff,axiom,
    ! [Z: int] :
      ( ( zero_zero_real
        = ( ring_1_of_int_real @ Z ) )
      = ( Z = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_899_of__int__0__eq__iff,axiom,
    ! [Z: int] :
      ( ( zero_zero_complex
        = ( ring_17405671764205052669omplex @ Z ) )
      = ( Z = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_900_of__int__0__eq__iff,axiom,
    ! [Z: int] :
      ( ( zero_zero_rat
        = ( ring_1_of_int_rat @ Z ) )
      = ( Z = zero_zero_int ) ) ).

% of_int_0_eq_iff
thf(fact_901_of__int__eq__0__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_int @ Z )
        = zero_zero_int )
      = ( Z = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_902_of__int__eq__0__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_real @ Z )
        = zero_zero_real )
      = ( Z = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_903_of__int__eq__0__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_17405671764205052669omplex @ Z )
        = zero_zero_complex )
      = ( Z = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_904_of__int__eq__0__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_rat @ Z )
        = zero_zero_rat )
      = ( Z = zero_zero_int ) ) ).

% of_int_eq_0_iff
thf(fact_905_nat__zero__less__power__iff,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X3 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X3 )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_906_nat__le__0,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ Z )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_907_nat__0__iff,axiom,
    ! [I: int] :
      ( ( ( nat2 @ I )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_908_nat__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( semiri1314217659103216013at_int @ N ) )
      = N ) ).

% nat_int
thf(fact_909_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_910_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_911_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_912_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_913_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_rat ) ).

% power_zero_numeral
thf(fact_914_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_915_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_916_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_917_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
      = zero_zero_complex ) ).

% power_zero_numeral
thf(fact_918_power__eq__0__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ( power_power_rat @ A @ N )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_919_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_920_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_921_power__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( power_power_real @ A @ N )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_922_power__eq__0__iff,axiom,
    ! [A: complex,N: nat] :
      ( ( ( power_power_complex @ A @ N )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_923_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( numeral_numeral_int @ K ) )
      = ( numera6690914467698888265omplex @ K ) ) ).

% of_int_numeral
thf(fact_924_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_real @ K ) ) ).

% of_int_numeral
thf(fact_925_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_rat @ K ) ) ).

% of_int_numeral
thf(fact_926_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% of_int_numeral
thf(fact_927_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_17405671764205052669omplex @ Z )
        = ( numera6690914467698888265omplex @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_928_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_real @ Z )
        = ( numeral_numeral_real @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_929_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_rat @ Z )
        = ( numeral_numeral_rat @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_930_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_int @ Z )
        = ( numeral_numeral_int @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_931_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_932_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_933_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_934_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_935_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_936_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_937_nat__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_numeral
thf(fact_938_zero__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% zero_less_nat_eq
thf(fact_939_zless__nat__conj,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
      = ( ( ord_less_int @ zero_zero_int @ Z )
        & ( ord_less_int @ W @ Z ) ) ) ).

% zless_nat_conj
thf(fact_940_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_17405671764205052669omplex @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri8010041392384452111omplex @ N ) ) ).

% of_int_of_nat_eq
thf(fact_941_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_real @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% of_int_of_nat_eq
thf(fact_942_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_rat @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri681578069525770553at_rat @ N ) ) ).

% of_int_of_nat_eq
thf(fact_943_of__int__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% of_int_of_nat_eq
thf(fact_944_int__nat__eq,axiom,
    ! [Z: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = Z ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_945_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_1_of_int_rat @ ( power_power_int @ Z @ N ) )
      = ( power_power_rat @ ( ring_1_of_int_rat @ Z ) @ N ) ) ).

% of_int_power
thf(fact_946_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_1_of_int_int @ ( power_power_int @ Z @ N ) )
      = ( power_power_int @ ( ring_1_of_int_int @ Z ) @ N ) ) ).

% of_int_power
thf(fact_947_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_1_of_int_real @ ( power_power_int @ Z @ N ) )
      = ( power_power_real @ ( ring_1_of_int_real @ Z ) @ N ) ) ).

% of_int_power
thf(fact_948_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_17405671764205052669omplex @ ( power_power_int @ Z @ N ) )
      = ( power_power_complex @ ( ring_17405671764205052669omplex @ Z ) @ N ) ) ).

% of_int_power
thf(fact_949_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W )
        = ( ring_1_of_int_rat @ X3 ) )
      = ( ( power_power_int @ B @ W )
        = X3 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_950_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W )
        = ( ring_1_of_int_int @ X3 ) )
      = ( ( power_power_int @ B @ W )
        = X3 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_951_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W )
        = ( ring_1_of_int_real @ X3 ) )
      = ( ( power_power_int @ B @ W )
        = X3 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_952_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W )
        = ( ring_17405671764205052669omplex @ X3 ) )
      = ( ( power_power_int @ B @ W )
        = X3 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_953_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_rat @ X3 )
        = ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( X3
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_954_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_int @ X3 )
        = ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( X3
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_955_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_real @ X3 )
        = ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( X3
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_956_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ( ring_17405671764205052669omplex @ X3 )
        = ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W ) )
      = ( X3
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_957_power__mono__iff,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_958_power__mono__iff,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
            = ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_959_power__mono__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_960_power__mono__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_961_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_962_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_963_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_964_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_965_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_966_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_967_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_968_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_969_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_970_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_971_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_972_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_973_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_974_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_975_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_976_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_977_of__nat__nat,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri8010041392384452111omplex @ ( nat2 @ Z ) )
        = ( ring_17405671764205052669omplex @ Z ) ) ) ).

% of_nat_nat
thf(fact_978_of__nat__nat,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri5074537144036343181t_real @ ( nat2 @ Z ) )
        = ( ring_1_of_int_real @ Z ) ) ) ).

% of_nat_nat
thf(fact_979_of__nat__nat,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri681578069525770553at_rat @ ( nat2 @ Z ) )
        = ( ring_1_of_int_rat @ Z ) ) ) ).

% of_nat_nat
thf(fact_980_of__nat__nat,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
        = ( ring_1_of_int_int @ Z ) ) ) ).

% of_nat_nat
thf(fact_981_zero__eq__power2,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_power2
thf(fact_982_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_983_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_984_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_985_zero__eq__power2,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% zero_eq_power2
thf(fact_986_of__nat__zero__less__power__iff,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X3 ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X3 )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_987_of__nat__zero__less__power__iff,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X3 ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X3 )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_988_of__nat__zero__less__power__iff,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X3 )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_989_of__nat__zero__less__power__iff,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X3 ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X3 )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_990_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_991_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_992_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_993_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_994_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_995_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_996_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_997_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_998_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_999_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_1000_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_1001_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_1002_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X3 ) @ N )
        = ( ring_17405671764205052669omplex @ Y3 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_1003_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N )
        = ( ring_1_of_int_real @ Y3 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_1004_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N )
        = ( ring_1_of_int_rat @ Y3 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_1005_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N )
        = ( ring_1_of_int_int @ Y3 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_1006_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y3 )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_1007_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y3 )
        = ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_1008_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y3 )
        = ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_1009_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y3 )
        = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_1010_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X3 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_eq_int @ X3 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_1011_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X3 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_eq_int @ X3 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_1012_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ X3 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_eq_int @ X3 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_1013_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X3 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X3 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_1014_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X3 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X3 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_1015_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X3 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X3 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_1016_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X3 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X3 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_1017_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X3 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X3 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_1018_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X3: int] :
      ( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X3 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X3 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_1019_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ X3 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_int @ X3 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_1020_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ X3 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_int @ X3 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_1021_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X3: int,B: int,W: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ X3 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_int @ X3 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_1022_nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( nat2 @ Y3 )
        = ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% nat_eq_numeral_power_cancel_iff
thf(fact_1023_numeral__power__eq__nat__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X3 ) @ N )
        = ( nat2 @ Y3 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N )
        = Y3 ) ) ).

% numeral_power_eq_nat_cancel_iff
thf(fact_1024_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_1025_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_1026_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_1027_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_1028_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_1029_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_1030_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_1031_eq__nat__nat__iff,axiom,
    ! [Z: int,Z5: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z5 )
       => ( ( ( nat2 @ Z )
            = ( nat2 @ Z5 ) )
          = ( Z = Z5 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_1032_all__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ! [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ! [X: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X )
         => ( P3 @ ( nat2 @ X ) ) ) ) ) ).

% all_nat
thf(fact_1033_ex__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [X: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X )
          & ( P3 @ ( nat2 @ X ) ) ) ) ) ).

% ex_nat
thf(fact_1034_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_1035_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_nonneg
thf(fact_1036_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_nonneg
thf(fact_1037_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_nonneg
thf(fact_1038_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_pos
thf(fact_1039_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_pos
thf(fact_1040_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_pos
thf(fact_1041_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_1042_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_1043_split__nat,axiom,
    ! [P: nat > $o,I: int] :
      ( ( P @ ( nat2 @ I ) )
      = ( ! [N3: nat] :
            ( ( I
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ( P @ N3 ) )
        & ( ( ord_less_int @ I @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_1044_nat__mono__iff,axiom,
    ! [Z: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_mono_iff
thf(fact_1045_nat__power__eq,axiom,
    ! [Z: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( power_power_int @ Z @ N ) )
        = ( power_power_nat @ ( nat2 @ Z ) @ N ) ) ) ).

% nat_power_eq
thf(fact_1046_int__eq__iff,axiom,
    ! [M: nat,Z: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z )
      = ( ( M
          = ( nat2 @ Z ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z ) ) ) ).

% int_eq_iff
thf(fact_1047_nat__0__le,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
        = Z ) ) ).

% nat_0_le
thf(fact_1048_ex__le__of__int,axiom,
    ! [X3: real] :
    ? [Z3: int] : ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_le_of_int
thf(fact_1049_ex__le__of__int,axiom,
    ! [X3: rat] :
    ? [Z3: int] : ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ Z3 ) ) ).

% ex_le_of_int
thf(fact_1050_ex__less__of__int,axiom,
    ! [X3: real] :
    ? [Z3: int] : ( ord_less_real @ X3 @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_less_of_int
thf(fact_1051_ex__less__of__int,axiom,
    ! [X3: rat] :
    ? [Z3: int] : ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ Z3 ) ) ).

% ex_less_of_int
thf(fact_1052_ex__of__int__less,axiom,
    ! [X3: real] :
    ? [Z3: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ X3 ) ).

% ex_of_int_less
thf(fact_1053_ex__of__int__less,axiom,
    ! [X3: rat] :
    ? [Z3: int] : ( ord_less_rat @ ( ring_1_of_int_rat @ Z3 ) @ X3 ) ).

% ex_of_int_less
thf(fact_1054_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_rat @ zero_zero_rat @ N )
        = zero_zero_rat ) ) ).

% zero_power
thf(fact_1055_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_1056_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_1057_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ zero_zero_real @ N )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_1058_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_complex @ zero_zero_complex @ N )
        = zero_zero_complex ) ) ).

% zero_power
thf(fact_1059_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_1060_le__numeral__extra_I3_J,axiom,
    ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).

% le_numeral_extra(3)
thf(fact_1061_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_1062_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_1063_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_1064_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).

% less_numeral_extra(3)
thf(fact_1065_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_1066_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_1067_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_1068_field__lbound__gt__zero,axiom,
    ! [D1: rat,D2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D1 )
     => ( ( ord_less_rat @ zero_zero_rat @ D2 )
       => ? [E: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ E )
            & ( ord_less_rat @ E @ D1 )
            & ( ord_less_rat @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_1069_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( numera6690914467698888265omplex @ N ) ) ).

% zero_neq_numeral
thf(fact_1070_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N ) ) ).

% zero_neq_numeral
thf(fact_1071_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( numeral_numeral_rat @ N ) ) ).

% zero_neq_numeral
thf(fact_1072_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_1073_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_1074_power__not__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( A != zero_zero_rat )
     => ( ( power_power_rat @ A @ N )
       != zero_zero_rat ) ) ).

% power_not_zero
thf(fact_1075_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_1076_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_1077_power__not__zero,axiom,
    ! [A: real,N: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_1078_power__not__zero,axiom,
    ! [A: complex,N: nat] :
      ( ( A != zero_zero_complex )
     => ( ( power_power_complex @ A @ N )
       != zero_zero_complex ) ) ).

% power_not_zero
thf(fact_1079_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1080_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_1081_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1082_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_1083_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1084_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1085_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N2 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_1086_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1087_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1088_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1089_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_1090_conj__le__cong,axiom,
    ! [X3: int,X7: int,P: $o,P4: $o] :
      ( ( X3 = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X3 )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
            & P4 ) ) ) ) ).

% conj_le_cong
thf(fact_1091_imp__le__cong,axiom,
    ! [X3: int,X7: int,P: $o,P4: $o] :
      ( ( X3 = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X3 )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
           => P4 ) ) ) ) ).

% imp_le_cong
thf(fact_1092_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_1093_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_1094_not__iless0,axiom,
    ! [N: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).

% not_iless0
thf(fact_1095_nat__less__eq__zless,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_less_eq_zless
thf(fact_1096_nat__le__eq__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_eq_int @ W @ Z ) ) ) ).

% nat_le_eq_zle
thf(fact_1097_le__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% le_nat_iff
thf(fact_1098_ile0__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_1099_i0__lb,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).

% i0_lb
thf(fact_1100_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ( power_power_real @ A @ N )
              = ( power_power_real @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1101_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ( power_power_rat @ A @ N )
              = ( power_power_rat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1102_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A @ N )
              = ( power_power_nat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1103_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A @ N )
              = ( power_power_int @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_1104_power__eq__imp__eq__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ N )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1105_power__eq__imp__eq__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ N )
        = ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1106_power__eq__imp__eq__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ N )
        = ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1107_power__eq__imp__eq__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ N )
        = ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_1108_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N2 )
          & ( K
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_1109_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% pos_int_cases
thf(fact_1110_nat__numeral__as__int,axiom,
    ( numeral_numeral_nat
    = ( ^ [I4: num] : ( nat2 @ ( numeral_numeral_int @ I4 ) ) ) ) ).

% nat_numeral_as_int
thf(fact_1111_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_1112_nat__mono,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
     => ( ord_less_eq_nat @ ( nat2 @ X3 ) @ ( nat2 @ Y3 ) ) ) ).

% nat_mono
thf(fact_1113_power__strict__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1114_power__strict__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1115_power__strict__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1116_power__strict__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1117_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_le_zero
thf(fact_1118_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_le_zero
thf(fact_1119_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_1120_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_1121_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_le_numeral
thf(fact_1122_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_le_numeral
thf(fact_1123_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_le_numeral
thf(fact_1124_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_le_numeral
thf(fact_1125_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_less_numeral
thf(fact_1126_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_less_numeral
thf(fact_1127_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_less_numeral
thf(fact_1128_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_less_numeral
thf(fact_1129_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_less_zero
thf(fact_1130_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_less_zero
thf(fact_1131_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_1132_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_1133_zero__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_power
thf(fact_1134_zero__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_1135_zero__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_1136_zero__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_power
thf(fact_1137_power__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono
thf(fact_1138_power__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_1139_power__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_1140_power__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono
thf(fact_1141_zero__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_less_power
thf(fact_1142_zero__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_1143_zero__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_1144_zero__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_less_power
thf(fact_1145_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).

% of_nat_0_le_iff
thf(fact_1146_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_1147_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_1148_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_1149_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_1150_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).

% of_nat_less_0_iff
thf(fact_1151_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_1152_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_1153_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K2 )
               => ~ ( P @ I2 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1154_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_1155_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N2: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_1156_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N2: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nonneg_int_cases
thf(fact_1157_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).

% zless_nat_eq_int_zless
thf(fact_1158_nat__le__iff,axiom,
    ! [X3: int,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X3 ) @ N )
      = ( ord_less_eq_int @ X3 @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_le_iff
thf(fact_1159_ex__gt__or__lt,axiom,
    ! [A: real] :
    ? [B4: real] :
      ( ( ord_less_real @ A @ B4 )
      | ( ord_less_real @ B4 @ A ) ) ).

% ex_gt_or_lt
thf(fact_1160_power__less__imp__less__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_1161_power__less__imp__less__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_1162_power__less__imp__less__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_1163_power__less__imp__less__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_1164_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X3: int] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( ring_1_of_int_real @ X3 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X3 ) ) ).

% of_nat_less_of_int_iff
thf(fact_1165_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X3: int] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ N ) @ ( ring_1_of_int_rat @ X3 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X3 ) ) ).

% of_nat_less_of_int_iff
thf(fact_1166_of__nat__less__of__int__iff,axiom,
    ! [N: nat,X3: int] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( ring_1_of_int_int @ X3 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ X3 ) ) ).

% of_nat_less_of_int_iff
thf(fact_1167_zero__power2,axiom,
    ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_rat ) ).

% zero_power2
thf(fact_1168_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_1169_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_1170_zero__power2,axiom,
    ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_real ) ).

% zero_power2
thf(fact_1171_zero__power2,axiom,
    ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_complex ) ).

% zero_power2
thf(fact_1172_zero__le__power2,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_1173_zero__le__power2,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_1174_zero__le__power2,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_1175_power2__eq__imp__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
         => ( X3 = Y3 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_1176_power2__eq__imp__eq,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
         => ( X3 = Y3 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_1177_power2__eq__imp__eq,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
         => ( X3 = Y3 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_1178_power2__eq__imp__eq,axiom,
    ! [X3: int,Y3: int] :
      ( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
         => ( X3 = Y3 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_1179_power2__le__imp__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ X3 @ Y3 ) ) ) ).

% power2_le_imp_le
thf(fact_1180_power2__le__imp__le,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_eq_rat @ X3 @ Y3 ) ) ) ).

% power2_le_imp_le
thf(fact_1181_power2__le__imp__le,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
       => ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).

% power2_le_imp_le
thf(fact_1182_power2__le__imp__le,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ord_less_eq_int @ X3 @ Y3 ) ) ) ).

% power2_le_imp_le
thf(fact_1183_power2__less__0,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).

% power2_less_0
thf(fact_1184_power2__less__0,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).

% power2_less_0
thf(fact_1185_power2__less__0,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_1186_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_1187_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_1188_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_1189_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_1190_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X4: real] :
            ( ( ord_less_real @ zero_zero_real @ X4 )
            & ( ( power_power_real @ X4 @ N )
              = A )
            & ! [Y6: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y6 )
                  & ( ( power_power_real @ Y6 @ N )
                    = A ) )
               => ( Y6 = X4 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_1191_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R: real] :
            ( ( ord_less_real @ zero_zero_real @ R )
            & ( ( power_power_real @ R @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_1192_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_1193_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_1194_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_1195_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_1196_zero__reorient,axiom,
    ! [X3: literal] :
      ( ( zero_zero_literal = X3 )
      = ( X3 = zero_zero_literal ) ) ).

% zero_reorient
thf(fact_1197_zero__reorient,axiom,
    ! [X3: real] :
      ( ( zero_zero_real = X3 )
      = ( X3 = zero_zero_real ) ) ).

% zero_reorient
thf(fact_1198_zero__reorient,axiom,
    ! [X3: rat] :
      ( ( zero_zero_rat = X3 )
      = ( X3 = zero_zero_rat ) ) ).

% zero_reorient
thf(fact_1199_zero__reorient,axiom,
    ! [X3: nat] :
      ( ( zero_zero_nat = X3 )
      = ( X3 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_1200_zero__reorient,axiom,
    ! [X3: int] :
      ( ( zero_zero_int = X3 )
      = ( X3 = zero_zero_int ) ) ).

% zero_reorient
thf(fact_1201_zero__le,axiom,
    ! [X3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X3 ) ).

% zero_le
thf(fact_1202_log2__of__power__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_le
thf(fact_1203_take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = K )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% take_bit_int_eq_self_iff
thf(fact_1204_take__bit__int__eq__self,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ K )
          = K ) ) ) ).

% take_bit_int_eq_self
thf(fact_1205_XOR__upper,axiom,
    ! [X3: int,N: nat,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_int @ X3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se6526347334894502574or_int @ X3 @ Y3 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% XOR_upper
thf(fact_1206_power__le__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1207_power__le__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1208_power__le__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1209_OR__upper,axiom,
    ! [X3: int,N: nat,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_int @ X3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se1409905431419307370or_int @ X3 @ Y3 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% OR_upper
thf(fact_1210_real__sqrt__pow2__iff,axiom,
    ! [X3: real] :
      ( ( ( power_power_real @ ( sqrt @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X3 )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% real_sqrt_pow2_iff
thf(fact_1211_real__sqrt__pow2,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( power_power_real @ ( sqrt @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X3 ) ) ).

% real_sqrt_pow2
thf(fact_1212_real__less__lsqrt,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_real @ X3 @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sqrt @ X3 ) @ Y3 ) ) ) ) ).

% real_less_lsqrt
thf(fact_1213_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1214_power__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1215_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1216_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1217_log2__of__power__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_less
thf(fact_1218_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1219_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1220_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1221_power__one__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1222_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_1223_or_Oidem,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ A )
      = A ) ).

% or.idem
thf(fact_1224_or_Oidem,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ A )
      = A ) ).

% or.idem
thf(fact_1225_or_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ A @ B ) ) ).

% or.left_idem
thf(fact_1226_or_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ A @ B ) ) ).

% or.left_idem
thf(fact_1227_or_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ B )
      = ( bit_se1409905431419307370or_int @ A @ B ) ) ).

% or.right_idem
thf(fact_1228_or_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ B )
      = ( bit_se1412395901928357646or_nat @ A @ B ) ) ).

% or.right_idem
thf(fact_1229_real__sqrt__one,axiom,
    ( ( sqrt @ one_one_real )
    = one_one_real ) ).

% real_sqrt_one
thf(fact_1230_real__sqrt__eq__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( sqrt @ X3 )
        = ( sqrt @ Y3 ) )
      = ( X3 = Y3 ) ) ).

% real_sqrt_eq_iff
thf(fact_1231_real__sqrt__eq__1__iff,axiom,
    ! [X3: real] :
      ( ( ( sqrt @ X3 )
        = one_one_real )
      = ( X3 = one_one_real ) ) ).

% real_sqrt_eq_1_iff
thf(fact_1232_bit_Oxor__left__self,axiom,
    ! [X3: int,Y3: int] :
      ( ( bit_se6526347334894502574or_int @ X3 @ ( bit_se6526347334894502574or_int @ X3 @ Y3 ) )
      = Y3 ) ).

% bit.xor_left_self
thf(fact_1233_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ one_one_rat @ N )
      = one_one_rat ) ).

% power_one
thf(fact_1234_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_1235_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_1236_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_1237_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ one_one_complex @ N )
      = one_one_complex ) ).

% power_one
thf(fact_1238_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri8010041392384452111omplex @ N )
        = one_one_complex )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_1239_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_1240_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri681578069525770553at_rat @ N )
        = one_one_rat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_1241_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_1242_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_1243_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_complex
        = ( semiri8010041392384452111omplex @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_1244_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_1245_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_rat
        = ( semiri681578069525770553at_rat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_1246_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_1247_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_1248_of__nat__1,axiom,
    ( ( semiri8010041392384452111omplex @ one_one_nat )
    = one_one_complex ) ).

% of_nat_1
thf(fact_1249_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_1250_of__nat__1,axiom,
    ( ( semiri681578069525770553at_rat @ one_one_nat )
    = one_one_rat ) ).

% of_nat_1
thf(fact_1251_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_1252_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_1253_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1254_of__int__1,axiom,
    ( ( ring_1_of_int_int @ one_one_int )
    = one_one_int ) ).

% of_int_1
thf(fact_1255_of__int__1,axiom,
    ( ( ring_1_of_int_real @ one_one_int )
    = one_one_real ) ).

% of_int_1
thf(fact_1256_of__int__1,axiom,
    ( ( ring_17405671764205052669omplex @ one_one_int )
    = one_one_complex ) ).

% of_int_1
thf(fact_1257_of__int__1,axiom,
    ( ( ring_1_of_int_rat @ one_one_int )
    = one_one_rat ) ).

% of_int_1
thf(fact_1258_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_int @ Z )
        = one_one_int )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_1259_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_real @ Z )
        = one_one_real )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_1260_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_17405671764205052669omplex @ Z )
        = one_one_complex )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_1261_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_rat @ Z )
        = one_one_rat )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_1262_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% take_bit_of_0
thf(fact_1263_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% take_bit_of_0
thf(fact_1264_or_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ zero_zero_int )
      = A ) ).

% or.right_neutral
thf(fact_1265_or_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ zero_zero_nat )
      = A ) ).

% or.right_neutral
thf(fact_1266_or_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ zero_zero_int @ A )
      = A ) ).

% or.left_neutral
thf(fact_1267_or_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ zero_zero_nat @ A )
      = A ) ).

% or.left_neutral
thf(fact_1268_xor_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ zero_zero_int )
      = A ) ).

% xor.right_neutral
thf(fact_1269_xor_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ zero_zero_nat )
      = A ) ).

% xor.right_neutral
thf(fact_1270_xor_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ zero_zero_int @ A )
      = A ) ).

% xor.left_neutral
thf(fact_1271_xor_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ zero_zero_nat @ A )
      = A ) ).

% xor.left_neutral
thf(fact_1272_xor__self__eq,axiom,
    ! [A: int] :
      ( ( bit_se6526347334894502574or_int @ A @ A )
      = zero_zero_int ) ).

% xor_self_eq
thf(fact_1273_xor__self__eq,axiom,
    ! [A: nat] :
      ( ( bit_se6528837805403552850or_nat @ A @ A )
      = zero_zero_nat ) ).

% xor_self_eq
thf(fact_1274_bit_Oxor__self,axiom,
    ! [X3: int] :
      ( ( bit_se6526347334894502574or_int @ X3 @ X3 )
      = zero_zero_int ) ).

% bit.xor_self
thf(fact_1275_real__sqrt__zero,axiom,
    ( ( sqrt @ zero_zero_real )
    = zero_zero_real ) ).

% real_sqrt_zero
thf(fact_1276_real__sqrt__eq__zero__cancel__iff,axiom,
    ! [X3: real] :
      ( ( ( sqrt @ X3 )
        = zero_zero_real )
      = ( X3 = zero_zero_real ) ) ).

% real_sqrt_eq_zero_cancel_iff
thf(fact_1277_real__sqrt__lt__1__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( sqrt @ X3 ) @ one_one_real )
      = ( ord_less_real @ X3 @ one_one_real ) ) ).

% real_sqrt_lt_1_iff
thf(fact_1278_real__sqrt__gt__1__iff,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ one_one_real @ ( sqrt @ Y3 ) )
      = ( ord_less_real @ one_one_real @ Y3 ) ) ).

% real_sqrt_gt_1_iff
thf(fact_1279_real__sqrt__less__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( sqrt @ X3 ) @ ( sqrt @ Y3 ) )
      = ( ord_less_real @ X3 @ Y3 ) ) ).

% real_sqrt_less_iff
thf(fact_1280_real__sqrt__ge__1__iff,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y3 ) )
      = ( ord_less_eq_real @ one_one_real @ Y3 ) ) ).

% real_sqrt_ge_1_iff
thf(fact_1281_real__sqrt__le__1__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X3 ) @ one_one_real )
      = ( ord_less_eq_real @ X3 @ one_one_real ) ) ).

% real_sqrt_le_1_iff
thf(fact_1282_real__sqrt__le__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X3 ) @ ( sqrt @ Y3 ) )
      = ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% real_sqrt_le_iff
thf(fact_1283_log__one,axiom,
    ! [A: real] :
      ( ( log @ A @ one_one_real )
      = zero_zero_real ) ).

% log_one
thf(fact_1284_take__bit__or,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_or
thf(fact_1285_take__bit__or,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_or
thf(fact_1286_take__bit__xor,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( bit_se6526347334894502574or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_xor
thf(fact_1287_take__bit__xor,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( bit_se6528837805403552850or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_xor
thf(fact_1288_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numera6690914467698888265omplex @ N )
        = one_one_complex )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_1289_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_real @ N )
        = one_one_real )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_1290_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_rat @ N )
        = one_one_rat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_1291_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_1292_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_1293_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_complex
        = ( numera6690914467698888265omplex @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1294_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1295_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_rat
        = ( numeral_numeral_rat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1296_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1297_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_1298_power__inject__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1299_power__inject__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ( power_power_rat @ A @ M )
          = ( power_power_rat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1300_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1301_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_1302_take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ zero_zero_nat @ A )
      = zero_zero_int ) ).

% take_bit_0
thf(fact_1303_take__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% take_bit_0
thf(fact_1304_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ one_one_int )
      = one_one_int ) ).

% take_bit_numeral_1
thf(fact_1305_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_numeral_1
thf(fact_1306_real__sqrt__gt__0__iff,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y3 ) )
      = ( ord_less_real @ zero_zero_real @ Y3 ) ) ).

% real_sqrt_gt_0_iff
thf(fact_1307_real__sqrt__lt__0__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( sqrt @ X3 ) @ zero_zero_real )
      = ( ord_less_real @ X3 @ zero_zero_real ) ) ).

% real_sqrt_lt_0_iff
thf(fact_1308_real__sqrt__ge__0__iff,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y3 ) )
      = ( ord_less_eq_real @ zero_zero_real @ Y3 ) ) ).

% real_sqrt_ge_0_iff
thf(fact_1309_real__sqrt__le__0__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X3 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% real_sqrt_le_0_iff
thf(fact_1310_zero__less__log__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X3 ) )
          = ( ord_less_real @ one_one_real @ X3 ) ) ) ) ).

% zero_less_log_cancel_iff
thf(fact_1311_log__less__zero__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ ( log @ A @ X3 ) @ zero_zero_real )
          = ( ord_less_real @ X3 @ one_one_real ) ) ) ) ).

% log_less_zero_cancel_iff
thf(fact_1312_one__less__log__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ one_one_real @ ( log @ A @ X3 ) )
          = ( ord_less_real @ A @ X3 ) ) ) ) ).

% one_less_log_cancel_iff
thf(fact_1313_log__less__one__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ ( log @ A @ X3 ) @ one_one_real )
          = ( ord_less_real @ X3 @ A ) ) ) ) ).

% log_less_one_cancel_iff
thf(fact_1314_log__less__cancel__iff,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ zero_zero_real @ Y3 )
         => ( ( ord_less_real @ ( log @ A @ X3 ) @ ( log @ A @ Y3 ) )
            = ( ord_less_real @ X3 @ Y3 ) ) ) ) ) ).

% log_less_cancel_iff
thf(fact_1315_log__eq__one,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ A )
          = one_one_real ) ) ) ).

% log_eq_one
thf(fact_1316_or__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% or_nonnegative_int_iff
thf(fact_1317_or__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        | ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% or_negative_int_iff
thf(fact_1318_xor__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        = ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% xor_nonnegative_int_iff
thf(fact_1319_xor__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
       != ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% xor_negative_int_iff
thf(fact_1320_power__strict__increasing__iff,axiom,
    ! [B: real,X3: nat,Y3: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y3 ) )
        = ( ord_less_nat @ X3 @ Y3 ) ) ) ).

% power_strict_increasing_iff
thf(fact_1321_power__strict__increasing__iff,axiom,
    ! [B: rat,X3: nat,Y3: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_rat @ ( power_power_rat @ B @ X3 ) @ ( power_power_rat @ B @ Y3 ) )
        = ( ord_less_nat @ X3 @ Y3 ) ) ) ).

% power_strict_increasing_iff
thf(fact_1322_power__strict__increasing__iff,axiom,
    ! [B: nat,X3: nat,Y3: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y3 ) )
        = ( ord_less_nat @ X3 @ Y3 ) ) ) ).

% power_strict_increasing_iff
thf(fact_1323_power__strict__increasing__iff,axiom,
    ! [B: int,X3: nat,Y3: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y3 ) )
        = ( ord_less_nat @ X3 @ Y3 ) ) ) ).

% power_strict_increasing_iff
thf(fact_1324_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_1325_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_1326_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_1327_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_1328_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_1329_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_1330_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_1331_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_1332_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_1333_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_1334_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_1335_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_1336_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_1337_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_1338_real__sqrt__four,axiom,
    ( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% real_sqrt_four
thf(fact_1339_zero__le__log__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X3 ) )
          = ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ) ).

% zero_le_log_cancel_iff
thf(fact_1340_log__le__zero__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ ( log @ A @ X3 ) @ zero_zero_real )
          = ( ord_less_eq_real @ X3 @ one_one_real ) ) ) ) ).

% log_le_zero_cancel_iff
thf(fact_1341_one__le__log__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X3 ) )
          = ( ord_less_eq_real @ A @ X3 ) ) ) ) ).

% one_le_log_cancel_iff
thf(fact_1342_log__le__one__cancel__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ ( log @ A @ X3 ) @ one_one_real )
          = ( ord_less_eq_real @ X3 @ A ) ) ) ) ).

% log_le_one_cancel_iff
thf(fact_1343_log__le__cancel__iff,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ zero_zero_real @ Y3 )
         => ( ( ord_less_eq_real @ ( log @ A @ X3 ) @ ( log @ A @ Y3 ) )
            = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ) ) ).

% log_le_cancel_iff
thf(fact_1344_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri8010041392384452111omplex @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_17405671764205052669omplex @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_1345_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri5074537144036343181t_real @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_1_of_int_real @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_1346_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri681578069525770553at_rat @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_1_of_int_rat @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_1347_of__nat__nat__take__bit__eq,axiom,
    ! [N: nat,K: int] :
      ( ( semiri1314217659103216013at_int @ ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% of_nat_nat_take_bit_eq
thf(fact_1348_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1349_power__strict__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1350_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1351_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1352_power__increasing__iff,axiom,
    ! [B: real,X3: nat,Y3: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y3 ) )
        = ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).

% power_increasing_iff
thf(fact_1353_power__increasing__iff,axiom,
    ! [B: rat,X3: nat,Y3: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X3 ) @ ( power_power_rat @ B @ Y3 ) )
        = ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).

% power_increasing_iff
thf(fact_1354_power__increasing__iff,axiom,
    ! [B: nat,X3: nat,Y3: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y3 ) )
        = ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).

% power_increasing_iff
thf(fact_1355_power__increasing__iff,axiom,
    ! [B: int,X3: nat,Y3: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y3 ) )
        = ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).

% power_increasing_iff
thf(fact_1356_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1357_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1358_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1359_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_1360_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1361_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1362_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1363_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_1364_log__pow__cancel,axiom,
    ! [A: real,B: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( power_power_real @ A @ B ) )
          = ( semiri5074537144036343181t_real @ B ) ) ) ) ).

% log_pow_cancel
thf(fact_1365_even__take__bit__eq,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1745604003318907178nteger @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_1366_even__take__bit__eq,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_1367_even__take__bit__eq,axiom,
    ! [N: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2925701944663578781it_nat @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_1368_even__power,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_1369_even__power,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_1370_even__power,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_1371_zero__le__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_1372_zero__le__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_1373_zero__le__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_1374_power__less__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq
thf(fact_1375_power__less__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq
thf(fact_1376_power__less__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_1377_power__less__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_1378_power__less__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_1379_power__less__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_1380_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_1381_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_1382_even__of__nat,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_of_nat
thf(fact_1383_zero__less__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1384_zero__less__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1385_zero__less__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1386_or_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ C )
      = ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).

% or.assoc
thf(fact_1387_or_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ C )
      = ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).

% or.assoc
thf(fact_1388_xor_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_se6526347334894502574or_int @ A @ B ) @ C )
      = ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).

% xor.assoc
thf(fact_1389_xor_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( bit_se6528837805403552850or_nat @ A @ B ) @ C )
      = ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).

% xor.assoc
thf(fact_1390_or_Ocommute,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [A4: int,B3: int] : ( bit_se1409905431419307370or_int @ B3 @ A4 ) ) ) ).

% or.commute
thf(fact_1391_or_Ocommute,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [A4: nat,B3: nat] : ( bit_se1412395901928357646or_nat @ B3 @ A4 ) ) ) ).

% or.commute
thf(fact_1392_xor_Ocommute,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [A4: int,B3: int] : ( bit_se6526347334894502574or_int @ B3 @ A4 ) ) ) ).

% xor.commute
thf(fact_1393_xor_Ocommute,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [A4: nat,B3: nat] : ( bit_se6528837805403552850or_nat @ B3 @ A4 ) ) ) ).

% xor.commute
thf(fact_1394_or_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se1409905431419307370or_int @ B @ ( bit_se1409905431419307370or_int @ A @ C ) )
      = ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).

% or.left_commute
thf(fact_1395_or_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se1412395901928357646or_nat @ B @ ( bit_se1412395901928357646or_nat @ A @ C ) )
      = ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).

% or.left_commute
thf(fact_1396_xor_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se6526347334894502574or_int @ B @ ( bit_se6526347334894502574or_int @ A @ C ) )
      = ( bit_se6526347334894502574or_int @ A @ ( bit_se6526347334894502574or_int @ B @ C ) ) ) ).

% xor.left_commute
thf(fact_1397_xor_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se6528837805403552850or_nat @ B @ ( bit_se6528837805403552850or_nat @ A @ C ) )
      = ( bit_se6528837805403552850or_nat @ A @ ( bit_se6528837805403552850or_nat @ B @ C ) ) ) ).

% xor.left_commute
thf(fact_1398_one__reorient,axiom,
    ! [X3: complex] :
      ( ( one_one_complex = X3 )
      = ( X3 = one_one_complex ) ) ).

% one_reorient
thf(fact_1399_one__reorient,axiom,
    ! [X3: real] :
      ( ( one_one_real = X3 )
      = ( X3 = one_one_real ) ) ).

% one_reorient
thf(fact_1400_one__reorient,axiom,
    ! [X3: rat] :
      ( ( one_one_rat = X3 )
      = ( X3 = one_one_rat ) ) ).

% one_reorient
thf(fact_1401_one__reorient,axiom,
    ! [X3: nat] :
      ( ( one_one_nat = X3 )
      = ( X3 = one_one_nat ) ) ).

% one_reorient
thf(fact_1402_one__reorient,axiom,
    ! [X3: int] :
      ( ( one_one_int = X3 )
      = ( X3 = one_one_int ) ) ).

% one_reorient
thf(fact_1403_of__nat__or__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se1412395901928357646or_nat @ M @ N ) )
      = ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_or_eq
thf(fact_1404_of__nat__or__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se1412395901928357646or_nat @ M @ N ) )
      = ( bit_se1412395901928357646or_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_or_eq
thf(fact_1405_take__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( semiri1314217659103216013at_int @ M ) )
      = ( semiri1314217659103216013at_int @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).

% take_bit_of_nat
thf(fact_1406_take__bit__of__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( semiri1316708129612266289at_nat @ M ) )
      = ( semiri1316708129612266289at_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) ) ) ).

% take_bit_of_nat
thf(fact_1407_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_1408_take__bit__of__int,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( ring_1_of_int_int @ K ) )
      = ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_of_int
thf(fact_1409_of__int__or__eq,axiom,
    ! [K: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
      = ( bit_se1409905431419307370or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_or_eq
thf(fact_1410_of__nat__xor__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( bit_se6528837805403552850or_nat @ M @ N ) )
      = ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_xor_eq
thf(fact_1411_of__nat__xor__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( bit_se6528837805403552850or_nat @ M @ N ) )
      = ( bit_se6528837805403552850or_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_xor_eq
thf(fact_1412_real__sqrt__ge__one,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ one_one_real @ X3 )
     => ( ord_less_eq_real @ one_one_real @ ( sqrt @ X3 ) ) ) ).

% real_sqrt_ge_one
thf(fact_1413_of__int__xor__eq,axiom,
    ! [K: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
      = ( bit_se6526347334894502574or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_xor_eq
thf(fact_1414_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_1415_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_1416_is__unit__power__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_1417_is__unit__power__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_1418_is__unit__power__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_1419_bit_Odisj__zero__right,axiom,
    ! [X3: int] :
      ( ( bit_se1409905431419307370or_int @ X3 @ zero_zero_int )
      = X3 ) ).

% bit.disj_zero_right
thf(fact_1420_or__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( bit_se1409905431419307370or_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( B = zero_zero_int ) ) ) ).

% or_eq_0_iff
thf(fact_1421_or__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( bit_se1412395901928357646or_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% or_eq_0_iff
thf(fact_1422_take__bit__tightened,axiom,
    ! [N: nat,A: int,B: int,M: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2923211474154528505it_int @ M @ A )
          = ( bit_se2923211474154528505it_int @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_1423_take__bit__tightened,axiom,
    ! [N: nat,A: nat,B: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = ( bit_se2925701944663578781it_nat @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2925701944663578781it_nat @ M @ A )
          = ( bit_se2925701944663578781it_nat @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_1424_real__sqrt__less__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ord_less_real @ ( sqrt @ X3 ) @ ( sqrt @ Y3 ) ) ) ).

% real_sqrt_less_mono
thf(fact_1425_real__sqrt__le__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ Y3 )
     => ( ord_less_eq_real @ ( sqrt @ X3 ) @ ( sqrt @ Y3 ) ) ) ).

% real_sqrt_le_mono
thf(fact_1426_odd__one,axiom,
    ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).

% odd_one
thf(fact_1427_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_1428_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_1429_real__sqrt__power,axiom,
    ! [X3: real,K: nat] :
      ( ( sqrt @ ( power_power_real @ X3 @ K ) )
      = ( power_power_real @ ( sqrt @ X3 ) @ K ) ) ).

% real_sqrt_power
thf(fact_1430_less__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% less_log_of_power
thf(fact_1431_log__of__power__eq,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( semiri5074537144036343181t_real @ N )
          = ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% log_of_power_eq
thf(fact_1432_dvd__power__same,axiom,
    ! [X3: code_integer,Y3: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ X3 @ Y3 )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X3 @ N ) @ ( power_8256067586552552935nteger @ Y3 @ N ) ) ) ).

% dvd_power_same
thf(fact_1433_dvd__power__same,axiom,
    ! [X3: nat,Y3: nat,N: nat] :
      ( ( dvd_dvd_nat @ X3 @ Y3 )
     => ( dvd_dvd_nat @ ( power_power_nat @ X3 @ N ) @ ( power_power_nat @ Y3 @ N ) ) ) ).

% dvd_power_same
thf(fact_1434_dvd__power__same,axiom,
    ! [X3: int,Y3: int,N: nat] :
      ( ( dvd_dvd_int @ X3 @ Y3 )
     => ( dvd_dvd_int @ ( power_power_int @ X3 @ N ) @ ( power_power_int @ Y3 @ N ) ) ) ).

% dvd_power_same
thf(fact_1435_dvd__power__same,axiom,
    ! [X3: real,Y3: real,N: nat] :
      ( ( dvd_dvd_real @ X3 @ Y3 )
     => ( dvd_dvd_real @ ( power_power_real @ X3 @ N ) @ ( power_power_real @ Y3 @ N ) ) ) ).

% dvd_power_same
thf(fact_1436_dvd__power__same,axiom,
    ! [X3: complex,Y3: complex,N: nat] :
      ( ( dvd_dvd_complex @ X3 @ Y3 )
     => ( dvd_dvd_complex @ ( power_power_complex @ X3 @ N ) @ ( power_power_complex @ Y3 @ N ) ) ) ).

% dvd_power_same
thf(fact_1437_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_1438_le__numeral__extra_I4_J,axiom,
    ord_less_eq_rat @ one_one_rat @ one_one_rat ).

% le_numeral_extra(4)
thf(fact_1439_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_1440_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_1441_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_1442_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).

% less_numeral_extra(4)
thf(fact_1443_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_1444_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_1445_even__or__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1080825931792720795nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_1446_even__or__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_1447_even__or__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_1448_even__xor__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3222712562003087583nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_1449_even__xor__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_1450_even__xor__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_xor_iff
thf(fact_1451_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_1452_dvd__power__iff,axiom,
    ! [X3: code_integer,M: nat,N: nat] :
      ( ( X3 != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X3 @ M ) @ ( power_8256067586552552935nteger @ X3 @ N ) )
        = ( ( dvd_dvd_Code_integer @ X3 @ one_one_Code_integer )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_1453_dvd__power__iff,axiom,
    ! [X3: nat,M: nat,N: nat] :
      ( ( X3 != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X3 @ M ) @ ( power_power_nat @ X3 @ N ) )
        = ( ( dvd_dvd_nat @ X3 @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_1454_dvd__power__iff,axiom,
    ! [X3: int,M: nat,N: nat] :
      ( ( X3 != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X3 @ M ) @ ( power_power_int @ X3 @ N ) )
        = ( ( dvd_dvd_int @ X3 @ one_one_int )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_1455_dvd__power,axiom,
    ! [N: nat,X3: code_integer] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X3 = one_one_Code_integer ) )
     => ( dvd_dvd_Code_integer @ X3 @ ( power_8256067586552552935nteger @ X3 @ N ) ) ) ).

% dvd_power
thf(fact_1456_dvd__power,axiom,
    ! [N: nat,X3: rat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X3 = one_one_rat ) )
     => ( dvd_dvd_rat @ X3 @ ( power_power_rat @ X3 @ N ) ) ) ).

% dvd_power
thf(fact_1457_dvd__power,axiom,
    ! [N: nat,X3: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X3 = one_one_nat ) )
     => ( dvd_dvd_nat @ X3 @ ( power_power_nat @ X3 @ N ) ) ) ).

% dvd_power
thf(fact_1458_dvd__power,axiom,
    ! [N: nat,X3: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X3 = one_one_int ) )
     => ( dvd_dvd_int @ X3 @ ( power_power_int @ X3 @ N ) ) ) ).

% dvd_power
thf(fact_1459_dvd__power,axiom,
    ! [N: nat,X3: real] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X3 = one_one_real ) )
     => ( dvd_dvd_real @ X3 @ ( power_power_real @ X3 @ N ) ) ) ).

% dvd_power
thf(fact_1460_dvd__power,axiom,
    ! [N: nat,X3: complex] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X3 = one_one_complex ) )
     => ( dvd_dvd_complex @ X3 @ ( power_power_complex @ X3 @ N ) ) ) ).

% dvd_power
thf(fact_1461_power__dvd__imp__le,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
     => ( ( ord_less_nat @ one_one_nat @ I )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_dvd_imp_le
thf(fact_1462_le__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% le_log_of_power
thf(fact_1463_real__sqrt__gt__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_real @ zero_zero_real @ ( sqrt @ X3 ) ) ) ).

% real_sqrt_gt_zero
thf(fact_1464_real__sqrt__ge__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X3 ) ) ) ).

% real_sqrt_ge_zero
thf(fact_1465_real__sqrt__eq__zero__cancel,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ( sqrt @ X3 )
          = zero_zero_real )
       => ( X3 = zero_zero_real ) ) ) ).

% real_sqrt_eq_zero_cancel
thf(fact_1466_log__of__power__less,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_less
thf(fact_1467_OR__lower,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X3 @ Y3 ) ) ) ) ).

% OR_lower
thf(fact_1468_or__greater__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L ) ) ) ).

% or_greater_eq
thf(fact_1469_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_1470_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_1471_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_1472_take__bit__tightened__less__eq__int,axiom,
    ! [M: nat,N: nat,K: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_tightened_less_eq_int
thf(fact_1473_XOR__lower,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X3 @ Y3 ) ) ) ) ).

% XOR_lower
thf(fact_1474_take__bit__nonnegative,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ).

% take_bit_nonnegative
thf(fact_1475_take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% take_bit_int_less_eq_self_iff
thf(fact_1476_not__take__bit__negative,axiom,
    ! [N: nat,K: int] :
      ~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ zero_zero_int ) ).

% not_take_bit_negative
thf(fact_1477_take__bit__int__greater__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% take_bit_int_greater_self_iff
thf(fact_1478_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_1479_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_1480_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_1481_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_1482_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_1483_power__le__dvd,axiom,
    ! [A: code_integer,N: nat,B: code_integer,M: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_1484_power__le__dvd,axiom,
    ! [A: nat,N: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_1485_power__le__dvd,axiom,
    ! [A: int,N: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_1486_power__le__dvd,axiom,
    ! [A: real,N: nat,B: real,M: nat] :
      ( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_1487_power__le__dvd,axiom,
    ! [A: complex,N: nat,B: complex,M: nat] :
      ( ( dvd_dvd_complex @ ( power_power_complex @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_1488_dvd__power__le,axiom,
    ! [X3: code_integer,Y3: code_integer,N: nat,M: nat] :
      ( ( dvd_dvd_Code_integer @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X3 @ N ) @ ( power_8256067586552552935nteger @ Y3 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_1489_dvd__power__le,axiom,
    ! [X3: nat,Y3: nat,N: nat,M: nat] :
      ( ( dvd_dvd_nat @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X3 @ N ) @ ( power_power_nat @ Y3 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_1490_dvd__power__le,axiom,
    ! [X3: int,Y3: int,N: nat,M: nat] :
      ( ( dvd_dvd_int @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X3 @ N ) @ ( power_power_int @ Y3 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_1491_dvd__power__le,axiom,
    ! [X3: real,Y3: real,N: nat,M: nat] :
      ( ( dvd_dvd_real @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_real @ ( power_power_real @ X3 @ N ) @ ( power_power_real @ Y3 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_1492_dvd__power__le,axiom,
    ! [X3: complex,Y3: complex,N: nat,M: nat] :
      ( ( dvd_dvd_complex @ X3 @ Y3 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_complex @ ( power_power_complex @ X3 @ N ) @ ( power_power_complex @ Y3 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_1493_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_1494_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_1495_less__numeral__extra_I1_J,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% less_numeral_extra(1)
thf(fact_1496_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_1497_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_1498_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).

% one_le_numeral
thf(fact_1499_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) ) ).

% one_le_numeral
thf(fact_1500_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_1501_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_1502_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_1503_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat ) ).

% not_numeral_less_one
thf(fact_1504_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_1505_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_1506_numeral__One,axiom,
    ( ( numera6690914467698888265omplex @ one )
    = one_one_complex ) ).

% numeral_One
thf(fact_1507_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_1508_numeral__One,axiom,
    ( ( numeral_numeral_rat @ one )
    = one_one_rat ) ).

% numeral_One
thf(fact_1509_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_1510_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_1511_one__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% one_le_power
thf(fact_1512_one__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% one_le_power
thf(fact_1513_one__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).

% one_le_power
thf(fact_1514_one__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).

% one_le_power
thf(fact_1515_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( bit_se1745604003318907178nteger @ N @ A )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_1516_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = zero_zero_int )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_1517_take__bit__eq__0__iff,axiom,
    ! [N: nat,A: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ A ) ) ).

% take_bit_eq_0_iff
thf(fact_1518_power__0,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% power_0
thf(fact_1519_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_1520_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_1521_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_1522_power__0,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% power_0
thf(fact_1523_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_1524_real__arch__pow,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ? [N2: nat] : ( ord_less_real @ Y3 @ ( power_power_real @ X3 @ N2 ) ) ) ).

% real_arch_pow
thf(fact_1525_log__of__power__le,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_le
thf(fact_1526_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_1527_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_1528_even__zero,axiom,
    dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).

% even_zero
thf(fact_1529_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_1530_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_1531_dvd__imp__le,axiom,
    ! [K: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ K @ N ) ) ) ).

% dvd_imp_le
thf(fact_1532_power__le__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_1533_power__le__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ one_one_rat ) ) ) ).

% power_le_one
thf(fact_1534_power__le__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_1535_power__le__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_1536_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = one_one_rat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = zero_zero_rat ) ) ) ).

% power_0_left
thf(fact_1537_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_1538_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_1539_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_1540_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = one_one_complex ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = zero_zero_complex ) ) ) ).

% power_0_left
thf(fact_1541_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_1542_power__less__imp__less__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_1543_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_1544_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_1545_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1546_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_rat @ one_one_rat @ A )
       => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1547_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1548_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1549_power__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1550_power__increasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_rat @ one_one_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1551_power__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1552_power__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_1553_real__arch__pow__inv,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X3 @ N2 ) @ Y3 ) ) ) ).

% real_arch_pow_inv
thf(fact_1554_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_1555_power__mono__odd,axiom,
    ! [N: nat,A: real,B: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_1556_power__mono__odd,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_1557_power__mono__odd,axiom,
    ! [N: nat,A: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_1558_odd__pos,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% odd_pos
thf(fact_1559_sqrt2__less__2,axiom,
    ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% sqrt2_less_2
thf(fact_1560_log2__of__power__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( semiri5074537144036343181t_real @ N )
        = ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% log2_of_power_eq
thf(fact_1561_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_1562_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ( ord_less_rat @ A @ one_one_rat )
         => ( ord_less_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_1563_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_1564_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_1565_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_1566_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ A @ one_one_rat )
         => ( ord_less_eq_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_1567_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_1568_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_1569_power__le__imp__le__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_1570_power__le__imp__le__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_1571_power__le__imp__le__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_1572_power__le__imp__le__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_1573_one__power2,axiom,
    ( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_rat ) ).

% one_power2
thf(fact_1574_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_1575_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_1576_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_1577_one__power2,axiom,
    ( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_complex ) ).

% one_power2
thf(fact_1578_self__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_1579_self__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_1580_self__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_1581_self__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_1582_one__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_1583_one__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_1584_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_1585_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_1586_zero__le__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_1587_zero__le__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_1588_zero__le__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_1589_zero__le__odd__power,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
        = ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).

% zero_le_odd_power
thf(fact_1590_zero__le__odd__power,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
        = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).

% zero_le_odd_power
thf(fact_1591_zero__le__odd__power,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_odd_power
thf(fact_1592_zero__le__even__power,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_1593_zero__le__even__power,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_1594_zero__le__even__power,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_1595_real__less__rsqrt,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y3 )
     => ( ord_less_real @ X3 @ ( sqrt @ Y3 ) ) ) ).

% real_less_rsqrt
thf(fact_1596_sqrt__le__D,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X3 ) @ Y3 )
     => ( ord_less_eq_real @ X3 @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sqrt_le_D
thf(fact_1597_real__le__rsqrt,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y3 )
     => ( ord_less_eq_real @ X3 @ ( sqrt @ Y3 ) ) ) ).

% real_le_rsqrt
thf(fact_1598_take__bit__int__less__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_int_less_exp
thf(fact_1599_zero__less__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_1600_zero__less__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_1601_zero__less__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_1602_dvd__power__iff__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% dvd_power_iff_le
thf(fact_1603_two__realpow__ge__one,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% two_realpow_ge_one
thf(fact_1604_real__le__lsqrt,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_eq_real @ X3 @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sqrt @ X3 ) @ Y3 ) ) ) ) ).

% real_le_lsqrt
thf(fact_1605_real__sqrt__unique,axiom,
    ! [Y3: real,X3: real] :
      ( ( ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( sqrt @ X3 )
          = Y3 ) ) ) ).

% real_sqrt_unique
thf(fact_1606_less__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% less_log2_of_power
thf(fact_1607_le__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% le_log2_of_power
thf(fact_1608_take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_int_greater_eq_self_iff
thf(fact_1609_take__bit__int__less__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).

% take_bit_int_less_self_iff
thf(fact_1610_power__le__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_1611_power__le__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_1612_power__le__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_1613_pow__divides__pow__iff,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_1614_pow__divides__pow__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_1615_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_1616_dvd__0__left__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left_iff
thf(fact_1617_dvd__0__left__iff,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
      = ( A = zero_zero_real ) ) ).

% dvd_0_left_iff
thf(fact_1618_dvd__0__left__iff,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
      = ( A = zero_zero_rat ) ) ).

% dvd_0_left_iff
thf(fact_1619_dvd__0__left__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_1620_dvd__0__left__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
      = ( A = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_1621_dvd__0__right,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ zero_z3403309356797280102nteger ) ).

% dvd_0_right
thf(fact_1622_dvd__0__right,axiom,
    ! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).

% dvd_0_right
thf(fact_1623_dvd__0__right,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).

% dvd_0_right
thf(fact_1624_dvd__0__right,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_1625_dvd__0__right,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).

% dvd_0_right
thf(fact_1626_artanh__0,axiom,
    ( ( artanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% artanh_0
thf(fact_1627_arsinh__0,axiom,
    ( ( arsinh_real @ zero_zero_real )
    = zero_zero_real ) ).

% arsinh_0
thf(fact_1628_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_1629_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_1630_of__nat__dvd__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% of_nat_dvd_iff
thf(fact_1631_log__ceil__idem,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ one_one_real @ X3 )
     => ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) )
        = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X3 ) ) ) ) ) ) ).

% log_ceil_idem
thf(fact_1632_dbl__simps_I3_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1633_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1634_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1635_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_1636_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_1637_not__is__unit__0,axiom,
    ~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).

% not_is_unit_0
thf(fact_1638_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_1639_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_1640_ceiling__of__int,axiom,
    ! [Z: int] :
      ( ( archim2889992004027027881ng_rat @ ( ring_1_of_int_rat @ Z ) )
      = Z ) ).

% ceiling_of_int
thf(fact_1641_ceiling__of__int,axiom,
    ! [Z: int] :
      ( ( archim7802044766580827645g_real @ ( ring_1_of_int_real @ Z ) )
      = Z ) ).

% ceiling_of_int
thf(fact_1642_of__int__ceiling__cancel,axiom,
    ! [X3: rat] :
      ( ( ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X3 ) )
        = X3 )
      = ( ? [N3: int] :
            ( X3
            = ( ring_1_of_int_rat @ N3 ) ) ) ) ).

% of_int_ceiling_cancel
thf(fact_1643_of__int__ceiling__cancel,axiom,
    ! [X3: real] :
      ( ( ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X3 ) )
        = X3 )
      = ( ? [N3: int] :
            ( X3
            = ( ring_1_of_int_real @ N3 ) ) ) ) ).

% of_int_ceiling_cancel
thf(fact_1644_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_1645_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% dbl_simps(2)
thf(fact_1646_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_1647_ceiling__zero,axiom,
    ( ( archim2889992004027027881ng_rat @ zero_zero_rat )
    = zero_zero_int ) ).

% ceiling_zero
thf(fact_1648_ceiling__zero,axiom,
    ( ( archim7802044766580827645g_real @ zero_zero_real )
    = zero_zero_int ) ).

% ceiling_zero
thf(fact_1649_ceiling__numeral,axiom,
    ! [V: num] :
      ( ( archim7802044766580827645g_real @ ( numeral_numeral_real @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% ceiling_numeral
thf(fact_1650_ceiling__numeral,axiom,
    ! [V: num] :
      ( ( archim2889992004027027881ng_rat @ ( numeral_numeral_rat @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% ceiling_numeral
thf(fact_1651_ceiling__one,axiom,
    ( ( archim2889992004027027881ng_rat @ one_one_rat )
    = one_one_int ) ).

% ceiling_one
thf(fact_1652_ceiling__one,axiom,
    ( ( archim7802044766580827645g_real @ one_one_real )
    = one_one_int ) ).

% ceiling_one
thf(fact_1653_ceiling__of__nat,axiom,
    ! [N: nat] :
      ( ( archim7802044766580827645g_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% ceiling_of_nat
thf(fact_1654_ceiling__of__nat,axiom,
    ! [N: nat] :
      ( ( archim2889992004027027881ng_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% ceiling_of_nat
thf(fact_1655_int__dvd__int__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( dvd_dvd_nat @ M @ N ) ) ).

% int_dvd_int_iff
thf(fact_1656_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1657_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1658_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1659_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_1660_ceiling__le__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X3 ) @ zero_zero_int )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% ceiling_le_zero
thf(fact_1661_ceiling__le__zero,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X3 ) @ zero_zero_int )
      = ( ord_less_eq_rat @ X3 @ zero_zero_rat ) ) ).

% ceiling_le_zero
thf(fact_1662_zero__less__ceiling,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ zero_zero_rat @ X3 ) ) ).

% zero_less_ceiling
thf(fact_1663_zero__less__ceiling,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ zero_zero_real @ X3 ) ) ).

% zero_less_ceiling
thf(fact_1664_ceiling__le__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ V ) ) ) ).

% ceiling_le_numeral
thf(fact_1665_ceiling__le__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_rat @ X3 @ ( numeral_numeral_rat @ V ) ) ) ).

% ceiling_le_numeral
thf(fact_1666_ceiling__less__one,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X3 ) @ one_one_int )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% ceiling_less_one
thf(fact_1667_ceiling__less__one,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X3 ) @ one_one_int )
      = ( ord_less_eq_rat @ X3 @ zero_zero_rat ) ) ).

% ceiling_less_one
thf(fact_1668_numeral__less__ceiling,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ ( numeral_numeral_real @ V ) @ X3 ) ) ).

% numeral_less_ceiling
thf(fact_1669_numeral__less__ceiling,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ ( numeral_numeral_rat @ V ) @ X3 ) ) ).

% numeral_less_ceiling
thf(fact_1670_one__le__ceiling,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ zero_zero_rat @ X3 ) ) ).

% one_le_ceiling
thf(fact_1671_one__le__ceiling,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ zero_zero_real @ X3 ) ) ).

% one_le_ceiling
thf(fact_1672_ceiling__le__one,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X3 ) @ one_one_int )
      = ( ord_less_eq_real @ X3 @ one_one_real ) ) ).

% ceiling_le_one
thf(fact_1673_ceiling__le__one,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X3 ) @ one_one_int )
      = ( ord_less_eq_rat @ X3 @ one_one_rat ) ) ).

% ceiling_le_one
thf(fact_1674_one__less__ceiling,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ one_one_int @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ one_one_rat @ X3 ) ) ).

% one_less_ceiling
thf(fact_1675_one__less__ceiling,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ one_one_int @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ one_one_real @ X3 ) ) ).

% one_less_ceiling
thf(fact_1676_ceiling__numeral__power,axiom,
    ! [X3: num,N: nat] :
      ( ( archim7802044766580827645g_real @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ).

% ceiling_numeral_power
thf(fact_1677_ceiling__numeral__power,axiom,
    ! [X3: num,N: nat] :
      ( ( archim2889992004027027881ng_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ).

% ceiling_numeral_power
thf(fact_1678_nat__ceiling__le__eq,axiom,
    ! [X3: real,A: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X3 ) ) @ A )
      = ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ A ) ) ) ).

% nat_ceiling_le_eq
thf(fact_1679_take__bit__nat__less__eq__self,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M ) ).

% take_bit_nat_less_eq_self
thf(fact_1680_take__bit__tightened__less__eq__nat,axiom,
    ! [M: nat,N: nat,Q3: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q3 ) @ ( bit_se2925701944663578781it_nat @ N @ Q3 ) ) ) ).

% take_bit_tightened_less_eq_nat
thf(fact_1681_ceiling__mono,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ Y3 @ X3 )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ Y3 ) @ ( archim7802044766580827645g_real @ X3 ) ) ) ).

% ceiling_mono
thf(fact_1682_ceiling__mono,axiom,
    ! [Y3: rat,X3: rat] :
      ( ( ord_less_eq_rat @ Y3 @ X3 )
     => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ Y3 ) @ ( archim2889992004027027881ng_rat @ X3 ) ) ) ).

% ceiling_mono
thf(fact_1683_le__of__int__ceiling,axiom,
    ! [X3: real] : ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X3 ) ) ) ).

% le_of_int_ceiling
thf(fact_1684_le__of__int__ceiling,axiom,
    ! [X3: rat] : ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X3 ) ) ) ).

% le_of_int_ceiling
thf(fact_1685_ceiling__less__cancel,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( archim2889992004027027881ng_rat @ Y3 ) )
     => ( ord_less_rat @ X3 @ Y3 ) ) ).

% ceiling_less_cancel
thf(fact_1686_ceiling__less__cancel,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X3 ) @ ( archim7802044766580827645g_real @ Y3 ) )
     => ( ord_less_real @ X3 @ Y3 ) ) ).

% ceiling_less_cancel
thf(fact_1687_zdvd__antisym__nonneg,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ N )
       => ( ( dvd_dvd_int @ M @ N )
         => ( ( dvd_dvd_int @ N @ M )
           => ( M = N ) ) ) ) ) ).

% zdvd_antisym_nonneg
thf(fact_1688_zdvd__not__zless,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_int @ M @ N )
       => ~ ( dvd_dvd_int @ N @ M ) ) ) ).

% zdvd_not_zless
thf(fact_1689_real__nat__ceiling__ge,axiom,
    ! [X3: real] : ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X3 ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_1690_of__nat__ceiling,axiom,
    ! [R2: real] : ( ord_less_eq_real @ R2 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ R2 ) ) ) ) ).

% of_nat_ceiling
thf(fact_1691_of__nat__ceiling,axiom,
    ! [R2: rat] : ( ord_less_eq_rat @ R2 @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim2889992004027027881ng_rat @ R2 ) ) ) ) ).

% of_nat_ceiling
thf(fact_1692_ceiling__le,axiom,
    ! [X3: real,A: int] :
      ( ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ A ) )
     => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X3 ) @ A ) ) ).

% ceiling_le
thf(fact_1693_ceiling__le,axiom,
    ! [X3: rat,A: int] :
      ( ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ A ) )
     => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X3 ) @ A ) ) ).

% ceiling_le
thf(fact_1694_ceiling__le__iff,axiom,
    ! [X3: real,Z: int] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X3 ) @ Z )
      = ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ Z ) ) ) ).

% ceiling_le_iff
thf(fact_1695_ceiling__le__iff,axiom,
    ! [X3: rat,Z: int] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X3 ) @ Z )
      = ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ Z ) ) ) ).

% ceiling_le_iff
thf(fact_1696_less__ceiling__iff,axiom,
    ! [Z: int,X3: rat] :
      ( ( ord_less_int @ Z @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ X3 ) ) ).

% less_ceiling_iff
thf(fact_1697_less__ceiling__iff,axiom,
    ! [Z: int,X3: real] :
      ( ( ord_less_int @ Z @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ X3 ) ) ).

% less_ceiling_iff
thf(fact_1698_or__nat__def,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% or_nat_def
thf(fact_1699_zdvd__imp__le,axiom,
    ! [Z: int,N: int] :
      ( ( dvd_dvd_int @ Z @ N )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int @ Z @ N ) ) ) ).

% zdvd_imp_le
thf(fact_1700_linorder__neqE__linordered__idom,axiom,
    ! [X3: real,Y3: real] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_real @ X3 @ Y3 )
       => ( ord_less_real @ Y3 @ X3 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1701_linorder__neqE__linordered__idom,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_rat @ X3 @ Y3 )
       => ( ord_less_rat @ Y3 @ X3 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1702_linorder__neqE__linordered__idom,axiom,
    ! [X3: int,Y3: int] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_int @ X3 @ Y3 )
       => ( ord_less_int @ Y3 @ X3 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1703_xor__nat__def,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% xor_nat_def
thf(fact_1704_take__bit__nat__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) )
        = ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).

% take_bit_nat_eq
thf(fact_1705_nat__take__bit__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) )
        = ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) ) ) ) ).

% nat_take_bit_eq
thf(fact_1706_take__bit__nat__eq__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M )
      = ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_nat_eq_self_iff
thf(fact_1707_take__bit__nat__less__exp,axiom,
    ! [N: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_nat_less_exp
thf(fact_1708_take__bit__nat__eq__self,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M ) ) ).

% take_bit_nat_eq_self
thf(fact_1709_take__bit__nat__less__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M ) ) ).

% take_bit_nat_less_self_iff
thf(fact_1710_nat__dvd__iff,axiom,
    ! [Z: int,M: nat] :
      ( ( dvd_dvd_nat @ ( nat2 @ Z ) @ M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
         => ( dvd_dvd_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_dvd_iff
thf(fact_1711_zero__neq__one,axiom,
    zero_zero_complex != one_one_complex ).

% zero_neq_one
thf(fact_1712_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_1713_zero__neq__one,axiom,
    zero_zero_rat != one_one_rat ).

% zero_neq_one
thf(fact_1714_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_1715_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_1716_dvd__0__left,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
     => ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left
thf(fact_1717_dvd__0__left,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
     => ( A = zero_zero_real ) ) ).

% dvd_0_left
thf(fact_1718_dvd__0__left,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
     => ( A = zero_zero_rat ) ) ).

% dvd_0_left
thf(fact_1719_dvd__0__left,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_1720_dvd__0__left,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
     => ( A = zero_zero_int ) ) ).

% dvd_0_left
thf(fact_1721_gcd__nat_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_uniqueI
thf(fact_1722_gcd__nat_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ( dvd_dvd_nat @ A @ zero_zero_nat )
        & ( A != zero_zero_nat ) ) ) ).

% gcd_nat.not_eq_extremum
thf(fact_1723_gcd__nat_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_unique
thf(fact_1724_gcd__nat_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
        & ( zero_zero_nat != A ) ) ).

% gcd_nat.extremum_strict
thf(fact_1725_gcd__nat_Oextremum,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% gcd_nat.extremum
thf(fact_1726_even__nat__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_nat_iff
thf(fact_1727_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_1728_not__one__le__zero,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_le_zero
thf(fact_1729_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_1730_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_1731_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1732_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1733_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1734_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1735_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_1736_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one_class.zero_le_one
thf(fact_1737_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_1738_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_1739_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_1740_not__one__less__zero,axiom,
    ~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_less_zero
thf(fact_1741_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_1742_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_1743_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_1744_zero__less__one,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one
thf(fact_1745_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_1746_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_1747_even__unset__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_1748_even__unset__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_1749_even__unset__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_1750_even__flip__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_1751_even__flip__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_1752_even__flip__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_1753_even__set__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_1754_even__set__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_1755_even__set__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_1756_take__bit__int__greater__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_int_greater_eq
thf(fact_1757_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_1758_take__bit__int__less__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% take_bit_int_less_eq
thf(fact_1759_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_1760_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_1761_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_1762_real__sqrt__power__even,axiom,
    ! [N: nat,X3: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( power_power_real @ ( sqrt @ X3 ) @ N )
          = ( power_power_real @ X3 @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_power_even
thf(fact_1763_arsinh__real__aux,axiom,
    ! [X3: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% arsinh_real_aux
thf(fact_1764_numeral__le__ceiling,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X3 ) ) ).

% numeral_le_ceiling
thf(fact_1765_numeral__le__ceiling,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X3 ) ) ).

% numeral_le_ceiling
thf(fact_1766_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1767_add__left__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1768_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1769_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1770_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1771_add__right__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1772_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1773_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1774_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1775_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1776_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1777_idiff__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
      = N ) ).

% idiff_0_right
thf(fact_1778_idiff__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
      = zero_z5237406670263579293d_enat ) ).

% idiff_0
thf(fact_1779_power__minus__is__div,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ A @ B ) )
        = ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% power_minus_is_div
thf(fact_1780_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1781_add__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1782_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1783_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1784_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1785_add__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1786_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1787_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1788_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_1789_double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( plus_plus_rat @ A @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% double_eq_0_iff
thf(fact_1790_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_1791_add__0,axiom,
    ! [A: literal] :
      ( ( plus_plus_literal @ zero_zero_literal @ A )
      = A ) ).

% add_0
thf(fact_1792_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_1793_add__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add_0
thf(fact_1794_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_1795_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_1796_zero__eq__add__iff__both__eq__0,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X3 @ Y3 ) )
      = ( ( X3 = zero_zero_nat )
        & ( Y3 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_1797_add__eq__0__iff__both__eq__0,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ( plus_plus_nat @ X3 @ Y3 )
        = zero_zero_nat )
      = ( ( X3 = zero_zero_nat )
        & ( Y3 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_1798_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_1799_add__cancel__right__right,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ A @ B ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_right
thf(fact_1800_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_1801_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_1802_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_1803_add__cancel__right__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ B @ A ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_left
thf(fact_1804_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_1805_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_1806_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_1807_add__cancel__left__right,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_right
thf(fact_1808_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_1809_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_1810_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_1811_add__cancel__left__left,axiom,
    ! [B: rat,A: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_left
thf(fact_1812_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_1813_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_1814_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_1815_double__zero__sym,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( plus_plus_rat @ A @ A ) )
      = ( A = zero_zero_rat ) ) ).

% double_zero_sym
thf(fact_1816_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_1817_add_Oright__neutral,axiom,
    ! [A: literal] :
      ( ( plus_plus_literal @ A @ zero_zero_literal )
      = A ) ).

% add.right_neutral
thf(fact_1818_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_1819_add_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.right_neutral
thf(fact_1820_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_1821_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_1822_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1823_add__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1824_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1825_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1826_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1827_add__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1828_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1829_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1830_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1831_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1832_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1833_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1834_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_1835_diff__zero,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_zero
thf(fact_1836_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_1837_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_1838_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_1839_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_1840_diff__0__right,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_0_right
thf(fact_1841_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_1842_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_1843_diff__self,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% diff_self
thf(fact_1844_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_1845_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_1846_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_1847_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_1848_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_1849_div__by__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% div_by_0
thf(fact_1850_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_1851_div__by__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% div_by_0
thf(fact_1852_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_1853_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_1854_div__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% div_0
thf(fact_1855_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_1856_div__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% div_0
thf(fact_1857_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_1858_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_1859_add__numeral__left,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_1860_add__numeral__left,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_1861_add__numeral__left,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_1862_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_1863_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_1864_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_1865_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_1866_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_1867_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_1868_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_1869_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1870_add__diff__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1871_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1872_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1873_diff__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1874_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1875_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1876_add__diff__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1877_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1878_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1879_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1880_add__diff__cancel__left_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1881_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1882_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1883_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1884_add__diff__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1885_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1886_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1887_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1888_add__diff__cancel__right_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1889_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1890_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1891_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_1892_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_1893_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).

% of_nat_add
thf(fact_1894_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_1895_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% of_nat_add
thf(fact_1896_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_1897_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_1898_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_1899_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_1900_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1901_ln__inj__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ( ( ln_ln_real @ X3 )
            = ( ln_ln_real @ Y3 ) )
          = ( X3 = Y3 ) ) ) ) ).

% ln_inj_iff
thf(fact_1902_ln__less__cancel__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y3 ) )
          = ( ord_less_real @ X3 @ Y3 ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_1903_unset__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% unset_bit_nonnegative_int_iff
thf(fact_1904_set__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_1905_flip__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% flip_bit_nonnegative_int_iff
thf(fact_1906_unset__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% unset_bit_negative_int_iff
thf(fact_1907_set__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% set_bit_negative_int_iff
thf(fact_1908_flip__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% flip_bit_negative_int_iff
thf(fact_1909_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_1910_add__le__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel1
thf(fact_1911_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_1912_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_1913_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_1914_add__le__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel2
thf(fact_1915_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_1916_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_1917_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_1918_le__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1919_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1920_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_1921_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_1922_le__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1923_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1924_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_1925_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1926_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1927_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_1928_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1929_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1930_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_1931_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_1932_add__less__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel1
thf(fact_1933_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_1934_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_1935_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_1936_add__less__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel2
thf(fact_1937_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_1938_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_1939_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_1940_less__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1941_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1942_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_1943_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_1944_less__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1945_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1946_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_1947_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1948_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1949_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_1950_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1951_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1952_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_1953_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1954_diff__ge__0__iff__ge,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1955_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1956_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1957_diff__gt__0__iff__gt,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_rat @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1958_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1959_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ one_one_complex )
    = zero_zero_complex ) ).

% diff_numeral_special(9)
thf(fact_1960_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_1961_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ one_one_rat )
    = zero_zero_rat ) ).

% diff_numeral_special(9)
thf(fact_1962_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_1963_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1964_le__add__diff__inverse,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1965_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1966_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1967_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1968_le__add__diff__inverse2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1969_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1970_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1971_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_1972_div__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% div_self
thf(fact_1973_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_1974_div__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% div_self
thf(fact_1975_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_1976_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_1977_ln__le__cancel__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y3 ) )
          = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_1978_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1979_ln__less__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ ( ln_ln_real @ X3 ) @ zero_zero_real )
        = ( ord_less_real @ X3 @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_1980_ln__gt__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
        = ( ord_less_real @ one_one_real @ X3 ) ) ) ).

% ln_gt_zero_iff
thf(fact_1981_ln__eq__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ( ln_ln_real @ X3 )
          = zero_zero_real )
        = ( X3 = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_1982_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_add
thf(fact_1983_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_add
thf(fact_1984_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_17405671764205052669omplex @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_complex @ ( ring_17405671764205052669omplex @ W ) @ ( ring_17405671764205052669omplex @ Z ) ) ) ).

% of_int_add
thf(fact_1985_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_add
thf(fact_1986_of__int__diff,axiom,
    ! [W: int,Z: int] :
      ( ( ring_17405671764205052669omplex @ ( minus_minus_int @ W @ Z ) )
      = ( minus_minus_complex @ ( ring_17405671764205052669omplex @ W ) @ ( ring_17405671764205052669omplex @ Z ) ) ) ).

% of_int_diff
thf(fact_1987_of__int__diff,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( minus_minus_int @ W @ Z ) )
      = ( minus_minus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_diff
thf(fact_1988_of__int__diff,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( minus_minus_int @ W @ Z ) )
      = ( minus_minus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_diff
thf(fact_1989_of__int__diff,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( minus_minus_int @ W @ Z ) )
      = ( minus_minus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_diff
thf(fact_1990_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1991_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1992_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( numeral_numeral_rat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1993_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1994_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_1995_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1996_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1997_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1998_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_1999_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_2000_ln__le__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ zero_zero_real )
        = ( ord_less_eq_real @ X3 @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_2001_ln__ge__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
        = ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ).

% ln_ge_zero_iff
thf(fact_2002_diff__nat__numeral,axiom,
    ! [V: num,V2: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V2 ) )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V2 ) ) ) ) ).

% diff_nat_numeral
thf(fact_2003_zle__add1__eq__le,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% zle_add1_eq_le
thf(fact_2004_ceiling__add__of__int,axiom,
    ! [X3: rat,Z: int] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X3 @ ( ring_1_of_int_rat @ Z ) ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X3 ) @ Z ) ) ).

% ceiling_add_of_int
thf(fact_2005_ceiling__add__of__int,axiom,
    ! [X3: real,Z: int] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X3 @ ( ring_1_of_int_real @ Z ) ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X3 ) @ Z ) ) ).

% ceiling_add_of_int
thf(fact_2006_zle__diff1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W @ Z ) ) ).

% zle_diff1_eq
thf(fact_2007_ceiling__diff__of__int,axiom,
    ! [X3: rat,Z: int] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X3 @ ( ring_1_of_int_rat @ Z ) ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X3 ) @ Z ) ) ).

% ceiling_diff_of_int
thf(fact_2008_ceiling__diff__of__int,axiom,
    ! [X3: real,Z: int] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X3 @ ( ring_1_of_int_real @ Z ) ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X3 ) @ Z ) ) ).

% ceiling_diff_of_int
thf(fact_2009_one__add__one,axiom,
    ( ( plus_plus_complex @ one_one_complex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_2010_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_2011_one__add__one,axiom,
    ( ( plus_plus_rat @ one_one_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_2012_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_2013_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_2014_odd__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_2015_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_2016_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_2017_even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_2018_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_2019_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_2020_ceiling__add__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X3 @ ( numeral_numeral_real @ V ) ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X3 ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_add_numeral
thf(fact_2021_ceiling__add__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X3 @ ( numeral_numeral_rat @ V ) ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_add_numeral
thf(fact_2022_ceiling__add__one,axiom,
    ! [X3: rat] :
      ( ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X3 @ one_one_rat ) )
      = ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X3 ) @ one_one_int ) ) ).

% ceiling_add_one
thf(fact_2023_ceiling__add__one,axiom,
    ! [X3: real] :
      ( ( archim7802044766580827645g_real @ ( plus_plus_real @ X3 @ one_one_real ) )
      = ( plus_plus_int @ ( archim7802044766580827645g_real @ X3 ) @ one_one_int ) ) ).

% ceiling_add_one
thf(fact_2024_ceiling__diff__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X3 @ ( numeral_numeral_real @ V ) ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X3 ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_diff_numeral
thf(fact_2025_ceiling__diff__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X3 @ ( numeral_numeral_rat @ V ) ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_diff_numeral
thf(fact_2026_ceiling__diff__one,axiom,
    ! [X3: rat] :
      ( ( archim2889992004027027881ng_rat @ ( minus_minus_rat @ X3 @ one_one_rat ) )
      = ( minus_minus_int @ ( archim2889992004027027881ng_rat @ X3 ) @ one_one_int ) ) ).

% ceiling_diff_one
thf(fact_2027_ceiling__diff__one,axiom,
    ! [X3: real] :
      ( ( archim7802044766580827645g_real @ ( minus_minus_real @ X3 @ one_one_real ) )
      = ( minus_minus_int @ ( archim7802044766580827645g_real @ X3 ) @ one_one_int ) ) ).

% ceiling_diff_one
thf(fact_2028_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_2029_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_2030_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_2031_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_2032_sum__power2__eq__zero__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_rat )
      = ( ( X3 = zero_zero_rat )
        & ( Y3 = zero_zero_rat ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2033_sum__power2__eq__zero__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X3 = zero_zero_int )
        & ( Y3 = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2034_sum__power2__eq__zero__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X3 = zero_zero_real )
        & ( Y3 = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2035_even__plus__one__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_2036_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_2037_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_2038_even__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).

% even_diff
thf(fact_2039_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_2040_nat__numeral__diff__1,axiom,
    ! [V: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).

% nat_numeral_diff_1
thf(fact_2041_even__succ__div__2,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_2042_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_2043_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_2044_odd__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% odd_succ_div_two
thf(fact_2045_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_2046_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_2047_even__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_2048_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_2049_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_2050_ceiling__less__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_real @ X3 @ ( minus_minus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).

% ceiling_less_numeral
thf(fact_2051_ceiling__less__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_eq_rat @ X3 @ ( minus_minus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).

% ceiling_less_numeral
thf(fact_2052_even__succ__div__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_2053_even__succ__div__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_2054_even__succ__div__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_2055_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2056_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ~ ( ord_less_rat @ A @ B )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2057_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2058_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_2059_add__le__add__imp__diff__le,axiom,
    ! [I: real,K: real,N: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
         => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2060_add__le__add__imp__diff__le,axiom,
    ! [I: rat,K: rat,N: rat,J: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
     => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
       => ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
         => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
           => ( ord_less_eq_rat @ ( minus_minus_rat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2061_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2062_add__le__add__imp__diff__le,axiom,
    ! [I: int,K: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_2063_add__le__imp__le__diff,axiom,
    ! [I: real,K: real,N: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_2064_add__le__imp__le__diff,axiom,
    ! [I: rat,K: rat,N: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
     => ( ord_less_eq_rat @ I @ ( minus_minus_rat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_2065_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_2066_add__le__imp__le__diff,axiom,
    ! [I: int,K: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_2067_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_2068_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_2069_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_2070_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_2071_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_2072_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_2073_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_2074_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_2075_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_2076_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_2077_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_2078_le__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_2079_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_2080_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_2081_diff__le__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_2082_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_2083_diff__less__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2084_diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2085_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2086_less__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2087_less__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2088_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2089_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2090_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2091_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2092_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2093_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2094_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_rat @ I @ K )
        = ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2095_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2096_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2097_group__cancel_Oadd1,axiom,
    ! [A3: real,K: real,A: real,B: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A3 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2098_group__cancel_Oadd1,axiom,
    ! [A3: rat,K: rat,A: rat,B: rat] :
      ( ( A3
        = ( plus_plus_rat @ K @ A ) )
     => ( ( plus_plus_rat @ A3 @ B )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2099_group__cancel_Oadd1,axiom,
    ! [A3: nat,K: nat,A: nat,B: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A3 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2100_group__cancel_Oadd1,axiom,
    ! [A3: int,K: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A3 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2101_group__cancel_Oadd2,axiom,
    ! [B5: real,K: real,B: real,A: real] :
      ( ( B5
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B5 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2102_group__cancel_Oadd2,axiom,
    ! [B5: rat,K: rat,B: rat,A: rat] :
      ( ( B5
        = ( plus_plus_rat @ K @ B ) )
     => ( ( plus_plus_rat @ A @ B5 )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2103_group__cancel_Oadd2,axiom,
    ! [B5: nat,K: nat,B: nat,A: nat] :
      ( ( B5
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B5 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2104_group__cancel_Oadd2,axiom,
    ! [B5: int,K: int,B: int,A: int] :
      ( ( B5
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B5 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2105_group__cancel_Osub1,axiom,
    ! [A3: real,K: real,A: real,B: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A3 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_2106_group__cancel_Osub1,axiom,
    ! [A3: rat,K: rat,A: rat,B: rat] :
      ( ( A3
        = ( plus_plus_rat @ K @ A ) )
     => ( ( minus_minus_rat @ A3 @ B )
        = ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_2107_group__cancel_Osub1,axiom,
    ! [A3: int,K: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A3 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_2108_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_2109_diff__eq__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = C )
      = ( A
        = ( plus_plus_rat @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_2110_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_2111_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_2112_eq__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( A
        = ( minus_minus_rat @ C @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_2113_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_2114_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_2115_add__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_2116_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_2117_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_2118_diff__diff__eq2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_2119_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_2120_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_2121_add_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.assoc
thf(fact_2122_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_2123_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_2124_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_2125_diff__add__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_2126_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_2127_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_2128_add_Oleft__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_2129_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_2130_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D3 ) )
     => ( ( A = B )
        = ( C = D3 ) ) ) ).

% diff_eq_diff_eq
thf(fact_2131_diff__eq__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D3 ) )
     => ( ( A = B )
        = ( C = D3 ) ) ) ).

% diff_eq_diff_eq
thf(fact_2132_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D3 ) )
     => ( ( A = B )
        = ( C = D3 ) ) ) ).

% diff_eq_diff_eq
thf(fact_2133_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_2134_add_Oright__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_2135_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_2136_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A4: real,B3: real] : ( plus_plus_real @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_2137_add_Ocommute,axiom,
    ( plus_plus_rat
    = ( ^ [A4: rat,B3: rat] : ( plus_plus_rat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_2138_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( plus_plus_nat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_2139_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_2140_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2141_add_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2142_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2143_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2144_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2145_add__left__imp__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2146_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2147_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2148_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_2149_diff__add__eq__diff__diff__swap,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_2150_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_2151_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2152_add__right__imp__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2153_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2154_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2155_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2156_add__implies__diff,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ( plus_plus_rat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_rat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2157_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2158_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2159_diff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2160_diff__right__commute,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2161_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2162_diff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2163_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2164_diff__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2165_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2166_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2167_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D3: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D3 ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D3 ) ) ) ).

% add_diff_add
thf(fact_2168_add__diff__add,axiom,
    ! [A: rat,C: rat,B: rat,D3: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D3 ) )
      = ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D3 ) ) ) ).

% add_diff_add
thf(fact_2169_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D3: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D3 ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D3 ) ) ) ).

% add_diff_add
thf(fact_2170_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_2171_is__num__normalize_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_2172_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_2173_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_2174_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_2175_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_2176_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_2177_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_2178_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_2179_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri8010041392384452111omplex @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ) ).

% of_nat_diff
thf(fact_2180_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% of_nat_diff
thf(fact_2181_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_2182_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% of_nat_diff
thf(fact_2183_of__nat__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% of_nat_diff
thf(fact_2184_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_2185_int__minus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_2186_ceiling__add__le,axiom,
    ! [X3: rat,Y3: rat] : ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( plus_plus_rat @ X3 @ Y3 ) ) @ ( plus_plus_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( archim2889992004027027881ng_rat @ Y3 ) ) ) ).

% ceiling_add_le
thf(fact_2187_ceiling__add__le,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( plus_plus_real @ X3 @ Y3 ) ) @ ( plus_plus_int @ ( archim7802044766580827645g_real @ X3 ) @ ( archim7802044766580827645g_real @ Y3 ) ) ) ).

% ceiling_add_le
thf(fact_2188_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D3 ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D3 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2189_diff__eq__diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D3 ) )
     => ( ( ord_less_eq_rat @ A @ B )
        = ( ord_less_eq_rat @ C @ D3 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2190_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D3 ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D3 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2191_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2192_diff__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2193_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2194_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2195_diff__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2196_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2197_diff__mono,axiom,
    ! [A: real,B: real,D3: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D3 @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D3 ) ) ) ) ).

% diff_mono
thf(fact_2198_diff__mono,axiom,
    ! [A: rat,B: rat,D3: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ D3 @ C )
       => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D3 ) ) ) ) ).

% diff_mono
thf(fact_2199_diff__mono,axiom,
    ! [A: int,B: int,D3: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D3 @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D3 ) ) ) ) ).

% diff_mono
thf(fact_2200_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: real,Z2: real] : ( Y5 = Z2 ) )
    = ( ^ [A4: real,B3: real] :
          ( ( minus_minus_real @ A4 @ B3 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2201_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: rat,Z2: rat] : ( Y5 = Z2 ) )
    = ( ^ [A4: rat,B3: rat] :
          ( ( minus_minus_rat @ A4 @ B3 )
          = zero_zero_rat ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2202_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( minus_minus_int @ A4 @ B3 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2203_diff__strict__mono,axiom,
    ! [A: real,B: real,D3: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D3 @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D3 ) ) ) ) ).

% diff_strict_mono
thf(fact_2204_diff__strict__mono,axiom,
    ! [A: rat,B: rat,D3: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ D3 @ C )
       => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D3 ) ) ) ) ).

% diff_strict_mono
thf(fact_2205_diff__strict__mono,axiom,
    ! [A: int,B: int,D3: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D3 @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D3 ) ) ) ) ).

% diff_strict_mono
thf(fact_2206_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D3 ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D3 ) ) ) ).

% diff_eq_diff_less
thf(fact_2207_diff__eq__diff__less,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D3 ) )
     => ( ( ord_less_rat @ A @ B )
        = ( ord_less_rat @ C @ D3 ) ) ) ).

% diff_eq_diff_less
thf(fact_2208_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D3 ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D3 ) ) ) ).

% diff_eq_diff_less
thf(fact_2209_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2210_diff__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2211_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2212_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2213_diff__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2214_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2215_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2216_add__le__imp__le__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2217_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2218_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2219_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2220_add__le__imp__le__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2221_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2222_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2223_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
        ? [C3: nat] :
          ( B3
          = ( plus_plus_nat @ A4 @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_2224_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2225_add__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2226_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2227_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2228_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( B
           != ( plus_plus_nat @ A @ C2 ) ) ) ).

% less_eqE
thf(fact_2229_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2230_add__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2231_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2232_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2233_add__mono,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D3 )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D3 ) ) ) ) ).

% add_mono
thf(fact_2234_add__mono,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D3 )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D3 ) ) ) ) ).

% add_mono
thf(fact_2235_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D3 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D3 ) ) ) ) ).

% add_mono
thf(fact_2236_add__mono,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D3 )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D3 ) ) ) ) ).

% add_mono
thf(fact_2237_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2238_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2239_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2240_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2241_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2242_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2243_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2244_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2245_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2246_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2247_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2248_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2249_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_2250_verit__sum__simplify,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% verit_sum_simplify
thf(fact_2251_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_2252_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_2253_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2254_add_Ogroup__left__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2255_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2256_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_2257_add_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.comm_neutral
thf(fact_2258_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_2259_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_2260_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2261_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2262_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2263_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2264_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2265_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2266_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2267_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2268_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2269_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2270_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2271_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2272_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2273_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( K = L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2274_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2275_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2276_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D3 )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D3 ) ) ) ) ).

% add_strict_mono
thf(fact_2277_add__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D3 )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D3 ) ) ) ) ).

% add_strict_mono
thf(fact_2278_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D3 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D3 ) ) ) ) ).

% add_strict_mono
thf(fact_2279_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D3 )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D3 ) ) ) ) ).

% add_strict_mono
thf(fact_2280_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2281_add__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2282_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2283_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2284_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2285_add__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2286_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2287_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2288_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2289_add__less__imp__less__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2290_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2291_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2292_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2293_add__less__imp__less__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2294_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2295_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2296_power__divide,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N )
      = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_divide
thf(fact_2297_power__divide,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
      = ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_divide
thf(fact_2298_power__divide,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N )
      = ( divide_divide_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_divide
thf(fact_2299_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_2300_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_2301_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_2302_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_2303_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_2304_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_2305_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_2306_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_2307_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_2308_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_2309_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_2310_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_2311_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_2312_div__le__mono,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_2313_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_2314_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_2315_int__diff__cases,axiom,
    ! [Z: int] :
      ~ ! [M4: nat,N2: nat] :
          ( Z
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M4 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_diff_cases
thf(fact_2316_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% dvd_diff_nat
thf(fact_2317_take__bit__add,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ A @ B ) ) ) ).

% take_bit_add
thf(fact_2318_take__bit__add,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) )
      = ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ A @ B ) ) ) ).

% take_bit_add
thf(fact_2319_zdvd__zdiffD,axiom,
    ! [K: int,M: int,N: int] :
      ( ( dvd_dvd_int @ K @ ( minus_minus_int @ M @ N ) )
     => ( ( dvd_dvd_int @ K @ N )
       => ( dvd_dvd_int @ K @ M ) ) ) ).

% zdvd_zdiffD
thf(fact_2320_take__bit__diff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).

% take_bit_diff
thf(fact_2321_ln__eq__minus__one,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ( ln_ln_real @ X3 )
          = ( minus_minus_real @ X3 @ one_one_real ) )
       => ( X3 = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_2322_ln__add__one__self__le__self,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X3 ) ) @ X3 ) ) ).

% ln_add_one_self_le_self
thf(fact_2323_artanh__def,axiom,
    ( artanh_real
    = ( ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X ) @ ( minus_minus_real @ one_one_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% artanh_def
thf(fact_2324_field__sum__of__halves,axiom,
    ! [X3: real] :
      ( ( plus_plus_real @ ( divide_divide_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = X3 ) ).

% field_sum_of_halves
thf(fact_2325_field__sum__of__halves,axiom,
    ! [X3: rat] :
      ( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X3 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = X3 ) ).

% field_sum_of_halves
thf(fact_2326_power__diff,axiom,
    ! [A: complex,N: nat,M: nat] :
      ( ( A != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_2327_power__diff,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( A != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_2328_power__diff,axiom,
    ! [A: rat,N: nat,M: nat] :
      ( ( A != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_2329_power__diff,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_2330_power__diff,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_2331_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_2332_nat__diff__distrib,axiom,
    ! [Z5: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z5 )
     => ( ( ord_less_eq_int @ Z5 @ Z )
       => ( ( nat2 @ ( minus_minus_int @ Z @ Z5 ) )
          = ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z5 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_2333_nat__diff__distrib_H,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ( nat2 @ ( minus_minus_int @ X3 @ Y3 ) )
          = ( minus_minus_nat @ ( nat2 @ X3 ) @ ( nat2 @ Y3 ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_2334_unset__bit__nat__def,axiom,
    ( bit_se4205575877204974255it_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M3 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% unset_bit_nat_def
thf(fact_2335_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X: real] : ( plus_plus_real @ X @ X ) ) ) ).

% dbl_def
thf(fact_2336_dbl__def,axiom,
    ( neg_numeral_dbl_rat
    = ( ^ [X: rat] : ( plus_plus_rat @ X @ X ) ) ) ).

% dbl_def
thf(fact_2337_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X: int] : ( plus_plus_int @ X @ X ) ) ) ).

% dbl_def
thf(fact_2338_unset__bit__less__eq,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ K ) ).

% unset_bit_less_eq
thf(fact_2339_set__bit__greater__eq,axiom,
    ! [K: int,N: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N @ K ) ) ).

% set_bit_greater_eq
thf(fact_2340_ln__le__minus__one,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ ( minus_minus_real @ X3 @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_2341_field__less__half__sum,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ord_less_real @ X3 @ ( divide_divide_real @ ( plus_plus_real @ X3 @ Y3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_2342_field__less__half__sum,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ Y3 )
     => ( ord_less_rat @ X3 @ ( divide_divide_rat @ ( plus_plus_rat @ X3 @ Y3 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_2343_power__diff__power__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_2344_power__diff__power__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_2345_ln__less__self,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_real @ ( ln_ln_real @ X3 ) @ X3 ) ) ).

% ln_less_self
thf(fact_2346_zdiff__int__split,axiom,
    ! [P: int > $o,X3: nat,Y3: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X3 @ Y3 ) ) )
      = ( ( ( ord_less_eq_nat @ Y3 @ X3 )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( semiri1314217659103216013at_int @ Y3 ) ) ) )
        & ( ( ord_less_nat @ X3 @ Y3 )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_2347_even__diff__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_diff_iff
thf(fact_2348_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B3: real] : ( ord_less_eq_real @ ( minus_minus_real @ A4 @ B3 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_2349_le__iff__diff__le__0,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B3: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A4 @ B3 ) @ zero_zero_rat ) ) ) ).

% le_iff_diff_le_0
thf(fact_2350_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B3: int] : ( ord_less_eq_int @ ( minus_minus_int @ A4 @ B3 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_2351_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B3: real] : ( ord_less_real @ ( minus_minus_real @ A4 @ B3 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_2352_less__iff__diff__less__0,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B3: rat] : ( ord_less_rat @ ( minus_minus_rat @ A4 @ B3 ) @ zero_zero_rat ) ) ) ).

% less_iff_diff_less_0
thf(fact_2353_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B3: int] : ( ord_less_int @ ( minus_minus_int @ A4 @ B3 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_2354_divide__numeral__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_2355_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_2356_divide__numeral__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_2357_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2358_add__decreasing,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2359_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2360_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_2361_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2362_add__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2363_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2364_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_2365_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2366_add__decreasing2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2367_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2368_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_2369_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2370_add__increasing2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2371_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2372_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_2373_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2374_add__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2375_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2376_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_2377_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_2378_add__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_nonpos
thf(fact_2379_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_2380_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_2381_add__nonneg__eq__0__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ( plus_plus_real @ X3 @ Y3 )
            = zero_zero_real )
          = ( ( X3 = zero_zero_real )
            & ( Y3 = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2382_add__nonneg__eq__0__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ( ( plus_plus_rat @ X3 @ Y3 )
            = zero_zero_rat )
          = ( ( X3 = zero_zero_rat )
            & ( Y3 = zero_zero_rat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2383_add__nonneg__eq__0__iff,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
       => ( ( ( plus_plus_nat @ X3 @ Y3 )
            = zero_zero_nat )
          = ( ( X3 = zero_zero_nat )
            & ( Y3 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2384_add__nonneg__eq__0__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ( ( plus_plus_int @ X3 @ Y3 )
            = zero_zero_int )
          = ( ( X3 = zero_zero_int )
            & ( Y3 = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_2385_add__nonpos__eq__0__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
       => ( ( ( plus_plus_real @ X3 @ Y3 )
            = zero_zero_real )
          = ( ( X3 = zero_zero_real )
            & ( Y3 = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2386_add__nonpos__eq__0__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y3 @ zero_zero_rat )
       => ( ( ( plus_plus_rat @ X3 @ Y3 )
            = zero_zero_rat )
          = ( ( X3 = zero_zero_rat )
            & ( Y3 = zero_zero_rat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2387_add__nonpos__eq__0__iff,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X3 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y3 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X3 @ Y3 )
            = zero_zero_nat )
          = ( ( X3 = zero_zero_nat )
            & ( Y3 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2388_add__nonpos__eq__0__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y3 @ zero_zero_int )
       => ( ( ( plus_plus_int @ X3 @ Y3 )
            = zero_zero_int )
          = ( ( X3 = zero_zero_int )
            & ( Y3 = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_2389_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D3 )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D3 ) ) ) ) ).

% add_less_le_mono
thf(fact_2390_add__less__le__mono,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D3 )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D3 ) ) ) ) ).

% add_less_le_mono
thf(fact_2391_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D3 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D3 ) ) ) ) ).

% add_less_le_mono
thf(fact_2392_add__less__le__mono,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D3 )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D3 ) ) ) ) ).

% add_less_le_mono
thf(fact_2393_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D3 )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D3 ) ) ) ) ).

% add_le_less_mono
thf(fact_2394_add__le__less__mono,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D3 )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D3 ) ) ) ) ).

% add_le_less_mono
thf(fact_2395_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D3 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D3 ) ) ) ) ).

% add_le_less_mono
thf(fact_2396_add__le__less__mono,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D3 )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D3 ) ) ) ) ).

% add_le_less_mono
thf(fact_2397_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2398_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2399_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2400_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2401_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2402_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2403_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2404_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2405_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_2406_add__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_neg
thf(fact_2407_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_2408_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_2409_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2410_add__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2411_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2412_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_2413_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_2414_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2415_pos__add__strict,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2416_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2417_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_2418_add__less__zeroD,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X3 @ Y3 ) @ zero_zero_real )
     => ( ( ord_less_real @ X3 @ zero_zero_real )
        | ( ord_less_real @ Y3 @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_2419_add__less__zeroD,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ X3 @ Y3 ) @ zero_zero_rat )
     => ( ( ord_less_rat @ X3 @ zero_zero_rat )
        | ( ord_less_rat @ Y3 @ zero_zero_rat ) ) ) ).

% add_less_zeroD
thf(fact_2420_add__less__zeroD,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X3 @ Y3 ) @ zero_zero_int )
     => ( ( ord_less_int @ X3 @ zero_zero_int )
        | ( ord_less_int @ Y3 @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_2421_dvd__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_2422_dvd__div__eq__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_2423_dvd__div__eq__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( ( divide_divide_real @ A @ B )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_2424_dvd__div__eq__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( ( divide_divide_rat @ A @ B )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_2425_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_2426_dvd__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_2427_power__one__over,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N ) ) ) ).

% power_one_over
thf(fact_2428_power__one__over,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% power_one_over
thf(fact_2429_power__one__over,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N )
      = ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% power_one_over
thf(fact_2430_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_2431_add__mono1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).

% add_mono1
thf(fact_2432_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_2433_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_2434_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_2435_less__add__one,axiom,
    ! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).

% less_add_one
thf(fact_2436_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_2437_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_2438_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_Bit0
thf(fact_2439_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_Bit0
thf(fact_2440_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_Bit0
thf(fact_2441_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_2442_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_2443_one__plus__numeral__commute,axiom,
    ! [X3: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X3 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X3 ) @ one_one_complex ) ) ).

% one_plus_numeral_commute
thf(fact_2444_one__plus__numeral__commute,axiom,
    ! [X3: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X3 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X3 ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_2445_one__plus__numeral__commute,axiom,
    ! [X3: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X3 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X3 ) @ one_one_rat ) ) ).

% one_plus_numeral_commute
thf(fact_2446_one__plus__numeral__commute,axiom,
    ! [X3: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X3 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X3 ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_2447_one__plus__numeral__commute,axiom,
    ! [X3: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X3 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X3 ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_2448_div__power,axiom,
    ! [B: code_integer,A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N )
        = ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% div_power
thf(fact_2449_div__power,axiom,
    ! [B: nat,A: nat,N: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% div_power
thf(fact_2450_div__power,axiom,
    ! [B: int,A: int,N: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
        = ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% div_power
thf(fact_2451_pinf_I9_J,axiom,
    ! [D3: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X6: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z3 @ X6 )
     => ( ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) )
        = ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2452_pinf_I9_J,axiom,
    ! [D3: real,S: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) )
        = ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2453_pinf_I9_J,axiom,
    ! [D3: rat,S: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ( ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) )
        = ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2454_pinf_I9_J,axiom,
    ! [D3: nat,S: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) )
        = ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2455_pinf_I9_J,axiom,
    ! [D3: int,S: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) )
        = ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) ) ) ) ).

% pinf(9)
thf(fact_2456_pinf_I10_J,axiom,
    ! [D3: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X6: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z3 @ X6 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2457_pinf_I10_J,axiom,
    ! [D3: real,S: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( ( ~ ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2458_pinf_I10_J,axiom,
    ! [D3: rat,S: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ Z3 @ X6 )
     => ( ( ~ ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2459_pinf_I10_J,axiom,
    ! [D3: nat,S: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( ( ~ ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2460_pinf_I10_J,axiom,
    ! [D3: int,S: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_2461_minf_I9_J,axiom,
    ! [D3: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X6: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X6 @ Z3 )
     => ( ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) )
        = ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) ) ) ) ).

% minf(9)
thf(fact_2462_minf_I9_J,axiom,
    ! [D3: real,S: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) )
        = ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) ) ) ) ).

% minf(9)
thf(fact_2463_minf_I9_J,axiom,
    ! [D3: rat,S: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ( ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) )
        = ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) ) ) ) ).

% minf(9)
thf(fact_2464_minf_I9_J,axiom,
    ! [D3: nat,S: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) )
        = ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) ) ) ) ).

% minf(9)
thf(fact_2465_minf_I9_J,axiom,
    ! [D3: int,S: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) )
        = ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) ) ) ) ).

% minf(9)
thf(fact_2466_minf_I10_J,axiom,
    ! [D3: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X6: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X6 @ Z3 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2467_minf_I10_J,axiom,
    ! [D3: real,S: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( ( ~ ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2468_minf_I10_J,axiom,
    ! [D3: rat,S: rat] :
    ? [Z3: rat] :
    ! [X6: rat] :
      ( ( ord_less_rat @ X6 @ Z3 )
     => ( ( ~ ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2469_minf_I10_J,axiom,
    ! [D3: nat,S: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( ( ~ ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D3 @ ( plus_plus_nat @ X6 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2470_minf_I10_J,axiom,
    ! [D3: int,S: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_2471_ln__one__plus__pos__lower__bound,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ord_less_eq_real @ ( minus_minus_real @ X3 @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X3 ) ) ) ) ) ).

% ln_one_plus_pos_lower_bound
thf(fact_2472_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_2473_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_2474_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_2475_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_2476_arcosh__real__def,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ one_one_real @ X3 )
     => ( ( arcosh_real @ X3 )
        = ( ln_ln_real @ ( plus_plus_real @ X3 @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arcosh_real_def
thf(fact_2477_dvd__minus__self,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
      = ( ( ord_less_nat @ N @ M )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_minus_self
thf(fact_2478_int__le__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_le_induct
thf(fact_2479_int__less__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_less_induct
thf(fact_2480_dvd__diffD,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ M ) ) ) ) ).

% dvd_diffD
thf(fact_2481_dvd__diffD1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ M )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ N ) ) ) ) ).

% dvd_diffD1
thf(fact_2482_less__eq__dvd__minus,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( dvd_dvd_nat @ M @ N )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_2483_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_2484_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_2485_zless__add1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z )
        | ( W = Z ) ) ) ).

% zless_add1_eq
thf(fact_2486_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_2487_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z6: int] :
        ? [N3: nat] :
          ( Z6
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_2488_ln__bound,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ X3 ) ) ).

% ln_bound
thf(fact_2489_ln__gt__zero__imp__gt__one,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ord_less_real @ one_one_real @ X3 ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_2490_ln__less__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X3 ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_2491_ln__gt__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X3 ) ) ) ).

% ln_gt_zero
thf(fact_2492_ln__ge__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ one_one_real @ X3 )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X3 ) ) ) ).

% ln_ge_zero
thf(fact_2493_arsinh__real__def,axiom,
    ( arsinh_real
    = ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arsinh_real_def
thf(fact_2494_ceiling__eq,axiom,
    ! [N: int,X3: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim7802044766580827645g_real @ X3 )
          = ( plus_plus_int @ N @ one_one_int ) ) ) ) ).

% ceiling_eq
thf(fact_2495_ceiling__eq,axiom,
    ! [N: int,X3: rat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ N ) @ X3 )
     => ( ( ord_less_eq_rat @ X3 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ N ) @ one_one_rat ) )
       => ( ( archim2889992004027027881ng_rat @ X3 )
          = ( plus_plus_int @ N @ one_one_int ) ) ) ) ).

% ceiling_eq
thf(fact_2496_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_2497_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_2498_add__strict__increasing2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2499_add__strict__increasing2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2500_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2501_add__strict__increasing2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_2502_add__strict__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2503_add__strict__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2504_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2505_add__strict__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_2506_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2507_add__pos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2508_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2509_add__pos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_2510_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_2511_add__nonpos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_neg
thf(fact_2512_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_2513_add__nonpos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_2514_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2515_add__nonneg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2516_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2517_add__nonneg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_2518_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_2519_add__neg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_nonpos
thf(fact_2520_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_2521_add__neg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_2522_unit__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% unit_div_eq_0_iff
thf(fact_2523_unit__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_2524_unit__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_2525_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_2526_zero__less__two,axiom,
    ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).

% zero_less_two
thf(fact_2527_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_2528_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_2529_take__bit__incr__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
       != ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
     => ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
        = ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).

% take_bit_incr_eq
thf(fact_2530_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_2531_div__le__mono2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_2532_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_2533_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_2534_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_2535_sqrt__add__le__add__sqrt,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X3 @ Y3 ) ) @ ( plus_plus_real @ ( sqrt @ X3 ) @ ( sqrt @ Y3 ) ) ) ) ) ).

% sqrt_add_le_add_sqrt
thf(fact_2536_zless__imp__add1__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_2537_add1__zle__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
      = ( ord_less_int @ W @ Z ) ) ).

% add1_zle_eq
thf(fact_2538_take__bit__decr__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
       != zero_zero_int )
     => ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ one_one_int ) )
        = ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ one_one_int ) ) ) ).

% take_bit_decr_eq
thf(fact_2539_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_2540_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_2541_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_2542_ln__ge__zero__imp__ge__one,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X3 ) )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_2543_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_2544_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_2545_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_2546_stable__imp__take__bit__eq,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se1745604003318907178nteger @ N @ A )
            = zero_z3403309356797280102nteger ) )
        & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se1745604003318907178nteger @ N @ A )
            = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_2547_stable__imp__take__bit__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2923211474154528505it_int @ N @ A )
            = zero_zero_int ) )
        & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2923211474154528505it_int @ N @ A )
            = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_2548_stable__imp__take__bit__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2925701944663578781it_nat @ N @ A )
            = zero_zero_nat ) )
        & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( bit_se2925701944663578781it_nat @ N @ A )
            = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ).

% stable_imp_take_bit_eq
thf(fact_2549_bit__eq__rec,axiom,
    ( ( ^ [Y5: code_integer,Z2: code_integer] : ( Y5 = Z2 ) )
    = ( ^ [A4: code_integer,B3: code_integer] :
          ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = ( divide6298287555418463151nteger @ B3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_2550_bit__eq__rec,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_2551_bit__eq__rec,axiom,
    ( ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    = ( ^ [A4: int,B3: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) )
          & ( ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_2552_power2__commute,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ ( minus_minus_complex @ Y3 @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_2553_power2__commute,axiom,
    ! [X3: real,Y3: real] :
      ( ( power_power_real @ ( minus_minus_real @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ ( minus_minus_real @ Y3 @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_2554_power2__commute,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ ( minus_minus_rat @ Y3 @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_2555_power2__commute,axiom,
    ! [X3: int,Y3: int] :
      ( ( power_power_int @ ( minus_minus_int @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y3 @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_2556_odd__even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_2557_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_2558_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_2559_of__int__ceiling__diff__one__le,axiom,
    ! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R2 ) ) @ one_one_real ) @ R2 ) ).

% of_int_ceiling_diff_one_le
thf(fact_2560_of__int__ceiling__diff__one__le,axiom,
    ! [R2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R2 ) ) @ one_one_rat ) @ R2 ) ).

% of_int_ceiling_diff_one_le
thf(fact_2561_floor__exists1,axiom,
    ! [X3: real] :
    ? [X4: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X4 ) @ X3 )
      & ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ X4 @ one_one_int ) ) )
      & ! [Y6: int] :
          ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y6 ) @ X3 )
            & ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ Y6 @ one_one_int ) ) ) )
         => ( Y6 = X4 ) ) ) ).

% floor_exists1
thf(fact_2562_floor__exists1,axiom,
    ! [X3: rat] :
    ? [X4: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X4 ) @ X3 )
      & ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ X4 @ one_one_int ) ) )
      & ! [Y6: int] :
          ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y6 ) @ X3 )
            & ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y6 @ one_one_int ) ) ) )
         => ( Y6 = X4 ) ) ) ).

% floor_exists1
thf(fact_2563_floor__exists,axiom,
    ! [X3: real] :
    ? [Z3: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ X3 )
      & ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z3 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_2564_floor__exists,axiom,
    ! [X3: rat] :
    ? [Z3: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ X3 )
      & ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z3 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_2565_take__bit__set__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se7879613467334960850it_int @ M @ A ) )
          = ( bit_se7879613467334960850it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_set_bit_eq
thf(fact_2566_take__bit__set__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se7882103937844011126it_nat @ M @ A ) )
          = ( bit_se7882103937844011126it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_set_bit_eq
thf(fact_2567_take__bit__flip__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se2159334234014336723it_int @ M @ A ) )
          = ( bit_se2159334234014336723it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_flip_bit_eq
thf(fact_2568_take__bit__flip__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se2161824704523386999it_nat @ M @ A ) )
          = ( bit_se2161824704523386999it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_flip_bit_eq
thf(fact_2569_take__bit__unset__bit__eq,axiom,
    ! [N: nat,M: nat,A: int] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
          = ( bit_se2923211474154528505it_int @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2923211474154528505it_int @ N @ ( bit_se4203085406695923979it_int @ M @ A ) )
          = ( bit_se4203085406695923979it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) ) ) ) ) ).

% take_bit_unset_bit_eq
thf(fact_2570_take__bit__unset__bit__eq,axiom,
    ! [N: nat,M: nat,A: nat] :
      ( ( ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
          = ( bit_se2925701944663578781it_nat @ N @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ N @ M )
       => ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se4205575877204974255it_nat @ M @ A ) )
          = ( bit_se4205575877204974255it_nat @ M @ ( bit_se2925701944663578781it_nat @ N @ A ) ) ) ) ) ).

% take_bit_unset_bit_eq
thf(fact_2571_of__int__ceiling__le__add__one,axiom,
    ! [R2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ R2 ) ) @ ( plus_plus_real @ R2 @ one_one_real ) ) ).

% of_int_ceiling_le_add_one
thf(fact_2572_of__int__ceiling__le__add__one,axiom,
    ! [R2: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ R2 ) ) @ ( plus_plus_rat @ R2 @ one_one_rat ) ) ).

% of_int_ceiling_le_add_one
thf(fact_2573_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).

% nat_less_real_le
thf(fact_2574_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N3: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_2575_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_2576_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N3: int,M3: int] : ( ord_less_real @ ( ring_1_of_int_real @ N3 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M3 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_2577_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N3: int,M3: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N3 ) @ one_one_real ) @ ( ring_1_of_int_real @ M3 ) ) ) ) ).

% int_less_real_le
thf(fact_2578_half__gt__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_2579_half__gt__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_2580_half__gt__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% half_gt_zero_iff
thf(fact_2581_half__gt__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% half_gt_zero_iff
thf(fact_2582_inverse__of__nat__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( N != zero_zero_nat )
       => ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_2583_inverse__of__nat__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( N != zero_zero_nat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_2584_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_2585_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_2586_ceiling__split,axiom,
    ! [P: int > $o,T: real] :
      ( ( P @ ( archim7802044766580827645g_real @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ I4 ) @ one_one_real ) @ T )
              & ( ord_less_eq_real @ T @ ( ring_1_of_int_real @ I4 ) ) )
           => ( P @ I4 ) ) ) ) ).

% ceiling_split
thf(fact_2587_ceiling__split,axiom,
    ! [P: int > $o,T: rat] :
      ( ( P @ ( archim2889992004027027881ng_rat @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ I4 ) @ one_one_rat ) @ T )
              & ( ord_less_eq_rat @ T @ ( ring_1_of_int_rat @ I4 ) ) )
           => ( P @ I4 ) ) ) ) ).

% ceiling_split
thf(fact_2588_ceiling__eq__iff,axiom,
    ! [X3: real,A: int] :
      ( ( ( archim7802044766580827645g_real @ X3 )
        = A )
      = ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) @ X3 )
        & ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ A ) ) ) ) ).

% ceiling_eq_iff
thf(fact_2589_ceiling__eq__iff,axiom,
    ! [X3: rat,A: int] :
      ( ( ( archim2889992004027027881ng_rat @ X3 )
        = A )
      = ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) @ X3 )
        & ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ A ) ) ) ) ).

% ceiling_eq_iff
thf(fact_2590_ceiling__unique,axiom,
    ! [Z: int,X3: real] :
      ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ Z ) )
       => ( ( archim7802044766580827645g_real @ X3 )
          = Z ) ) ) ).

% ceiling_unique
thf(fact_2591_ceiling__unique,axiom,
    ! [Z: int,X3: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X3 )
     => ( ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ Z ) )
       => ( ( archim2889992004027027881ng_rat @ X3 )
          = Z ) ) ) ).

% ceiling_unique
thf(fact_2592_ceiling__correct,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X3 ) ) @ one_one_real ) @ X3 )
      & ( ord_less_eq_real @ X3 @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X3 ) ) ) ) ).

% ceiling_correct
thf(fact_2593_ceiling__correct,axiom,
    ! [X3: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X3 ) ) @ one_one_rat ) @ X3 )
      & ( ord_less_eq_rat @ X3 @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ X3 ) ) ) ) ).

% ceiling_correct
thf(fact_2594_diff__le__diff__pow,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) ) ) ) ).

% diff_le_diff_pow
thf(fact_2595_ceiling__less__iff,axiom,
    ! [X3: real,Z: int] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X3 ) @ Z )
      = ( ord_less_eq_real @ X3 @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) ) ) ).

% ceiling_less_iff
thf(fact_2596_ceiling__less__iff,axiom,
    ! [X3: rat,Z: int] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X3 ) @ Z )
      = ( ord_less_eq_rat @ X3 @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) ) ) ).

% ceiling_less_iff
thf(fact_2597_le__ceiling__iff,axiom,
    ! [Z: int,X3: rat] :
      ( ( ord_less_eq_int @ Z @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X3 ) ) ).

% le_ceiling_iff
thf(fact_2598_le__ceiling__iff,axiom,
    ! [Z: int,X3: real] :
      ( ( ord_less_eq_int @ Z @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ ( minus_minus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X3 ) ) ).

% le_ceiling_iff
thf(fact_2599_sum__power2__ge__zero,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_2600_sum__power2__ge__zero,axiom,
    ! [X3: rat,Y3: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_2601_sum__power2__ge__zero,axiom,
    ! [X3: int,Y3: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_2602_sum__power2__le__zero__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
      = ( ( X3 = zero_zero_real )
        & ( Y3 = zero_zero_real ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_2603_sum__power2__le__zero__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
      = ( ( X3 = zero_zero_rat )
        & ( Y3 = zero_zero_rat ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_2604_sum__power2__le__zero__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X3 = zero_zero_int )
        & ( Y3 = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_2605_not__sum__power2__lt__zero,axiom,
    ! [X3: real,Y3: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).

% not_sum_power2_lt_zero
thf(fact_2606_not__sum__power2__lt__zero,axiom,
    ! [X3: rat,Y3: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).

% not_sum_power2_lt_zero
thf(fact_2607_not__sum__power2__lt__zero,axiom,
    ! [X3: int,Y3: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_2608_sum__power2__gt__zero__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X3 != zero_zero_real )
        | ( Y3 != zero_zero_real ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_2609_sum__power2__gt__zero__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X3 != zero_zero_rat )
        | ( Y3 != zero_zero_rat ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_2610_sum__power2__gt__zero__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X3 != zero_zero_int )
        | ( Y3 != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_2611_real__sqrt__sum__squares__eq__cancel,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = X3 )
     => ( Y3 = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel
thf(fact_2612_real__sqrt__sum__squares__eq__cancel2,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = Y3 )
     => ( X3 = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel2
thf(fact_2613_real__sqrt__sum__squares__ge1,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge1
thf(fact_2614_real__sqrt__sum__squares__ge2,axiom,
    ! [Y3: real,X3: real] : ( ord_less_eq_real @ Y3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge2
thf(fact_2615_real__sqrt__sum__squares__triangle__ineq,axiom,
    ! [A: real,C: real,B: real,D3: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_triangle_ineq
thf(fact_2616_sqrt__sum__squares__le__sum,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X3 @ Y3 ) ) ) ) ).

% sqrt_sum_squares_le_sum
thf(fact_2617_sqrt__even__pow2,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% sqrt_even_pow2
thf(fact_2618_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_2619_le__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_2620_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_2621_le__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_2622_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_2623_divide__le__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_2624_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_2625_divide__le__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_2626_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_2627_divide__less__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% divide_less_0_1_iff
thf(fact_2628_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_2629_divide__less__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_2630_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_2631_divide__less__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_2632_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_2633_less__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_2634_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_2635_less__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_2636_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_2637_zero__less__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_2638_pow__sum,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).

% pow_sum
thf(fact_2639_divide__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divide_eq_0_iff
thf(fact_2640_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_2641_divide__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_eq_0_iff
thf(fact_2642_divide__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ C @ A )
        = ( divide1717551699836669952omplex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_2643_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_2644_divide__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( divide_divide_rat @ C @ A )
        = ( divide_divide_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_2645_divide__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_2646_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_2647_divide__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_2648_division__ring__divide__zero,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% division_ring_divide_zero
thf(fact_2649_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_2650_division__ring__divide__zero,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% division_ring_divide_zero
thf(fact_2651_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_2652_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_2653_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_2654_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_2655_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_2656_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_2657_divide__eq__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = one_one_complex )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2658_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2659_divide__eq__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = one_one_rat )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2660_one__eq__divide__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( one_one_complex
        = ( divide1717551699836669952omplex @ A @ B ) )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2661_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2662_one__eq__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ A @ B ) )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2663_divide__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% divide_self
thf(fact_2664_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_2665_divide__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% divide_self
thf(fact_2666_divide__self__if,axiom,
    ! [A: complex] :
      ( ( ( A = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = zero_zero_complex ) )
      & ( ( A != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = one_one_complex ) ) ) ).

% divide_self_if
thf(fact_2667_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_2668_divide__self__if,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = one_one_rat ) ) ) ).

% divide_self_if
thf(fact_2669_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_2670_divide__eq__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ A )
        = one_one_rat )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_2671_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_2672_eq__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ B @ A ) )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_2673_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_2674_one__divide__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( divide_divide_rat @ one_one_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% one_divide_eq_0_iff
thf(fact_2675_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_2676_zero__eq__1__divide__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( divide_divide_rat @ one_one_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_1_divide_iff
thf(fact_2677_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_2678_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_2679_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_2680_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_2681_div__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_2682_div__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_2683_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_2684_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_2685_zero__le__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_2686_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_2687_divide__le__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% divide_le_0_1_iff
thf(fact_2688_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_2689_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_2690_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_2691_even__diff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% even_diff_nat
thf(fact_2692_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_2693_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_2694_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_2695_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_2696_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_2697_real__of__int__div4,axiom,
    ! [N: int,X3: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X3 ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X3 ) ) ) ).

% real_of_int_div4
thf(fact_2698_real__of__int__div,axiom,
    ! [D3: int,N: int] :
      ( ( dvd_dvd_int @ D3 @ N )
     => ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D3 ) )
        = ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D3 ) ) ) ) ).

% real_of_int_div
thf(fact_2699_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_2700_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( P @ A5 @ B4 )
          = ( P @ B4 @ A5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B4: nat] :
              ( ( P @ A5 @ B4 )
             => ( P @ A5 @ ( plus_plus_nat @ A5 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_2701_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_2702_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_2703_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_2704_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_2705_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_2706_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_2707_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_2708_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_2709_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_2710_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_2711_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_2712_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_2713_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_2714_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_2715_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_2716_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_2717_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_2718_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_2719_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_2720_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_2721_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_2722_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_2723_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_2724_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K3: nat] :
          ( N3
          = ( plus_plus_nat @ M3 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_2725_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_2726_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_2727_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_2728_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_2729_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_2730_real__sqrt__divide,axiom,
    ! [X3: real,Y3: real] :
      ( ( sqrt @ ( divide_divide_real @ X3 @ Y3 ) )
      = ( divide_divide_real @ ( sqrt @ X3 ) @ ( sqrt @ Y3 ) ) ) ).

% real_sqrt_divide
thf(fact_2731_iadd__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_2732_add__diff__assoc__enat,axiom,
    ! [Z: extended_enat,Y3: extended_enat,X3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ Y3 )
     => ( ( plus_p3455044024723400733d_enat @ X3 @ ( minus_3235023915231533773d_enat @ Y3 @ Z ) )
        = ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X3 @ Y3 ) @ Z ) ) ) ).

% add_diff_assoc_enat
thf(fact_2733_real__of__int__div2,axiom,
    ! [N: int,X3: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X3 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X3 ) ) ) ) ).

% real_of_int_div2
thf(fact_2734_real__of__int__div3,axiom,
    ! [N: int,X3: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X3 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X3 ) ) ) @ one_one_real ) ).

% real_of_int_div3
thf(fact_2735_ln__div,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ( ln_ln_real @ ( divide_divide_real @ X3 @ Y3 ) )
          = ( minus_minus_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y3 ) ) ) ) ) ).

% ln_div
thf(fact_2736_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_2737_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D4: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D4 ) )
                & ~ ( P @ D4 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_2738_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D4: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D4 ) )
           => ( P @ D4 ) ) ) ) ).

% nat_diff_split
thf(fact_2739_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N2: nat] :
          ( ( ord_less_nat @ M4 @ N2 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_2740_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_2741_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_2742_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_2743_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_2744_ln__diff__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y3 ) ) @ ( divide_divide_real @ ( minus_minus_real @ X3 @ Y3 ) @ Y3 ) ) ) ) ).

% ln_diff_le
thf(fact_2745_linordered__field__no__ub,axiom,
    ! [X6: real] :
    ? [X_1: real] : ( ord_less_real @ X6 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_2746_linordered__field__no__ub,axiom,
    ! [X6: rat] :
    ? [X_1: rat] : ( ord_less_rat @ X6 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_2747_linordered__field__no__lb,axiom,
    ! [X6: real] :
    ? [Y4: real] : ( ord_less_real @ Y4 @ X6 ) ).

% linordered_field_no_lb
thf(fact_2748_linordered__field__no__lb,axiom,
    ! [X6: rat] :
    ? [Y4: rat] : ( ord_less_rat @ Y4 @ X6 ) ).

% linordered_field_no_lb
thf(fact_2749_real__div__sqrt,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( divide_divide_real @ X3 @ ( sqrt @ X3 ) )
        = ( sqrt @ X3 ) ) ) ).

% real_div_sqrt
thf(fact_2750_real__of__nat__div4,axiom,
    ! [N: nat,X3: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X3 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X3 ) ) ) ).

% real_of_nat_div4
thf(fact_2751_real__of__nat__div,axiom,
    ! [D3: nat,N: nat] :
      ( ( dvd_dvd_nat @ D3 @ N )
     => ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ D3 ) )
        = ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ D3 ) ) ) ) ).

% real_of_nat_div
thf(fact_2752_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_2753_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_2754_real__of__nat__div2,axiom,
    ! [N: nat,X3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X3 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X3 ) ) ) ) ).

% real_of_nat_div2
thf(fact_2755_nat__div__distrib_H,axiom,
    ! [Y3: int,X3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
     => ( ( nat2 @ ( divide_divide_int @ X3 @ Y3 ) )
        = ( divide_divide_nat @ ( nat2 @ X3 ) @ ( nat2 @ Y3 ) ) ) ) ).

% nat_div_distrib'
thf(fact_2756_nat__div__distrib,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( nat2 @ ( divide_divide_int @ X3 @ Y3 ) )
        = ( divide_divide_nat @ ( nat2 @ X3 ) @ ( nat2 @ Y3 ) ) ) ) ).

% nat_div_distrib
thf(fact_2757_real__of__nat__div3,axiom,
    ! [N: nat,X3: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X3 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X3 ) ) ) @ one_one_real ) ).

% real_of_nat_div3
thf(fact_2758_log__base__change,axiom,
    ! [A: real,B: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ B @ X3 )
          = ( divide_divide_real @ ( log @ A @ X3 ) @ ( log @ A @ B ) ) ) ) ) ).

% log_base_change
thf(fact_2759_log__divide,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( ord_less_real @ zero_zero_real @ Y3 )
           => ( ( log @ A @ ( divide_divide_real @ X3 @ Y3 ) )
              = ( minus_minus_real @ ( log @ A @ X3 ) @ ( log @ A @ Y3 ) ) ) ) ) ) ) ).

% log_divide
thf(fact_2760_nat__add__distrib,axiom,
    ! [Z: int,Z5: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z5 )
       => ( ( nat2 @ ( plus_plus_int @ Z @ Z5 ) )
          = ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z5 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_2761_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_2762_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_2763_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_2764_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_2765_div__exp__eq,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_2766_div__exp__eq,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_2767_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( P @ N2 )
             => ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_2768_log__base__pow,axiom,
    ! [A: real,N: nat,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( log @ ( power_power_real @ A @ N ) @ X3 )
        = ( divide_divide_real @ ( log @ A @ X3 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log_base_pow
thf(fact_2769_lemma__real__divide__sqrt__less,axiom,
    ! [U: real] :
      ( ( ord_less_real @ zero_zero_real @ U )
     => ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).

% lemma_real_divide_sqrt_less
thf(fact_2770_ln__sqrt,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ln_ln_real @ ( sqrt @ X3 ) )
        = ( divide_divide_real @ ( ln_ln_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% ln_sqrt
thf(fact_2771_dvd__field__iff,axiom,
    ( dvd_dvd_real
    = ( ^ [A4: real,B3: real] :
          ( ( A4 = zero_zero_real )
         => ( B3 = zero_zero_real ) ) ) ) ).

% dvd_field_iff
thf(fact_2772_dvd__field__iff,axiom,
    ( dvd_dvd_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( A4 = zero_zero_rat )
         => ( B3 = zero_zero_rat ) ) ) ) ).

% dvd_field_iff
thf(fact_2773_ex__power__ivl2,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
       => ? [N2: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_2774_ex__power__ivl1,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K )
       => ? [N2: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_2775_divide__right__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2776_divide__right__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_2777_divide__nonpos__nonpos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2778_divide__nonpos__nonpos,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y3 @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_2779_divide__nonpos__nonneg,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y3 ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2780_divide__nonpos__nonneg,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_nonneg
thf(fact_2781_divide__nonneg__nonpos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y3 ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2782_divide__nonneg__nonpos,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_eq_rat @ Y3 @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_nonpos
thf(fact_2783_divide__nonneg__nonneg,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2784_divide__nonneg__nonneg,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_2785_zero__le__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2786_zero__le__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_divide_iff
thf(fact_2787_divide__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2788_divide__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_2789_divide__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2790_divide__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_2791_divide__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2792_divide__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_2793_divide__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2794_divide__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_2795_zero__less__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2796_zero__less__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_divide_iff
thf(fact_2797_divide__less__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_2798_divide__less__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) )
        & ( C != zero_zero_rat ) ) ) ).

% divide_less_cancel
thf(fact_2799_divide__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2800_divide__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_2801_divide__pos__pos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% divide_pos_pos
thf(fact_2802_divide__pos__pos,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% divide_pos_pos
thf(fact_2803_divide__pos__neg,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ Y3 @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X3 @ Y3 ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_2804_divide__pos__neg,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_rat @ Y3 @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ zero_zero_rat ) ) ) ).

% divide_pos_neg
thf(fact_2805_divide__neg__pos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ord_less_real @ ( divide_divide_real @ X3 @ Y3 ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_2806_divide__neg__pos,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ zero_zero_rat ) ) ) ).

% divide_neg_pos
thf(fact_2807_divide__neg__neg,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ zero_zero_real )
     => ( ( ord_less_real @ Y3 @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% divide_neg_neg
thf(fact_2808_divide__neg__neg,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ X3 @ zero_zero_rat )
     => ( ( ord_less_rat @ Y3 @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% divide_neg_neg
thf(fact_2809_right__inverse__eq,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = one_one_complex )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2810_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2811_right__inverse__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( divide_divide_rat @ A @ B )
          = one_one_rat )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_2812_sqrt__sum__squares__half__less,axiom,
    ! [X3: real,U: real,Y3: real] :
      ( ( ord_less_real @ X3 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_real @ Y3 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
         => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
           => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).

% sqrt_sum_squares_half_less
thf(fact_2813_ceiling__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).

% ceiling_log2_div2
thf(fact_2814_field__le__epsilon,axiom,
    ! [X3: real,Y3: real] :
      ( ! [E: real] :
          ( ( ord_less_real @ zero_zero_real @ E )
         => ( ord_less_eq_real @ X3 @ ( plus_plus_real @ Y3 @ E ) ) )
     => ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% field_le_epsilon
thf(fact_2815_field__le__epsilon,axiom,
    ! [X3: rat,Y3: rat] :
      ( ! [E: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E )
         => ( ord_less_eq_rat @ X3 @ ( plus_plus_rat @ Y3 @ E ) ) )
     => ( ord_less_eq_rat @ X3 @ Y3 ) ) ).

% field_le_epsilon
thf(fact_2816_frac__le,axiom,
    ! [Y3: real,X3: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Z ) @ ( divide_divide_real @ Y3 @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2817_frac__le,axiom,
    ! [Y3: rat,X3: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
     => ( ( ord_less_eq_rat @ X3 @ Y3 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Z ) @ ( divide_divide_rat @ Y3 @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_2818_frac__less,axiom,
    ! [X3: real,Y3: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ Y3 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X3 @ Z ) @ ( divide_divide_real @ Y3 @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2819_frac__less,axiom,
    ! [X3: rat,Y3: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_rat @ X3 @ Y3 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X3 @ Z ) @ ( divide_divide_rat @ Y3 @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_2820_frac__less2,axiom,
    ! [X3: real,Y3: real,W: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X3 @ Z ) @ ( divide_divide_real @ Y3 @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2821_frac__less2,axiom,
    ! [X3: rat,Y3: rat,W: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_eq_rat @ X3 @ Y3 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X3 @ Z ) @ ( divide_divide_rat @ Y3 @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_2822_divide__le__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2823_divide__le__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_2824_divide__nonneg__neg,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ Y3 @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y3 ) @ zero_zero_real ) ) ) ).

% divide_nonneg_neg
thf(fact_2825_divide__nonneg__neg,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_rat @ Y3 @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_neg
thf(fact_2826_divide__nonneg__pos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2827_divide__nonneg__pos,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% divide_nonneg_pos
thf(fact_2828_divide__nonpos__neg,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_real @ Y3 @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2829_divide__nonpos__neg,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
     => ( ( ord_less_rat @ Y3 @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% divide_nonpos_neg
thf(fact_2830_divide__nonpos__pos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y3 ) @ zero_zero_real ) ) ) ).

% divide_nonpos_pos
thf(fact_2831_divide__nonpos__pos,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y3 )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_pos
thf(fact_2832_less__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_2833_less__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_2834_divide__less__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_2835_divide__less__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_less_eq_1
thf(fact_2836_gt__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).

% gt_half_sum
thf(fact_2837_gt__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).

% gt_half_sum
thf(fact_2838_less__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).

% less_half_sum
thf(fact_2839_less__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).

% less_half_sum
thf(fact_2840_ceiling__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
     => ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ) ) ).

% ceiling_log_nat_eq_if
thf(fact_2841_ceiling__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) )
          = ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% ceiling_log_nat_eq_powr_iff
thf(fact_2842_le__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_2843_le__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_2844_divide__le__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_le_eq_1
thf(fact_2845_divide__le__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_le_eq_1
thf(fact_2846_real__average__minus__first,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_first
thf(fact_2847_real__average__minus__second,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_second
thf(fact_2848_add__def,axiom,
    ( vEBT_VEBT_add
    = ( vEBT_V4262088993061758097ft_nat @ plus_plus_nat ) ) ).

% add_def
thf(fact_2849_div__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_2850_ln__2__less__1,axiom,
    ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).

% ln_2_less_1
thf(fact_2851__C5_Ohyps_C_I4_J,axiom,
    ( deg
    = ( plus_plus_nat @ na @ m ) ) ).

% "5.hyps"(4)
thf(fact_2852_div2__even__ext__nat,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ( divide_divide_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X3 )
          = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y3 ) )
       => ( X3 = Y3 ) ) ) ).

% div2_even_ext_nat
thf(fact_2853_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_2854_add__shift,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ( plus_plus_nat @ X3 @ Y3 )
        = Z )
      = ( ( vEBT_VEBT_add @ ( some_nat @ X3 ) @ ( some_nat @ Y3 ) )
        = ( some_nat @ Z ) ) ) ).

% add_shift
thf(fact_2855__C5_Ohyps_C_I3_J,axiom,
    ( m
    = ( suc @ na ) ) ).

% "5.hyps"(3)
thf(fact_2856_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_2857_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_2858_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_2859_zdiv__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zdiv_int
thf(fact_2860_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_2861_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_2862_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_2863_pos__imp__zdiv__pos__iff,axiom,
    ! [K: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
        = ( ord_less_eq_int @ K @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_2864_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_2865_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_2866_div__positive__int,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ L @ K )
     => ( ( ord_less_int @ zero_zero_int @ L )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) ) ) ) ).

% div_positive_int
thf(fact_2867_div__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
      = ( ( K = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_2868_zdiv__mono2__neg,axiom,
    ! [A: int,B2: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ( ord_less_eq_int @ B2 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B2 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_2869_zdiv__mono1__neg,axiom,
    ! [A: int,A2: int,B: int] :
      ( ( ord_less_eq_int @ A @ A2 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_2870_zdiv__eq__0__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( divide_divide_int @ I @ K )
        = zero_zero_int )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_2871_zdiv__mono2,axiom,
    ! [A: int,B2: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ( ord_less_eq_int @ B2 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B2 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_2872_zdiv__mono1,axiom,
    ! [A: int,A2: int,B: int] :
      ( ( ord_less_eq_int @ A @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A2 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_2873_int__div__less__self,axiom,
    ! [X3: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X3 )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X3 @ K ) @ X3 ) ) ) ).

% int_div_less_self
thf(fact_2874_div__positive,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2875_div__positive,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_positive
thf(fact_2876_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2877_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( divide_divide_int @ A @ B )
          = zero_zero_int ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_2878_discrete,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A4 @ one_one_nat ) ) ) ) ).

% discrete
thf(fact_2879_discrete,axiom,
    ( ord_less_int
    = ( ^ [A4: int] : ( ord_less_eq_int @ ( plus_plus_int @ A4 @ one_one_int ) ) ) ) ).

% discrete
thf(fact_2880_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A5: real,B4: real,C2: real] :
            ( ( P @ A5 @ B4 )
           => ( ( P @ B4 @ C2 )
             => ( ( ord_less_eq_real @ A5 @ B4 )
               => ( ( ord_less_eq_real @ B4 @ C2 )
                 => ( P @ A5 @ C2 ) ) ) ) )
       => ( ! [X4: real] :
              ( ( ord_less_eq_real @ A @ X4 )
             => ( ( ord_less_eq_real @ X4 @ B )
               => ? [D: real] :
                    ( ( ord_less_real @ zero_zero_real @ D )
                    & ! [A5: real,B4: real] :
                        ( ( ( ord_less_eq_real @ A5 @ X4 )
                          & ( ord_less_eq_real @ X4 @ B4 )
                          & ( ord_less_real @ ( minus_minus_real @ B4 @ A5 ) @ D ) )
                       => ( P @ A5 @ B4 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_2881_round__unique,axiom,
    ! [X3: real,Y3: int] :
      ( ( ord_less_real @ ( minus_minus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y3 ) )
     => ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y3 ) @ ( plus_plus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( archim8280529875227126926d_real @ X3 )
          = Y3 ) ) ) ).

% round_unique
thf(fact_2882_round__unique,axiom,
    ! [X3: rat,Y3: int] :
      ( ( ord_less_rat @ ( minus_minus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y3 ) )
     => ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y3 ) @ ( plus_plus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
       => ( ( archim7778729529865785530nd_rat @ X3 )
          = Y3 ) ) ) ).

% round_unique
thf(fact_2883_high__bound__aux,axiom,
    ! [Ma: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% high_bound_aux
thf(fact_2884_tanh__ln__real,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( tanh_real @ ( ln_ln_real @ X3 ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% tanh_ln_real
thf(fact_2885_ceiling__log__eq__powr__iff,axiom,
    ! [X3: real,B: real,K: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim7802044766580827645g_real @ ( log @ B @ X3 ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
          = ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X3 )
            & ( ord_less_eq_real @ X3 @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).

% ceiling_log_eq_powr_iff
thf(fact_2886__C5_Ohyps_C_I2_J,axiom,
    ( ( size_s6755466524823107622T_VEBT @ treeList )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).

% "5.hyps"(2)
thf(fact_2887_floor__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) )
          = ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% floor_log_nat_eq_powr_iff
thf(fact_2888_high__def,axiom,
    ( vEBT_VEBT_high
    = ( ^ [X: nat,N3: nat] : ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% high_def
thf(fact_2889_even__odd__cases,axiom,
    ! [X3: nat] :
      ( ! [N2: nat] :
          ( X3
         != ( plus_plus_nat @ N2 @ N2 ) )
     => ~ ! [N2: nat] :
            ( X3
           != ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) ) ) ).

% even_odd_cases
thf(fact_2890_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_2891_nat_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% nat.inject
thf(fact_2892_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_2893_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_2894_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_2895_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_2896_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_2897_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_2898_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_2899_powr__0,axiom,
    ! [Z: real] :
      ( ( powr_real @ zero_zero_real @ Z )
      = zero_zero_real ) ).

% powr_0
thf(fact_2900_powr__eq__0__iff,axiom,
    ! [W: real,Z: real] :
      ( ( ( powr_real @ W @ Z )
        = zero_zero_real )
      = ( W = zero_zero_real ) ) ).

% powr_eq_0_iff
thf(fact_2901_floor__of__int,axiom,
    ! [Z: int] :
      ( ( archim3151403230148437115or_rat @ ( ring_1_of_int_rat @ Z ) )
      = Z ) ).

% floor_of_int
thf(fact_2902_floor__of__int,axiom,
    ! [Z: int] :
      ( ( archim6058952711729229775r_real @ ( ring_1_of_int_real @ Z ) )
      = Z ) ).

% floor_of_int
thf(fact_2903_of__int__floor__cancel,axiom,
    ! [X3: rat] :
      ( ( ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X3 ) )
        = X3 )
      = ( ? [N3: int] :
            ( X3
            = ( ring_1_of_int_rat @ N3 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_2904_of__int__floor__cancel,axiom,
    ! [X3: real] :
      ( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X3 ) )
        = X3 )
      = ( ? [N3: int] :
            ( X3
            = ( ring_1_of_int_real @ N3 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_2905_tanh__0,axiom,
    ( ( tanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% tanh_0
thf(fact_2906_tanh__real__zero__iff,axiom,
    ! [X3: real] :
      ( ( ( tanh_real @ X3 )
        = zero_zero_real )
      = ( X3 = zero_zero_real ) ) ).

% tanh_real_zero_iff
thf(fact_2907_tanh__real__less__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( tanh_real @ X3 ) @ ( tanh_real @ Y3 ) )
      = ( ord_less_real @ X3 @ Y3 ) ) ).

% tanh_real_less_iff
thf(fact_2908_tanh__real__le__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X3 ) @ ( tanh_real @ Y3 ) )
      = ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% tanh_real_le_iff
thf(fact_2909_round__of__int,axiom,
    ! [N: int] :
      ( ( archim8280529875227126926d_real @ ( ring_1_of_int_real @ N ) )
      = N ) ).

% round_of_int
thf(fact_2910_round__of__int,axiom,
    ! [N: int] :
      ( ( archim7778729529865785530nd_rat @ ( ring_1_of_int_rat @ N ) )
      = N ) ).

% round_of_int
thf(fact_2911_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ zero_zero_rat @ ( suc @ N ) )
      = zero_zero_rat ) ).

% power_0_Suc
thf(fact_2912_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_2913_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_2914_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_2915_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ zero_zero_complex @ ( suc @ N ) )
      = zero_zero_complex ) ).

% power_0_Suc
thf(fact_2916_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2917_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2918_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2919_power__Suc0__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2920_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_2921_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_2922_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_2923_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_2924_nat__power__eq__Suc__0__iff,axiom,
    ! [X3: nat,M: nat] :
      ( ( ( power_power_nat @ X3 @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X3
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_2925_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_2926_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_2927_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_2928_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% take_bit_Suc_1
thf(fact_2929_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_Suc_1
thf(fact_2930_powr__zero__eq__one,axiom,
    ! [X3: real] :
      ( ( ( X3 = zero_zero_real )
       => ( ( powr_real @ X3 @ zero_zero_real )
          = zero_zero_real ) )
      & ( ( X3 != zero_zero_real )
       => ( ( powr_real @ X3 @ zero_zero_real )
          = one_one_real ) ) ) ).

% powr_zero_eq_one
thf(fact_2931_floor__zero,axiom,
    ( ( archim3151403230148437115or_rat @ zero_zero_rat )
    = zero_zero_int ) ).

% floor_zero
thf(fact_2932_floor__zero,axiom,
    ( ( archim6058952711729229775r_real @ zero_zero_real )
    = zero_zero_int ) ).

% floor_zero
thf(fact_2933_floor__numeral,axiom,
    ! [V: num] :
      ( ( archim3151403230148437115or_rat @ ( numeral_numeral_rat @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% floor_numeral
thf(fact_2934_floor__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( numeral_numeral_real @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% floor_numeral
thf(fact_2935_floor__one,axiom,
    ( ( archim3151403230148437115or_rat @ one_one_rat )
    = one_one_int ) ).

% floor_one
thf(fact_2936_floor__one,axiom,
    ( ( archim6058952711729229775r_real @ one_one_real )
    = one_one_int ) ).

% floor_one
thf(fact_2937_powr__gt__zero,axiom,
    ! [X3: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( powr_real @ X3 @ A ) )
      = ( X3 != zero_zero_real ) ) ).

% powr_gt_zero
thf(fact_2938_powr__nonneg__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X3 ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_2939_powr__less__cancel__iff,axiom,
    ! [X3: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_2940_floor__of__nat,axiom,
    ! [N: nat] :
      ( ( archim3151403230148437115or_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% floor_of_nat
thf(fact_2941_floor__of__nat,axiom,
    ! [N: nat] :
      ( ( archim6058952711729229775r_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% floor_of_nat
thf(fact_2942_round__0,axiom,
    ( ( archim8280529875227126926d_real @ zero_zero_real )
    = zero_zero_int ) ).

% round_0
thf(fact_2943_round__0,axiom,
    ( ( archim7778729529865785530nd_rat @ zero_zero_rat )
    = zero_zero_int ) ).

% round_0
thf(fact_2944_tanh__real__pos__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( tanh_real @ X3 ) )
      = ( ord_less_real @ zero_zero_real @ X3 ) ) ).

% tanh_real_pos_iff
thf(fact_2945_tanh__real__neg__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( tanh_real @ X3 ) @ zero_zero_real )
      = ( ord_less_real @ X3 @ zero_zero_real ) ) ).

% tanh_real_neg_iff
thf(fact_2946_tanh__real__nonpos__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X3 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% tanh_real_nonpos_iff
thf(fact_2947_tanh__real__nonneg__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X3 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% tanh_real_nonneg_iff
thf(fact_2948_round__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_2949_round__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_2950_round__1,axiom,
    ( ( archim8280529875227126926d_real @ one_one_real )
    = one_one_int ) ).

% round_1
thf(fact_2951_round__1,axiom,
    ( ( archim7778729529865785530nd_rat @ one_one_rat )
    = one_one_int ) ).

% round_1
thf(fact_2952_round__of__nat,axiom,
    ! [N: nat] :
      ( ( archim8280529875227126926d_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% round_of_nat
thf(fact_2953_round__of__nat,axiom,
    ! [N: nat] :
      ( ( archim7778729529865785530nd_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% round_of_nat
thf(fact_2954_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ M ) )
      = ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).

% of_nat_Suc
thf(fact_2955_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_2956_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ M ) )
      = ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).

% of_nat_Suc
thf(fact_2957_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_2958_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_2959_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_2960_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_2961_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_2962_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_2963_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_2964_powr__eq__one__iff,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X3 )
          = one_one_real )
        = ( X3 = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_2965_powr__one,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( powr_real @ X3 @ one_one_real )
        = X3 ) ) ).

% powr_one
thf(fact_2966_powr__one__gt__zero__iff,axiom,
    ! [X3: real] :
      ( ( ( powr_real @ X3 @ one_one_real )
        = X3 )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% powr_one_gt_zero_iff
thf(fact_2967_powr__le__cancel__iff,axiom,
    ! [X3: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( ( ord_less_eq_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_2968_numeral__powr__numeral__real,axiom,
    ! [M: num,N: num] :
      ( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_powr_numeral_real
thf(fact_2969_floor__diff__of__int,axiom,
    ! [X3: rat,Z: int] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X3 @ ( ring_1_of_int_rat @ Z ) ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X3 ) @ Z ) ) ).

% floor_diff_of_int
thf(fact_2970_floor__diff__of__int,axiom,
    ! [X3: real,Z: int] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X3 @ ( ring_1_of_int_real @ Z ) ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X3 ) @ Z ) ) ).

% floor_diff_of_int
thf(fact_2971_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_2972_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_2973_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_2974_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_2975_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_2976_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_2977_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_2978_zero__le__floor,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ X3 ) ) ).

% zero_le_floor
thf(fact_2979_zero__le__floor,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% zero_le_floor
thf(fact_2980_floor__less__zero,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X3 ) @ zero_zero_int )
      = ( ord_less_rat @ X3 @ zero_zero_rat ) ) ).

% floor_less_zero
thf(fact_2981_floor__less__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X3 ) @ zero_zero_int )
      = ( ord_less_real @ X3 @ zero_zero_real ) ) ).

% floor_less_zero
thf(fact_2982_numeral__le__floor,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ ( numeral_numeral_rat @ V ) @ X3 ) ) ).

% numeral_le_floor
thf(fact_2983_numeral__le__floor,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ V ) @ X3 ) ) ).

% numeral_le_floor
thf(fact_2984_zero__less__floor,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ zero_zero_int @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ one_one_rat @ X3 ) ) ).

% zero_less_floor
thf(fact_2985_zero__less__floor,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ zero_zero_int @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ one_one_real @ X3 ) ) ).

% zero_less_floor
thf(fact_2986_floor__le__zero,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X3 ) @ zero_zero_int )
      = ( ord_less_rat @ X3 @ one_one_rat ) ) ).

% floor_le_zero
thf(fact_2987_floor__le__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ zero_zero_int )
      = ( ord_less_real @ X3 @ one_one_real ) ) ).

% floor_le_zero
thf(fact_2988_floor__less__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_rat @ X3 @ ( numeral_numeral_rat @ V ) ) ) ).

% floor_less_numeral
thf(fact_2989_floor__less__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X3 @ ( numeral_numeral_real @ V ) ) ) ).

% floor_less_numeral
thf(fact_2990_one__le__floor,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ one_one_rat @ X3 ) ) ).

% one_le_floor
thf(fact_2991_one__le__floor,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ one_one_real @ X3 ) ) ).

% one_le_floor
thf(fact_2992_floor__less__one,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X3 ) @ one_one_int )
      = ( ord_less_rat @ X3 @ one_one_rat ) ) ).

% floor_less_one
thf(fact_2993_floor__less__one,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X3 ) @ one_one_int )
      = ( ord_less_real @ X3 @ one_one_real ) ) ).

% floor_less_one
thf(fact_2994_floor__diff__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X3 @ ( numeral_numeral_rat @ V ) ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( numeral_numeral_int @ V ) ) ) ).

% floor_diff_numeral
thf(fact_2995_floor__diff__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X3 @ ( numeral_numeral_real @ V ) ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X3 ) @ ( numeral_numeral_int @ V ) ) ) ).

% floor_diff_numeral
thf(fact_2996_floor__diff__one,axiom,
    ! [X3: rat] :
      ( ( archim3151403230148437115or_rat @ ( minus_minus_rat @ X3 @ one_one_rat ) )
      = ( minus_minus_int @ ( archim3151403230148437115or_rat @ X3 ) @ one_one_int ) ) ).

% floor_diff_one
thf(fact_2997_floor__diff__one,axiom,
    ! [X3: real] :
      ( ( archim6058952711729229775r_real @ ( minus_minus_real @ X3 @ one_one_real ) )
      = ( minus_minus_int @ ( archim6058952711729229775r_real @ X3 ) @ one_one_int ) ) ).

% floor_diff_one
thf(fact_2998_floor__numeral__power,axiom,
    ! [X3: num,N: nat] :
      ( ( archim3151403230148437115or_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X3 ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ).

% floor_numeral_power
thf(fact_2999_floor__numeral__power,axiom,
    ! [X3: num,N: nat] :
      ( ( archim6058952711729229775r_real @ ( power_power_real @ ( numeral_numeral_real @ X3 ) @ N ) )
      = ( power_power_int @ ( numeral_numeral_int @ X3 ) @ N ) ) ).

% floor_numeral_power
thf(fact_3000_powr__log__cancel,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( powr_real @ A @ ( log @ A @ X3 ) )
            = X3 ) ) ) ) ).

% powr_log_cancel
thf(fact_3001_log__powr__cancel,axiom,
    ! [A: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( powr_real @ A @ Y3 ) )
          = Y3 ) ) ) ).

% log_powr_cancel
thf(fact_3002_floor__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_divide_eq_div_numeral
thf(fact_3003_even__Suc__div__two,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_3004_odd__Suc__div__two,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_3005_one__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% one_less_nat_eq
thf(fact_3006_powr__numeral,axiom,
    ! [X3: real,N: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( powr_real @ X3 @ ( numeral_numeral_real @ N ) )
        = ( power_power_real @ X3 @ ( numeral_numeral_nat @ N ) ) ) ) ).

% powr_numeral
thf(fact_3007_odd__Suc__minus__one,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% odd_Suc_minus_one
thf(fact_3008_numeral__less__floor,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) @ X3 ) ) ).

% numeral_less_floor
thf(fact_3009_numeral__less__floor,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X3 ) ) ).

% numeral_less_floor
thf(fact_3010_floor__le__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_rat @ X3 @ ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ one_one_rat ) ) ) ).

% floor_le_numeral
thf(fact_3011_floor__le__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X3 @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).

% floor_le_numeral
thf(fact_3012_one__less__floor,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ one_one_int @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X3 ) ) ).

% one_less_floor
thf(fact_3013_one__less__floor,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ one_one_int @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) ).

% one_less_floor
thf(fact_3014_floor__le__one,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X3 ) @ one_one_int )
      = ( ord_less_rat @ X3 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% floor_le_one
thf(fact_3015_floor__le__one,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ one_one_int )
      = ( ord_less_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% floor_le_one
thf(fact_3016_floor__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).

% floor_one_divide_eq_div_numeral
thf(fact_3017_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_3018_Suc__inject,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ( suc @ X3 )
        = ( suc @ Y3 ) )
     => ( X3 = Y3 ) ) ).

% Suc_inject
thf(fact_3019_floor__le__round,axiom,
    ! [X3: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ ( archim8280529875227126926d_real @ X3 ) ) ).

% floor_le_round
thf(fact_3020_size__neq__size__imp__neq,axiom,
    ! [X3: list_VEBT_VEBT,Y3: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ X3 )
       != ( size_s6755466524823107622T_VEBT @ Y3 ) )
     => ( X3 != Y3 ) ) ).

% size_neq_size_imp_neq
thf(fact_3021_size__neq__size__imp__neq,axiom,
    ! [X3: list_o,Y3: list_o] :
      ( ( ( size_size_list_o @ X3 )
       != ( size_size_list_o @ Y3 ) )
     => ( X3 != Y3 ) ) ).

% size_neq_size_imp_neq
thf(fact_3022_size__neq__size__imp__neq,axiom,
    ! [X3: list_nat,Y3: list_nat] :
      ( ( ( size_size_list_nat @ X3 )
       != ( size_size_list_nat @ Y3 ) )
     => ( X3 != Y3 ) ) ).

% size_neq_size_imp_neq
thf(fact_3023_size__neq__size__imp__neq,axiom,
    ! [X3: list_int,Y3: list_int] :
      ( ( ( size_size_list_int @ X3 )
       != ( size_size_list_int @ Y3 ) )
     => ( X3 != Y3 ) ) ).

% size_neq_size_imp_neq
thf(fact_3024_size__neq__size__imp__neq,axiom,
    ! [X3: num,Y3: num] :
      ( ( ( size_size_num @ X3 )
       != ( size_size_num @ Y3 ) )
     => ( X3 != Y3 ) ) ).

% size_neq_size_imp_neq
thf(fact_3025_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N2: nat] :
            ( ~ ( P @ N2 )
            & ( P @ ( suc @ N2 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_3026_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( zero_zero_nat
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_3027_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_3028_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_3029_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_3030_old_Onat_Oexhaust,axiom,
    ! [Y3: nat] :
      ( ( Y3 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y3
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_3031_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_3032_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
     => ( ! [Y4: nat] : ( P @ zero_zero_nat @ ( suc @ Y4 ) )
       => ( ! [X4: nat,Y4: nat] :
              ( ( P @ X4 @ Y4 )
             => ( P @ ( suc @ X4 ) @ ( suc @ Y4 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_3033_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_3034_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_3035_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_3036_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_3037_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_3038_list__decode_Ocases,axiom,
    ! [X3: nat] :
      ( ( X3 != zero_zero_nat )
     => ~ ! [N2: nat] :
            ( X3
           != ( suc @ N2 ) ) ) ).

% list_decode.cases
thf(fact_3039_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_3040_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_3041_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_3042_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_3043_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_3044_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_3045_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M5: nat] :
            ( ( M
              = ( suc @ M5 ) )
            & ( ord_less_nat @ N @ M5 ) ) ) ) ).

% Suc_less_eq2
thf(fact_3046_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_3047_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_3048_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_3049_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_3050_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_3051_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_3052_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_3053_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_3054_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_3055_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_3056_nat__arith_Osuc1,axiom,
    ! [A3: nat,K: nat,A: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A3 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_3057_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_3058_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_3059_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_3060_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_3061_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_3062_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M4: nat] :
          ( M6
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_3063_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_3064_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_3065_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_3066_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_3067_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_3068_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R3: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X4: nat] : ( R3 @ X4 @ X4 )
       => ( ! [X4: nat,Y4: nat,Z3: nat] :
              ( ( R3 @ X4 @ Y4 )
             => ( ( R3 @ Y4 @ Z3 )
               => ( R3 @ X4 @ Z3 ) ) )
         => ( ! [N2: nat] : ( R3 @ N2 @ ( suc @ N2 ) )
           => ( R3 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_3069_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_3070_floor__eq3,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X3 ) )
          = N ) ) ) ).

% floor_eq3
thf(fact_3071_floor__mono,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( archim3151403230148437115or_rat @ Y3 ) ) ) ).

% floor_mono
thf(fact_3072_floor__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ Y3 )
     => ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ ( archim6058952711729229775r_real @ Y3 ) ) ) ).

% floor_mono
thf(fact_3073_of__int__floor__le,axiom,
    ! [X3: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X3 ) ) @ X3 ) ).

% of_int_floor_le
thf(fact_3074_of__int__floor__le,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X3 ) ) @ X3 ) ).

% of_int_floor_le
thf(fact_3075_floor__less__cancel,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( archim3151403230148437115or_rat @ Y3 ) )
     => ( ord_less_rat @ X3 @ Y3 ) ) ).

% floor_less_cancel
thf(fact_3076_floor__less__cancel,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X3 ) @ ( archim6058952711729229775r_real @ Y3 ) )
     => ( ord_less_real @ X3 @ Y3 ) ) ).

% floor_less_cancel
thf(fact_3077_powr__less__mono2__neg,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ X3 @ Y3 )
         => ( ord_less_real @ ( powr_real @ Y3 @ A ) @ ( powr_real @ X3 @ A ) ) ) ) ) ).

% powr_less_mono2_neg
thf(fact_3078_powr__non__neg,axiom,
    ! [A: real,X3: real] :
      ~ ( ord_less_real @ ( powr_real @ A @ X3 ) @ zero_zero_real ) ).

% powr_non_neg
thf(fact_3079_powr__ge__pzero,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X3 @ Y3 ) ) ).

% powr_ge_pzero
thf(fact_3080_powr__mono2,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ X3 @ Y3 )
         => ( ord_less_eq_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_3081_floor__eq4,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X3 ) )
          = N ) ) ) ).

% floor_eq4
thf(fact_3082_powr__less__mono,axiom,
    ! [A: real,B: real,X3: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X3 )
       => ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) ) ) ) ).

% powr_less_mono
thf(fact_3083_powr__less__cancel,axiom,
    ! [X3: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) )
     => ( ( ord_less_real @ one_one_real @ X3 )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_3084_powr__mono,axiom,
    ! [A: real,B: real,X3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X3 )
       => ( ord_less_eq_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ X3 @ B ) ) ) ) ).

% powr_mono
thf(fact_3085_floor__le__ceiling,axiom,
    ! [X3: real] : ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ ( archim7802044766580827645g_real @ X3 ) ) ).

% floor_le_ceiling
thf(fact_3086_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_3087_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > rat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_rat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_3088_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_3089_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_3090_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_3091_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_3092_lift__Suc__mono__less,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_rat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_3093_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_3094_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_3095_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_3096_lift__Suc__mono__le,axiom,
    ! [F: nat > set_nat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_set_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_3097_lift__Suc__mono__le,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_rat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_3098_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_3099_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_3100_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_3101_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_nat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_set_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_set_nat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_3102_lift__Suc__antimono__le,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_rat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_3103_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_num @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_3104_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_3105_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_int @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_3106_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ N ) )
     != zero_zero_complex ) ).

% of_nat_neq_0
thf(fact_3107_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_3108_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ N ) )
     != zero_zero_rat ) ).

% of_nat_neq_0
thf(fact_3109_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_3110_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_3111_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_3112_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_3113_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_3114_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M3: nat] :
            ( N
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_3115_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_3116_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_3117_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_3118_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q4: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q4 ) ) ) ) ).

% less_natE
thf(fact_3119_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_3120_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_3121_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N3: nat] :
        ? [K3: nat] :
          ( N3
          = ( suc @ ( plus_plus_nat @ M3 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_3122_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_3123_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_3124_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_3125_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ N2 )
                 => ( P @ ( suc @ N2 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_3126_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P @ ( suc @ N2 ) )
                 => ( P @ N2 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_3127_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_3128_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_3129_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_3130_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_3131_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_3132_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_3133_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_3134_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_3135_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_3136_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_3137_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_3138_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_3139_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_3140_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_3141_tanh__real__lt__1,axiom,
    ! [X3: real] : ( ord_less_real @ ( tanh_real @ X3 ) @ one_one_real ) ).

% tanh_real_lt_1
thf(fact_3142_le__floor__iff,axiom,
    ! [Z: int,X3: rat] :
      ( ( ord_less_eq_int @ Z @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ X3 ) ) ).

% le_floor_iff
thf(fact_3143_le__floor__iff,axiom,
    ! [Z: int,X3: real] :
      ( ( ord_less_eq_int @ Z @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X3 ) ) ).

% le_floor_iff
thf(fact_3144_floor__less__iff,axiom,
    ! [X3: rat,Z: int] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X3 ) @ Z )
      = ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ Z ) ) ) ).

% floor_less_iff
thf(fact_3145_floor__less__iff,axiom,
    ! [X3: real,Z: int] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X3 ) @ Z )
      = ( ord_less_real @ X3 @ ( ring_1_of_int_real @ Z ) ) ) ).

% floor_less_iff
thf(fact_3146_powr__mono2_H,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ X3 @ Y3 )
         => ( ord_less_eq_real @ ( powr_real @ Y3 @ A ) @ ( powr_real @ X3 @ A ) ) ) ) ) ).

% powr_mono2'
thf(fact_3147_powr__less__mono2,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ X3 @ Y3 )
         => ( ord_less_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).

% powr_less_mono2
thf(fact_3148_le__floor__add,axiom,
    ! [X3: rat,Y3: rat] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( archim3151403230148437115or_rat @ Y3 ) ) @ ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X3 @ Y3 ) ) ) ).

% le_floor_add
thf(fact_3149_le__floor__add,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X3 ) @ ( archim6058952711729229775r_real @ Y3 ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X3 @ Y3 ) ) ) ).

% le_floor_add
thf(fact_3150_int__add__floor,axiom,
    ! [Z: int,X3: rat] :
      ( ( plus_plus_int @ Z @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ X3 ) ) ) ).

% int_add_floor
thf(fact_3151_int__add__floor,axiom,
    ! [Z: int,X3: real] :
      ( ( plus_plus_int @ Z @ ( archim6058952711729229775r_real @ X3 ) )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ X3 ) ) ) ).

% int_add_floor
thf(fact_3152_floor__add__int,axiom,
    ! [X3: rat,Z: int] :
      ( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X3 ) @ Z )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X3 @ ( ring_1_of_int_rat @ Z ) ) ) ) ).

% floor_add_int
thf(fact_3153_floor__add__int,axiom,
    ! [X3: real,Z: int] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X3 ) @ Z )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X3 @ ( ring_1_of_int_real @ Z ) ) ) ) ).

% floor_add_int
thf(fact_3154_powr__inj,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X3 )
            = ( powr_real @ A @ Y3 ) )
          = ( X3 = Y3 ) ) ) ) ).

% powr_inj
thf(fact_3155_gr__one__powr,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X3 @ Y3 ) ) ) ) ).

% gr_one_powr
thf(fact_3156_powr__le1,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ X3 @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X3 @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_3157_powr__mono__both,axiom,
    ! [A: real,B: real,X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X3 )
         => ( ( ord_less_eq_real @ X3 @ Y3 )
           => ( ord_less_eq_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ Y3 @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_3158_ge__one__powr__ge__zero,axiom,
    ! [X3: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X3 @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_3159_powr__divide,axiom,
    ! [X3: real,Y3: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( powr_real @ ( divide_divide_real @ X3 @ Y3 ) @ A )
          = ( divide_divide_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).

% powr_divide
thf(fact_3160_floor__divide__of__int__eq,axiom,
    ! [K: int,L: int] :
      ( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ K ) @ ( ring_1_of_int_rat @ L ) ) )
      = ( divide_divide_int @ K @ L ) ) ).

% floor_divide_of_int_eq
thf(fact_3161_floor__divide__of__int__eq,axiom,
    ! [K: int,L: int] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( ring_1_of_int_real @ K ) @ ( ring_1_of_int_real @ L ) ) )
      = ( divide_divide_int @ K @ L ) ) ).

% floor_divide_of_int_eq
thf(fact_3162_floor__power,axiom,
    ! [X3: rat,N: nat] :
      ( ( X3
        = ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X3 ) ) )
     => ( ( archim3151403230148437115or_rat @ ( power_power_rat @ X3 @ N ) )
        = ( power_power_int @ ( archim3151403230148437115or_rat @ X3 ) @ N ) ) ) ).

% floor_power
thf(fact_3163_floor__power,axiom,
    ! [X3: real,N: nat] :
      ( ( X3
        = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X3 ) ) )
     => ( ( archim6058952711729229775r_real @ ( power_power_real @ X3 @ N ) )
        = ( power_power_int @ ( archim6058952711729229775r_real @ X3 ) @ N ) ) ) ).

% floor_power
thf(fact_3164_log__base__powr,axiom,
    ! [A: real,B: real,X3: real] :
      ( ( A != zero_zero_real )
     => ( ( log @ ( powr_real @ A @ B ) @ X3 )
        = ( divide_divide_real @ ( log @ A @ X3 ) @ B ) ) ) ).

% log_base_powr
thf(fact_3165_round__mono,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X3 ) @ ( archim7778729529865785530nd_rat @ Y3 ) ) ) ).

% round_mono
thf(fact_3166_power__inject__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N ) )
        = ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3167_power__inject__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ ( suc @ N ) )
        = ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3168_power__inject__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N ) )
        = ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3169_power__inject__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N ) )
        = ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3170_power__le__imp__le__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3171_power__le__imp__le__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3172_power__le__imp__le__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3173_power__le__imp__le__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3174_power__gt1,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3175_power__gt1,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3176_power__gt1,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3177_power__gt1,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_3178_round__def,axiom,
    ( archim7778729529865785530nd_rat
    = ( ^ [X: rat] : ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% round_def
thf(fact_3179_round__def,axiom,
    ( archim8280529875227126926d_real
    = ( ^ [X: real] : ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% round_def
thf(fact_3180_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_3181_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K2 )
               => ~ ( P @ I2 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_3182_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_3183_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_3184_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_3185_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R: real] :
          ( ( ord_less_real @ zero_zero_real @ R )
          & ( ( power_power_real @ R @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_3186_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_3187_ceiling__ge__round,axiom,
    ! [X3: real] : ( ord_less_eq_int @ ( archim8280529875227126926d_real @ X3 ) @ ( archim7802044766580827645g_real @ X3 ) ) ).

% ceiling_ge_round
thf(fact_3188_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_3189_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_3190_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W3: int,Z6: int] :
        ? [N3: nat] :
          ( Z6
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_3191_of__nat__floor,axiom,
    ! [R2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ ( nat2 @ ( archim3151403230148437115or_rat @ R2 ) ) ) @ R2 ) ) ).

% of_nat_floor
thf(fact_3192_of__nat__floor,axiom,
    ! [R2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R2 )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim6058952711729229775r_real @ R2 ) ) ) @ R2 ) ) ).

% of_nat_floor
thf(fact_3193_one__add__floor,axiom,
    ! [X3: rat] :
      ( ( plus_plus_int @ ( archim3151403230148437115or_rat @ X3 ) @ one_one_int )
      = ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X3 @ one_one_rat ) ) ) ).

% one_add_floor
thf(fact_3194_one__add__floor,axiom,
    ! [X3: real] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X3 ) @ one_one_int )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X3 @ one_one_real ) ) ) ).

% one_add_floor
thf(fact_3195_floor__log__eq__powr__iff,axiom,
    ! [X3: real,B: real,K: int] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim6058952711729229775r_real @ ( log @ B @ X3 ) )
            = K )
          = ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X3 )
            & ( ord_less_real @ X3 @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).

% floor_log_eq_powr_iff
thf(fact_3196_floor__divide__of__nat__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( archim3151403230148437115or_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).

% floor_divide_of_nat_eq
thf(fact_3197_floor__divide__of__nat__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) ).

% floor_divide_of_nat_eq
thf(fact_3198_nat__floor__neg,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( nat2 @ ( archim6058952711729229775r_real @ X3 ) )
        = zero_zero_nat ) ) ).

% nat_floor_neg
thf(fact_3199_powr__realpow,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( powr_real @ X3 @ ( semiri5074537144036343181t_real @ N ) )
        = ( power_power_real @ X3 @ N ) ) ) ).

% powr_realpow
thf(fact_3200_powr__less__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ ( powr_real @ B @ Y3 ) @ X3 )
          = ( ord_less_real @ Y3 @ ( log @ B @ X3 ) ) ) ) ) ).

% powr_less_iff
thf(fact_3201_less__powr__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ X3 @ ( powr_real @ B @ Y3 ) )
          = ( ord_less_real @ ( log @ B @ X3 ) @ Y3 ) ) ) ) ).

% less_powr_iff
thf(fact_3202_log__less__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ ( log @ B @ X3 ) @ Y3 )
          = ( ord_less_real @ X3 @ ( powr_real @ B @ Y3 ) ) ) ) ) ).

% log_less_iff
thf(fact_3203_less__log__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_real @ Y3 @ ( log @ B @ X3 ) )
          = ( ord_less_real @ ( powr_real @ B @ Y3 ) @ X3 ) ) ) ) ).

% less_log_iff
thf(fact_3204_le__nat__floor,axiom,
    ! [X3: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X3 ) @ A )
     => ( ord_less_eq_nat @ X3 @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).

% le_nat_floor
thf(fact_3205_ceiling__altdef,axiom,
    ( archim2889992004027027881ng_rat
    = ( ^ [X: rat] :
          ( if_int
          @ ( X
            = ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) )
          @ ( archim3151403230148437115or_rat @ X )
          @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X ) @ one_one_int ) ) ) ) ).

% ceiling_altdef
thf(fact_3206_ceiling__altdef,axiom,
    ( archim7802044766580827645g_real
    = ( ^ [X: real] :
          ( if_int
          @ ( X
            = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) )
          @ ( archim6058952711729229775r_real @ X )
          @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int ) ) ) ) ).

% ceiling_altdef
thf(fact_3207_ceiling__diff__floor__le__1,axiom,
    ! [X3: real] : ( ord_less_eq_int @ ( minus_minus_int @ ( archim7802044766580827645g_real @ X3 ) @ ( archim6058952711729229775r_real @ X3 ) ) @ one_one_int ) ).

% ceiling_diff_floor_le_1
thf(fact_3208_floor__eq,axiom,
    ! [N: int,X3: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X3 )
          = N ) ) ) ).

% floor_eq
thf(fact_3209_real__of__int__floor__add__one__gt,axiom,
    ! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_3210_real__of__int__floor__add__one__ge,axiom,
    ! [R2: real] : ( ord_less_eq_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_3211_real__of__int__floor__gt__diff__one,axiom,
    ! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_gt_diff_one
thf(fact_3212_real__of__int__floor__ge__diff__one,axiom,
    ! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_ge_diff_one
thf(fact_3213_power__Suc__le__self,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3214_power__Suc__le__self,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3215_power__Suc__le__self,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3216_power__Suc__le__self,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3217_power__Suc__less__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).

% power_Suc_less_one
thf(fact_3218_power__Suc__less__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ one_one_rat ) ) ) ).

% power_Suc_less_one
thf(fact_3219_power__Suc__less__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_3220_power__Suc__less__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_3221_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_3222_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_3223_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_3224_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% add_eq_if
thf(fact_3225_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M3 @ N3 )
            | ( N3 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M3 @ N3 ) @ N3 ) ) ) ) ) ).

% div_if
thf(fact_3226_div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% div_geq
thf(fact_3227_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_3228_Suc__as__int,axiom,
    ( suc
    = ( ^ [A4: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A4 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_3229_floor__unique,axiom,
    ! [Z: int,X3: rat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ X3 )
     => ( ( ord_less_rat @ X3 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) )
       => ( ( archim3151403230148437115or_rat @ X3 )
          = Z ) ) ) ).

% floor_unique
thf(fact_3230_floor__unique,axiom,
    ! [Z: int,X3: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X3 )
          = Z ) ) ) ).

% floor_unique
thf(fact_3231_floor__eq__iff,axiom,
    ! [X3: rat,A: int] :
      ( ( ( archim3151403230148437115or_rat @ X3 )
        = A )
      = ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ X3 )
        & ( ord_less_rat @ X3 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ A ) @ one_one_rat ) ) ) ) ).

% floor_eq_iff
thf(fact_3232_floor__eq__iff,axiom,
    ! [X3: real,A: int] :
      ( ( ( archim6058952711729229775r_real @ X3 )
        = A )
      = ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ X3 )
        & ( ord_less_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ A ) @ one_one_real ) ) ) ) ).

% floor_eq_iff
thf(fact_3233_floor__split,axiom,
    ! [P: int > $o,T: rat] :
      ( ( P @ ( archim3151403230148437115or_rat @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ I4 ) @ T )
              & ( ord_less_rat @ T @ ( plus_plus_rat @ ( ring_1_of_int_rat @ I4 ) @ one_one_rat ) ) )
           => ( P @ I4 ) ) ) ) ).

% floor_split
thf(fact_3234_floor__split,axiom,
    ! [P: int > $o,T: real] :
      ( ( P @ ( archim6058952711729229775r_real @ T ) )
      = ( ! [I4: int] :
            ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ I4 ) @ T )
              & ( ord_less_real @ T @ ( plus_plus_real @ ( ring_1_of_int_real @ I4 ) @ one_one_real ) ) )
           => ( P @ I4 ) ) ) ) ).

% floor_split
thf(fact_3235_less__floor__iff,axiom,
    ! [Z: int,X3: rat] :
      ( ( ord_less_int @ Z @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) @ X3 ) ) ).

% less_floor_iff
thf(fact_3236_less__floor__iff,axiom,
    ! [Z: int,X3: real] :
      ( ( ord_less_int @ Z @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) @ X3 ) ) ).

% less_floor_iff
thf(fact_3237_floor__le__iff,axiom,
    ! [X3: rat,Z: int] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X3 ) @ Z )
      = ( ord_less_rat @ X3 @ ( plus_plus_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat ) ) ) ).

% floor_le_iff
thf(fact_3238_floor__le__iff,axiom,
    ! [X3: real,Z: int] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ Z )
      = ( ord_less_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ one_one_real ) ) ) ).

% floor_le_iff
thf(fact_3239_floor__correct,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X3 ) ) @ X3 )
      & ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X3 ) @ one_one_int ) ) ) ) ).

% floor_correct
thf(fact_3240_floor__correct,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X3 ) ) @ X3 )
      & ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X3 ) @ one_one_int ) ) ) ) ).

% floor_correct
thf(fact_3241_le__log__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ Y3 @ ( log @ B @ X3 ) )
          = ( ord_less_eq_real @ ( powr_real @ B @ Y3 ) @ X3 ) ) ) ) ).

% le_log_iff
thf(fact_3242_log__le__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ ( log @ B @ X3 ) @ Y3 )
          = ( ord_less_eq_real @ X3 @ ( powr_real @ B @ Y3 ) ) ) ) ) ).

% log_le_iff
thf(fact_3243_le__powr__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ X3 @ ( powr_real @ B @ Y3 ) )
          = ( ord_less_eq_real @ ( log @ B @ X3 ) @ Y3 ) ) ) ) ).

% le_powr_iff
thf(fact_3244_powr__le__iff,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ ( powr_real @ B @ Y3 ) @ X3 )
          = ( ord_less_eq_real @ Y3 @ ( log @ B @ X3 ) ) ) ) ) ).

% powr_le_iff
thf(fact_3245_floor__eq2,axiom,
    ! [N: int,X3: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X3 )
          = N ) ) ) ).

% floor_eq2
thf(fact_3246_floor__divide__real__eq__div,axiom,
    ! [B: int,A: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
        = ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).

% floor_divide_real_eq_div
thf(fact_3247_nat__approx__posE,axiom,
    ! [E2: real] :
      ( ( ord_less_real @ zero_zero_real @ E2 )
     => ~ ! [N2: nat] :
            ~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ E2 ) ) ).

% nat_approx_posE
thf(fact_3248_nat__approx__posE,axiom,
    ! [E2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ E2 )
     => ~ ! [N2: nat] :
            ~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) ) @ E2 ) ) ).

% nat_approx_posE
thf(fact_3249_less__2__cases__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_3250_less__2__cases,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_3251_nat__2,axiom,
    ( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% nat_2
thf(fact_3252_le__div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% le_div_geq
thf(fact_3253_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( suc @ ( nat2 @ Z ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_3254_ln__powr__bound,axiom,
    ! [X3: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( ln_ln_real @ X3 ) @ ( divide_divide_real @ ( powr_real @ X3 @ A ) @ A ) ) ) ) ).

% ln_powr_bound
thf(fact_3255_minus__log__eq__powr,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( minus_minus_real @ Y3 @ ( log @ B @ X3 ) )
            = ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y3 ) @ X3 ) ) ) ) ) ) ).

% minus_log_eq_powr
thf(fact_3256_Suc__n__div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_3257_div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_3258_powr__half__sqrt,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( powr_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        = ( sqrt @ X3 ) ) ) ).

% powr_half_sqrt
thf(fact_3259_int__power__div__base,axiom,
    ! [M: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_3260_floor__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).

% floor_log2_div2
thf(fact_3261_floor__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
     => ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% floor_log_nat_eq_if
thf(fact_3262_of__int__round__le,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) @ ( plus_plus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_3263_of__int__round__le,axiom,
    ! [X3: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) @ ( plus_plus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_3264_of__int__round__ge,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( minus_minus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) ) ).

% of_int_round_ge
thf(fact_3265_of__int__round__ge,axiom,
    ! [X3: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) ) ).

% of_int_round_ge
thf(fact_3266_of__int__round__gt,axiom,
    ! [X3: real] : ( ord_less_real @ ( minus_minus_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) ) ).

% of_int_round_gt
thf(fact_3267_of__int__round__gt,axiom,
    ! [X3: rat] : ( ord_less_rat @ ( minus_minus_rat @ X3 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) ) ).

% of_int_round_gt
thf(fact_3268_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
    ! [X3: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(1)
thf(fact_3269_high__inv,axiom,
    ! [X3: nat,N: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X3 ) @ N )
        = Y3 ) ) ).

% high_inv
thf(fact_3270_arcosh__def,axiom,
    ( arcosh_real
    = ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( powr_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% arcosh_def
thf(fact_3271_round__altdef,axiom,
    ( archim7778729529865785530nd_rat
    = ( ^ [X: rat] : ( if_int @ ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( archimedean_frac_rat @ X ) ) @ ( archim2889992004027027881ng_rat @ X ) @ ( archim3151403230148437115or_rat @ X ) ) ) ) ).

% round_altdef
thf(fact_3272_round__altdef,axiom,
    ( archim8280529875227126926d_real
    = ( ^ [X: real] : ( if_int @ ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( archim2898591450579166408c_real @ X ) ) @ ( archim7802044766580827645g_real @ X ) @ ( archim6058952711729229775r_real @ X ) ) ) ) ).

% round_altdef
thf(fact_3273_arsinh__def,axiom,
    ( arsinh_real
    = ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( powr_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( real_V1803761363581548252l_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% arsinh_def
thf(fact_3274_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_3275_mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( times_times_rat @ A @ C )
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_3276_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_3277_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_3278_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_3279_mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( times_times_rat @ C @ A )
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_3280_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_3281_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_3282_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_3283_mult__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% mult_eq_0_iff
thf(fact_3284_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_3285_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_3286_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_3287_mult__zero__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% mult_zero_right
thf(fact_3288_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_3289_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_3290_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_3291_mult__zero__left,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% mult_zero_left
thf(fact_3292_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_3293_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_3294_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_3295_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_3296_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_3297_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_3298_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_3299_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_3300_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_3301_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_3302_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_3303_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_3304_mult_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.right_neutral
thf(fact_3305_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_3306_mult_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.right_neutral
thf(fact_3307_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_3308_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_3309_mult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% mult_1
thf(fact_3310_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_3311_mult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% mult_1
thf(fact_3312_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_3313_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_3314_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_17405671764205052669omplex @ ( times_times_int @ W @ Z ) )
      = ( times_times_complex @ ( ring_17405671764205052669omplex @ W ) @ ( ring_17405671764205052669omplex @ Z ) ) ) ).

% of_int_mult
thf(fact_3315_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( times_times_int @ W @ Z ) )
      = ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_mult
thf(fact_3316_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( times_times_int @ W @ Z ) )
      = ( times_times_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_mult
thf(fact_3317_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( times_times_int @ W @ Z ) )
      = ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_mult
thf(fact_3318_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_3319_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_3320_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_3321_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_3322_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_3323_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_3324_bit__concat__def,axiom,
    ( vEBT_VEBT_bit_concat
    = ( ^ [H: nat,L2: nat,D4: nat] : ( plus_plus_nat @ ( times_times_nat @ H @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ D4 ) ) @ L2 ) ) ) ).

% bit_concat_def
thf(fact_3325_mult__cancel__right2,axiom,
    ! [A: complex,C: complex] :
      ( ( ( times_times_complex @ A @ C )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_right2
thf(fact_3326_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_3327_mult__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ( times_times_rat @ A @ C )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_right2
thf(fact_3328_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_3329_mult__cancel__right1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_right1
thf(fact_3330_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_3331_mult__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_right1
thf(fact_3332_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_3333_mult__cancel__left2,axiom,
    ! [C: complex,A: complex] :
      ( ( ( times_times_complex @ C @ A )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_left2
thf(fact_3334_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_3335_mult__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ( times_times_rat @ C @ A )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_left2
thf(fact_3336_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_3337_mult__cancel__left1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_left1
thf(fact_3338_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_3339_mult__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_left1
thf(fact_3340_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_3341_sum__squares__eq__zero__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y3 @ Y3 ) )
        = zero_zero_real )
      = ( ( X3 = zero_zero_real )
        & ( Y3 = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_3342_sum__squares__eq__zero__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y3 @ Y3 ) )
        = zero_zero_rat )
      = ( ( X3 = zero_zero_rat )
        & ( Y3 = zero_zero_rat ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_3343_sum__squares__eq__zero__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y3 @ Y3 ) )
        = zero_zero_int )
      = ( ( X3 = zero_zero_int )
        & ( Y3 = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_3344_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_3345_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_3346_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_3347_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_3348_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_3349_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_3350_nonzero__mult__div__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3351_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3352_nonzero__mult__div__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3353_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3354_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3355_nonzero__mult__div__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3356_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3357_nonzero__mult__div__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3358_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3359_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3360_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_3361_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_3362_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_3363_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_3364_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_3365_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_3366_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_3367_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_3368_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_3369_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_3370_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_3371_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_3372_mult__divide__mult__cancel__left__if,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( C = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = zero_zero_complex ) )
      & ( ( C != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_3373_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_3374_mult__divide__mult__cancel__left__if,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( C = zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = zero_zero_rat ) )
      & ( ( C != zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = ( divide_divide_rat @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_3375_distrib__right__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_3376_distrib__right__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_3377_distrib__right__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_3378_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_3379_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_3380_distrib__left__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_3381_distrib__left__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_3382_distrib__left__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_3383_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_3384_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_3385_right__diff__distrib__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3386_right__diff__distrib__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3387_right__diff__distrib__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3388_right__diff__distrib__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_3389_left__diff__distrib__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_3390_left__diff__distrib__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_3391_left__diff__distrib__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_3392_left__diff__distrib__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_3393_dvd__times__right__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3394_dvd__times__right__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3395_dvd__times__right__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_3396_dvd__times__left__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3397_dvd__times__left__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3398_dvd__times__left__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_3399_dvd__mult__cancel__right,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3400_dvd__mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3401_dvd__mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3402_dvd__mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_3403_dvd__mult__cancel__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3404_dvd__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3405_dvd__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3406_dvd__mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_3407_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_3408_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_3409_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( times_times_nat @ M @ N ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).

% of_nat_mult
thf(fact_3410_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_mult
thf(fact_3411_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% of_nat_mult
thf(fact_3412_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_3413_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_3414_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_3415_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_3416_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_3417_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_3418_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_3419_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_3420_frac__of__int,axiom,
    ! [Z: int] :
      ( ( archim2898591450579166408c_real @ ( ring_1_of_int_real @ Z ) )
      = zero_zero_real ) ).

% frac_of_int
thf(fact_3421_frac__of__int,axiom,
    ! [Z: int] :
      ( ( archimedean_frac_rat @ ( ring_1_of_int_rat @ Z ) )
      = zero_zero_rat ) ).

% frac_of_int
thf(fact_3422_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_3423_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_3424_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_3425_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_3426_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
        = A )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_3427_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_3428_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_3429_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
            = B ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_3430_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_3431_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_3432_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_3433_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_3434_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_3435_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_3436_nonzero__divide__mult__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_3437_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_3438_nonzero__divide__mult__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_3439_nonzero__divide__mult__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_3440_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_3441_nonzero__divide__mult__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_3442_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_3443_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_3444_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_3445_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_3446_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_3447_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_3448_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_3449_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_3450_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_3451_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_3452_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_3453_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_3454_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_3455_power__add__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_3456_power__add__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_3457_power__add__numeral,axiom,
    ! [A: rat,M: num,N: num] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_3458_power__add__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_3459_power__add__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_3460_power__add__numeral2,axiom,
    ! [A: complex,M: num,N: num,B: complex] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_3461_power__add__numeral2,axiom,
    ! [A: real,M: num,N: num,B: real] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_3462_power__add__numeral2,axiom,
    ! [A: rat,M: num,N: num,B: rat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_3463_power__add__numeral2,axiom,
    ! [A: nat,M: num,N: num,B: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_3464_power__add__numeral2,axiom,
    ! [A: int,M: num,N: num,B: int] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_3465_even__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3466_even__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3467_even__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_3468_or__numerals_I3_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X3 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y3 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ).

% or_numerals(3)
thf(fact_3469_or__numerals_I3_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ).

% or_numerals(3)
thf(fact_3470_xor__numerals_I3_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X3 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y3 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ).

% xor_numerals(3)
thf(fact_3471_xor__numerals_I3_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ).

% xor_numerals(3)
thf(fact_3472_unset__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_3473_unset__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_3474_odd__two__times__div__two__succ,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3475_odd__two__times__div__two__succ,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3476_odd__two__times__div__two__succ,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_3477_odd__two__times__div__two__nat,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% odd_two_times_div_two_nat
thf(fact_3478_set__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_3479_set__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_3480_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_3481_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_3482_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_3483_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_3484_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_3485_mult_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_3486_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_3487_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_3488_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A4: real,B3: real] : ( times_times_real @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_3489_mult_Ocommute,axiom,
    ( times_times_rat
    = ( ^ [A4: rat,B3: rat] : ( times_times_rat @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_3490_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B3: nat] : ( times_times_nat @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_3491_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A4: int,B3: int] : ( times_times_int @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_3492_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_3493_mult_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_3494_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_3495_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_3496_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3497_mult__right__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = ( times_times_rat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3498_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3499_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3500_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3501_mult__left__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ C @ A )
          = ( times_times_rat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3502_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3503_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3504_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_3505_no__zero__divisors,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( times_times_rat @ A @ B )
         != zero_zero_rat ) ) ) ).

% no_zero_divisors
thf(fact_3506_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_3507_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_3508_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_3509_divisors__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
     => ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divisors_zero
thf(fact_3510_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_3511_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_3512_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_3513_mult__not__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
       != zero_zero_rat )
     => ( ( A != zero_zero_rat )
        & ( B != zero_zero_rat ) ) ) ).

% mult_not_zero
thf(fact_3514_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_3515_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_3516_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_3517_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_3518_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_3519_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_3520_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_3521_mult_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.comm_neutral
thf(fact_3522_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_3523_mult_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.comm_neutral
thf(fact_3524_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_3525_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_3526_inf__period_I2_J,axiom,
    ! [P: real > $o,D5: real,Q: real > $o] :
      ( ! [X4: real,K2: real] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D5 ) ) ) )
     => ( ! [X4: real,K2: real] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D5 ) ) ) )
       => ! [X6: real,K4: real] :
            ( ( ( P @ X6 )
              | ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D5 ) ) )
              | ( Q @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_3527_inf__period_I2_J,axiom,
    ! [P: rat > $o,D5: rat,Q: rat > $o] :
      ( ! [X4: rat,K2: rat] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D5 ) ) ) )
     => ( ! [X4: rat,K2: rat] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D5 ) ) ) )
       => ! [X6: rat,K4: rat] :
            ( ( ( P @ X6 )
              | ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_rat @ X6 @ ( times_times_rat @ K4 @ D5 ) ) )
              | ( Q @ ( minus_minus_rat @ X6 @ ( times_times_rat @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_3528_inf__period_I2_J,axiom,
    ! [P: int > $o,D5: int,Q: int > $o] :
      ( ! [X4: int,K2: int] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D5 ) ) ) )
     => ( ! [X4: int,K2: int] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D5 ) ) ) )
       => ! [X6: int,K4: int] :
            ( ( ( P @ X6 )
              | ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D5 ) ) )
              | ( Q @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_3529_inf__period_I1_J,axiom,
    ! [P: real > $o,D5: real,Q: real > $o] :
      ( ! [X4: real,K2: real] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D5 ) ) ) )
     => ( ! [X4: real,K2: real] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K2 @ D5 ) ) ) )
       => ! [X6: real,K4: real] :
            ( ( ( P @ X6 )
              & ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D5 ) ) )
              & ( Q @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_3530_inf__period_I1_J,axiom,
    ! [P: rat > $o,D5: rat,Q: rat > $o] :
      ( ! [X4: rat,K2: rat] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D5 ) ) ) )
     => ( ! [X4: rat,K2: rat] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K2 @ D5 ) ) ) )
       => ! [X6: rat,K4: rat] :
            ( ( ( P @ X6 )
              & ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_rat @ X6 @ ( times_times_rat @ K4 @ D5 ) ) )
              & ( Q @ ( minus_minus_rat @ X6 @ ( times_times_rat @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_3531_inf__period_I1_J,axiom,
    ! [P: int > $o,D5: int,Q: int > $o] :
      ( ! [X4: int,K2: int] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D5 ) ) ) )
     => ( ! [X4: int,K2: int] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D5 ) ) ) )
       => ! [X6: int,K4: int] :
            ( ( ( P @ X6 )
              & ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D5 ) ) )
              & ( Q @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D5 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_3532_power__commutes,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A @ N ) @ A )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_commutes
thf(fact_3533_power__commutes,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_commutes
thf(fact_3534_power__commutes,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ N ) @ A )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_commutes
thf(fact_3535_power__commutes,axiom,
    ! [A: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_commutes
thf(fact_3536_power__commutes,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_commutes
thf(fact_3537_power__mult__distrib,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_3538_power__mult__distrib,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_3539_power__mult__distrib,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_3540_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_3541_power__mult__distrib,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_3542_power__commuting__commutes,axiom,
    ! [X3: complex,Y3: complex,N: nat] :
      ( ( ( times_times_complex @ X3 @ Y3 )
        = ( times_times_complex @ Y3 @ X3 ) )
     => ( ( times_times_complex @ ( power_power_complex @ X3 @ N ) @ Y3 )
        = ( times_times_complex @ Y3 @ ( power_power_complex @ X3 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_3543_power__commuting__commutes,axiom,
    ! [X3: real,Y3: real,N: nat] :
      ( ( ( times_times_real @ X3 @ Y3 )
        = ( times_times_real @ Y3 @ X3 ) )
     => ( ( times_times_real @ ( power_power_real @ X3 @ N ) @ Y3 )
        = ( times_times_real @ Y3 @ ( power_power_real @ X3 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_3544_power__commuting__commutes,axiom,
    ! [X3: rat,Y3: rat,N: nat] :
      ( ( ( times_times_rat @ X3 @ Y3 )
        = ( times_times_rat @ Y3 @ X3 ) )
     => ( ( times_times_rat @ ( power_power_rat @ X3 @ N ) @ Y3 )
        = ( times_times_rat @ Y3 @ ( power_power_rat @ X3 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_3545_power__commuting__commutes,axiom,
    ! [X3: nat,Y3: nat,N: nat] :
      ( ( ( times_times_nat @ X3 @ Y3 )
        = ( times_times_nat @ Y3 @ X3 ) )
     => ( ( times_times_nat @ ( power_power_nat @ X3 @ N ) @ Y3 )
        = ( times_times_nat @ Y3 @ ( power_power_nat @ X3 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_3546_power__commuting__commutes,axiom,
    ! [X3: int,Y3: int,N: nat] :
      ( ( ( times_times_int @ X3 @ Y3 )
        = ( times_times_int @ Y3 @ X3 ) )
     => ( ( times_times_int @ ( power_power_int @ X3 @ N ) @ Y3 )
        = ( times_times_int @ Y3 @ ( power_power_int @ X3 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_3547_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_3548_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_3549_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_3550_power__mult,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_3551_power__mult,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_3552_power__mult,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_3553_power__mult,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_3554_mult__of__nat__commute,axiom,
    ! [X3: nat,Y3: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ X3 ) @ Y3 )
      = ( times_times_complex @ Y3 @ ( semiri8010041392384452111omplex @ X3 ) ) ) ).

% mult_of_nat_commute
thf(fact_3555_mult__of__nat__commute,axiom,
    ! [X3: nat,Y3: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ Y3 )
      = ( times_times_real @ Y3 @ ( semiri5074537144036343181t_real @ X3 ) ) ) ).

% mult_of_nat_commute
thf(fact_3556_mult__of__nat__commute,axiom,
    ! [X3: nat,Y3: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ X3 ) @ Y3 )
      = ( times_times_rat @ Y3 @ ( semiri681578069525770553at_rat @ X3 ) ) ) ).

% mult_of_nat_commute
thf(fact_3557_mult__of__nat__commute,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ Y3 )
      = ( times_times_nat @ Y3 @ ( semiri1316708129612266289at_nat @ X3 ) ) ) ).

% mult_of_nat_commute
thf(fact_3558_mult__of__nat__commute,axiom,
    ! [X3: nat,Y3: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X3 ) @ Y3 )
      = ( times_times_int @ Y3 @ ( semiri1314217659103216013at_int @ X3 ) ) ) ).

% mult_of_nat_commute
thf(fact_3559_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_3560_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_3561_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_3562_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_3563_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_3564_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_3565_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_3566_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_3567_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_3568_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_3569_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_3570_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_3571_mult__of__int__commute,axiom,
    ! [X3: int,Y3: complex] :
      ( ( times_times_complex @ ( ring_17405671764205052669omplex @ X3 ) @ Y3 )
      = ( times_times_complex @ Y3 @ ( ring_17405671764205052669omplex @ X3 ) ) ) ).

% mult_of_int_commute
thf(fact_3572_mult__of__int__commute,axiom,
    ! [X3: int,Y3: real] :
      ( ( times_times_real @ ( ring_1_of_int_real @ X3 ) @ Y3 )
      = ( times_times_real @ Y3 @ ( ring_1_of_int_real @ X3 ) ) ) ).

% mult_of_int_commute
thf(fact_3573_mult__of__int__commute,axiom,
    ! [X3: int,Y3: rat] :
      ( ( times_times_rat @ ( ring_1_of_int_rat @ X3 ) @ Y3 )
      = ( times_times_rat @ Y3 @ ( ring_1_of_int_rat @ X3 ) ) ) ).

% mult_of_int_commute
thf(fact_3574_mult__of__int__commute,axiom,
    ! [X3: int,Y3: int] :
      ( ( times_times_int @ ( ring_1_of_int_int @ X3 ) @ Y3 )
      = ( times_times_int @ Y3 @ ( ring_1_of_int_int @ X3 ) ) ) ).

% mult_of_int_commute
thf(fact_3575_le__mult__nat__floor,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim3151403230148437115or_rat @ A ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ B ) ) ) @ ( nat2 @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% le_mult_nat_floor
thf(fact_3576_le__mult__nat__floor,axiom,
    ! [A: real,B: real] : ( ord_less_eq_nat @ ( times_times_nat @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ B ) ) ) @ ( nat2 @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ).

% le_mult_nat_floor
thf(fact_3577_le__mult__floor,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_int @ ( times_times_int @ ( archim3151403230148437115or_rat @ A ) @ ( archim3151403230148437115or_rat @ B ) ) @ ( archim3151403230148437115or_rat @ ( times_times_rat @ A @ B ) ) ) ) ) ).

% le_mult_floor
thf(fact_3578_le__mult__floor,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_int @ ( times_times_int @ ( archim6058952711729229775r_real @ A ) @ ( archim6058952711729229775r_real @ B ) ) @ ( archim6058952711729229775r_real @ ( times_times_real @ A @ B ) ) ) ) ) ).

% le_mult_floor
thf(fact_3579_mult__ceiling__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_int @ ( archim7802044766580827645g_real @ ( times_times_real @ A @ B ) ) @ ( times_times_int @ ( archim7802044766580827645g_real @ A ) @ ( archim7802044766580827645g_real @ B ) ) ) ) ) ).

% mult_ceiling_le
thf(fact_3580_mult__ceiling__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ ( times_times_rat @ A @ B ) ) @ ( times_times_int @ ( archim2889992004027027881ng_rat @ A ) @ ( archim2889992004027027881ng_rat @ B ) ) ) ) ) ).

% mult_ceiling_le
thf(fact_3581_mult__mono,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_3582_mult__mono,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_3583_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D3 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_3584_mult__mono,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_mono
thf(fact_3585_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3586_mult__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3587_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D3 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3588_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3589_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_3590_zero__le__square,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).

% zero_le_square
thf(fact_3591_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_3592_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3593_split__mult__pos__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3594_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3595_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3596_mult__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3597_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3598_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3599_mult__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3600_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3601_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3602_mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3603_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3604_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3605_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3606_mult__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3607_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3608_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3609_mult__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3610_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3611_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3612_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3613_mult__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3614_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3615_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_3616_split__mult__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
     => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).

% split_mult_neg_le
thf(fact_3617_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_3618_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_3619_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3620_mult__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3621_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3622_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3623_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3624_mult__nonneg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3625_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3626_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3627_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3628_mult__nonpos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3629_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3630_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3631_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3632_mult__nonneg__nonpos2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3633_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3634_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3635_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3636_zero__le__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3637_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3638_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3639_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3640_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3641_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3642_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3643_mult__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3644_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3645_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_3646_not__square__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).

% not_square_less_zero
thf(fact_3647_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_3648_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3649_mult__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3650_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3651_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_3652_mult__neg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_neg_pos
thf(fact_3653_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_3654_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_3655_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_3656_mult__pos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg
thf(fact_3657_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_3658_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_3659_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3660_mult__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3661_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3662_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3663_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_3664_mult__pos__neg2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg2
thf(fact_3665_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_3666_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_3667_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3668_zero__less__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3669_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3670_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3671_zero__less__mult__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3672_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3673_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3674_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3675_zero__less__mult__pos2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3676_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3677_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3678_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3679_mult__less__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3680_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3681_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3682_mult__less__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3683_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3684_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3685_mult__strict__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3686_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3687_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3688_mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3689_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3690_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3691_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3692_mult__less__cancel__left__disj,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3693_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3694_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3695_mult__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3696_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3697_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3698_mult__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3699_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3700_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3701_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3702_mult__less__cancel__right__disj,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3703_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3704_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3705_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3706_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3707_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3708_less__1__mult,axiom,
    ! [M: real,N: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_3709_less__1__mult,axiom,
    ! [M: rat,N: rat] :
      ( ( ord_less_rat @ one_one_rat @ M )
     => ( ( ord_less_rat @ one_one_rat @ N )
       => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_3710_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_3711_less__1__mult,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_3712_nonzero__eq__divide__eq,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( A
          = ( divide1717551699836669952omplex @ B @ C ) )
        = ( ( times_times_complex @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3713_nonzero__eq__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( A
          = ( divide_divide_real @ B @ C ) )
        = ( ( times_times_real @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3714_nonzero__eq__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( A
          = ( divide_divide_rat @ B @ C ) )
        = ( ( times_times_rat @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3715_nonzero__divide__eq__eq,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ B @ C )
          = A )
        = ( B
          = ( times_times_complex @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3716_nonzero__divide__eq__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( ( divide_divide_real @ B @ C )
          = A )
        = ( B
          = ( times_times_real @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3717_nonzero__divide__eq__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( divide_divide_rat @ B @ C )
          = A )
        = ( B
          = ( times_times_rat @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3718_eq__divide__imp,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = B )
       => ( A
          = ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3719_eq__divide__imp,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = B )
       => ( A
          = ( divide_divide_real @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3720_eq__divide__imp,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = B )
       => ( A
          = ( divide_divide_rat @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3721_divide__eq__imp,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( B
          = ( times_times_complex @ A @ C ) )
       => ( ( divide1717551699836669952omplex @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3722_divide__eq__imp,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( B
          = ( times_times_real @ A @ C ) )
       => ( ( divide_divide_real @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3723_divide__eq__imp,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( B
          = ( times_times_rat @ A @ C ) )
       => ( ( divide_divide_rat @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3724_eq__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq
thf(fact_3725_eq__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq
thf(fact_3726_eq__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq
thf(fact_3727_divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq
thf(fact_3728_divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( divide_divide_real @ B @ C )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq
thf(fact_3729_divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ C )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq
thf(fact_3730_frac__eq__eq,axiom,
    ! [Y3: complex,Z: complex,X3: complex,W: complex] :
      ( ( Y3 != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( ( divide1717551699836669952omplex @ X3 @ Y3 )
            = ( divide1717551699836669952omplex @ W @ Z ) )
          = ( ( times_times_complex @ X3 @ Z )
            = ( times_times_complex @ W @ Y3 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3731_frac__eq__eq,axiom,
    ! [Y3: real,Z: real,X3: real,W: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ( divide_divide_real @ X3 @ Y3 )
            = ( divide_divide_real @ W @ Z ) )
          = ( ( times_times_real @ X3 @ Z )
            = ( times_times_real @ W @ Y3 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3732_frac__eq__eq,axiom,
    ! [Y3: rat,Z: rat,X3: rat,W: rat] :
      ( ( Y3 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ( divide_divide_rat @ X3 @ Y3 )
            = ( divide_divide_rat @ W @ Z ) )
          = ( ( times_times_rat @ X3 @ Z )
            = ( times_times_rat @ W @ Y3 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3733_mult__numeral__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_3734_mult__numeral__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_3735_mult__numeral__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_3736_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_3737_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_3738_mult__numeral__1__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_3739_mult__numeral__1__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_3740_mult__numeral__1__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_3741_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_3742_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_3743_mult__diff__mult,axiom,
    ! [X3: real,Y3: real,A: real,B: real] :
      ( ( minus_minus_real @ ( times_times_real @ X3 @ Y3 ) @ ( times_times_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ X3 @ ( minus_minus_real @ Y3 @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X3 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_3744_mult__diff__mult,axiom,
    ! [X3: rat,Y3: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X3 @ Y3 ) @ ( times_times_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ X3 @ ( minus_minus_rat @ Y3 @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X3 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_3745_mult__diff__mult,axiom,
    ! [X3: int,Y3: int,A: int,B: int] :
      ( ( minus_minus_int @ ( times_times_int @ X3 @ Y3 ) @ ( times_times_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ X3 @ ( minus_minus_int @ Y3 @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X3 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_3746_left__right__inverse__power,axiom,
    ! [X3: complex,Y3: complex,N: nat] :
      ( ( ( times_times_complex @ X3 @ Y3 )
        = one_one_complex )
     => ( ( times_times_complex @ ( power_power_complex @ X3 @ N ) @ ( power_power_complex @ Y3 @ N ) )
        = one_one_complex ) ) ).

% left_right_inverse_power
thf(fact_3747_left__right__inverse__power,axiom,
    ! [X3: real,Y3: real,N: nat] :
      ( ( ( times_times_real @ X3 @ Y3 )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X3 @ N ) @ ( power_power_real @ Y3 @ N ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_3748_left__right__inverse__power,axiom,
    ! [X3: rat,Y3: rat,N: nat] :
      ( ( ( times_times_rat @ X3 @ Y3 )
        = one_one_rat )
     => ( ( times_times_rat @ ( power_power_rat @ X3 @ N ) @ ( power_power_rat @ Y3 @ N ) )
        = one_one_rat ) ) ).

% left_right_inverse_power
thf(fact_3749_left__right__inverse__power,axiom,
    ! [X3: nat,Y3: nat,N: nat] :
      ( ( ( times_times_nat @ X3 @ Y3 )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X3 @ N ) @ ( power_power_nat @ Y3 @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_3750_left__right__inverse__power,axiom,
    ! [X3: int,Y3: int,N: nat] :
      ( ( ( times_times_int @ X3 @ Y3 )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X3 @ N ) @ ( power_power_int @ Y3 @ N ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_3751_power__Suc,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_Suc
thf(fact_3752_power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_Suc
thf(fact_3753_power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_Suc
thf(fact_3754_power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_Suc
thf(fact_3755_power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_Suc
thf(fact_3756_power__Suc2,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_3757_power__Suc2,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_3758_power__Suc2,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_3759_power__Suc2,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_3760_power__Suc2,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_3761_div__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% div_mult2_eq'
thf(fact_3762_div__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% div_mult2_eq'
thf(fact_3763_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_3764_power__add,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_add
thf(fact_3765_power__add,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% power_add
thf(fact_3766_power__add,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_add
thf(fact_3767_power__add,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% power_add
thf(fact_3768_power__add,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% power_add
thf(fact_3769_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_3770_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_3771_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_3772_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_3773_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_3774_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_3775_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_3776_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_3777_div__times__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_3778_times__div__less__eq__dividend,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_3779_power__odd__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_3780_power__odd__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_3781_power__odd__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_3782_power__odd__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_3783_power__odd__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_3784_frac__ge__0,axiom,
    ! [X3: real] : ( ord_less_eq_real @ zero_zero_real @ ( archim2898591450579166408c_real @ X3 ) ) ).

% frac_ge_0
thf(fact_3785_frac__ge__0,axiom,
    ! [X3: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( archimedean_frac_rat @ X3 ) ) ).

% frac_ge_0
thf(fact_3786_frac__lt__1,axiom,
    ! [X3: real] : ( ord_less_real @ ( archim2898591450579166408c_real @ X3 ) @ one_one_real ) ).

% frac_lt_1
thf(fact_3787_frac__lt__1,axiom,
    ! [X3: rat] : ( ord_less_rat @ ( archimedean_frac_rat @ X3 ) @ one_one_rat ) ).

% frac_lt_1
thf(fact_3788_frac__1__eq,axiom,
    ! [X3: real] :
      ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X3 @ one_one_real ) )
      = ( archim2898591450579166408c_real @ X3 ) ) ).

% frac_1_eq
thf(fact_3789_frac__1__eq,axiom,
    ! [X3: rat] :
      ( ( archimedean_frac_rat @ ( plus_plus_rat @ X3 @ one_one_rat ) )
      = ( archimedean_frac_rat @ X3 ) ) ).

% frac_1_eq
thf(fact_3790_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3791_mult__less__le__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3792_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D3 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3793_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3794_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D3 )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3795_mult__le__less__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D3 )
       => ( ( ord_less_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3796_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D3 )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3797_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D3 )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3798_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3799_mult__right__le__imp__le,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3800_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3801_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3802_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3803_mult__left__le__imp__le,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3804_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3805_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3806_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_3807_mult__le__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_3808_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_3809_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_3810_mult__le__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_3811_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_3812_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_3813_mult__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_3814_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_3815_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3816_mult__strict__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3817_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D3 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3818_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3819_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3820_mult__right__less__imp__less,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3821_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3822_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3823_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_3824_mult__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_3825_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_3826_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D3 )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3827_mult__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D3 )
       => ( ( ord_less_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3828_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D3 )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3829_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D3 )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3830_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3831_mult__left__less__imp__less,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3832_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3833_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3834_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_3835_mult__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_3836_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_3837_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_3838_mult__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_3839_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_3840_mult__left__le__one__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_eq_real @ Y3 @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y3 @ X3 ) @ X3 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3841_mult__left__le__one__le,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ( ord_less_eq_rat @ Y3 @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ Y3 @ X3 ) @ X3 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3842_mult__left__le__one__le,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ( ord_less_eq_int @ Y3 @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y3 @ X3 ) @ X3 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3843_mult__right__le__one__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_eq_real @ Y3 @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X3 @ Y3 ) @ X3 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3844_mult__right__le__one__le,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
       => ( ( ord_less_eq_rat @ Y3 @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ X3 @ Y3 ) @ X3 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3845_mult__right__le__one__le,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ( ord_less_eq_int @ Y3 @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X3 @ Y3 ) @ X3 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3846_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_3847_mult__le__one,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ B @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).

% mult_le_one
thf(fact_3848_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_3849_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_3850_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3851_mult__left__le,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3852_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3853_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3854_sum__squares__le__zero__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y3 @ Y3 ) ) @ zero_zero_real )
      = ( ( X3 = zero_zero_real )
        & ( Y3 = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3855_sum__squares__le__zero__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y3 @ Y3 ) ) @ zero_zero_rat )
      = ( ( X3 = zero_zero_rat )
        & ( Y3 = zero_zero_rat ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3856_sum__squares__le__zero__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y3 @ Y3 ) ) @ zero_zero_int )
      = ( ( X3 = zero_zero_int )
        & ( Y3 = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3857_sum__squares__ge__zero,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y3 @ Y3 ) ) ) ).

% sum_squares_ge_zero
thf(fact_3858_sum__squares__ge__zero,axiom,
    ! [X3: rat,Y3: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y3 @ Y3 ) ) ) ).

% sum_squares_ge_zero
thf(fact_3859_sum__squares__ge__zero,axiom,
    ! [X3: int,Y3: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y3 @ Y3 ) ) ) ).

% sum_squares_ge_zero
thf(fact_3860_sum__squares__gt__zero__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y3 @ Y3 ) ) )
      = ( ( X3 != zero_zero_real )
        | ( Y3 != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3861_sum__squares__gt__zero__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y3 @ Y3 ) ) )
      = ( ( X3 != zero_zero_rat )
        | ( Y3 != zero_zero_rat ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3862_sum__squares__gt__zero__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y3 @ Y3 ) ) )
      = ( ( X3 != zero_zero_int )
        | ( Y3 != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3863_not__sum__squares__lt__zero,axiom,
    ! [X3: real,Y3: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y3 @ Y3 ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_3864_not__sum__squares__lt__zero,axiom,
    ! [X3: rat,Y3: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ X3 ) @ ( times_times_rat @ Y3 @ Y3 ) ) @ zero_zero_rat ) ).

% not_sum_squares_lt_zero
thf(fact_3865_not__sum__squares__lt__zero,axiom,
    ! [X3: int,Y3: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y3 @ Y3 ) ) @ zero_zero_int ) ).

% not_sum_squares_lt_zero
thf(fact_3866_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3867_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3868_divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_3869_divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_3870_less__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_3871_less__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_3872_neg__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_3873_neg__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_3874_neg__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_3875_neg__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_3876_pos__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_3877_pos__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_3878_pos__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_3879_pos__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_3880_mult__imp__div__pos__less,axiom,
    ! [Y3: real,X3: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_real @ X3 @ ( times_times_real @ Z @ Y3 ) )
       => ( ord_less_real @ ( divide_divide_real @ X3 @ Y3 ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_3881_mult__imp__div__pos__less,axiom,
    ! [Y3: rat,X3: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y3 )
     => ( ( ord_less_rat @ X3 @ ( times_times_rat @ Z @ Y3 ) )
       => ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_3882_mult__imp__less__div__pos,axiom,
    ! [Y3: real,Z: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_real @ ( times_times_real @ Z @ Y3 ) @ X3 )
       => ( ord_less_real @ Z @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_3883_mult__imp__less__div__pos,axiom,
    ! [Y3: rat,Z: rat,X3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y3 )
     => ( ( ord_less_rat @ ( times_times_rat @ Z @ Y3 ) @ X3 )
       => ( ord_less_rat @ Z @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_3884_divide__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_3885_divide__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_3886_divide__strict__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_3887_divide__strict__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_3888_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_3889_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( numeral_numeral_real @ W ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_3890_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( numeral_numeral_rat @ W ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_3891_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( numera6690914467698888265omplex @ W )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_3892_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( numeral_numeral_real @ W )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_3893_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( numeral_numeral_rat @ W )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_3894_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: real,E2: real,C: real,B: real,D3: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D3 ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D3 ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_3895_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: rat,E2: rat,C: rat,B: rat,D3: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D3 ) )
      = ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D3 ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_3896_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: int,E2: int,C: int,B: int,D3: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D3 ) )
      = ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D3 ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_3897_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: real,E2: real,C: real,B: real,D3: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D3 ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C ) @ D3 ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_3898_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: rat,E2: rat,C: rat,B: rat,D3: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D3 ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C ) @ D3 ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_3899_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: int,E2: int,C: int,B: int,D3: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D3 ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C ) @ D3 ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_3900_divide__add__eq__iff,axiom,
    ! [Z: complex,X3: complex,Y3: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X3 @ Z ) @ Y3 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X3 @ ( times_times_complex @ Y3 @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_3901_divide__add__eq__iff,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X3 @ Z ) @ Y3 )
        = ( divide_divide_real @ ( plus_plus_real @ X3 @ ( times_times_real @ Y3 @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_3902_divide__add__eq__iff,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ Z ) @ Y3 )
        = ( divide_divide_rat @ ( plus_plus_rat @ X3 @ ( times_times_rat @ Y3 @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_3903_add__divide__eq__iff,axiom,
    ! [Z: complex,X3: complex,Y3: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ X3 @ ( divide1717551699836669952omplex @ Y3 @ Z ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X3 @ Z ) @ Y3 ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_3904_add__divide__eq__iff,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ X3 @ ( divide_divide_real @ Y3 @ Z ) )
        = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X3 @ Z ) @ Y3 ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_3905_add__divide__eq__iff,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ X3 @ ( divide_divide_rat @ Y3 @ Z ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ Z ) @ Y3 ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_3906_add__num__frac,axiom,
    ! [Y3: complex,Z: complex,X3: complex] :
      ( ( Y3 != zero_zero_complex )
     => ( ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ X3 @ Y3 ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X3 @ ( times_times_complex @ Z @ Y3 ) ) @ Y3 ) ) ) ).

% add_num_frac
thf(fact_3907_add__num__frac,axiom,
    ! [Y3: real,Z: real,X3: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( plus_plus_real @ Z @ ( divide_divide_real @ X3 @ Y3 ) )
        = ( divide_divide_real @ ( plus_plus_real @ X3 @ ( times_times_real @ Z @ Y3 ) ) @ Y3 ) ) ) ).

% add_num_frac
thf(fact_3908_add__num__frac,axiom,
    ! [Y3: rat,Z: rat,X3: rat] :
      ( ( Y3 != zero_zero_rat )
     => ( ( plus_plus_rat @ Z @ ( divide_divide_rat @ X3 @ Y3 ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ X3 @ ( times_times_rat @ Z @ Y3 ) ) @ Y3 ) ) ) ).

% add_num_frac
thf(fact_3909_add__frac__num,axiom,
    ! [Y3: complex,X3: complex,Z: complex] :
      ( ( Y3 != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X3 @ Y3 ) @ Z )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X3 @ ( times_times_complex @ Z @ Y3 ) ) @ Y3 ) ) ) ).

% add_frac_num
thf(fact_3910_add__frac__num,axiom,
    ! [Y3: real,X3: real,Z: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X3 @ Y3 ) @ Z )
        = ( divide_divide_real @ ( plus_plus_real @ X3 @ ( times_times_real @ Z @ Y3 ) ) @ Y3 ) ) ) ).

% add_frac_num
thf(fact_3911_add__frac__num,axiom,
    ! [Y3: rat,X3: rat,Z: rat] :
      ( ( Y3 != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ Z )
        = ( divide_divide_rat @ ( plus_plus_rat @ X3 @ ( times_times_rat @ Z @ Y3 ) ) @ Y3 ) ) ) ).

% add_frac_num
thf(fact_3912_add__frac__eq,axiom,
    ! [Y3: complex,Z: complex,X3: complex,W: complex] :
      ( ( Y3 != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X3 @ Y3 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X3 @ Z ) @ ( times_times_complex @ W @ Y3 ) ) @ ( times_times_complex @ Y3 @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_3913_add__frac__eq,axiom,
    ! [Y3: real,Z: real,X3: real,W: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ X3 @ Y3 ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X3 @ Z ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_3914_add__frac__eq,axiom,
    ! [Y3: rat,Z: rat,X3: rat,W: rat] :
      ( ( Y3 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X3 @ Z ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_3915_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_3916_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_3917_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_3918_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_3919_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_3920_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_3921_less__add__iff1,axiom,
    ! [A: real,E2: real,C: real,B: real,D3: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D3 ) )
      = ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E2 ) @ C ) @ D3 ) ) ).

% less_add_iff1
thf(fact_3922_less__add__iff1,axiom,
    ! [A: rat,E2: rat,C: rat,B: rat,D3: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D3 ) )
      = ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E2 ) @ C ) @ D3 ) ) ).

% less_add_iff1
thf(fact_3923_less__add__iff1,axiom,
    ! [A: int,E2: int,C: int,B: int,D3: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D3 ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E2 ) @ C ) @ D3 ) ) ).

% less_add_iff1
thf(fact_3924_less__add__iff2,axiom,
    ! [A: real,E2: real,C: real,B: real,D3: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E2 ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E2 ) @ D3 ) )
      = ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E2 ) @ D3 ) ) ) ).

% less_add_iff2
thf(fact_3925_less__add__iff2,axiom,
    ! [A: rat,E2: rat,C: rat,B: rat,D3: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E2 ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E2 ) @ D3 ) )
      = ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E2 ) @ D3 ) ) ) ).

% less_add_iff2
thf(fact_3926_less__add__iff2,axiom,
    ! [A: int,E2: int,C: int,B: int,D3: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E2 ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E2 ) @ D3 ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E2 ) @ D3 ) ) ) ).

% less_add_iff2
thf(fact_3927_divide__diff__eq__iff,axiom,
    ! [Z: complex,X3: complex,Y3: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X3 @ Z ) @ Y3 )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ X3 @ ( times_times_complex @ Y3 @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3928_divide__diff__eq__iff,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ X3 @ Z ) @ Y3 )
        = ( divide_divide_real @ ( minus_minus_real @ X3 @ ( times_times_real @ Y3 @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3929_divide__diff__eq__iff,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ X3 @ Z ) @ Y3 )
        = ( divide_divide_rat @ ( minus_minus_rat @ X3 @ ( times_times_rat @ Y3 @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3930_diff__divide__eq__iff,axiom,
    ! [Z: complex,X3: complex,Y3: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ X3 @ ( divide1717551699836669952omplex @ Y3 @ Z ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X3 @ Z ) @ Y3 ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3931_diff__divide__eq__iff,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ X3 @ ( divide_divide_real @ Y3 @ Z ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z ) @ Y3 ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3932_diff__divide__eq__iff,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ X3 @ ( divide_divide_rat @ Y3 @ Z ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z ) @ Y3 ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3933_diff__frac__eq,axiom,
    ! [Y3: complex,Z: complex,X3: complex,W: complex] :
      ( ( Y3 != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X3 @ Y3 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X3 @ Z ) @ ( times_times_complex @ W @ Y3 ) ) @ ( times_times_complex @ Y3 @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3934_diff__frac__eq,axiom,
    ! [Y3: real,Z: real,X3: real,W: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ X3 @ Y3 ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3935_diff__frac__eq,axiom,
    ! [Y3: rat,Z: rat,X3: rat,W: rat] :
      ( ( Y3 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3936_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_3937_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_3938_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_3939_power__gt1__lemma,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3940_power__gt1__lemma,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3941_power__gt1__lemma,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3942_power__gt1__lemma,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_3943_power__less__power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3944_power__less__power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3945_power__less__power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3946_power__less__power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_3947_ex__less__of__nat__mult,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ? [N2: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X3 ) ) ) ).

% ex_less_of_nat_mult
thf(fact_3948_ex__less__of__nat__mult,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X3 )
     => ? [N2: nat] : ( ord_less_rat @ Y3 @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ X3 ) ) ) ).

% ex_less_of_nat_mult
thf(fact_3949_unit__dvdE,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [C2: code_integer] :
              ( B
             != ( times_3573771949741848930nteger @ A @ C2 ) ) ) ) ).

% unit_dvdE
thf(fact_3950_unit__dvdE,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [C2: nat] :
              ( B
             != ( times_times_nat @ A @ C2 ) ) ) ) ).

% unit_dvdE
thf(fact_3951_unit__dvdE,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [C2: int] :
              ( B
             != ( times_times_int @ A @ C2 ) ) ) ) ).

% unit_dvdE
thf(fact_3952_unity__coeff__ex,axiom,
    ! [P: code_integer > $o,L: code_integer] :
      ( ( ? [X: code_integer] : ( P @ ( times_3573771949741848930nteger @ L @ X ) ) )
      = ( ? [X: code_integer] :
            ( ( dvd_dvd_Code_integer @ L @ ( plus_p5714425477246183910nteger @ X @ zero_z3403309356797280102nteger ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_3953_unity__coeff__ex,axiom,
    ! [P: real > $o,L: real] :
      ( ( ? [X: real] : ( P @ ( times_times_real @ L @ X ) ) )
      = ( ? [X: real] :
            ( ( dvd_dvd_real @ L @ ( plus_plus_real @ X @ zero_zero_real ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_3954_unity__coeff__ex,axiom,
    ! [P: rat > $o,L: rat] :
      ( ( ? [X: rat] : ( P @ ( times_times_rat @ L @ X ) ) )
      = ( ? [X: rat] :
            ( ( dvd_dvd_rat @ L @ ( plus_plus_rat @ X @ zero_zero_rat ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_3955_unity__coeff__ex,axiom,
    ! [P: nat > $o,L: nat] :
      ( ( ? [X: nat] : ( P @ ( times_times_nat @ L @ X ) ) )
      = ( ? [X: nat] :
            ( ( dvd_dvd_nat @ L @ ( plus_plus_nat @ X @ zero_zero_nat ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_3956_unity__coeff__ex,axiom,
    ! [P: int > $o,L: int] :
      ( ( ? [X: int] : ( P @ ( times_times_int @ L @ X ) ) )
      = ( ? [X: int] :
            ( ( dvd_dvd_int @ L @ ( plus_plus_int @ X @ zero_zero_int ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_3957_dvd__div__div__eq__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D3: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( C != zero_z3403309356797280102nteger )
       => ( ( dvd_dvd_Code_integer @ A @ B )
         => ( ( dvd_dvd_Code_integer @ C @ D3 )
           => ( ( ( divide6298287555418463151nteger @ B @ A )
                = ( divide6298287555418463151nteger @ D3 @ C ) )
              = ( ( times_3573771949741848930nteger @ B @ C )
                = ( times_3573771949741848930nteger @ A @ D3 ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_3958_dvd__div__div__eq__mult,axiom,
    ! [A: nat,C: nat,B: nat,D3: nat] :
      ( ( A != zero_zero_nat )
     => ( ( C != zero_zero_nat )
       => ( ( dvd_dvd_nat @ A @ B )
         => ( ( dvd_dvd_nat @ C @ D3 )
           => ( ( ( divide_divide_nat @ B @ A )
                = ( divide_divide_nat @ D3 @ C ) )
              = ( ( times_times_nat @ B @ C )
                = ( times_times_nat @ A @ D3 ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_3959_dvd__div__div__eq__mult,axiom,
    ! [A: int,C: int,B: int,D3: int] :
      ( ( A != zero_zero_int )
     => ( ( C != zero_zero_int )
       => ( ( dvd_dvd_int @ A @ B )
         => ( ( dvd_dvd_int @ C @ D3 )
           => ( ( ( divide_divide_int @ B @ A )
                = ( divide_divide_int @ D3 @ C ) )
              = ( ( times_times_int @ B @ C )
                = ( times_times_int @ A @ D3 ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_3960_dvd__div__iff__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( C != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_3961_dvd__div__iff__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( C != zero_zero_nat )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_3962_dvd__div__iff__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( C != zero_zero_int )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_3963_div__dvd__iff__mult,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( B != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
          = ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_3964_div__dvd__iff__mult,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
          = ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_3965_div__dvd__iff__mult,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
          = ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_3966_dvd__div__eq__mult,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ A @ B )
       => ( ( ( divide6298287555418463151nteger @ B @ A )
            = C )
          = ( B
            = ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_3967_dvd__div__eq__mult,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( ( divide_divide_nat @ B @ A )
            = C )
          = ( B
            = ( times_times_nat @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_3968_dvd__div__eq__mult,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ A @ B )
       => ( ( ( divide_divide_int @ B @ A )
            = C )
          = ( B
            = ( times_times_int @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_3969_inf__period_I4_J,axiom,
    ! [D3: code_integer,D5: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D3 @ D5 )
     => ! [X6: code_integer,K4: code_integer] :
          ( ( ~ ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ T ) ) )
          = ( ~ ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X6 @ ( times_3573771949741848930nteger @ K4 @ D5 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_3970_inf__period_I4_J,axiom,
    ! [D3: real,D5: real,T: real] :
      ( ( dvd_dvd_real @ D3 @ D5 )
     => ! [X6: real,K4: real] :
          ( ( ~ ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ T ) ) )
          = ( ~ ( dvd_dvd_real @ D3 @ ( plus_plus_real @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D5 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_3971_inf__period_I4_J,axiom,
    ! [D3: rat,D5: rat,T: rat] :
      ( ( dvd_dvd_rat @ D3 @ D5 )
     => ! [X6: rat,K4: rat] :
          ( ( ~ ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ T ) ) )
          = ( ~ ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ ( minus_minus_rat @ X6 @ ( times_times_rat @ K4 @ D5 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_3972_inf__period_I4_J,axiom,
    ! [D3: int,D5: int,T: int] :
      ( ( dvd_dvd_int @ D3 @ D5 )
     => ! [X6: int,K4: int] :
          ( ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ T ) ) )
          = ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D5 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_3973_inf__period_I3_J,axiom,
    ! [D3: code_integer,D5: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D3 @ D5 )
     => ! [X6: code_integer,K4: code_integer] :
          ( ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ X6 @ T ) )
          = ( dvd_dvd_Code_integer @ D3 @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X6 @ ( times_3573771949741848930nteger @ K4 @ D5 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_3974_inf__period_I3_J,axiom,
    ! [D3: real,D5: real,T: real] :
      ( ( dvd_dvd_real @ D3 @ D5 )
     => ! [X6: real,K4: real] :
          ( ( dvd_dvd_real @ D3 @ ( plus_plus_real @ X6 @ T ) )
          = ( dvd_dvd_real @ D3 @ ( plus_plus_real @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D5 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_3975_inf__period_I3_J,axiom,
    ! [D3: rat,D5: rat,T: rat] :
      ( ( dvd_dvd_rat @ D3 @ D5 )
     => ! [X6: rat,K4: rat] :
          ( ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ X6 @ T ) )
          = ( dvd_dvd_rat @ D3 @ ( plus_plus_rat @ ( minus_minus_rat @ X6 @ ( times_times_rat @ K4 @ D5 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_3976_inf__period_I3_J,axiom,
    ! [D3: int,D5: int,T: int] :
      ( ( dvd_dvd_int @ D3 @ D5 )
     => ! [X6: int,K4: int] :
          ( ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ T ) )
          = ( dvd_dvd_int @ D3 @ ( plus_plus_int @ ( minus_minus_int @ X6 @ ( times_times_int @ K4 @ D5 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_3977_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_3978_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_3979_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_3980_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_3981_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( divide_divide_nat @ M @ N ) ) ) ).

% nat_mult_div_cancel1
thf(fact_3982_div__less__iff__less__mult,axiom,
    ! [Q3: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q3 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q3 ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q3 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_3983_dvd__mult__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_mult_cancel
thf(fact_3984_nat__mult__dvd__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_3985_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_3986_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_3987_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_3988_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_3989_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_3990_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_3991_bezout__add__strong__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [D6: nat,X4: nat,Y4: nat] :
          ( ( dvd_dvd_nat @ D6 @ A )
          & ( dvd_dvd_nat @ D6 @ B )
          & ( ( times_times_nat @ A @ X4 )
            = ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D6 ) ) ) ) ).

% bezout_add_strong_nat
thf(fact_3992_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3993_mult__le__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3994_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3995_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3996_mult__le__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3997_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3998_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_3999_mult__le__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_4000_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_4001_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_4002_mult__le__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_4003_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_4004_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_4005_mult__less__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_4006_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_4007_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_4008_mult__less__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_4009_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_4010_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_4011_mult__less__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_4012_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_4013_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_4014_mult__less__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_4015_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_4016_field__le__mult__one__interval,axiom,
    ! [X3: real,Y3: real] :
      ( ! [Z3: real] :
          ( ( ord_less_real @ zero_zero_real @ Z3 )
         => ( ( ord_less_real @ Z3 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z3 @ X3 ) @ Y3 ) ) )
     => ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% field_le_mult_one_interval
thf(fact_4017_field__le__mult__one__interval,axiom,
    ! [X3: rat,Y3: rat] :
      ( ! [Z3: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ Z3 )
         => ( ( ord_less_rat @ Z3 @ one_one_rat )
           => ( ord_less_eq_rat @ ( times_times_rat @ Z3 @ X3 ) @ Y3 ) ) )
     => ( ord_less_eq_rat @ X3 @ Y3 ) ) ).

% field_le_mult_one_interval
thf(fact_4018_divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_4019_divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_4020_le__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_4021_le__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_4022_divide__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_4023_divide__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_4024_neg__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_4025_neg__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_4026_neg__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_4027_neg__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_4028_pos__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_4029_pos__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_4030_pos__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_4031_pos__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_4032_mult__imp__div__pos__le,axiom,
    ! [Y3: real,X3: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_eq_real @ X3 @ ( times_times_real @ Z @ Y3 ) )
       => ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y3 ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_4033_mult__imp__div__pos__le,axiom,
    ! [Y3: rat,X3: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y3 )
     => ( ( ord_less_eq_rat @ X3 @ ( times_times_rat @ Z @ Y3 ) )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_4034_mult__imp__le__div__pos,axiom,
    ! [Y3: real,Z: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ Y3 ) @ X3 )
       => ( ord_less_eq_real @ Z @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_4035_mult__imp__le__div__pos,axiom,
    ! [Y3: rat,Z: rat,X3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y3 )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ Y3 ) @ X3 )
       => ( ord_less_eq_rat @ Z @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_4036_divide__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_4037_divide__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_4038_convex__bound__le,axiom,
    ! [X3: real,A: real,Y3: real,U: real,V: real] :
      ( ( ord_less_eq_real @ X3 @ A )
     => ( ( ord_less_eq_real @ Y3 @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X3 ) @ ( times_times_real @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_4039_convex__bound__le,axiom,
    ! [X3: rat,A: rat,Y3: rat,U: rat,V: rat] :
      ( ( ord_less_eq_rat @ X3 @ A )
     => ( ( ord_less_eq_rat @ Y3 @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X3 ) @ ( times_times_rat @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_4040_convex__bound__le,axiom,
    ! [X3: int,A: int,Y3: int,U: int,V: int] :
      ( ( ord_less_eq_int @ X3 @ A )
     => ( ( ord_less_eq_int @ Y3 @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X3 ) @ ( times_times_int @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_4041_divide__less__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_4042_divide__less__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_4043_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_4044_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_4045_frac__le__eq,axiom,
    ! [Y3: real,Z: real,X3: real,W: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ X3 @ Y3 ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_le_eq
thf(fact_4046_frac__le__eq,axiom,
    ! [Y3: rat,Z: rat,X3: rat,W: rat] :
      ( ( Y3 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_le_eq
thf(fact_4047_power__Suc__less,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4048_power__Suc__less,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4049_power__Suc__less,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4050_power__Suc__less,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4051_frac__less__eq,axiom,
    ! [Y3: real,Z: real,X3: real,W: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_real @ ( divide_divide_real @ X3 @ Y3 ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X3 @ Z ) @ ( times_times_real @ W @ Y3 ) ) @ ( times_times_real @ Y3 @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_less_eq
thf(fact_4052_frac__less__eq,axiom,
    ! [Y3: rat,Z: rat,X3: rat,W: rat] :
      ( ( Y3 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_rat @ ( divide_divide_rat @ X3 @ Y3 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X3 @ Z ) @ ( times_times_rat @ W @ Y3 ) ) @ ( times_times_rat @ Y3 @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_less_eq
thf(fact_4053_mult__2,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2
thf(fact_4054_mult__2,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2
thf(fact_4055_mult__2,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2
thf(fact_4056_mult__2,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2
thf(fact_4057_mult__2,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2
thf(fact_4058_mult__2__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2_right
thf(fact_4059_mult__2__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2_right
thf(fact_4060_mult__2__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_4061_mult__2__right,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_4062_mult__2__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2_right
thf(fact_4063_left__add__twice,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_4064_left__add__twice,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_4065_left__add__twice,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_4066_left__add__twice,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_4067_left__add__twice,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_4068_is__unit__div__mult__cancel__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4069_is__unit__div__mult__cancel__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4070_is__unit__div__mult__cancel__right,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4071_is__unit__div__mult__cancel__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4072_is__unit__div__mult__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4073_is__unit__div__mult__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4074_is__unitE,axiom,
    ! [A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [B4: code_integer] :
              ( ( B4 != zero_z3403309356797280102nteger )
             => ( ( dvd_dvd_Code_integer @ B4 @ one_one_Code_integer )
               => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
                    = B4 )
                 => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B4 )
                      = A )
                   => ( ( ( times_3573771949741848930nteger @ A @ B4 )
                        = one_one_Code_integer )
                     => ( ( divide6298287555418463151nteger @ C @ A )
                       != ( times_3573771949741848930nteger @ C @ B4 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4075_is__unitE,axiom,
    ! [A: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [B4: nat] :
              ( ( B4 != zero_zero_nat )
             => ( ( dvd_dvd_nat @ B4 @ one_one_nat )
               => ( ( ( divide_divide_nat @ one_one_nat @ A )
                    = B4 )
                 => ( ( ( divide_divide_nat @ one_one_nat @ B4 )
                      = A )
                   => ( ( ( times_times_nat @ A @ B4 )
                        = one_one_nat )
                     => ( ( divide_divide_nat @ C @ A )
                       != ( times_times_nat @ C @ B4 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4076_is__unitE,axiom,
    ! [A: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [B4: int] :
              ( ( B4 != zero_zero_int )
             => ( ( dvd_dvd_int @ B4 @ one_one_int )
               => ( ( ( divide_divide_int @ one_one_int @ A )
                    = B4 )
                 => ( ( ( divide_divide_int @ one_one_int @ B4 )
                      = A )
                   => ( ( ( times_times_int @ A @ B4 )
                        = one_one_int )
                     => ( ( divide_divide_int @ C @ A )
                       != ( times_times_int @ C @ B4 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4077_evenE,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_4078_evenE,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: nat] :
            ( A
           != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_4079_evenE,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: int] :
            ( A
           != ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_4080_power4__eq__xxxx,axiom,
    ! [X3: complex] :
      ( ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).

% power4_eq_xxxx
thf(fact_4081_power4__eq__xxxx,axiom,
    ! [X3: real] :
      ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( times_times_real @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).

% power4_eq_xxxx
thf(fact_4082_power4__eq__xxxx,axiom,
    ! [X3: rat] :
      ( ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).

% power4_eq_xxxx
thf(fact_4083_power4__eq__xxxx,axiom,
    ! [X3: nat] :
      ( ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).

% power4_eq_xxxx
thf(fact_4084_power4__eq__xxxx,axiom,
    ! [X3: int] :
      ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).

% power4_eq_xxxx
thf(fact_4085_power2__eq__square,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_complex @ A @ A ) ) ).

% power2_eq_square
thf(fact_4086_power2__eq__square,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ A @ A ) ) ).

% power2_eq_square
thf(fact_4087_power2__eq__square,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_rat @ A @ A ) ) ).

% power2_eq_square
thf(fact_4088_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_4089_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_4090_Suc__double__not__eq__double,axiom,
    ! [M: nat,N: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_double_not_eq_double
thf(fact_4091_double__not__eq__Suc__double,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% double_not_eq_Suc_double
thf(fact_4092_power__even__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_4093_power__even__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_4094_power__even__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_4095_power__even__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_4096_frac__def,axiom,
    ( archimedean_frac_rat
    = ( ^ [X: rat] : ( minus_minus_rat @ X @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ X ) ) ) ) ) ).

% frac_def
thf(fact_4097_frac__def,axiom,
    ( archim2898591450579166408c_real
    = ( ^ [X: real] : ( minus_minus_real @ X @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) ) ) ) ).

% frac_def
thf(fact_4098_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_4099_div__nat__eqI,axiom,
    ! [N: nat,Q3: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q3 ) @ M )
     => ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q3 ) ) )
       => ( ( divide_divide_nat @ M @ N )
          = Q3 ) ) ) ).

% div_nat_eqI
thf(fact_4100_split__div,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_nat ) )
        & ( ( N != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) )
               => ( P @ I4 ) ) ) ) ) ) ).

% split_div
thf(fact_4101_dividend__less__div__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).

% dividend_less_div_times
thf(fact_4102_dividend__less__times__div,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_4103_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q3: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q3 )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q3 ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q3 ) @ N ) ) ) ).

% less_eq_div_iff_mult_less_eq
thf(fact_4104_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_4105_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_4106_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% mult_eq_if
thf(fact_4107_dvd__mult__cancel2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_4108_dvd__mult__cancel1,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_4109_dvd__minus__add,axiom,
    ! [Q3: nat,N: nat,R2: nat,M: nat] :
      ( ( ord_less_eq_nat @ Q3 @ N )
     => ( ( ord_less_eq_nat @ Q3 @ ( times_times_nat @ R2 @ M ) )
       => ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ Q3 ) )
          = ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N @ ( minus_minus_nat @ ( times_times_nat @ R2 @ M ) @ Q3 ) ) ) ) ) ) ).

% dvd_minus_add
thf(fact_4110_convex__bound__lt,axiom,
    ! [X3: real,A: real,Y3: real,U: real,V: real] :
      ( ( ord_less_real @ X3 @ A )
     => ( ( ord_less_real @ Y3 @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X3 ) @ ( times_times_real @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_4111_convex__bound__lt,axiom,
    ! [X3: rat,A: rat,Y3: rat,U: rat,V: rat] :
      ( ( ord_less_rat @ X3 @ A )
     => ( ( ord_less_rat @ Y3 @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X3 ) @ ( times_times_rat @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_4112_convex__bound__lt,axiom,
    ! [X3: int,A: int,Y3: int,U: int,V: int] :
      ( ( ord_less_int @ X3 @ A )
     => ( ( ord_less_int @ Y3 @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X3 ) @ ( times_times_int @ V @ Y3 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_4113_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_4114_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_4115_divide__le__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_4116_divide__le__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_4117_scaling__mono,axiom,
    ! [U: real,V: real,R2: real,S: real] :
      ( ( ord_less_eq_real @ U @ V )
     => ( ( ord_less_eq_real @ zero_zero_real @ R2 )
       => ( ( ord_less_eq_real @ R2 @ S )
         => ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R2 @ ( minus_minus_real @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_4118_scaling__mono,axiom,
    ! [U: rat,V: rat,R2: rat,S: rat] :
      ( ( ord_less_eq_rat @ U @ V )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
       => ( ( ord_less_eq_rat @ R2 @ S )
         => ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R2 @ ( minus_minus_rat @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_4119_frac__eq,axiom,
    ! [X3: real] :
      ( ( ( archim2898591450579166408c_real @ X3 )
        = X3 )
      = ( ( ord_less_eq_real @ zero_zero_real @ X3 )
        & ( ord_less_real @ X3 @ one_one_real ) ) ) ).

% frac_eq
thf(fact_4120_frac__eq,axiom,
    ! [X3: rat] :
      ( ( ( archimedean_frac_rat @ X3 )
        = X3 )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
        & ( ord_less_rat @ X3 @ one_one_rat ) ) ) ).

% frac_eq
thf(fact_4121_even__two__times__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_4122_even__two__times__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_4123_even__two__times__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_4124_frac__add,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X3 ) @ ( archim2898591450579166408c_real @ Y3 ) ) @ one_one_real )
       => ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X3 @ Y3 ) )
          = ( plus_plus_real @ ( archim2898591450579166408c_real @ X3 ) @ ( archim2898591450579166408c_real @ Y3 ) ) ) )
      & ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X3 ) @ ( archim2898591450579166408c_real @ Y3 ) ) @ one_one_real )
       => ( ( archim2898591450579166408c_real @ ( plus_plus_real @ X3 @ Y3 ) )
          = ( minus_minus_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X3 ) @ ( archim2898591450579166408c_real @ Y3 ) ) @ one_one_real ) ) ) ) ).

% frac_add
thf(fact_4125_frac__add,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X3 ) @ ( archimedean_frac_rat @ Y3 ) ) @ one_one_rat )
       => ( ( archimedean_frac_rat @ ( plus_plus_rat @ X3 @ Y3 ) )
          = ( plus_plus_rat @ ( archimedean_frac_rat @ X3 ) @ ( archimedean_frac_rat @ Y3 ) ) ) )
      & ( ~ ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X3 ) @ ( archimedean_frac_rat @ Y3 ) ) @ one_one_rat )
       => ( ( archimedean_frac_rat @ ( plus_plus_rat @ X3 @ Y3 ) )
          = ( minus_minus_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X3 ) @ ( archimedean_frac_rat @ Y3 ) ) @ one_one_rat ) ) ) ) ).

% frac_add
thf(fact_4126_take__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_bit0
thf(fact_4127_take__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_bit0
thf(fact_4128_power__eq__if,axiom,
    ( power_power_complex
    = ( ^ [P5: complex,M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P5 @ ( power_power_complex @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4129_power__eq__if,axiom,
    ( power_power_real
    = ( ^ [P5: real,M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P5 @ ( power_power_real @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4130_power__eq__if,axiom,
    ( power_power_rat
    = ( ^ [P5: rat,M3: nat] : ( if_rat @ ( M3 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P5 @ ( power_power_rat @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4131_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P5: nat,M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P5 @ ( power_power_nat @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4132_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P5: int,M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P5 @ ( power_power_int @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4133_power__minus__mult,axiom,
    ! [N: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_complex @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4134_power__minus__mult,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_real @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4135_power__minus__mult,axiom,
    ! [N: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4136_power__minus__mult,axiom,
    ! [N: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4137_power__minus__mult,axiom,
    ! [N: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4138_split__div_H,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
          & ( P @ zero_zero_nat ) )
        | ? [Q5: nat] :
            ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q5 ) @ M )
            & ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q5 ) ) )
            & ( P @ Q5 ) ) ) ) ).

% split_div'
thf(fact_4139_oddE,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: code_integer] :
            ( A
           != ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) @ one_one_Code_integer ) ) ) ).

% oddE
thf(fact_4140_oddE,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: nat] :
            ( A
           != ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) @ one_one_nat ) ) ) ).

% oddE
thf(fact_4141_oddE,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: int] :
            ( A
           != ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) @ one_one_int ) ) ) ).

% oddE
thf(fact_4142_power2__sum,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( power_power_complex @ ( plus_plus_complex @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_sum
thf(fact_4143_power2__sum,axiom,
    ! [X3: real,Y3: real] :
      ( ( power_power_real @ ( plus_plus_real @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_sum
thf(fact_4144_power2__sum,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( power_power_rat @ ( plus_plus_rat @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_sum
thf(fact_4145_power2__sum,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_sum
thf(fact_4146_power2__sum,axiom,
    ! [X3: int,Y3: int] :
      ( ( power_power_int @ ( plus_plus_int @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_sum
thf(fact_4147_zero__le__even__power_H,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_4148_zero__le__even__power_H,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_4149_zero__le__even__power_H,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_4150_nat__bit__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
       => ( ! [N2: nat] :
              ( ( P @ N2 )
             => ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_bit_induct
thf(fact_4151_floor__divide__lower,axiom,
    ! [Q3: rat,P6: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q3 )
     => ( ord_less_eq_rat @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P6 @ Q3 ) ) ) @ Q3 ) @ P6 ) ) ).

% floor_divide_lower
thf(fact_4152_floor__divide__lower,axiom,
    ! [Q3: real,P6: real] :
      ( ( ord_less_real @ zero_zero_real @ Q3 )
     => ( ord_less_eq_real @ ( times_times_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P6 @ Q3 ) ) ) @ Q3 ) @ P6 ) ) ).

% floor_divide_lower
thf(fact_4153_ceiling__divide__upper,axiom,
    ! [Q3: real,P6: real] :
      ( ( ord_less_real @ zero_zero_real @ Q3 )
     => ( ord_less_eq_real @ P6 @ ( times_times_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P6 @ Q3 ) ) ) @ Q3 ) ) ) ).

% ceiling_divide_upper
thf(fact_4154_ceiling__divide__upper,axiom,
    ! [Q3: rat,P6: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q3 )
     => ( ord_less_eq_rat @ P6 @ ( times_times_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P6 @ Q3 ) ) ) @ Q3 ) ) ) ).

% ceiling_divide_upper
thf(fact_4155_vebt__buildup_Ocases,axiom,
    ! [X3: nat] :
      ( ( X3 != zero_zero_nat )
     => ( ( X3
         != ( suc @ zero_zero_nat ) )
       => ~ ! [Va: nat] :
              ( X3
             != ( suc @ ( suc @ Va ) ) ) ) ) ).

% vebt_buildup.cases
thf(fact_4156_option_Osize_I4_J,axiom,
    ! [X2: nat] :
      ( ( size_size_option_nat @ ( some_nat @ X2 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_4157_option_Osize_I4_J,axiom,
    ! [X2: product_prod_nat_nat] :
      ( ( size_s170228958280169651at_nat @ ( some_P7363390416028606310at_nat @ X2 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_4158_option_Osize_I4_J,axiom,
    ! [X2: num] :
      ( ( size_size_option_num @ ( some_num @ X2 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_4159_sum__squares__bound,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_4160_sum__squares__bound,axiom,
    ! [X3: rat,Y3: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_4161_power2__diff,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_diff
thf(fact_4162_power2__diff,axiom,
    ! [X3: real,Y3: real] :
      ( ( power_power_real @ ( minus_minus_real @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_diff
thf(fact_4163_power2__diff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_diff
thf(fact_4164_power2__diff,axiom,
    ! [X3: int,Y3: int] :
      ( ( power_power_int @ ( minus_minus_int @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).

% power2_diff
thf(fact_4165_odd__0__le__power__imp__0__le,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_4166_odd__0__le__power__imp__0__le,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_4167_odd__0__le__power__imp__0__le,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_4168_odd__power__less__zero,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).

% odd_power_less_zero
thf(fact_4169_odd__power__less__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_rat ) ) ).

% odd_power_less_zero
thf(fact_4170_odd__power__less__zero,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).

% odd_power_less_zero
thf(fact_4171_floor__divide__upper,axiom,
    ! [Q3: rat,P6: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q3 )
     => ( ord_less_rat @ P6 @ ( times_times_rat @ ( plus_plus_rat @ ( ring_1_of_int_rat @ ( archim3151403230148437115or_rat @ ( divide_divide_rat @ P6 @ Q3 ) ) ) @ one_one_rat ) @ Q3 ) ) ) ).

% floor_divide_upper
thf(fact_4172_floor__divide__upper,axiom,
    ! [Q3: real,P6: real] :
      ( ( ord_less_real @ zero_zero_real @ Q3 )
     => ( ord_less_real @ P6 @ ( times_times_real @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ P6 @ Q3 ) ) ) @ one_one_real ) @ Q3 ) ) ) ).

% floor_divide_upper
thf(fact_4173_ceiling__divide__lower,axiom,
    ! [Q3: real,P6: real] :
      ( ( ord_less_real @ zero_zero_real @ Q3 )
     => ( ord_less_real @ ( times_times_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ ( divide_divide_real @ P6 @ Q3 ) ) ) @ one_one_real ) @ Q3 ) @ P6 ) ) ).

% ceiling_divide_lower
thf(fact_4174_ceiling__divide__lower,axiom,
    ! [Q3: rat,P6: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Q3 )
     => ( ord_less_rat @ ( times_times_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ P6 @ Q3 ) ) ) @ one_one_rat ) @ Q3 ) @ P6 ) ) ).

% ceiling_divide_lower
thf(fact_4175_floor__add,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X3 ) @ ( archimedean_frac_rat @ Y3 ) ) @ one_one_rat )
       => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X3 @ Y3 ) )
          = ( plus_plus_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( archim3151403230148437115or_rat @ Y3 ) ) ) )
      & ( ~ ( ord_less_rat @ ( plus_plus_rat @ ( archimedean_frac_rat @ X3 ) @ ( archimedean_frac_rat @ Y3 ) ) @ one_one_rat )
       => ( ( archim3151403230148437115or_rat @ ( plus_plus_rat @ X3 @ Y3 ) )
          = ( plus_plus_int @ ( plus_plus_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( archim3151403230148437115or_rat @ Y3 ) ) @ one_one_int ) ) ) ) ).

% floor_add
thf(fact_4176_floor__add,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X3 ) @ ( archim2898591450579166408c_real @ Y3 ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X3 @ Y3 ) )
          = ( plus_plus_int @ ( archim6058952711729229775r_real @ X3 ) @ ( archim6058952711729229775r_real @ Y3 ) ) ) )
      & ( ~ ( ord_less_real @ ( plus_plus_real @ ( archim2898591450579166408c_real @ X3 ) @ ( archim2898591450579166408c_real @ Y3 ) ) @ one_one_real )
       => ( ( archim6058952711729229775r_real @ ( plus_plus_real @ X3 @ Y3 ) )
          = ( plus_plus_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X3 ) @ ( archim6058952711729229775r_real @ Y3 ) ) @ one_one_int ) ) ) ) ).

% floor_add
thf(fact_4177_num_Osize_I5_J,axiom,
    ! [X2: num] :
      ( ( size_size_num @ ( bit0 @ X2 ) )
      = ( plus_plus_nat @ ( size_size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_4178_arith__geo__mean,axiom,
    ! [U: real,X3: real,Y3: real] :
      ( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_real @ X3 @ Y3 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
         => ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X3 @ Y3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_4179_arith__geo__mean,axiom,
    ! [U: rat,X3: rat,Y3: rat] :
      ( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_rat @ X3 @ Y3 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
         => ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X3 @ Y3 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_4180_even__mult__exp__div__exp__iff,axiom,
    ! [A: code_integer,M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4181_even__mult__exp__div__exp__iff,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4182_even__mult__exp__div__exp__iff,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_4183_of__real__of__int__eq,axiom,
    ! [Z: int] :
      ( ( real_V1803761363581548252l_real @ ( ring_1_of_int_real @ Z ) )
      = ( ring_1_of_int_real @ Z ) ) ).

% of_real_of_int_eq
thf(fact_4184_of__real__of__int__eq,axiom,
    ! [Z: int] :
      ( ( real_V4546457046886955230omplex @ ( ring_1_of_int_real @ Z ) )
      = ( ring_17405671764205052669omplex @ Z ) ) ).

% of_real_of_int_eq
thf(fact_4185_of__real__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( real_V4546457046886955230omplex @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri8010041392384452111omplex @ N ) ) ).

% of_real_of_nat_eq
thf(fact_4186_of__real__of__nat__eq,axiom,
    ! [N: nat] :
      ( ( real_V1803761363581548252l_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% of_real_of_nat_eq
thf(fact_4187_of__real__power,axiom,
    ! [X3: real,N: nat] :
      ( ( real_V1803761363581548252l_real @ ( power_power_real @ X3 @ N ) )
      = ( power_power_real @ ( real_V1803761363581548252l_real @ X3 ) @ N ) ) ).

% of_real_power
thf(fact_4188_of__real__power,axiom,
    ! [X3: real,N: nat] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ X3 @ N ) )
      = ( power_power_complex @ ( real_V4546457046886955230omplex @ X3 ) @ N ) ) ).

% of_real_power
thf(fact_4189_of__real__numeral,axiom,
    ! [W: num] :
      ( ( real_V1803761363581548252l_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% of_real_numeral
thf(fact_4190_of__real__numeral,axiom,
    ! [W: num] :
      ( ( real_V4546457046886955230omplex @ ( numeral_numeral_real @ W ) )
      = ( numera6690914467698888265omplex @ W ) ) ).

% of_real_numeral
thf(fact_4191_of__real__0,axiom,
    ( ( real_V1803761363581548252l_real @ zero_zero_real )
    = zero_zero_real ) ).

% of_real_0
thf(fact_4192_of__real__0,axiom,
    ( ( real_V4546457046886955230omplex @ zero_zero_real )
    = zero_zero_complex ) ).

% of_real_0
thf(fact_4193_of__real__eq__0__iff,axiom,
    ! [X3: real] :
      ( ( ( real_V1803761363581548252l_real @ X3 )
        = zero_zero_real )
      = ( X3 = zero_zero_real ) ) ).

% of_real_eq_0_iff
thf(fact_4194_of__real__eq__0__iff,axiom,
    ! [X3: real] :
      ( ( ( real_V4546457046886955230omplex @ X3 )
        = zero_zero_complex )
      = ( X3 = zero_zero_real ) ) ).

% of_real_eq_0_iff
thf(fact_4195_mul__def,axiom,
    ( vEBT_VEBT_mul
    = ( vEBT_V4262088993061758097ft_nat @ times_times_nat ) ) ).

% mul_def
thf(fact_4196_mul__shift,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ( times_times_nat @ X3 @ Y3 )
        = Z )
      = ( ( vEBT_VEBT_mul @ ( some_nat @ X3 ) @ ( some_nat @ Y3 ) )
        = ( some_nat @ Z ) ) ) ).

% mul_shift
thf(fact_4197_real__divide__square__eq,axiom,
    ! [R2: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ R2 ) )
      = ( divide_divide_real @ A @ R2 ) ) ).

% real_divide_square_eq
thf(fact_4198_not__real__square__gt__zero,axiom,
    ! [X3: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X3 @ X3 ) ) )
      = ( X3 = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_4199_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_4200_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_4201_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_4202_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_4203_power__mult__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_4204_power__mult__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_4205_power__mult__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_4206_power__mult__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_4207_real__sqrt__sum__squares__mult__squared__eq,axiom,
    ! [X3: real,Y3: real,Xa: real,Ya: real] :
      ( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_squared_eq
thf(fact_4208_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_4209_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_4210_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(1)
thf(fact_4211_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_4212_int__distrib_I3_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(3)
thf(fact_4213_int__distrib_I4_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
      = ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(4)
thf(fact_4214_real__sqrt__mult,axiom,
    ! [X3: real,Y3: real] :
      ( ( sqrt @ ( times_times_real @ X3 @ Y3 ) )
      = ( times_times_real @ ( sqrt @ X3 ) @ ( sqrt @ Y3 ) ) ) ).

% real_sqrt_mult
thf(fact_4215_take__bit__mult,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ K @ L ) ) ) ).

% take_bit_mult
thf(fact_4216_imult__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        | ( N = zero_z5237406670263579293d_enat ) ) ) ).

% imult_is_0
thf(fact_4217_div__mult2__numeral__eq,axiom,
    ! [A: nat,K: num,L: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_4218_div__mult2__numeral__eq,axiom,
    ! [A: int,K: num,L: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_4219_zmult__zless__mono2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_4220_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_4221_zdvd__mult__cancel,axiom,
    ! [K: int,M: int,N: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
     => ( ( K != zero_zero_int )
       => ( dvd_dvd_int @ M @ N ) ) ) ).

% zdvd_mult_cancel
thf(fact_4222_zdvd__mono,axiom,
    ! [K: int,M: int,T: int] :
      ( ( K != zero_zero_int )
     => ( ( dvd_dvd_int @ M @ T )
        = ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).

% zdvd_mono
thf(fact_4223_zdvd__period,axiom,
    ! [A: int,D3: int,X3: int,T: int,C: int] :
      ( ( dvd_dvd_int @ A @ D3 )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X3 @ T ) )
        = ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X3 @ ( times_times_int @ C @ D3 ) ) @ T ) ) ) ) ).

% zdvd_period
thf(fact_4224_zdvd__reduce,axiom,
    ! [K: int,N: int,M: int] :
      ( ( dvd_dvd_int @ K @ ( plus_plus_int @ N @ ( times_times_int @ K @ M ) ) )
      = ( dvd_dvd_int @ K @ N ) ) ).

% zdvd_reduce
thf(fact_4225_enat__0__less__mult__iff,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
      = ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
        & ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).

% enat_0_less_mult_iff
thf(fact_4226_reals__Archimedean3,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ! [Y6: real] :
        ? [N2: nat] : ( ord_less_real @ Y6 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X3 ) ) ) ).

% reals_Archimedean3
thf(fact_4227_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_4228_powr__mult,axiom,
    ! [X3: real,Y3: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( powr_real @ ( times_times_real @ X3 @ Y3 ) @ A )
          = ( times_times_real @ ( powr_real @ X3 @ A ) @ ( powr_real @ Y3 @ A ) ) ) ) ) ).

% powr_mult
thf(fact_4229_minusinfinity,axiom,
    ! [D3: int,P1: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ! [X4: int,K2: int] :
            ( ( P1 @ X4 )
            = ( P1 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ( ? [Z4: int] :
            ! [X4: int] :
              ( ( ord_less_int @ X4 @ Z4 )
             => ( ( P @ X4 )
                = ( P1 @ X4 ) ) )
         => ( ? [X_12: int] : ( P1 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% minusinfinity
thf(fact_4230_plusinfinity,axiom,
    ! [D3: int,P4: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ! [X4: int,K2: int] :
            ( ( P4 @ X4 )
            = ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ( ? [Z4: int] :
            ! [X4: int] :
              ( ( ord_less_int @ Z4 @ X4 )
             => ( ( P @ X4 )
                = ( P4 @ X4 ) ) )
         => ( ? [X_12: int] : ( P4 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% plusinfinity
thf(fact_4231_zdiv__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% zdiv_zmult2_eq
thf(fact_4232_le__real__sqrt__sumsq,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y3 @ Y3 ) ) ) ) ).

% le_real_sqrt_sumsq
thf(fact_4233_log__powr,axiom,
    ! [X3: real,B: real,Y3: real] :
      ( ( X3 != zero_zero_real )
     => ( ( log @ B @ ( powr_real @ X3 @ Y3 ) )
        = ( times_times_real @ Y3 @ ( log @ B @ X3 ) ) ) ) ).

% log_powr
thf(fact_4234_ln__powr,axiom,
    ! [X3: real,Y3: real] :
      ( ( X3 != zero_zero_real )
     => ( ( ln_ln_real @ ( powr_real @ X3 @ Y3 ) )
        = ( times_times_real @ Y3 @ ( ln_ln_real @ X3 ) ) ) ) ).

% ln_powr
thf(fact_4235_zmult__zless__mono2__lemma,axiom,
    ! [I: int,J: int,K: nat] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_4236_incr__mult__lemma,axiom,
    ! [D3: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D3 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X6: int] :
              ( ( P @ X6 )
             => ( P @ ( plus_plus_int @ X6 @ ( times_times_int @ K @ D3 ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_4237_q__pos__lemma,axiom,
    ! [B2: int,Q6: int,R4: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B2 @ Q6 ) @ R4 ) )
     => ( ( ord_less_int @ R4 @ B2 )
       => ( ( ord_less_int @ zero_zero_int @ B2 )
         => ( ord_less_eq_int @ zero_zero_int @ Q6 ) ) ) ) ).

% q_pos_lemma
thf(fact_4238_zdiv__mono2__lemma,axiom,
    ! [B: int,Q3: int,R2: int,B2: int,Q6: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 )
        = ( plus_plus_int @ ( times_times_int @ B2 @ Q6 ) @ R4 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B2 @ Q6 ) @ R4 ) )
       => ( ( ord_less_int @ R4 @ B2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
           => ( ( ord_less_int @ zero_zero_int @ B2 )
             => ( ( ord_less_eq_int @ B2 @ B )
               => ( ord_less_eq_int @ Q3 @ Q6 ) ) ) ) ) ) ) ).

% zdiv_mono2_lemma
thf(fact_4239_zdiv__mono2__neg__lemma,axiom,
    ! [B: int,Q3: int,R2: int,B2: int,Q6: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 )
        = ( plus_plus_int @ ( times_times_int @ B2 @ Q6 ) @ R4 ) )
     => ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B2 @ Q6 ) @ R4 ) @ zero_zero_int )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
           => ( ( ord_less_int @ zero_zero_int @ B2 )
             => ( ( ord_less_eq_int @ B2 @ B )
               => ( ord_less_eq_int @ Q6 @ Q3 ) ) ) ) ) ) ) ).

% zdiv_mono2_neg_lemma
thf(fact_4240_unique__quotient__lemma,axiom,
    ! [B: int,Q6: int,R4: int,Q3: int,R2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q6 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
       => ( ( ord_less_int @ R4 @ B )
         => ( ( ord_less_int @ R2 @ B )
           => ( ord_less_eq_int @ Q6 @ Q3 ) ) ) ) ) ).

% unique_quotient_lemma
thf(fact_4241_unique__quotient__lemma__neg,axiom,
    ! [B: int,Q6: int,R4: int,Q3: int,R2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q6 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( ord_less_int @ B @ R4 )
           => ( ord_less_eq_int @ Q3 @ Q6 ) ) ) ) ) ).

% unique_quotient_lemma_neg
thf(fact_4242_nat__mult__distrib,axiom,
    ! [Z: int,Z5: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( times_times_int @ Z @ Z5 ) )
        = ( times_times_nat @ ( nat2 @ Z ) @ ( nat2 @ Z5 ) ) ) ) ).

% nat_mult_distrib
thf(fact_4243_decr__mult__lemma,axiom,
    ! [D3: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D3 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X6: int] :
              ( ( P @ X6 )
             => ( P @ ( minus_minus_int @ X6 @ ( times_times_int @ K @ D3 ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_4244_ln__mult,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ Y3 )
       => ( ( ln_ln_real @ ( times_times_real @ X3 @ Y3 ) )
          = ( plus_plus_real @ ( ln_ln_real @ X3 ) @ ( ln_ln_real @ Y3 ) ) ) ) ) ).

% ln_mult
thf(fact_4245_four__x__squared,axiom,
    ! [X3: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% four_x_squared
thf(fact_4246_real__archimedian__rdiv__eq__0,axiom,
    ! [X3: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M4 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X3 ) @ C ) )
         => ( X3 = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_4247_log__mult,axiom,
    ! [A: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( ord_less_real @ zero_zero_real @ Y3 )
           => ( ( log @ A @ ( times_times_real @ X3 @ Y3 ) )
              = ( plus_plus_real @ ( log @ A @ X3 ) @ ( log @ A @ Y3 ) ) ) ) ) ) ) ).

% log_mult
thf(fact_4248_powr__mult__base,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( times_times_real @ X3 @ ( powr_real @ X3 @ Y3 ) )
        = ( powr_real @ X3 @ ( plus_plus_real @ one_one_real @ Y3 ) ) ) ) ).

% powr_mult_base
thf(fact_4249_log__nat__power,axiom,
    ! [X3: real,B: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( log @ B @ ( power_power_real @ X3 @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X3 ) ) ) ) ).

% log_nat_power
thf(fact_4250_int__div__pos__eq,axiom,
    ! [A: int,B: int,Q3: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( divide_divide_int @ A @ B )
            = Q3 ) ) ) ) ).

% int_div_pos_eq
thf(fact_4251_int__div__neg__eq,axiom,
    ! [A: int,B: int,Q3: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( divide_divide_int @ A @ B )
            = Q3 ) ) ) ) ).

% int_div_neg_eq
thf(fact_4252_split__zdiv,axiom,
    ! [P: int > $o,N: int,K: int] :
      ( ( P @ ( divide_divide_int @ N @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ zero_zero_int ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) ) ) ) ).

% split_zdiv
thf(fact_4253_ln__realpow,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ln_ln_real @ ( power_power_real @ X3 @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X3 ) ) ) ) ).

% ln_realpow
thf(fact_4254_linear__plus__1__le__power,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X3 ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X3 @ one_one_real ) @ N ) ) ) ).

% linear_plus_1_le_power
thf(fact_4255_ln__powr__bound2,axiom,
    ! [X3: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X3 ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X3 ) ) ) ) ).

% ln_powr_bound2
thf(fact_4256_log__eq__div__ln__mult__log,axiom,
    ! [A: real,B: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( B != one_one_real )
           => ( ( ord_less_real @ zero_zero_real @ X3 )
             => ( ( log @ A @ X3 )
                = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X3 ) ) ) ) ) ) ) ) ).

% log_eq_div_ln_mult_log
thf(fact_4257_log__add__eq__powr,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( plus_plus_real @ ( log @ B @ X3 ) @ Y3 )
            = ( log @ B @ ( times_times_real @ X3 @ ( powr_real @ B @ Y3 ) ) ) ) ) ) ) ).

% log_add_eq_powr
thf(fact_4258_add__log__eq__powr,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( plus_plus_real @ Y3 @ ( log @ B @ X3 ) )
            = ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y3 ) @ X3 ) ) ) ) ) ) ).

% add_log_eq_powr
thf(fact_4259_L2__set__mult__ineq__lemma,axiom,
    ! [A: real,C: real,B: real,D3: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D3 ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% L2_set_mult_ineq_lemma
thf(fact_4260_real__sqrt__sum__squares__mult__ge__zero,axiom,
    ! [X3: real,Y3: real,Xa: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_ge_zero
thf(fact_4261_arith__geo__mean__sqrt,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X3 @ Y3 ) ) @ ( divide_divide_real @ ( plus_plus_real @ X3 @ Y3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arith_geo_mean_sqrt
thf(fact_4262_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_4263_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2
thf(fact_4264_Bernoulli__inequality__even,axiom,
    ! [N: nat,X3: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X3 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X3 ) @ N ) ) ) ).

% Bernoulli_inequality_even
thf(fact_4265_nonzero__of__real__divide,axiom,
    ! [Y3: real,X3: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( real_V1803761363581548252l_real @ ( divide_divide_real @ X3 @ Y3 ) )
        = ( divide_divide_real @ ( real_V1803761363581548252l_real @ X3 ) @ ( real_V1803761363581548252l_real @ Y3 ) ) ) ) ).

% nonzero_of_real_divide
thf(fact_4266_nonzero__of__real__divide,axiom,
    ! [Y3: real,X3: real] :
      ( ( Y3 != zero_zero_real )
     => ( ( real_V4546457046886955230omplex @ ( divide_divide_real @ X3 @ Y3 ) )
        = ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ X3 ) @ ( real_V4546457046886955230omplex @ Y3 ) ) ) ) ).

% nonzero_of_real_divide
thf(fact_4267_lemma__termdiff3,axiom,
    ! [H2: real,Z: real,K5: real,N: nat] :
      ( ( H2 != zero_zero_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N ) @ ( power_power_real @ Z @ N ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_4268_lemma__termdiff3,axiom,
    ! [H2: complex,Z: complex,K5: real,N: nat] :
      ( ( H2 != zero_zero_complex )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N ) @ ( power_power_complex @ Z @ N ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_4269_low__inv,axiom,
    ! [X3: nat,N: nat,Y3: nat] :
      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X3 ) @ N )
        = X3 ) ) ).

% low_inv
thf(fact_4270_mult__le__cancel__iff1,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ X3 @ Z ) @ ( times_times_real @ Y3 @ Z ) )
        = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_4271_mult__le__cancel__iff1,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ X3 @ Z ) @ ( times_times_rat @ Y3 @ Z ) )
        = ( ord_less_eq_rat @ X3 @ Y3 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_4272_mult__le__cancel__iff1,axiom,
    ! [Z: int,X3: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ X3 @ Z ) @ ( times_times_int @ Y3 @ Z ) )
        = ( ord_less_eq_int @ X3 @ Y3 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_4273_mult__le__cancel__iff2,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ X3 ) @ ( times_times_real @ Z @ Y3 ) )
        = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_4274_mult__le__cancel__iff2,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ X3 ) @ ( times_times_rat @ Z @ Y3 ) )
        = ( ord_less_eq_rat @ X3 @ Y3 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_4275_mult__le__cancel__iff2,axiom,
    ! [Z: int,X3: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z @ X3 ) @ ( times_times_int @ Z @ Y3 ) )
        = ( ord_less_eq_int @ X3 @ Y3 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_4276_triangle__def,axiom,
    ( nat_triangle
    = ( ^ [N3: nat] : ( divide_divide_nat @ ( times_times_nat @ N3 @ ( suc @ N3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% triangle_def
thf(fact_4277_ln__one__minus__pos__lower__bound,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X3 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ).

% ln_one_minus_pos_lower_bound
thf(fact_4278_abs__ln__one__plus__x__minus__x__bound,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X3 ) ) @ X3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound
thf(fact_4279_bit__split__inv,axiom,
    ! [X3: nat,D3: nat] :
      ( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X3 @ D3 ) @ ( vEBT_VEBT_low @ X3 @ D3 ) @ D3 )
      = X3 ) ).

% bit_split_inv
thf(fact_4280_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4281_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4282_add_Oinverse__inverse,axiom,
    ! [A: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4283_add_Oinverse__inverse,axiom,
    ! [A: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4284_add_Oinverse__inverse,axiom,
    ! [A: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_4285_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4286_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4287_neg__equal__iff__equal,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = ( uminus1482373934393186551omplex @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4288_neg__equal__iff__equal,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4289_neg__equal__iff__equal,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_4290_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4291_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4292_verit__minus__simplify_I4_J,axiom,
    ! [B: complex] :
      ( ( uminus1482373934393186551omplex @ ( uminus1482373934393186551omplex @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4293_verit__minus__simplify_I4_J,axiom,
    ! [B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( uminus1351360451143612070nteger @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4294_verit__minus__simplify_I4_J,axiom,
    ! [B: rat] :
      ( ( uminus_uminus_rat @ ( uminus_uminus_rat @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_4295_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_4296_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_4297_abs__idempotent,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_idempotent
thf(fact_4298_abs__idempotent,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_idempotent
thf(fact_4299_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4300_neg__le__iff__le,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4301_neg__le__iff__le,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4302_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_4303_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_4304_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_4305_neg__equal__zero,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_zero
thf(fact_4306_neg__equal__zero,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = A )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_zero
thf(fact_4307_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_4308_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_4309_equal__neg__zero,axiom,
    ! [A: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% equal_neg_zero
thf(fact_4310_equal__neg__zero,axiom,
    ! [A: rat] :
      ( ( A
        = ( uminus_uminus_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% equal_neg_zero
thf(fact_4311_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_4312_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_4313_neg__equal__0__iff__equal,axiom,
    ! [A: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% neg_equal_0_iff_equal
thf(fact_4314_neg__equal__0__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% neg_equal_0_iff_equal
thf(fact_4315_neg__equal__0__iff__equal,axiom,
    ! [A: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% neg_equal_0_iff_equal
thf(fact_4316_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4317_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4318_neg__0__equal__iff__equal,axiom,
    ! [A: complex] :
      ( ( zero_zero_complex
        = ( uminus1482373934393186551omplex @ A ) )
      = ( zero_zero_complex = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4319_neg__0__equal__iff__equal,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( uminus1351360451143612070nteger @ A ) )
      = ( zero_z3403309356797280102nteger = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4320_neg__0__equal__iff__equal,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( uminus_uminus_rat @ A ) )
      = ( zero_zero_rat = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_4321_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_4322_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_4323_add_Oinverse__neutral,axiom,
    ( ( uminus1482373934393186551omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% add.inverse_neutral
thf(fact_4324_add_Oinverse__neutral,axiom,
    ( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% add.inverse_neutral
thf(fact_4325_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% add.inverse_neutral
thf(fact_4326_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4327_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4328_neg__less__iff__less,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4329_neg__less__iff__less,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_4330_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4331_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4332_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4333_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4334_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_4335_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4336_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4337_add__minus__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4338_add__minus__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4339_add__minus__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_4340_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4341_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4342_minus__add__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4343_minus__add__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4344_minus__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_4345_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_4346_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_4347_minus__add__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_add_distrib
thf(fact_4348_minus__add__distrib,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_add_distrib
thf(fact_4349_minus__add__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_add_distrib
thf(fact_4350_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4351_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4352_minus__diff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
      = ( minus_minus_complex @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4353_minus__diff__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4354_minus__diff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
      = ( minus_minus_rat @ B @ A ) ) ).

% minus_diff_eq
thf(fact_4355_abs__zero,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_zero
thf(fact_4356_abs__zero,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_zero
thf(fact_4357_abs__zero,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_zero
thf(fact_4358_abs__zero,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_zero
thf(fact_4359_abs__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0
thf(fact_4360_abs__eq__0,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0
thf(fact_4361_abs__eq__0,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0
thf(fact_4362_abs__eq__0,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0
thf(fact_4363_abs__0__eq,axiom,
    ! [A: code_integer] :
      ( ( zero_z3403309356797280102nteger
        = ( abs_abs_Code_integer @ A ) )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_0_eq
thf(fact_4364_abs__0__eq,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( abs_abs_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% abs_0_eq
thf(fact_4365_abs__0__eq,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( abs_abs_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% abs_0_eq
thf(fact_4366_abs__0__eq,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( abs_abs_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% abs_0_eq
thf(fact_4367_abs__0,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_0
thf(fact_4368_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_4369_abs__0,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_0
thf(fact_4370_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_4371_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_numeral
thf(fact_4372_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_numeral
thf(fact_4373_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_numeral
thf(fact_4374_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_numeral
thf(fact_4375_abs__add__abs,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
      = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_add_abs
thf(fact_4376_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_4377_abs__add__abs,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
      = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_add_abs
thf(fact_4378_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_4379_abs__minus__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus_cancel
thf(fact_4380_abs__minus__cancel,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus_cancel
thf(fact_4381_abs__minus__cancel,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus_cancel
thf(fact_4382_abs__minus__cancel,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus_cancel
thf(fact_4383_of__int__minus,axiom,
    ! [Z: int] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ Z ) )
      = ( uminus_uminus_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_minus
thf(fact_4384_of__int__minus,axiom,
    ! [Z: int] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ Z ) )
      = ( uminus_uminus_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_minus
thf(fact_4385_of__int__minus,axiom,
    ! [Z: int] :
      ( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ Z ) )
      = ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ Z ) ) ) ).

% of_int_minus
thf(fact_4386_of__int__minus,axiom,
    ! [Z: int] :
      ( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ Z ) )
      = ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ Z ) ) ) ).

% of_int_minus
thf(fact_4387_of__int__minus,axiom,
    ! [Z: int] :
      ( ( ring_1_of_int_rat @ ( uminus_uminus_int @ Z ) )
      = ( uminus_uminus_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_minus
thf(fact_4388_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N ) )
      = ( semiri4939895301339042750nteger @ N ) ) ).

% abs_of_nat
thf(fact_4389_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% abs_of_nat
thf(fact_4390_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N ) )
      = ( semiri681578069525770553at_rat @ N ) ) ).

% abs_of_nat
thf(fact_4391_abs__of__nat,axiom,
    ! [N: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% abs_of_nat
thf(fact_4392_of__int__abs,axiom,
    ! [X3: int] :
      ( ( ring_1_of_int_int @ ( abs_abs_int @ X3 ) )
      = ( abs_abs_int @ ( ring_1_of_int_int @ X3 ) ) ) ).

% of_int_abs
thf(fact_4393_of__int__abs,axiom,
    ! [X3: int] :
      ( ( ring_18347121197199848620nteger @ ( abs_abs_int @ X3 ) )
      = ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ X3 ) ) ) ).

% of_int_abs
thf(fact_4394_of__int__abs,axiom,
    ! [X3: int] :
      ( ( ring_1_of_int_real @ ( abs_abs_int @ X3 ) )
      = ( abs_abs_real @ ( ring_1_of_int_real @ X3 ) ) ) ).

% of_int_abs
thf(fact_4395_of__int__abs,axiom,
    ! [X3: int] :
      ( ( ring_1_of_int_rat @ ( abs_abs_int @ X3 ) )
      = ( abs_abs_rat @ ( ring_1_of_int_rat @ X3 ) ) ) ).

% of_int_abs
thf(fact_4396_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_4397_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_4398_neg__0__le__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_le_iff_le
thf(fact_4399_neg__0__le__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% neg_0_le_iff_le
thf(fact_4400_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_4401_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4402_neg__le__0__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4403_neg__le__0__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4404_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_4405_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_4406_less__eq__neg__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_eq_neg_nonpos
thf(fact_4407_less__eq__neg__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% less_eq_neg_nonpos
thf(fact_4408_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_4409_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4410_neg__less__eq__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4411_neg__less__eq__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4412_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_4413_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_4414_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_4415_less__neg__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_neg_neg
thf(fact_4416_less__neg__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% less_neg_neg
thf(fact_4417_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_4418_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_4419_neg__less__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_pos
thf(fact_4420_neg__less__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_pos
thf(fact_4421_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_4422_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_4423_neg__0__less__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_less_iff_less
thf(fact_4424_neg__0__less__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% neg_0_less_iff_less
thf(fact_4425_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4426_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4427_neg__less__0__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4428_neg__less__0__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_0_iff_less
thf(fact_4429_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_4430_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_4431_add_Oright__inverse,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
      = zero_zero_complex ) ).

% add.right_inverse
thf(fact_4432_add_Oright__inverse,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = zero_z3403309356797280102nteger ) ).

% add.right_inverse
thf(fact_4433_add_Oright__inverse,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
      = zero_zero_rat ) ).

% add.right_inverse
thf(fact_4434_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_4435_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_4436_ab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_left_minus
thf(fact_4437_ab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_left_minus
thf(fact_4438_ab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_left_minus
thf(fact_4439_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4440_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4441_verit__minus__simplify_I3_J,axiom,
    ! [B: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4442_verit__minus__simplify_I3_J,axiom,
    ! [B: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4443_verit__minus__simplify_I3_J,axiom,
    ! [B: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_4444_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_4445_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_4446_diff__0,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ A )
      = ( uminus1482373934393186551omplex @ A ) ) ).

% diff_0
thf(fact_4447_diff__0,axiom,
    ! [A: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% diff_0
thf(fact_4448_diff__0,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ A )
      = ( uminus_uminus_rat @ A ) ) ).

% diff_0
thf(fact_4449_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4450_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4451_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4452_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4453_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_4454_mult__minus1__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1_right
thf(fact_4455_mult__minus1__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1_right
thf(fact_4456_mult__minus1__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1_right
thf(fact_4457_mult__minus1__right,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ Z @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1_right
thf(fact_4458_mult__minus1__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1_right
thf(fact_4459_mult__minus1,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1
thf(fact_4460_mult__minus1,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1
thf(fact_4461_mult__minus1,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1
thf(fact_4462_mult__minus1,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1
thf(fact_4463_mult__minus1,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1
thf(fact_4464_abs__of__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_4465_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_4466_abs__of__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_4467_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_4468_abs__le__self__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% abs_le_self_iff
thf(fact_4469_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_4470_abs__le__self__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% abs_le_self_iff
thf(fact_4471_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_4472_abs__le__zero__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_le_zero_iff
thf(fact_4473_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_4474_abs__le__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_le_zero_iff
thf(fact_4475_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_4476_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4477_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4478_diff__minus__eq__add,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( plus_plus_complex @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4479_diff__minus__eq__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( plus_p5714425477246183910nteger @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4480_diff__minus__eq__add,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( plus_plus_rat @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_4481_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4482_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4483_uminus__add__conv__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( minus_minus_complex @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4484_uminus__add__conv__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4485_uminus__add__conv__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( minus_minus_rat @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_4486_zero__less__abs__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
      = ( A != zero_z3403309356797280102nteger ) ) ).

% zero_less_abs_iff
thf(fact_4487_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_4488_zero__less__abs__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_abs_iff
thf(fact_4489_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_4490_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_neg_numeral
thf(fact_4491_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_neg_numeral
thf(fact_4492_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_neg_numeral
thf(fact_4493_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_neg_numeral
thf(fact_4494_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_4495_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_4496_abs__neg__one,axiom,
    ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = one_one_Code_integer ) ).

% abs_neg_one
thf(fact_4497_abs__neg__one,axiom,
    ( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = one_one_rat ) ).

% abs_neg_one
thf(fact_4498_norm__eq__zero,axiom,
    ! [X3: real] :
      ( ( ( real_V7735802525324610683m_real @ X3 )
        = zero_zero_real )
      = ( X3 = zero_zero_real ) ) ).

% norm_eq_zero
thf(fact_4499_norm__eq__zero,axiom,
    ! [X3: complex] :
      ( ( ( real_V1022390504157884413omplex @ X3 )
        = zero_zero_real )
      = ( X3 = zero_zero_complex ) ) ).

% norm_eq_zero
thf(fact_4500_norm__zero,axiom,
    ( ( real_V7735802525324610683m_real @ zero_zero_real )
    = zero_zero_real ) ).

% norm_zero
thf(fact_4501_norm__zero,axiom,
    ( ( real_V1022390504157884413omplex @ zero_zero_complex )
    = zero_zero_real ) ).

% norm_zero
thf(fact_4502_abs__power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_4503_abs__power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_4504_abs__power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_4505_abs__power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( abs_abs_rat @ ( power_power_rat @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_4506_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_4507_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_4508_bit_Odisj__one__left,axiom,
    ! [X3: code_integer] :
      ( ( bit_se1080825931792720795nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X3 )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_one_left
thf(fact_4509_bit_Odisj__one__left,axiom,
    ! [X3: int] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ one_one_int ) @ X3 )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_one_left
thf(fact_4510_bit_Odisj__one__right,axiom,
    ! [X3: code_integer] :
      ( ( bit_se1080825931792720795nteger @ X3 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_one_right
thf(fact_4511_bit_Odisj__one__right,axiom,
    ! [X3: int] :
      ( ( bit_se1409905431419307370or_int @ X3 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_one_right
thf(fact_4512_real__add__minus__iff,axiom,
    ! [X3: real,A: real] :
      ( ( ( plus_plus_real @ X3 @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X3 = A ) ) ).

% real_add_minus_iff
thf(fact_4513_norm__of__nat,axiom,
    ! [N: nat] :
      ( ( real_V7735802525324610683m_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% norm_of_nat
thf(fact_4514_norm__of__nat,axiom,
    ! [N: nat] :
      ( ( real_V1022390504157884413omplex @ ( semiri8010041392384452111omplex @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% norm_of_nat
thf(fact_4515_floor__uminus__of__int,axiom,
    ! [Z: int] :
      ( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ Z ) ) )
      = ( uminus_uminus_int @ Z ) ) ).

% floor_uminus_of_int
thf(fact_4516_floor__uminus__of__int,axiom,
    ! [Z: int] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( ring_1_of_int_real @ Z ) ) )
      = ( uminus_uminus_int @ Z ) ) ).

% floor_uminus_of_int
thf(fact_4517_real__sqrt__abs2,axiom,
    ! [X3: real] :
      ( ( sqrt @ ( times_times_real @ X3 @ X3 ) )
      = ( abs_abs_real @ X3 ) ) ).

% real_sqrt_abs2
thf(fact_4518_real__sqrt__mult__self,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
      = ( abs_abs_real @ A ) ) ).

% real_sqrt_mult_self
thf(fact_4519_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4520_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4521_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4522_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4523_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_4524_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_4525_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_4526_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = zero_zero_complex ) ).

% add_neg_numeral_special(8)
thf(fact_4527_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(8)
thf(fact_4528_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = zero_zero_rat ) ).

% add_neg_numeral_special(8)
thf(fact_4529_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_4530_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_4531_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% add_neg_numeral_special(7)
thf(fact_4532_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(7)
thf(fact_4533_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% add_neg_numeral_special(7)
thf(fact_4534_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_4535_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_4536_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% diff_numeral_special(12)
thf(fact_4537_diff__numeral__special_I12_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% diff_numeral_special(12)
thf(fact_4538_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% diff_numeral_special(12)
thf(fact_4539_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4540_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4541_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ one_one_complex )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4542_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4543_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ one_one_rat )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_4544_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4545_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4546_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4547_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4548_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_4549_divide__le__0__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
      = ( ( ord_less_eq_real @ A @ zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_le_0_abs_iff
thf(fact_4550_divide__le__0__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
      = ( ( ord_less_eq_rat @ A @ zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_le_0_abs_iff
thf(fact_4551_zero__le__divide__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        | ( B = zero_zero_real ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_4552_zero__le__divide__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        | ( B = zero_zero_rat ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_4553_left__minus__one__mult__self,axiom,
    ! [N: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4554_left__minus__one__mult__self,axiom,
    ! [N: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4555_left__minus__one__mult__self,axiom,
    ! [N: nat,A: complex] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4556_left__minus__one__mult__self,axiom,
    ! [N: nat,A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4557_left__minus__one__mult__self,axiom,
    ! [N: nat,A: rat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_4558_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_4559_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_4560_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
      = one_one_complex ) ).

% minus_one_mult_self
thf(fact_4561_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) )
      = one_one_Code_integer ) ).

% minus_one_mult_self
thf(fact_4562_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) )
      = one_one_rat ) ).

% minus_one_mult_self
thf(fact_4563_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_4564_abs__of__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_nonpos
thf(fact_4565_abs__of__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_nonpos
thf(fact_4566_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_4567_zero__less__norm__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( real_V7735802525324610683m_real @ X3 ) )
      = ( X3 != zero_zero_real ) ) ).

% zero_less_norm_iff
thf(fact_4568_zero__less__norm__iff,axiom,
    ! [X3: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X3 ) )
      = ( X3 != zero_zero_complex ) ) ).

% zero_less_norm_iff
thf(fact_4569_norm__le__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X3 ) @ zero_zero_real )
      = ( X3 = zero_zero_real ) ) ).

% norm_le_zero_iff
thf(fact_4570_norm__le__zero__iff,axiom,
    ! [X3: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X3 ) @ zero_zero_real )
      = ( X3 = zero_zero_complex ) ) ).

% norm_le_zero_iff
thf(fact_4571_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_4572_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_4573_floor__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% floor_neg_numeral
thf(fact_4574_floor__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% floor_neg_numeral
thf(fact_4575_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y3: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(168)
thf(fact_4576_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y3: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(168)
thf(fact_4577_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y3: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y3 ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(168)
thf(fact_4578_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y3: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y3 ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(168)
thf(fact_4579_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y3: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y3 ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(168)
thf(fact_4580_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4581_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4582_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4583_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4584_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_4585_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4586_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4587_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4588_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4589_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_4590_ceiling__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_neg_numeral
thf(fact_4591_ceiling__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim2889992004027027881ng_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% ceiling_neg_numeral
thf(fact_4592_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y3: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).

% semiring_norm(172)
thf(fact_4593_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y3: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).

% semiring_norm(172)
thf(fact_4594_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y3: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y3 ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).

% semiring_norm(172)
thf(fact_4595_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y3: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y3 ) )
      = ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).

% semiring_norm(172)
thf(fact_4596_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y3: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y3 ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).

% semiring_norm(172)
thf(fact_4597_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y3: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(171)
thf(fact_4598_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y3: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(171)
thf(fact_4599_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y3: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y3 ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(171)
thf(fact_4600_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y3: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y3 ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(171)
thf(fact_4601_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y3: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y3 ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(171)
thf(fact_4602_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y3: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y3 ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(170)
thf(fact_4603_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y3: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y3 ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(170)
thf(fact_4604_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y3: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y3 ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(170)
thf(fact_4605_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y3: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y3 ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(170)
thf(fact_4606_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y3: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y3 ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).

% semiring_norm(170)
thf(fact_4607_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4608_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4609_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4610_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4611_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_4612_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4613_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4614_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4615_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4616_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_4617_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4618_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4619_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4620_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4621_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_4622_artanh__minus__real,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( artanh_real @ ( uminus_uminus_real @ X3 ) )
        = ( uminus_uminus_real @ ( artanh_real @ X3 ) ) ) ) ).

% artanh_minus_real
thf(fact_4623_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4624_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4625_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4626_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_4627_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4628_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4629_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4630_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_4631_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_4632_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_4633_norm__of__int,axiom,
    ! [Z: int] :
      ( ( real_V7735802525324610683m_real @ ( ring_1_of_int_real @ Z ) )
      = ( abs_abs_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% norm_of_int
thf(fact_4634_norm__of__int,axiom,
    ! [Z: int] :
      ( ( real_V1022390504157884413omplex @ ( ring_17405671764205052669omplex @ Z ) )
      = ( abs_abs_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% norm_of_int
thf(fact_4635_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4636_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4637_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4638_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_4639_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4640_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4641_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4642_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_4643_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4644_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_4645_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4646_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_4647_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4648_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
        = A )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4649_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_4650_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4651_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
            = B ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4652_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_4653_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4654_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_4655_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4656_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_4657_power2__minus,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4658_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4659_power2__minus,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4660_power2__minus,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4661_power2__minus,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_4662_zero__less__power__abs__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) )
      = ( ( A != zero_z3403309356797280102nteger )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_4663_zero__less__power__abs__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
      = ( ( A != zero_zero_real )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_4664_zero__less__power__abs__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) )
      = ( ( A != zero_zero_rat )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_4665_zero__less__power__abs__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
      = ( ( A != zero_zero_int )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_4666_abs__power2,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_4667_abs__power2,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_4668_abs__power2,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_4669_abs__power2,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_4670_power2__abs,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_4671_power2__abs,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_4672_power2__abs,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_4673_power2__abs,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_4674_norm__mult__numeral1,axiom,
    ! [W: num,A: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_4675_norm__mult__numeral1,axiom,
    ! [W: num,A: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_4676_norm__mult__numeral2,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_4677_norm__mult__numeral2,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_4678_norm__divide__numeral,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_4679_norm__divide__numeral,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_4680_of__real__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1803761363581548252l_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ).

% of_real_neg_numeral
thf(fact_4681_of__real__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V4546457046886955230omplex @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% of_real_neg_numeral
thf(fact_4682_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4683_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4684_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4685_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4686_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_4687_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4688_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4689_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4690_diff__numeral__special_I11_J,axiom,
    ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4691_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_4692_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4693_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4694_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4695_diff__numeral__special_I10_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4696_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_4697_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_4698_minus__1__div__2__eq,axiom,
    ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% minus_1_div_2_eq
thf(fact_4699_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4700_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4701_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4702_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4703_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_4704_power__minus__odd,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4705_power__minus__odd,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4706_power__minus__odd,axiom,
    ! [N: nat,A: complex] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4707_power__minus__odd,axiom,
    ! [N: nat,A: code_integer] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4708_power__minus__odd,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_4709_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4710_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4711_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: complex] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( power_power_complex @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4712_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4713_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_4714_power__even__abs__numeral,axiom,
    ! [W: num,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_4715_power__even__abs__numeral,axiom,
    ! [W: num,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_4716_power__even__abs__numeral,axiom,
    ! [W: num,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_4717_power__even__abs__numeral,axiom,
    ! [W: num,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_4718_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4719_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4720_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4721_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4722_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_4723_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4724_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4725_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4726_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4727_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_4728_neg__numeral__le__floor,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X3 ) ) ).

% neg_numeral_le_floor
thf(fact_4729_neg__numeral__le__floor,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X3 ) ) ).

% neg_numeral_le_floor
thf(fact_4730_floor__less__neg__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_rat @ X3 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).

% floor_less_neg_numeral
thf(fact_4731_floor__less__neg__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X3 @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).

% floor_less_neg_numeral
thf(fact_4732_ceiling__le__neg__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_eq_int @ ( archim7802044766580827645g_real @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_real @ X3 @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).

% ceiling_le_neg_numeral
thf(fact_4733_ceiling__le__neg__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_rat @ X3 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) ) ).

% ceiling_le_neg_numeral
thf(fact_4734_ceiling__less__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X3 ) @ zero_zero_int )
      = ( ord_less_eq_real @ X3 @ ( uminus_uminus_real @ one_one_real ) ) ) ).

% ceiling_less_zero
thf(fact_4735_ceiling__less__zero,axiom,
    ! [X3: rat] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X3 ) @ zero_zero_int )
      = ( ord_less_eq_rat @ X3 @ ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% ceiling_less_zero
thf(fact_4736_zero__le__ceiling,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 ) ) ).

% zero_le_ceiling
thf(fact_4737_zero__le__ceiling,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X3 ) ) ).

% zero_le_ceiling
thf(fact_4738_neg__numeral__less__ceiling,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X3 ) ) ).

% neg_numeral_less_ceiling
thf(fact_4739_neg__numeral__less__ceiling,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ X3 ) ) ).

% neg_numeral_less_ceiling
thf(fact_4740_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N )
        = ( ring_1_of_int_real @ Y3 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N )
        = Y3 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_4741_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N )
        = ( ring_1_of_int_int @ Y3 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N )
        = Y3 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_4742_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X3 ) ) @ N )
        = ( ring_17405671764205052669omplex @ Y3 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N )
        = Y3 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_4743_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N )
        = ( ring_18347121197199848620nteger @ Y3 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N )
        = Y3 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_4744_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,Y3: int] :
      ( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N )
        = ( ring_1_of_int_rat @ Y3 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N )
        = Y3 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_4745_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y3 )
        = ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_4746_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y3 )
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_4747_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y3 )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X3 ) ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_4748_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_18347121197199848620nteger @ Y3 )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_4749_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y3: int,X3: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y3 )
        = ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N ) )
      = ( Y3
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_4750_real__sqrt__abs,axiom,
    ! [X3: real] :
      ( ( sqrt @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X3 ) ) ).

% real_sqrt_abs
thf(fact_4751_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4752_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4753_dbl__simps_I4_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4754_dbl__simps_I4_J,axiom,
    ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4755_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_4756_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_real ) ).

% power_minus1_even
thf(fact_4757_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_4758_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_complex ) ).

% power_minus1_even
thf(fact_4759_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_Code_integer ) ).

% power_minus1_even
thf(fact_4760_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_rat ) ).

% power_minus1_even
thf(fact_4761_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% neg_one_odd_power
thf(fact_4762_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_4763_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% neg_one_odd_power
thf(fact_4764_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% neg_one_odd_power
thf(fact_4765_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% neg_one_odd_power
thf(fact_4766_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = one_one_real ) ) ).

% neg_one_even_power
thf(fact_4767_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_4768_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = one_one_complex ) ) ).

% neg_one_even_power
thf(fact_4769_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = one_one_Code_integer ) ) ).

% neg_one_even_power
thf(fact_4770_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = one_one_rat ) ) ).

% neg_one_even_power
thf(fact_4771_norm__of__real__addn,axiom,
    ! [X3: real,B: num] :
      ( ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ X3 ) @ ( numeral_numeral_real @ B ) ) )
      = ( abs_abs_real @ ( plus_plus_real @ X3 @ ( numeral_numeral_real @ B ) ) ) ) ).

% norm_of_real_addn
thf(fact_4772_norm__of__real__addn,axiom,
    ! [X3: real,B: num] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ X3 ) @ ( numera6690914467698888265omplex @ B ) ) )
      = ( abs_abs_real @ ( plus_plus_real @ X3 @ ( numeral_numeral_real @ B ) ) ) ) ).

% norm_of_real_addn
thf(fact_4773_neg__numeral__less__floor,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim3151403230148437115or_rat @ X3 ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X3 ) ) ).

% neg_numeral_less_floor
thf(fact_4774_neg__numeral__less__floor,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X3 ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X3 ) ) ).

% neg_numeral_less_floor
thf(fact_4775_floor__le__neg__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_eq_int @ ( archim3151403230148437115or_rat @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_rat @ X3 @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).

% floor_le_neg_numeral
thf(fact_4776_floor__le__neg__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X3 @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).

% floor_le_neg_numeral
thf(fact_4777_ceiling__less__neg__numeral,axiom,
    ! [X3: real,V: num] :
      ( ( ord_less_int @ ( archim7802044766580827645g_real @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_real @ X3 @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).

% ceiling_less_neg_numeral
thf(fact_4778_ceiling__less__neg__numeral,axiom,
    ! [X3: rat,V: num] :
      ( ( ord_less_int @ ( archim2889992004027027881ng_rat @ X3 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_eq_rat @ X3 @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) ) ) ).

% ceiling_less_neg_numeral
thf(fact_4779_neg__numeral__le__ceiling,axiom,
    ! [V: num,X3: real] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim7802044766580827645g_real @ X3 ) )
      = ( ord_less_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X3 ) ) ).

% neg_numeral_le_ceiling
thf(fact_4780_neg__numeral__le__ceiling,axiom,
    ! [V: num,X3: rat] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim2889992004027027881ng_rat @ X3 ) )
      = ( ord_less_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ one_one_rat ) @ X3 ) ) ).

% neg_numeral_le_ceiling
thf(fact_4781_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_4782_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_4783_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_4784_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_4785_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_4786_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_4787_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_4788_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_4789_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_4790_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_4791_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_4792_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X3: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_4793_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X3 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_4794_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_4795_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X3 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_4796_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X3: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X3 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X3 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_4797_square__powr__half,axiom,
    ! [X3: real] :
      ( ( powr_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X3 ) ) ).

% square_powr_half
thf(fact_4798_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_4799_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_4800_abs__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le6747313008572928689nteger @ A @ B )
        & ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_4801_abs__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_rat @ A @ B )
        & ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_4802_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_4803_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_4804_equation__minus__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% equation_minus_iff
thf(fact_4805_equation__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% equation_minus_iff
thf(fact_4806_equation__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% equation_minus_iff
thf(fact_4807_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4808_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4809_minus__equation__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( uminus1482373934393186551omplex @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4810_minus__equation__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( uminus1351360451143612070nteger @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4811_minus__equation__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( uminus_uminus_rat @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_4812_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_4813_abs__ge__minus__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_minus_self
thf(fact_4814_abs__ge__minus__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).

% abs_ge_minus_self
thf(fact_4815_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_4816_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_4817_abs__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le3102999989581377725nteger @ A @ B )
        & ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_4818_abs__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_eq_rat @ A @ B )
        & ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_4819_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_4820_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_4821_abs__le__D2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_4822_abs__le__D2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_4823_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_4824_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_4825_abs__leI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
       => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_4826_abs__leI,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
       => ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_4827_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_4828_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4829_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4830_verit__negate__coefficient_I3_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A = B )
     => ( ( uminus1351360451143612070nteger @ A )
        = ( uminus1351360451143612070nteger @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4831_verit__negate__coefficient_I3_J,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
     => ( ( uminus_uminus_rat @ A )
        = ( uminus_uminus_rat @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_4832_abs__minus__le__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).

% abs_minus_le_zero
thf(fact_4833_abs__minus__le__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).

% abs_minus_le_zero
thf(fact_4834_abs__minus__le__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).

% abs_minus_le_zero
thf(fact_4835_abs__minus__le__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).

% abs_minus_le_zero
thf(fact_4836_abs__eq__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( ( abs_abs_real @ A )
        = B )
      = ( ( ord_less_eq_real @ zero_zero_real @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_real @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_4837_abs__eq__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = B )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
        & ( ( A = B )
          | ( A
            = ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_4838_abs__eq__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ( abs_abs_rat @ A )
        = B )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_rat @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_4839_abs__eq__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( ( abs_abs_int @ A )
        = B )
      = ( ( ord_less_eq_int @ zero_zero_int @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_int @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_4840_eq__abs__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( abs_abs_real @ B ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_real @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_4841_eq__abs__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( abs_abs_Code_integer @ B ) )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
        & ( ( B = A )
          | ( B
            = ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_4842_eq__abs__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( abs_abs_rat @ B ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_rat @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_4843_eq__abs__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( abs_abs_int @ B ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_int @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_4844_abs__if__raw,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_4845_abs__if__raw,axiom,
    ( abs_abs_int
    = ( ^ [A4: int] : ( if_int @ ( ord_less_int @ A4 @ zero_zero_int ) @ ( uminus_uminus_int @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_4846_abs__if__raw,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A4: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A4 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_4847_abs__if__raw,axiom,
    ( abs_abs_rat
    = ( ^ [A4: rat] : ( if_rat @ ( ord_less_rat @ A4 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_4848_abs__of__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_neg
thf(fact_4849_abs__of__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_neg
thf(fact_4850_abs__of__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_neg
thf(fact_4851_abs__of__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_neg
thf(fact_4852_abs__if,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_4853_abs__if,axiom,
    ( abs_abs_int
    = ( ^ [A4: int] : ( if_int @ ( ord_less_int @ A4 @ zero_zero_int ) @ ( uminus_uminus_int @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_4854_abs__if,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A4: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A4 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_4855_abs__if,axiom,
    ( abs_abs_rat
    = ( ^ [A4: rat] : ( if_rat @ ( ord_less_rat @ A4 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_4856_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_real_def
thf(fact_4857_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_4858_abs__ge__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_self
thf(fact_4859_abs__ge__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).

% abs_ge_self
thf(fact_4860_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_4861_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_4862_abs__le__D1,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% abs_le_D1
thf(fact_4863_abs__le__D1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% abs_le_D1
thf(fact_4864_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_4865_abs__eq__0__iff,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0_iff
thf(fact_4866_abs__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0_iff
thf(fact_4867_abs__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0_iff
thf(fact_4868_abs__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_4869_abs__minus__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_4870_abs__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
      = ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_4871_abs__minus__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
      = ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_4872_abs__minus__commute,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
      = ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_4873_power__abs,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% power_abs
thf(fact_4874_power__abs,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ N ) )
      = ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% power_abs
thf(fact_4875_power__abs,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% power_abs
thf(fact_4876_power__abs,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% power_abs
thf(fact_4877_ceiling__def,axiom,
    ( archim2889992004027027881ng_rat
    = ( ^ [X: rat] : ( uminus_uminus_int @ ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ X ) ) ) ) ) ).

% ceiling_def
thf(fact_4878_ceiling__def,axiom,
    ( archim7802044766580827645g_real
    = ( ^ [X: real] : ( uminus_uminus_int @ ( archim6058952711729229775r_real @ ( uminus_uminus_real @ X ) ) ) ) ) ).

% ceiling_def
thf(fact_4879_floor__minus,axiom,
    ! [X3: rat] :
      ( ( archim3151403230148437115or_rat @ ( uminus_uminus_rat @ X3 ) )
      = ( uminus_uminus_int @ ( archim2889992004027027881ng_rat @ X3 ) ) ) ).

% floor_minus
thf(fact_4880_floor__minus,axiom,
    ! [X3: real] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ X3 ) )
      = ( uminus_uminus_int @ ( archim7802044766580827645g_real @ X3 ) ) ) ).

% floor_minus
thf(fact_4881_ceiling__minus,axiom,
    ! [X3: rat] :
      ( ( archim2889992004027027881ng_rat @ ( uminus_uminus_rat @ X3 ) )
      = ( uminus_uminus_int @ ( archim3151403230148437115or_rat @ X3 ) ) ) ).

% ceiling_minus
thf(fact_4882_ceiling__minus,axiom,
    ! [X3: real] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ X3 ) )
      = ( uminus_uminus_int @ ( archim6058952711729229775r_real @ X3 ) ) ) ).

% ceiling_minus
thf(fact_4883_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4884_le__imp__neg__le,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4885_le__imp__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4886_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_4887_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4888_minus__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4889_minus__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4890_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_4891_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_4892_le__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_minus_iff
thf(fact_4893_le__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% le_minus_iff
thf(fact_4894_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_4895_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4896_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4897_verit__negate__coefficient_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4898_verit__negate__coefficient_I2_J,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_4899_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_4900_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_4901_less__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% less_minus_iff
thf(fact_4902_less__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% less_minus_iff
thf(fact_4903_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4904_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4905_minus__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4906_minus__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_4907_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4908_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4909_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
     != ( numera6690914467698888265omplex @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4910_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
     != ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4911_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
     != ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_4912_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4913_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4914_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6690914467698888265omplex @ M )
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4915_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6620942414471956472nteger @ M )
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4916_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_rat @ M )
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_4917_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_4918_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_4919_one__neq__neg__one,axiom,
    ( one_one_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% one_neq_neg_one
thf(fact_4920_one__neq__neg__one,axiom,
    ( one_one_Code_integer
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% one_neq_neg_one
thf(fact_4921_one__neq__neg__one,axiom,
    ( one_one_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% one_neq_neg_one
thf(fact_4922_group__cancel_Oneg1,axiom,
    ! [A3: real,K: real,A: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A3 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4923_group__cancel_Oneg1,axiom,
    ! [A3: int,K: int,A: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4924_group__cancel_Oneg1,axiom,
    ! [A3: complex,K: complex,A: complex] :
      ( ( A3
        = ( plus_plus_complex @ K @ A ) )
     => ( ( uminus1482373934393186551omplex @ A3 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4925_group__cancel_Oneg1,axiom,
    ! [A3: code_integer,K: code_integer,A: code_integer] :
      ( ( A3
        = ( plus_p5714425477246183910nteger @ K @ A ) )
     => ( ( uminus1351360451143612070nteger @ A3 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4926_group__cancel_Oneg1,axiom,
    ! [A3: rat,K: rat,A: rat] :
      ( ( A3
        = ( plus_plus_rat @ K @ A ) )
     => ( ( uminus_uminus_rat @ A3 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_4927_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4928_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4929_add_Oinverse__distrib__swap,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4930_add_Oinverse__distrib__swap,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4931_add_Oinverse__distrib__swap,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_4932_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4933_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4934_is__num__normalize_I8_J,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4935_is__num__normalize_I8_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4936_is__num__normalize_I8_J,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_4937_minus__diff__commute,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
      = ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4938_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4939_minus__diff__commute,axiom,
    ! [B: complex,A: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
      = ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4940_minus__diff__commute,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
      = ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4941_minus__diff__commute,axiom,
    ! [B: rat,A: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
      = ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_4942_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4943_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4944_minus__diff__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4945_minus__diff__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4946_minus__diff__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_4947_real__minus__mult__self__le,axiom,
    ! [U: real,X3: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X3 @ X3 ) ) ).

% real_minus_mult_self_le
thf(fact_4948_real__sqrt__minus,axiom,
    ! [X3: real] :
      ( ( sqrt @ ( uminus_uminus_real @ X3 ) )
      = ( uminus_uminus_real @ ( sqrt @ X3 ) ) ) ).

% real_sqrt_minus
thf(fact_4949_norm__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_4950_norm__triangle__ineq3,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_4951_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_4952_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_4953_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_4954_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_4955_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_4956_abs__ge__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_zero
thf(fact_4957_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_4958_abs__ge__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).

% abs_ge_zero
thf(fact_4959_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_4960_abs__of__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_4961_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_4962_abs__of__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_4963_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_4964_abs__not__less__zero,axiom,
    ! [A: code_integer] :
      ~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).

% abs_not_less_zero
thf(fact_4965_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_4966_abs__not__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).

% abs_not_less_zero
thf(fact_4967_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_4968_abs__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_4969_abs__triangle__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_4970_abs__triangle__ineq,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_4971_abs__triangle__ineq,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_4972_abs__mult__less,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D3 )
       => ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D3 ) ) ) ) ).

% abs_mult_less
thf(fact_4973_abs__mult__less,axiom,
    ! [A: real,C: real,B: real,D3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ D3 )
       => ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D3 ) ) ) ) ).

% abs_mult_less
thf(fact_4974_abs__mult__less,axiom,
    ! [A: rat,C: rat,B: rat,D3: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
     => ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D3 )
       => ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D3 ) ) ) ) ).

% abs_mult_less
thf(fact_4975_abs__mult__less,axiom,
    ! [A: int,C: int,B: int,D3: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B ) @ D3 )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D3 ) ) ) ) ).

% abs_mult_less
thf(fact_4976_abs__triangle__ineq2__sym,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_4977_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_4978_abs__triangle__ineq2__sym,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_4979_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_4980_abs__triangle__ineq3,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_4981_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_4982_abs__triangle__ineq3,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_4983_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_4984_abs__triangle__ineq2,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_4985_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_4986_abs__triangle__ineq2,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_4987_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_4988_nonzero__abs__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_4989_nonzero__abs__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_4990_norm__of__real__diff,axiom,
    ! [B: real,A: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( real_V1803761363581548252l_real @ B ) @ ( real_V1803761363581548252l_real @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_of_real_diff
thf(fact_4991_norm__of__real__diff,axiom,
    ! [B: real,A: real] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( real_V4546457046886955230omplex @ B ) @ ( real_V4546457046886955230omplex @ A ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_of_real_diff
thf(fact_4992_norm__mult__less,axiom,
    ! [X3: real,R2: real,Y3: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ R2 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y3 ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X3 @ Y3 ) ) @ ( times_times_real @ R2 @ S ) ) ) ) ).

% norm_mult_less
thf(fact_4993_norm__mult__less,axiom,
    ! [X3: complex,R2: real,Y3: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ R2 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y3 ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X3 @ Y3 ) ) @ ( times_times_real @ R2 @ S ) ) ) ) ).

% norm_mult_less
thf(fact_4994_norm__mult__ineq,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X3 @ Y3 ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y3 ) ) ) ).

% norm_mult_ineq
thf(fact_4995_norm__mult__ineq,axiom,
    ! [X3: complex,Y3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X3 @ Y3 ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y3 ) ) ) ).

% norm_mult_ineq
thf(fact_4996_norm__not__less__zero,axiom,
    ! [X3: complex] :
      ~ ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ zero_zero_real ) ).

% norm_not_less_zero
thf(fact_4997_norm__ge__zero,axiom,
    ! [X3: complex] : ( ord_less_eq_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X3 ) ) ).

% norm_ge_zero
thf(fact_4998_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_4999_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5000_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5001_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5002_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5003_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5004_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5005_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_5006_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5007_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5008_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5009_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_z3403309356797280102nteger
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5010_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5011_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5012_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5013_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5014_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_5015_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5016_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5017_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5018_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5019_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_5020_le__minus__one__simps_I2_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% le_minus_one_simps(2)
thf(fact_5021_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% le_minus_one_simps(2)
thf(fact_5022_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_5023_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_5024_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(4)
thf(fact_5025_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(4)
thf(fact_5026_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_5027_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_5028_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_5029_zero__neq__neg__one,axiom,
    ( zero_zero_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% zero_neq_neg_one
thf(fact_5030_zero__neq__neg__one,axiom,
    ( zero_z3403309356797280102nteger
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% zero_neq_neg_one
thf(fact_5031_zero__neq__neg__one,axiom,
    ( zero_zero_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% zero_neq_neg_one
thf(fact_5032_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5033_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5034_neg__eq__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5035_neg__eq__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5036_neg__eq__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5037_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5038_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5039_eq__neg__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5040_eq__neg__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5041_eq__neg__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5042_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5043_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5044_add_Oinverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5045_add_Oinverse__unique,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( ( uminus1351360451143612070nteger @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5046_add_Oinverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
     => ( ( uminus_uminus_rat @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5047_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5048_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5049_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5050_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5051_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5052_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5053_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5054_add__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5055_add__eq__0__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5056_add__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5057_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_5058_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_5059_less__minus__one__simps_I2_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% less_minus_one_simps(2)
thf(fact_5060_less__minus__one__simps_I2_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% less_minus_one_simps(2)
thf(fact_5061_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_5062_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_5063_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(4)
thf(fact_5064_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(4)
thf(fact_5065_numeral__times__minus__swap,axiom,
    ! [W: num,X3: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X3 ) )
      = ( times_times_real @ X3 @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5066_numeral__times__minus__swap,axiom,
    ! [W: num,X3: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X3 ) )
      = ( times_times_int @ X3 @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5067_numeral__times__minus__swap,axiom,
    ! [W: num,X3: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X3 ) )
      = ( times_times_complex @ X3 @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5068_numeral__times__minus__swap,axiom,
    ! [W: num,X3: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X3 ) )
      = ( times_3573771949741848930nteger @ X3 @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5069_numeral__times__minus__swap,axiom,
    ! [W: num,X3: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X3 ) )
      = ( times_times_rat @ X3 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5070_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5071_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5072_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5073_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_Code_integer
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5074_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_5075_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ N )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_5076_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_5077_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ N )
     != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% numeral_neq_neg_one
thf(fact_5078_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6620942414471956472nteger @ N )
     != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% numeral_neq_neg_one
thf(fact_5079_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ N )
     != ( uminus_uminus_rat @ one_one_rat ) ) ).

% numeral_neq_neg_one
thf(fact_5080_nonzero__minus__divide__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5081_nonzero__minus__divide__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5082_nonzero__minus__divide__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5083_nonzero__minus__divide__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5084_nonzero__minus__divide__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5085_nonzero__minus__divide__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5086_norm__power,axiom,
    ! [X3: real,N: nat] :
      ( ( real_V7735802525324610683m_real @ ( power_power_real @ X3 @ N ) )
      = ( power_power_real @ ( real_V7735802525324610683m_real @ X3 ) @ N ) ) ).

% norm_power
thf(fact_5087_norm__power,axiom,
    ! [X3: complex,N: nat] :
      ( ( real_V1022390504157884413omplex @ ( power_power_complex @ X3 @ N ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ X3 ) @ N ) ) ).

% norm_power
thf(fact_5088_group__cancel_Osub2,axiom,
    ! [B5: real,K: real,B: real,A: real] :
      ( ( B5
        = ( plus_plus_real @ K @ B ) )
     => ( ( minus_minus_real @ A @ B5 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5089_group__cancel_Osub2,axiom,
    ! [B5: int,K: int,B: int,A: int] :
      ( ( B5
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B5 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5090_group__cancel_Osub2,axiom,
    ! [B5: complex,K: complex,B: complex,A: complex] :
      ( ( B5
        = ( plus_plus_complex @ K @ B ) )
     => ( ( minus_minus_complex @ A @ B5 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5091_group__cancel_Osub2,axiom,
    ! [B5: code_integer,K: code_integer,B: code_integer,A: code_integer] :
      ( ( B5
        = ( plus_p5714425477246183910nteger @ K @ B ) )
     => ( ( minus_8373710615458151222nteger @ A @ B5 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5092_group__cancel_Osub2,axiom,
    ! [B5: rat,K: rat,B: rat,A: rat] :
      ( ( B5
        = ( plus_plus_rat @ K @ B ) )
     => ( ( minus_minus_rat @ A @ B5 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5093_diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A4: real,B3: real] : ( plus_plus_real @ A4 @ ( uminus_uminus_real @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5094_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5095_diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A4: complex,B3: complex] : ( plus_plus_complex @ A4 @ ( uminus1482373934393186551omplex @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5096_diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A4: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A4 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5097_diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A4: rat,B3: rat] : ( plus_plus_rat @ A4 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5098_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A4: real,B3: real] : ( plus_plus_real @ A4 @ ( uminus_uminus_real @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5099_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B3: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5100_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A4: complex,B3: complex] : ( plus_plus_complex @ A4 @ ( uminus1482373934393186551omplex @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5101_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A4: code_integer,B3: code_integer] : ( plus_p5714425477246183910nteger @ A4 @ ( uminus1351360451143612070nteger @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5102_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A4: rat,B3: rat] : ( plus_plus_rat @ A4 @ ( uminus_uminus_rat @ B3 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5103_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X: real,Y: real] : ( plus_plus_real @ X @ ( uminus_uminus_real @ Y ) ) ) ) ).

% minus_real_def
thf(fact_5104_of__int__of__nat,axiom,
    ( ring_18347121197199848620nteger
    = ( ^ [K3: int] : ( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri4939895301339042750nteger @ ( nat2 @ K3 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_5105_of__int__of__nat,axiom,
    ( ring_17405671764205052669omplex
    = ( ^ [K3: int] : ( if_complex @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri8010041392384452111omplex @ ( nat2 @ K3 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_5106_of__int__of__nat,axiom,
    ( ring_1_of_int_real
    = ( ^ [K3: int] : ( if_real @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri5074537144036343181t_real @ ( nat2 @ K3 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_5107_of__int__of__nat,axiom,
    ( ring_1_of_int_rat
    = ( ^ [K3: int] : ( if_rat @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri681578069525770553at_rat @ ( nat2 @ K3 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_5108_of__int__of__nat,axiom,
    ( ring_1_of_int_int
    = ( ^ [K3: int] : ( if_int @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( nat2 @ ( uminus_uminus_int @ K3 ) ) ) ) @ ( semiri1314217659103216013at_int @ ( nat2 @ K3 ) ) ) ) ) ).

% of_int_of_nat
thf(fact_5109_dense__eq0__I,axiom,
    ! [X3: real] :
      ( ! [E: real] :
          ( ( ord_less_real @ zero_zero_real @ E )
         => ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ E ) )
     => ( X3 = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_5110_dense__eq0__I,axiom,
    ! [X3: rat] :
      ( ! [E: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E )
         => ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ E ) )
     => ( X3 = zero_zero_rat ) ) ).

% dense_eq0_I
thf(fact_5111_abs__mult__pos,axiom,
    ! [X3: code_integer,Y3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X3 )
     => ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y3 ) @ X3 )
        = ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y3 @ X3 ) ) ) ) ).

% abs_mult_pos
thf(fact_5112_abs__mult__pos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( times_times_real @ ( abs_abs_real @ Y3 ) @ X3 )
        = ( abs_abs_real @ ( times_times_real @ Y3 @ X3 ) ) ) ) ).

% abs_mult_pos
thf(fact_5113_abs__mult__pos,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X3 )
     => ( ( times_times_rat @ ( abs_abs_rat @ Y3 ) @ X3 )
        = ( abs_abs_rat @ ( times_times_rat @ Y3 @ X3 ) ) ) ) ).

% abs_mult_pos
thf(fact_5114_abs__mult__pos,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( times_times_int @ ( abs_abs_int @ Y3 ) @ X3 )
        = ( abs_abs_int @ ( times_times_int @ Y3 @ X3 ) ) ) ) ).

% abs_mult_pos
thf(fact_5115_abs__eq__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
          | ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
        & ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
          | ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
     => ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
        = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5116_abs__eq__mult,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          | ( ord_less_eq_real @ A @ zero_zero_real ) )
        & ( ( ord_less_eq_real @ zero_zero_real @ B )
          | ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
        = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5117_abs__eq__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          | ( ord_less_eq_rat @ A @ zero_zero_rat ) )
        & ( ( ord_less_eq_rat @ zero_zero_rat @ B )
          | ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
        = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5118_abs__eq__mult,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          | ( ord_less_eq_int @ A @ zero_zero_int ) )
        & ( ( ord_less_eq_int @ zero_zero_int @ B )
          | ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
        = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_5119_abs__div__pos,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ( ( divide_divide_real @ ( abs_abs_real @ X3 ) @ Y3 )
        = ( abs_abs_real @ ( divide_divide_real @ X3 @ Y3 ) ) ) ) ).

% abs_div_pos
thf(fact_5120_abs__div__pos,axiom,
    ! [Y3: rat,X3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y3 )
     => ( ( divide_divide_rat @ ( abs_abs_rat @ X3 ) @ Y3 )
        = ( abs_abs_rat @ ( divide_divide_rat @ X3 @ Y3 ) ) ) ) ).

% abs_div_pos
thf(fact_5121_zero__le__power__abs,axiom,
    ! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5122_zero__le__power__abs,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5123_zero__le__power__abs,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5124_zero__le__power__abs,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_5125_abs__diff__le__iff,axiom,
    ! [X3: code_integer,A: code_integer,R2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X3 @ A ) ) @ R2 )
      = ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X3 )
        & ( ord_le3102999989581377725nteger @ X3 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5126_abs__diff__le__iff,axiom,
    ! [X3: real,A: real,R2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ A ) ) @ R2 )
      = ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R2 ) @ X3 )
        & ( ord_less_eq_real @ X3 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5127_abs__diff__le__iff,axiom,
    ! [X3: rat,A: rat,R2: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X3 @ A ) ) @ R2 )
      = ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R2 ) @ X3 )
        & ( ord_less_eq_rat @ X3 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5128_abs__diff__le__iff,axiom,
    ! [X3: int,A: int,R2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ A ) ) @ R2 )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R2 ) @ X3 )
        & ( ord_less_eq_int @ X3 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_5129_abs__diff__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D3: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D3 ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D3 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5130_abs__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D3 ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D3 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5131_abs__diff__triangle__ineq,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D3 ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D3 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5132_abs__diff__triangle__ineq,axiom,
    ! [A: int,B: int,C: int,D3: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D3 ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D3 ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_5133_abs__triangle__ineq4,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5134_abs__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5135_abs__triangle__ineq4,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5136_abs__triangle__ineq4,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_5137_abs__diff__less__iff,axiom,
    ! [X3: code_integer,A: code_integer,R2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X3 @ A ) ) @ R2 )
      = ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X3 )
        & ( ord_le6747313008572928689nteger @ X3 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5138_abs__diff__less__iff,axiom,
    ! [X3: real,A: real,R2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ A ) ) @ R2 )
      = ( ( ord_less_real @ ( minus_minus_real @ A @ R2 ) @ X3 )
        & ( ord_less_real @ X3 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5139_abs__diff__less__iff,axiom,
    ! [X3: rat,A: rat,R2: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X3 @ A ) ) @ R2 )
      = ( ( ord_less_rat @ ( minus_minus_rat @ A @ R2 ) @ X3 )
        & ( ord_less_rat @ X3 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5140_abs__diff__less__iff,axiom,
    ! [X3: int,A: int,R2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ A ) ) @ R2 )
      = ( ( ord_less_int @ ( minus_minus_int @ A @ R2 ) @ X3 )
        & ( ord_less_int @ X3 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_5141_nonzero__norm__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_5142_nonzero__norm__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_5143_power__eq__imp__eq__norm,axiom,
    ! [W: real,N: nat,Z: real] :
      ( ( ( power_power_real @ W @ N )
        = ( power_power_real @ Z @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( real_V7735802525324610683m_real @ W )
          = ( real_V7735802525324610683m_real @ Z ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_5144_power__eq__imp__eq__norm,axiom,
    ! [W: complex,N: nat,Z: complex] :
      ( ( ( power_power_complex @ W @ N )
        = ( power_power_complex @ Z @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( real_V1022390504157884413omplex @ W )
          = ( real_V1022390504157884413omplex @ Z ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_5145_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5146_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5147_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5148_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_5149_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_le_zero
thf(fact_5150_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_le_zero
thf(fact_5151_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_le_zero
thf(fact_5152_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_5153_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_less_zero
thf(fact_5154_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_5155_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_less_zero
thf(fact_5156_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_less_zero
thf(fact_5157_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5158_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5159_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5160_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_5161_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_5162_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(3)
thf(fact_5163_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(3)
thf(fact_5164_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_5165_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_5166_le__minus__one__simps_I1_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% le_minus_one_simps(1)
thf(fact_5167_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% le_minus_one_simps(1)
thf(fact_5168_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_5169_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_5170_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_5171_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(3)
thf(fact_5172_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(3)
thf(fact_5173_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_5174_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_5175_less__minus__one__simps_I1_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% less_minus_one_simps(1)
thf(fact_5176_less__minus__one__simps_I1_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% less_minus_one_simps(1)
thf(fact_5177_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5178_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5179_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5180_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_5181_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_le_neg_one
thf(fact_5182_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_le_neg_one
thf(fact_5183_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_le_neg_one
thf(fact_5184_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_5185_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% neg_numeral_le_neg_one
thf(fact_5186_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% neg_numeral_le_neg_one
thf(fact_5187_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% neg_numeral_le_neg_one
thf(fact_5188_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_5189_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_le_numeral
thf(fact_5190_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_le_numeral
thf(fact_5191_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_le_numeral
thf(fact_5192_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_5193_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_le_one
thf(fact_5194_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_le_one
thf(fact_5195_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_le_one
thf(fact_5196_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_5197_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_5198_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_5199_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_less_one
thf(fact_5200_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_less_one
thf(fact_5201_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_5202_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_5203_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_less_numeral
thf(fact_5204_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_less_numeral
thf(fact_5205_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_5206_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_5207_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_less_neg_one
thf(fact_5208_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_less_neg_one
thf(fact_5209_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5210_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5211_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5212_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_5213_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5214_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5215_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5216_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_5217_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: real,C: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( C
          = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
        = ( ( times_times_real @ C @ B )
          = ( uminus_uminus_real @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5218_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( C
          = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ( times_times_complex @ C @ B )
          = ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5219_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( C
          = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
        = ( ( times_times_rat @ C @ B )
          = ( uminus_uminus_rat @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_5220_nonzero__neg__divide__eq__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( B != zero_zero_real )
     => ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
          = C )
        = ( ( uminus_uminus_real @ A )
          = ( times_times_real @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5221_nonzero__neg__divide__eq__eq,axiom,
    ! [B: complex,A: complex,C: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
          = C )
        = ( ( uminus1482373934393186551omplex @ A )
          = ( times_times_complex @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5222_nonzero__neg__divide__eq__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
          = C )
        = ( ( uminus_uminus_rat @ A )
          = ( times_times_rat @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_5223_minus__divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( ( uminus_uminus_real @ B )
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5224_minus__divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ B )
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5225_minus__divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( ( uminus_uminus_rat @ B )
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_5226_eq__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = ( uminus_uminus_real @ B ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5227_eq__minus__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = ( uminus1482373934393186551omplex @ B ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5228_eq__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = ( uminus_uminus_rat @ B ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_5229_norm__triangle__lt,axiom,
    ! [X3: real,Y3: real,E2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y3 ) ) @ E2 )
     => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y3 ) ) @ E2 ) ) ).

% norm_triangle_lt
thf(fact_5230_norm__triangle__lt,axiom,
    ! [X3: complex,Y3: complex,E2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y3 ) ) @ E2 )
     => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y3 ) ) @ E2 ) ) ).

% norm_triangle_lt
thf(fact_5231_norm__add__less,axiom,
    ! [X3: real,R2: real,Y3: real,S: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ R2 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y3 ) @ S )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y3 ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).

% norm_add_less
thf(fact_5232_norm__add__less,axiom,
    ! [X3: complex,R2: real,Y3: complex,S: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ R2 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y3 ) @ S )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y3 ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).

% norm_add_less
thf(fact_5233_divide__eq__minus__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B != zero_zero_real )
        & ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5234_divide__eq__minus__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( B != zero_zero_complex )
        & ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5235_divide__eq__minus__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ( B != zero_zero_rat )
        & ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_5236_mult__1s__ring__1_I2_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5237_mult__1s__ring__1_I2_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5238_mult__1s__ring__1_I2_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5239_mult__1s__ring__1_I2_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5240_mult__1s__ring__1_I2_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_5241_mult__1s__ring__1_I1_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5242_mult__1s__ring__1_I1_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5243_mult__1s__ring__1_I1_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5244_mult__1s__ring__1_I1_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5245_mult__1s__ring__1_I1_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_5246_uminus__numeral__One,axiom,
    ( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% uminus_numeral_One
thf(fact_5247_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_5248_uminus__numeral__One,axiom,
    ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% uminus_numeral_One
thf(fact_5249_uminus__numeral__One,axiom,
    ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% uminus_numeral_One
thf(fact_5250_uminus__numeral__One,axiom,
    ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% uminus_numeral_One
thf(fact_5251_norm__add__leD,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_5252_norm__add__leD,axiom,
    ! [A: complex,B: complex,C: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_5253_norm__triangle__le,axiom,
    ! [X3: real,Y3: real,E2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y3 ) ) @ E2 )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y3 ) ) @ E2 ) ) ).

% norm_triangle_le
thf(fact_5254_norm__triangle__le,axiom,
    ! [X3: complex,Y3: complex,E2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y3 ) ) @ E2 )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y3 ) ) @ E2 ) ) ).

% norm_triangle_le
thf(fact_5255_norm__triangle__ineq,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X3 @ Y3 ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y3 ) ) ) ).

% norm_triangle_ineq
thf(fact_5256_norm__triangle__ineq,axiom,
    ! [X3: complex,Y3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X3 @ Y3 ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y3 ) ) ) ).

% norm_triangle_ineq
thf(fact_5257_norm__triangle__mono,axiom,
    ! [A: real,R2: real,B: real,S: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R2 )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_5258_norm__triangle__mono,axiom,
    ! [A: complex,R2: real,B: complex,S: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R2 )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R2 @ S ) ) ) ) ).

% norm_triangle_mono
thf(fact_5259_norm__power__ineq,axiom,
    ! [X3: real,N: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X3 @ N ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X3 ) @ N ) ) ).

% norm_power_ineq
thf(fact_5260_norm__power__ineq,axiom,
    ! [X3: complex,N: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X3 @ N ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X3 ) @ N ) ) ).

% norm_power_ineq
thf(fact_5261_norm__diff__triangle__less,axiom,
    ! [X3: real,Y3: real,E1: real,Z: real,E22: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Y3 ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y3 @ Z ) ) @ E22 )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_5262_norm__diff__triangle__less,axiom,
    ! [X3: complex,Y3: complex,E1: real,Z: complex,E22: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y3 ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y3 @ Z ) ) @ E22 )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_5263_norm__triangle__sub,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y3 ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Y3 ) ) ) ) ).

% norm_triangle_sub
thf(fact_5264_norm__triangle__sub,axiom,
    ! [X3: complex,Y3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y3 ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y3 ) ) ) ) ).

% norm_triangle_sub
thf(fact_5265_norm__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_5266_norm__triangle__ineq4,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_5267_norm__diff__triangle__le,axiom,
    ! [X3: real,Y3: real,E1: real,Z: real,E22: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Y3 ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y3 @ Z ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_5268_norm__diff__triangle__le,axiom,
    ! [X3: complex,Y3: complex,E1: real,Z: complex,E22: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y3 ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y3 @ Z ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_5269_norm__triangle__le__diff,axiom,
    ! [X3: real,Y3: real,E2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ Y3 ) ) @ E2 )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X3 @ Y3 ) ) @ E2 ) ) ).

% norm_triangle_le_diff
thf(fact_5270_norm__triangle__le__diff,axiom,
    ! [X3: complex,Y3: complex,E2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y3 ) ) @ E2 )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y3 ) ) @ E2 ) ) ).

% norm_triangle_le_diff
thf(fact_5271_power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).

% power_minus
thf(fact_5272_power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).

% power_minus
thf(fact_5273_power__minus,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_minus
thf(fact_5274_power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_minus
thf(fact_5275_power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_minus
thf(fact_5276_norm__diff__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_5277_norm__diff__ineq,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_5278_norm__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_5279_norm__triangle__ineq2,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_5280_power__minus__Bit0,axiom,
    ! [X3: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5281_power__minus__Bit0,axiom,
    ! [X3: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5282_power__minus__Bit0,axiom,
    ! [X3: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5283_power__minus__Bit0,axiom,
    ! [X3: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5284_power__minus__Bit0,axiom,
    ! [X3: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_5285_lemma__interval__lt,axiom,
    ! [A: real,X3: real,B: real] :
      ( ( ord_less_real @ A @ X3 )
     => ( ( ord_less_real @ X3 @ B )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [Y6: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y6 ) ) @ D6 )
               => ( ( ord_less_real @ A @ Y6 )
                  & ( ord_less_real @ Y6 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_5286_sin__bound__lemma,axiom,
    ! [X3: real,Y3: real,U: real,V: real] :
      ( ( X3 = Y3 )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X3 @ U ) @ Y3 ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_5287_real__0__less__add__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X3 @ Y3 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X3 ) @ Y3 ) ) ).

% real_0_less_add_iff
thf(fact_5288_real__add__less__0__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X3 @ Y3 ) @ zero_zero_real )
      = ( ord_less_real @ Y3 @ ( uminus_uminus_real @ X3 ) ) ) ).

% real_add_less_0_iff
thf(fact_5289_real__0__le__add__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X3 @ Y3 ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X3 ) @ Y3 ) ) ).

% real_0_le_add_iff
thf(fact_5290_real__add__le__0__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X3 @ Y3 ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y3 @ ( uminus_uminus_real @ X3 ) ) ) ).

% real_add_le_0_iff
thf(fact_5291_tanh__real__gt__neg1,axiom,
    ! [X3: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X3 ) ) ).

% tanh_real_gt_neg1
thf(fact_5292_abs__add__one__gt__zero,axiom,
    ! [X3: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X3 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5293_abs__add__one__gt__zero,axiom,
    ! [X3: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X3 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5294_abs__add__one__gt__zero,axiom,
    ! [X3: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X3 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5295_abs__add__one__gt__zero,axiom,
    ! [X3: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X3 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_5296_of__int__leD,axiom,
    ! [N: int,X3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X3 ) ) ) ).

% of_int_leD
thf(fact_5297_of__int__leD,axiom,
    ! [N: int,X3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_real @ one_one_real @ X3 ) ) ) ).

% of_int_leD
thf(fact_5298_of__int__leD,axiom,
    ! [N: int,X3: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_rat @ one_one_rat @ X3 ) ) ) ).

% of_int_leD
thf(fact_5299_of__int__leD,axiom,
    ! [N: int,X3: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_int @ one_one_int @ X3 ) ) ) ).

% of_int_leD
thf(fact_5300_of__int__lessD,axiom,
    ! [N: int,X3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X3 ) ) ) ).

% of_int_lessD
thf(fact_5301_of__int__lessD,axiom,
    ! [N: int,X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_less_real @ one_one_real @ X3 ) ) ) ).

% of_int_lessD
thf(fact_5302_of__int__lessD,axiom,
    ! [N: int,X3: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_less_rat @ one_one_rat @ X3 ) ) ) ).

% of_int_lessD
thf(fact_5303_of__int__lessD,axiom,
    ! [N: int,X3: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X3 )
     => ( ( N = zero_zero_int )
        | ( ord_less_int @ one_one_int @ X3 ) ) ) ).

% of_int_lessD
thf(fact_5304_power__eq__1__iff,axiom,
    ! [W: real,N: nat] :
      ( ( ( power_power_real @ W @ N )
        = one_one_real )
     => ( ( ( real_V7735802525324610683m_real @ W )
          = one_one_real )
        | ( N = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_5305_power__eq__1__iff,axiom,
    ! [W: complex,N: nat] :
      ( ( ( power_power_complex @ W @ N )
        = one_one_complex )
     => ( ( ( real_V1022390504157884413omplex @ W )
          = one_one_real )
        | ( N = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_5306_norm__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D3: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D3 ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D3 ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_5307_norm__diff__triangle__ineq,axiom,
    ! [A: complex,B: complex,C: complex,D3: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D3 ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D3 ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_5308_norm__less__p1,axiom,
    ! [X3: real] : ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ ( real_V1803761363581548252l_real @ ( real_V7735802525324610683m_real @ X3 ) ) @ one_one_real ) ) ) ).

% norm_less_p1
thf(fact_5309_norm__less__p1,axiom,
    ! [X3: complex] : ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( real_V1022390504157884413omplex @ X3 ) ) @ one_one_complex ) ) ) ).

% norm_less_p1
thf(fact_5310_less__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5311_less__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_5312_minus__divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5313_minus__divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_5314_neg__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5315_neg__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_5316_neg__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5317_neg__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_5318_pos__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5319_pos__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_5320_pos__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5321_pos__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_5322_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5323_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5324_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_5325_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5326_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5327_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_5328_minus__divide__add__eq__iff,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X3 @ Z ) ) @ Y3 )
        = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X3 ) @ ( times_times_real @ Y3 @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5329_minus__divide__add__eq__iff,axiom,
    ! [Z: complex,X3: complex,Y3: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X3 @ Z ) ) @ Y3 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X3 ) @ ( times_times_complex @ Y3 @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5330_minus__divide__add__eq__iff,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X3 @ Z ) ) @ Y3 )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X3 ) @ ( times_times_rat @ Y3 @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_5331_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5332_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5333_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_5334_minus__divide__diff__eq__iff,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X3 @ Z ) ) @ Y3 )
        = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X3 ) @ ( times_times_real @ Y3 @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5335_minus__divide__diff__eq__iff,axiom,
    ! [Z: complex,X3: complex,Y3: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X3 @ Z ) ) @ Y3 )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X3 ) @ ( times_times_complex @ Y3 @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5336_minus__divide__diff__eq__iff,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X3 @ Z ) ) @ Y3 )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X3 ) @ ( times_times_rat @ Y3 @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_5337_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5338_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5339_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_5340_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5341_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5342_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_5343_even__minus,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5344_even__minus,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_5345_power2__eq__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X3 = Y3 )
        | ( X3
          = ( uminus_uminus_real @ Y3 ) ) ) ) ).

% power2_eq_iff
thf(fact_5346_power2__eq__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X3 = Y3 )
        | ( X3
          = ( uminus_uminus_int @ Y3 ) ) ) ) ).

% power2_eq_iff
thf(fact_5347_power2__eq__iff,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_complex @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X3 = Y3 )
        | ( X3
          = ( uminus1482373934393186551omplex @ Y3 ) ) ) ) ).

% power2_eq_iff
thf(fact_5348_power2__eq__iff,axiom,
    ! [X3: code_integer,Y3: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_8256067586552552935nteger @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X3 = Y3 )
        | ( X3
          = ( uminus1351360451143612070nteger @ Y3 ) ) ) ) ).

% power2_eq_iff
thf(fact_5349_power2__eq__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X3 = Y3 )
        | ( X3
          = ( uminus_uminus_rat @ Y3 ) ) ) ) ).

% power2_eq_iff
thf(fact_5350_lemma__interval,axiom,
    ! [A: real,X3: real,B: real] :
      ( ( ord_less_real @ A @ X3 )
     => ( ( ord_less_real @ X3 @ B )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [Y6: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y6 ) ) @ D6 )
               => ( ( ord_less_eq_real @ A @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_5351_round__diff__minimal,axiom,
    ! [Z: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_5352_round__diff__minimal,axiom,
    ! [Z: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_5353_abs__le__square__iff,axiom,
    ! [X3: code_integer,Y3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X3 ) @ ( abs_abs_Code_integer @ Y3 ) )
      = ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5354_abs__le__square__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ ( abs_abs_real @ Y3 ) )
      = ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5355_abs__le__square__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ ( abs_abs_rat @ Y3 ) )
      = ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5356_abs__le__square__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ X3 ) @ ( abs_abs_int @ Y3 ) )
      = ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_5357_abs__square__eq__1,axiom,
    ! [X3: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( abs_abs_Code_integer @ X3 )
        = one_one_Code_integer ) ) ).

% abs_square_eq_1
thf(fact_5358_abs__square__eq__1,axiom,
    ! [X3: rat] :
      ( ( ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( abs_abs_rat @ X3 )
        = one_one_rat ) ) ).

% abs_square_eq_1
thf(fact_5359_abs__square__eq__1,axiom,
    ! [X3: int] :
      ( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( abs_abs_int @ X3 )
        = one_one_int ) ) ).

% abs_square_eq_1
thf(fact_5360_abs__square__eq__1,axiom,
    ! [X3: real] :
      ( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( abs_abs_real @ X3 )
        = one_one_real ) ) ).

% abs_square_eq_1
thf(fact_5361_power__even__abs,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5362_power__even__abs,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5363_power__even__abs,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5364_power__even__abs,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% power_even_abs
thf(fact_5365_le__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5366_le__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_5367_minus__divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5368_minus__divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_5369_neg__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5370_neg__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_5371_neg__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5372_neg__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_5373_pos__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5374_pos__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_5375_pos__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5376_pos__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_5377_divide__less__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5378_divide__less__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_5379_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5380_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_5381_norm__power__diff,axiom,
    ! [Z: real,W: real,M: nat] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_5382_norm__power__diff,axiom,
    ! [Z: complex,W: complex,M: nat] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_5383_power2__eq__1__iff,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( A = one_one_real )
        | ( A
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5384_power2__eq__1__iff,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A = one_one_int )
        | ( A
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5385_power2__eq__1__iff,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
      = ( ( A = one_one_complex )
        | ( A
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5386_power2__eq__1__iff,axiom,
    ! [A: code_integer] :
      ( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( A = one_one_Code_integer )
        | ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5387_power2__eq__1__iff,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( A = one_one_rat )
        | ( A
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% power2_eq_1_iff
thf(fact_5388_uminus__power__if,axiom,
    ! [N: nat,A: real] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( power_power_real @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5389_uminus__power__if,axiom,
    ! [N: nat,A: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( power_power_int @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5390_uminus__power__if,axiom,
    ! [N: nat,A: complex] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( power_power_complex @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5391_uminus__power__if,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( power_8256067586552552935nteger @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5392_uminus__power__if,axiom,
    ! [N: nat,A: rat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( power_power_rat @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_5393_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5394_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5395_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5396_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5397_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_5398_realpow__square__minus__le,axiom,
    ! [U: real,X3: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_5399_powr__neg__one,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( powr_real @ X3 @ ( uminus_uminus_real @ one_one_real ) )
        = ( divide_divide_real @ one_one_real @ X3 ) ) ) ).

% powr_neg_one
thf(fact_5400_Bernoulli__inequality,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X3 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X3 ) @ N ) ) ) ).

% Bernoulli_inequality
thf(fact_5401_ln__add__one__self__le__self2,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X3 ) ) @ X3 ) ) ).

% ln_add_one_self_le_self2
thf(fact_5402_power2__le__iff__abs__le,axiom,
    ! [Y3: code_integer,X3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y3 )
     => ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X3 ) @ Y3 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5403_power2__le__iff__abs__le,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ Y3 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5404_power2__le__iff__abs__le,axiom,
    ! [Y3: rat,X3: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y3 )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ Y3 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5405_power2__le__iff__abs__le,axiom,
    ! [Y3: int,X3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
     => ( ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_int @ ( abs_abs_int @ X3 ) @ Y3 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_5406_abs__square__le__1,axiom,
    ! [X3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X3 ) @ one_one_Code_integer ) ) ).

% abs_square_le_1
thf(fact_5407_abs__square__le__1,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real ) ) ).

% abs_square_le_1
thf(fact_5408_abs__square__le__1,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_eq_rat @ ( abs_abs_rat @ X3 ) @ one_one_rat ) ) ).

% abs_square_le_1
thf(fact_5409_abs__square__le__1,axiom,
    ! [X3: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_eq_int @ ( abs_abs_int @ X3 ) @ one_one_int ) ) ).

% abs_square_le_1
thf(fact_5410_abs__square__less__1,axiom,
    ! [X3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X3 ) @ one_one_Code_integer ) ) ).

% abs_square_less_1
thf(fact_5411_abs__square__less__1,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real ) ) ).

% abs_square_less_1
thf(fact_5412_abs__square__less__1,axiom,
    ! [X3: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_rat @ ( abs_abs_rat @ X3 ) @ one_one_rat ) ) ).

% abs_square_less_1
thf(fact_5413_abs__square__less__1,axiom,
    ! [X3: int] :
      ( ( ord_less_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_int @ ( abs_abs_int @ X3 ) @ one_one_int ) ) ).

% abs_square_less_1
thf(fact_5414_power__mono__even,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5415_power__mono__even,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5416_power__mono__even,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5417_power__mono__even,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_5418_square__norm__one,axiom,
    ! [X3: real] :
      ( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
     => ( ( real_V7735802525324610683m_real @ X3 )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_5419_square__norm__one,axiom,
    ! [X3: complex] :
      ( ( ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
     => ( ( real_V1022390504157884413omplex @ X3 )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_5420_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5421_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_5422_divide__le__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5423_divide__le__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_5424_sqrt__ge__absD,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ ( sqrt @ Y3 ) )
     => ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y3 ) ) ).

% sqrt_ge_absD
thf(fact_5425_square__le__1,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).

% square_le_1
thf(fact_5426_square__le__1,axiom,
    ! [X3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X3 )
     => ( ( ord_le3102999989581377725nteger @ X3 @ one_one_Code_integer )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% square_le_1
thf(fact_5427_square__le__1,axiom,
    ! [X3: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X3 )
     => ( ( ord_less_eq_rat @ X3 @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).

% square_le_1
thf(fact_5428_square__le__1,axiom,
    ! [X3: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X3 )
     => ( ( ord_less_eq_int @ X3 @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% square_le_1
thf(fact_5429_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ zero_zero_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X3 ) ) @ X3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_5430_minus__power__mult__self,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5431_minus__power__mult__self,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5432_minus__power__mult__self,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5433_minus__power__mult__self,axiom,
    ! [A: code_integer,N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5434_minus__power__mult__self,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_5435_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% minus_one_power_iff
thf(fact_5436_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_5437_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = one_one_complex ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% minus_one_power_iff
thf(fact_5438_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = one_one_Code_integer ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% minus_one_power_iff
thf(fact_5439_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = one_one_rat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% minus_one_power_iff
thf(fact_5440_ln__one__minus__pos__upper__bound,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X3 ) ) @ ( uminus_uminus_real @ X3 ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_5441_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
    ! [X3: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_low @ X3 @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(2)
thf(fact_5442_log__minus__eq__powr,axiom,
    ! [B: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( minus_minus_real @ ( log @ B @ X3 ) @ Y3 )
            = ( log @ B @ ( times_times_real @ X3 @ ( powr_real @ B @ ( uminus_uminus_real @ Y3 ) ) ) ) ) ) ) ) ).

% log_minus_eq_powr
thf(fact_5443_real__sqrt__ge__abs1,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs1
thf(fact_5444_real__sqrt__ge__abs2,axiom,
    ! [Y3: real,X3: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs2
thf(fact_5445_sqrt__sum__squares__le__sum__abs,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X3 ) @ ( abs_abs_real @ Y3 ) ) ) ).

% sqrt_sum_squares_le_sum_abs
thf(fact_5446_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_real @ one_one_real ) ) ).

% power_minus1_odd
thf(fact_5447_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% power_minus1_odd
thf(fact_5448_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power_minus1_odd
thf(fact_5449_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% power_minus1_odd
thf(fact_5450_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_rat @ one_one_rat ) ) ).

% power_minus1_odd
thf(fact_5451_take__bit__Suc__minus__1__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_Code_integer ) ) ).

% take_bit_Suc_minus_1_eq
thf(fact_5452_take__bit__Suc__minus__1__eq,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_1_eq
thf(fact_5453_take__bit__numeral__minus__1__eq,axiom,
    ! [K: num] :
      ( ( bit_se1745604003318907178nteger @ ( numeral_numeral_nat @ K ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K ) ) @ one_one_Code_integer ) ) ).

% take_bit_numeral_minus_1_eq
thf(fact_5454_take__bit__numeral__minus__1__eq,axiom,
    ! [K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ K ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ K ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_1_eq
thf(fact_5455_powr__neg__numeral,axiom,
    ! [X3: real,N: num] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( powr_real @ X3 @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
        = ( divide_divide_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ N ) ) ) ) ) ).

% powr_neg_numeral
thf(fact_5456_of__int__round__abs__le,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X3 ) ) @ X3 ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_5457_of__int__round__abs__le,axiom,
    ! [X3: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X3 ) ) @ X3 ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_5458_round__unique_H,axiom,
    ! [X3: real,N: int] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ ( ring_1_of_int_real @ N ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( archim8280529875227126926d_real @ X3 )
        = N ) ) ).

% round_unique'
thf(fact_5459_round__unique_H,axiom,
    ! [X3: rat,N: int] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X3 @ ( ring_1_of_int_rat @ N ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
     => ( ( archim7778729529865785530nd_rat @ X3 )
        = N ) ) ).

% round_unique'
thf(fact_5460_cos__x__y__le__one,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).

% cos_x_y_le_one
thf(fact_5461_real__sqrt__sum__squares__less,axiom,
    ! [X3: real,U: real,Y3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
     => ( ( ord_less_real @ ( abs_abs_real @ Y3 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).

% real_sqrt_sum_squares_less
thf(fact_5462_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X3 ) ) @ X3 ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_5463_mult__less__iff1,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_real @ ( times_times_real @ X3 @ Z ) @ ( times_times_real @ Y3 @ Z ) )
        = ( ord_less_real @ X3 @ Y3 ) ) ) ).

% mult_less_iff1
thf(fact_5464_mult__less__iff1,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_rat @ ( times_times_rat @ X3 @ Z ) @ ( times_times_rat @ Y3 @ Z ) )
        = ( ord_less_rat @ X3 @ Y3 ) ) ) ).

% mult_less_iff1
thf(fact_5465_mult__less__iff1,axiom,
    ! [Z: int,X3: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_int @ ( times_times_int @ X3 @ Z ) @ ( times_times_int @ Y3 @ Z ) )
        = ( ord_less_int @ X3 @ Y3 ) ) ) ).

% mult_less_iff1
thf(fact_5466_abs__sqrt__wlog,axiom,
    ! [P: code_integer > code_integer > $o,X3: code_integer] :
      ( ! [X4: code_integer] :
          ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X4 )
         => ( P @ X4 @ ( power_8256067586552552935nteger @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_Code_integer @ X3 ) @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5467_abs__sqrt__wlog,axiom,
    ! [P: real > real > $o,X3: real] :
      ( ! [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
         => ( P @ X4 @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_real @ X3 ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5468_abs__sqrt__wlog,axiom,
    ! [P: rat > rat > $o,X3: rat] :
      ( ! [X4: rat] :
          ( ( ord_less_eq_rat @ zero_zero_rat @ X4 )
         => ( P @ X4 @ ( power_power_rat @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_rat @ X3 ) @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5469_abs__sqrt__wlog,axiom,
    ! [P: int > int > $o,X3: int] :
      ( ! [X4: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X4 )
         => ( P @ X4 @ ( power_power_int @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_int @ X3 ) @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_5470__C5_Ohyps_C_I9_J,axiom,
    ( ( mi != ma )
   => ! [I2: nat] :
        ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
       => ( ( ( ( vEBT_VEBT_high @ ma @ na )
              = I2 )
           => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
          & ! [X6: nat] :
              ( ( ( ( vEBT_VEBT_high @ X6 @ na )
                  = I2 )
                & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ ( vEBT_VEBT_low @ X6 @ na ) ) )
             => ( ( ord_less_nat @ mi @ X6 )
                & ( ord_less_eq_nat @ X6 @ ma ) ) ) ) ) ) ).

% "5.hyps"(9)
thf(fact_5471_compl__le__compl__iff,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X3 ) @ ( uminus5710092332889474511et_nat @ Y3 ) )
      = ( ord_less_eq_set_nat @ Y3 @ X3 ) ) ).

% compl_le_compl_iff
thf(fact_5472_low__def,axiom,
    ( vEBT_VEBT_low
    = ( ^ [X: nat,N3: nat] : ( modulo_modulo_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% low_def
thf(fact_5473_arctan__double,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X3 ) )
        = ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% arctan_double
thf(fact_5474_pochhammer__double,axiom,
    ! [Z: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s2602460028002588243omplex @ Z @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_5475_pochhammer__double,axiom,
    ! [Z: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s7457072308508201937r_real @ Z @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_5476_pochhammer__double,axiom,
    ! [Z: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N ) ) ) ).

% pochhammer_double
thf(fact_5477_mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mod_0
thf(fact_5478_mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mod_0
thf(fact_5479_mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_0
thf(fact_5480_mod__by__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ zero_zero_nat )
      = A ) ).

% mod_by_0
thf(fact_5481_mod__by__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ zero_zero_int )
      = A ) ).

% mod_by_0
thf(fact_5482_mod__by__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
      = A ) ).

% mod_by_0
thf(fact_5483_mod__self,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ A )
      = zero_zero_nat ) ).

% mod_self
thf(fact_5484_mod__self,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ A )
      = zero_zero_int ) ).

% mod_self
thf(fact_5485_mod__self,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_self
thf(fact_5486_bits__mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_5487_bits__mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_mod_0
thf(fact_5488_bits__mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_0
thf(fact_5489_mod__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = M ) ) ).

% mod_less
thf(fact_5490_arctan__eq__zero__iff,axiom,
    ! [X3: real] :
      ( ( ( arctan @ X3 )
        = zero_zero_real )
      = ( X3 = zero_zero_real ) ) ).

% arctan_eq_zero_iff
thf(fact_5491_arctan__zero__zero,axiom,
    ( ( arctan @ zero_zero_real )
    = zero_zero_real ) ).

% arctan_zero_zero
thf(fact_5492_mod__mult__self2__is__0,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self2_is_0
thf(fact_5493_mod__mult__self2__is__0,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_mult_self2_is_0
thf(fact_5494_mod__mult__self2__is__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self2_is_0
thf(fact_5495_mod__mult__self1__is__0,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self1_is_0
thf(fact_5496_mod__mult__self1__is__0,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
      = zero_zero_int ) ).

% mod_mult_self1_is_0
thf(fact_5497_mod__mult__self1__is__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self1_is_0
thf(fact_5498_mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_5499_mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% mod_by_1
thf(fact_5500_mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% mod_by_1
thf(fact_5501_bits__mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_5502_bits__mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% bits_mod_by_1
thf(fact_5503_bits__mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_by_1
thf(fact_5504_mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_5505_mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_div_trivial
thf(fact_5506_mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_div_trivial
thf(fact_5507_bits__mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_5508_bits__mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% bits_mod_div_trivial
thf(fact_5509_bits__mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_div_trivial
thf(fact_5510_dvd__imp__mod__0,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( modulo_modulo_nat @ B @ A )
        = zero_zero_nat ) ) ).

% dvd_imp_mod_0
thf(fact_5511_dvd__imp__mod__0,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( modulo_modulo_int @ B @ A )
        = zero_zero_int ) ) ).

% dvd_imp_mod_0
thf(fact_5512_dvd__imp__mod__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( modulo364778990260209775nteger @ B @ A )
        = zero_z3403309356797280102nteger ) ) ).

% dvd_imp_mod_0
thf(fact_5513_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_5514_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_5515_pochhammer__0,axiom,
    ! [A: complex] :
      ( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% pochhammer_0
thf(fact_5516_pochhammer__0,axiom,
    ! [A: real] :
      ( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% pochhammer_0
thf(fact_5517_pochhammer__0,axiom,
    ! [A: rat] :
      ( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% pochhammer_0
thf(fact_5518_pochhammer__0,axiom,
    ! [A: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% pochhammer_0
thf(fact_5519_pochhammer__0,axiom,
    ! [A: int] :
      ( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% pochhammer_0
thf(fact_5520_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_5521_zero__less__arctan__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( arctan @ X3 ) )
      = ( ord_less_real @ zero_zero_real @ X3 ) ) ).

% zero_less_arctan_iff
thf(fact_5522_arctan__less__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( arctan @ X3 ) @ zero_zero_real )
      = ( ord_less_real @ X3 @ zero_zero_real ) ) ).

% arctan_less_zero_iff
thf(fact_5523_zero__le__arctan__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X3 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% zero_le_arctan_iff
thf(fact_5524_arctan__le__zero__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( arctan @ X3 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% arctan_le_zero_iff
thf(fact_5525_zdvd1__eq,axiom,
    ! [X3: int] :
      ( ( dvd_dvd_int @ X3 @ one_one_int )
      = ( ( abs_abs_int @ X3 )
        = one_one_int ) ) ).

% zdvd1_eq
thf(fact_5526__C5_Ohyps_C_I5_J,axiom,
    ! [I2: nat] :
      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
     => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ X8 ) )
        = ( vEBT_V8194947554948674370ptions @ summary @ I2 ) ) ) ).

% "5.hyps"(5)
thf(fact_5527_mod__minus1__right,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = zero_zero_int ) ).

% mod_minus1_right
thf(fact_5528_mod__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = zero_z3403309356797280102nteger ) ).

% mod_minus1_right
thf(fact_5529_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_5530_nat__neg__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = zero_zero_nat ) ).

% nat_neg_numeral
thf(fact_5531_nat__zminus__int,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
      = zero_zero_nat ) ).

% nat_zminus_int
thf(fact_5532_zabs__less__one__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
      = ( Z = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_5533_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_mod_two_eq_one
thf(fact_5534_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_mod_two_eq_one
thf(fact_5535_one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% one_mod_two_eq_one
thf(fact_5536_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% bits_one_mod_two_eq_one
thf(fact_5537_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_one_mod_two_eq_one
thf(fact_5538_bits__one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_one_mod_two_eq_one
thf(fact_5539_even__mod__2__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_5540_even__mod__2__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_5541_even__mod__2__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_5542_mod2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% mod2_Suc_Suc
thf(fact_5543_Suc__times__numeral__mod__eq,axiom,
    ! [K: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K )
       != one_one_nat )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N ) ) @ ( numeral_numeral_nat @ K ) )
        = one_one_nat ) ) ).

% Suc_times_numeral_mod_eq
thf(fact_5544_dvd__nat__abs__iff,axiom,
    ! [N: nat,K: int] :
      ( ( dvd_dvd_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
      = ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ).

% dvd_nat_abs_iff
thf(fact_5545_nat__abs__dvd__iff,axiom,
    ! [K: int,N: nat] :
      ( ( dvd_dvd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( dvd_dvd_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_abs_dvd_iff
thf(fact_5546_not__mod__2__eq__1__eq__0,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != one_one_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_5547_not__mod__2__eq__1__eq__0,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != one_one_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_5548_not__mod__2__eq__1__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != one_one_Code_integer )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_5549_not__mod__2__eq__0__eq__1,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != zero_zero_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_5550_not__mod__2__eq__0__eq__1,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != zero_zero_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_5551_not__mod__2__eq__0__eq__1,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_5552_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_minus_1_mod_2_eq
thf(fact_5553_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_minus_1_mod_2_eq
thf(fact_5554_minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% minus_1_mod_2_eq
thf(fact_5555_minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% minus_1_mod_2_eq
thf(fact_5556_not__mod2__eq__Suc__0__eq__0,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != ( suc @ zero_zero_nat ) )
      = ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod2_eq_Suc_0_eq_0
thf(fact_5557_add__self__mod__2,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% add_self_mod_2
thf(fact_5558_ceiling__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_divide_eq_div_numeral
thf(fact_5559_take__bit__Suc__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_5560_take__bit__Suc__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_5561_take__bit__Suc__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_5562_mod2__gr__0,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% mod2_gr_0
thf(fact_5563_floor__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_divide_eq_div_numeral
thf(fact_5564_ceiling__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_minus_divide_eq_div_numeral
thf(fact_5565__C5_Ohyps_C_I6_J,axiom,
    ( ( mi = ma )
   => ! [X6: vEBT_VEBT] :
        ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ treeList ) )
       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X_12 ) ) ) ).

% "5.hyps"(6)
thf(fact_5566_floor__minus__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_one_divide_eq_div_numeral
thf(fact_5567_even__succ__mod__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_5568_even__succ__mod__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_5569_even__succ__mod__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_5570_pochhammer__of__int,axiom,
    ! [X3: int,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( ring_1_of_int_real @ X3 ) @ N )
      = ( ring_1_of_int_real @ ( comm_s4660882817536571857er_int @ X3 @ N ) ) ) ).

% pochhammer_of_int
thf(fact_5571_pochhammer__of__int,axiom,
    ! [X3: int,N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( ring_17405671764205052669omplex @ X3 ) @ N )
      = ( ring_17405671764205052669omplex @ ( comm_s4660882817536571857er_int @ X3 @ N ) ) ) ).

% pochhammer_of_int
thf(fact_5572_pochhammer__of__int,axiom,
    ! [X3: int,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( ring_1_of_int_rat @ X3 ) @ N )
      = ( ring_1_of_int_rat @ ( comm_s4660882817536571857er_int @ X3 @ N ) ) ) ).

% pochhammer_of_int
thf(fact_5573_pochhammer__of__nat,axiom,
    ! [X3: nat,N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( semiri8010041392384452111omplex @ X3 ) @ N )
      = ( semiri8010041392384452111omplex @ ( comm_s4663373288045622133er_nat @ X3 @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_5574_pochhammer__of__nat,axiom,
    ! [X3: nat,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( semiri5074537144036343181t_real @ X3 ) @ N )
      = ( semiri5074537144036343181t_real @ ( comm_s4663373288045622133er_nat @ X3 @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_5575_pochhammer__of__nat,axiom,
    ! [X3: nat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( semiri681578069525770553at_rat @ X3 ) @ N )
      = ( semiri681578069525770553at_rat @ ( comm_s4663373288045622133er_nat @ X3 @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_5576_pochhammer__of__nat,axiom,
    ! [X3: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ N )
      = ( semiri1316708129612266289at_nat @ ( comm_s4663373288045622133er_nat @ X3 @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_5577_pochhammer__of__nat,axiom,
    ! [X3: nat,N: nat] :
      ( ( comm_s4660882817536571857er_int @ ( semiri1314217659103216013at_int @ X3 ) @ N )
      = ( semiri1314217659103216013at_int @ ( comm_s4663373288045622133er_nat @ X3 @ N ) ) ) ).

% pochhammer_of_nat
thf(fact_5578_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) ) ).

% of_nat_mod
thf(fact_5579_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mod
thf(fact_5580_of__nat__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mod
thf(fact_5581_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).

% zabs_def
thf(fact_5582_power__mod,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_nat @ ( power_power_nat @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_5583_power__mod,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_5584_power__mod,axiom,
    ! [A: code_integer,B: code_integer,N: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N ) @ B )
      = ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_5585_mod__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).

% mod_less_eq_dividend
thf(fact_5586_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_5587_zdvd__antisym__abs,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( abs_abs_int @ A )
          = ( abs_abs_int @ B ) ) ) ) ).

% zdvd_antisym_abs
thf(fact_5588_arctan__less__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( arctan @ X3 ) @ ( arctan @ Y3 ) )
      = ( ord_less_real @ X3 @ Y3 ) ) ).

% arctan_less_iff
thf(fact_5589_arctan__monotone,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ord_less_real @ ( arctan @ X3 ) @ ( arctan @ Y3 ) ) ) ).

% arctan_monotone
thf(fact_5590_arctan__le__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( arctan @ X3 ) @ ( arctan @ Y3 ) )
      = ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% arctan_le_iff
thf(fact_5591_arctan__monotone_H,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ Y3 )
     => ( ord_less_eq_real @ ( arctan @ X3 ) @ ( arctan @ Y3 ) ) ) ).

% arctan_monotone'
thf(fact_5592_int__cases2,axiom,
    ! [Z: int] :
      ( ! [N2: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% int_cases2
thf(fact_5593_uminus__dvd__conv_I2_J,axiom,
    ( dvd_dvd_int
    = ( ^ [D4: int,T2: int] : ( dvd_dvd_int @ D4 @ ( uminus_uminus_int @ T2 ) ) ) ) ).

% uminus_dvd_conv(2)
thf(fact_5594_uminus__dvd__conv_I1_J,axiom,
    ( dvd_dvd_int
    = ( ^ [D4: int] : ( dvd_dvd_int @ ( uminus_uminus_int @ D4 ) ) ) ) ).

% uminus_dvd_conv(1)
thf(fact_5595_take__bit__minus,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).

% take_bit_minus
thf(fact_5596_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_5597_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_5598_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_5599_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_5600_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_5601_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_5602_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q3 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_5603_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q3 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_5604_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q3 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_5605_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = A )
      = ( ( divide_divide_nat @ A @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_5606_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = A )
      = ( ( divide_divide_int @ A @ B )
        = zero_zero_int ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_5607_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = A )
      = ( ( divide6298287555418463151nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_5608_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
      = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_5609_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
      = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_5610_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
      = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_5611_mod__0__imp__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_5612_mod__0__imp__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_5613_mod__0__imp__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_5614_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( modulo_modulo_nat @ B3 @ A4 )
          = zero_zero_nat ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_5615_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_int
    = ( ^ [A4: int,B3: int] :
          ( ( modulo_modulo_int @ B3 @ A4 )
          = zero_zero_int ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_5616_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [A4: code_integer,B3: code_integer] :
          ( ( modulo364778990260209775nteger @ B3 @ A4 )
          = zero_z3403309356797280102nteger ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_5617_mod__eq__0__iff__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_5618_mod__eq__0__iff__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
      = ( dvd_dvd_int @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_5619_mod__eq__0__iff__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_5620_mod__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
          = N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
         != N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).

% mod_Suc
thf(fact_5621_mod__induct,axiom,
    ! [P: nat > $o,N: nat,P6: nat,M: nat] :
      ( ( P @ N )
     => ( ( ord_less_nat @ N @ P6 )
       => ( ( ord_less_nat @ M @ P6 )
         => ( ! [N2: nat] :
                ( ( ord_less_nat @ N2 @ P6 )
               => ( ( P @ N2 )
                 => ( P @ ( modulo_modulo_nat @ ( suc @ N2 ) @ P6 ) ) ) )
           => ( P @ M ) ) ) ) ) ).

% mod_induct
thf(fact_5622_mod__less__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_less_divisor
thf(fact_5623_gcd__nat__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
     => ( ! [M4: nat,N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ( P @ N2 @ ( modulo_modulo_nat @ M4 @ N2 ) )
             => ( P @ M4 @ N2 ) ) )
       => ( P @ M @ N ) ) ) ).

% gcd_nat_induct
thf(fact_5624_mod__Suc__le__divisor,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).

% mod_Suc_le_divisor
thf(fact_5625_mod__eq__0D,axiom,
    ! [M: nat,D3: nat] :
      ( ( ( modulo_modulo_nat @ M @ D3 )
        = zero_zero_nat )
     => ? [Q4: nat] :
          ( M
          = ( times_times_nat @ D3 @ Q4 ) ) ) ).

% mod_eq_0D
thf(fact_5626_mod__if,axiom,
    ( modulo_modulo_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( ord_less_nat @ M3 @ N3 ) @ M3 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M3 @ N3 ) @ N3 ) ) ) ) ).

% mod_if
thf(fact_5627_mod__geq,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% mod_geq
thf(fact_5628_le__mod__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% le_mod_geq
thf(fact_5629_pochhammer__pos,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X3 @ N ) ) ) ).

% pochhammer_pos
thf(fact_5630_pochhammer__pos,axiom,
    ! [X3: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X3 )
     => ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X3 @ N ) ) ) ).

% pochhammer_pos
thf(fact_5631_pochhammer__pos,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X3 )
     => ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X3 @ N ) ) ) ).

% pochhammer_pos
thf(fact_5632_pochhammer__pos,axiom,
    ! [X3: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ X3 )
     => ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X3 @ N ) ) ) ).

% pochhammer_pos
thf(fact_5633_abs__zmult__eq__1,axiom,
    ! [M: int,N: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_5634_pochhammer__neq__0__mono,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ M )
       != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ N )
         != zero_zero_real ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_5635_pochhammer__neq__0__mono,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ M )
       != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ N )
         != zero_zero_rat ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_5636_pochhammer__eq__0__mono,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N )
        = zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ M )
          = zero_zero_real ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_5637_pochhammer__eq__0__mono,axiom,
    ! [A: rat,N: nat,M: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N )
        = zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ M )
          = zero_zero_rat ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_5638_int__cases,axiom,
    ! [Z: int] :
      ( ! [N2: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% int_cases
thf(fact_5639_int__of__nat__induct,axiom,
    ! [P: int > $o,Z: int] :
      ( ! [N2: nat] : ( P @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ! [N2: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) )
       => ( P @ Z ) ) ) ).

% int_of_nat_induct
thf(fact_5640_zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_5641_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_5642_minus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( minus_minus_int @ zero_zero_int @ L )
      = ( uminus_uminus_int @ L ) ) ).

% minus_int_code(2)
thf(fact_5643_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_5644_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ A @ B )
       => ( ( modulo364778990260209775nteger @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_5645_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( modulo_modulo_nat @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_5646_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( modulo_modulo_int @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_5647_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_5648_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_5649_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_5650_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q3: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
        = zero_zero_nat )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(2)
thf(fact_5651_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q3: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
        = zero_zero_int )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(2)
thf(fact_5652_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q3: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
        = zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(2)
thf(fact_5653_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
      = zero_zero_nat ) ).

% cong_exp_iff_simps(1)
thf(fact_5654_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
      = zero_zero_int ) ).

% cong_exp_iff_simps(1)
thf(fact_5655_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) )
      = zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(1)
thf(fact_5656_cong__exp__iff__simps_I6_J,axiom,
    ! [Q3: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_5657_cong__exp__iff__simps_I6_J,axiom,
    ! [Q3: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_5658_cong__exp__iff__simps_I6_J,axiom,
    ! [Q3: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_5659_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q3: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_5660_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q3: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_5661_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q3: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_5662_unit__imp__mod__eq__0,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat ) ) ).

% unit_imp_mod_eq_0
thf(fact_5663_unit__imp__mod__eq__0,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int ) ) ).

% unit_imp_mod_eq_0
thf(fact_5664_unit__imp__mod__eq__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% unit_imp_mod_eq_0
thf(fact_5665_mod__le__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_le_divisor
thf(fact_5666_div__less__mono,axiom,
    ! [A3: nat,B5: nat,N: nat] :
      ( ( ord_less_nat @ A3 @ B5 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( modulo_modulo_nat @ A3 @ N )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B5 @ N )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A3 @ N ) @ ( divide_divide_nat @ B5 @ N ) ) ) ) ) ) ).

% div_less_mono
thf(fact_5667_mod__greater__zero__iff__not__dvd,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% mod_greater_zero_iff_not_dvd
thf(fact_5668_mod__eq__nat1E,axiom,
    ! [M: nat,Q3: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q3 )
        = ( modulo_modulo_nat @ N @ Q3 ) )
     => ( ( ord_less_eq_nat @ N @ M )
       => ~ ! [S3: nat] :
              ( M
             != ( plus_plus_nat @ N @ ( times_times_nat @ Q3 @ S3 ) ) ) ) ) ).

% mod_eq_nat1E
thf(fact_5669_mod__eq__nat2E,axiom,
    ! [M: nat,Q3: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q3 )
        = ( modulo_modulo_nat @ N @ Q3 ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ~ ! [S3: nat] :
              ( N
             != ( plus_plus_nat @ M @ ( times_times_nat @ Q3 @ S3 ) ) ) ) ) ).

% mod_eq_nat2E
thf(fact_5670_nat__mod__eq__lemma,axiom,
    ! [X3: nat,N: nat,Y3: nat] :
      ( ( ( modulo_modulo_nat @ X3 @ N )
        = ( modulo_modulo_nat @ Y3 @ N ) )
     => ( ( ord_less_eq_nat @ Y3 @ X3 )
       => ? [Q4: nat] :
            ( X3
            = ( plus_plus_nat @ Y3 @ ( times_times_nat @ N @ Q4 ) ) ) ) ) ).

% nat_mod_eq_lemma
thf(fact_5671_div__mod__decomp,axiom,
    ! [A3: nat,N: nat] :
      ( A3
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A3 @ N ) @ N ) @ ( modulo_modulo_nat @ A3 @ N ) ) ) ).

% div_mod_decomp
thf(fact_5672_pochhammer__nonneg,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X3 @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_5673_pochhammer__nonneg,axiom,
    ! [X3: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X3 )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X3 @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_5674_pochhammer__nonneg,axiom,
    ! [X3: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X3 )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X3 @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_5675_pochhammer__nonneg,axiom,
    ! [X3: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ X3 )
     => ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X3 @ N ) ) ) ).

% pochhammer_nonneg
thf(fact_5676_mod__eq__dvd__iff__nat,axiom,
    ! [N: nat,M: nat,Q3: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( ( modulo_modulo_nat @ M @ Q3 )
          = ( modulo_modulo_nat @ N @ Q3 ) )
        = ( dvd_dvd_nat @ Q3 @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% mod_eq_dvd_iff_nat
thf(fact_5677_dvd__imp__le__int,axiom,
    ! [I: int,D3: int] :
      ( ( I != zero_zero_int )
     => ( ( dvd_dvd_int @ D3 @ I )
       => ( ord_less_eq_int @ ( abs_abs_int @ D3 ) @ ( abs_abs_int @ I ) ) ) ) ).

% dvd_imp_le_int
thf(fact_5678_nat__abs__mult__distrib,axiom,
    ! [W: int,Z: int] :
      ( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z ) ) )
      = ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z ) ) ) ) ).

% nat_abs_mult_distrib
thf(fact_5679_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
          = one_one_complex ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N )
          = zero_zero_complex ) ) ) ).

% pochhammer_0_left
thf(fact_5680_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% pochhammer_0_left
thf(fact_5681_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
          = one_one_rat ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N )
          = zero_zero_rat ) ) ) ).

% pochhammer_0_left
thf(fact_5682_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% pochhammer_0_left
thf(fact_5683_pochhammer__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% pochhammer_0_left
thf(fact_5684_int__cases4,axiom,
    ! [M: int] :
      ( ! [N2: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N2 ) )
     => ~ ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% int_cases4
thf(fact_5685_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_5686_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_5687_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% nonpos_int_cases
thf(fact_5688_mod__mult2__eq_H,axiom,
    ! [A: code_integer,M: nat,N: nat] :
      ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N ) ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_5689_mod__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_5690_mod__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_5691_even__even__mod__4__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% even_even_mod_4_iff
thf(fact_5692_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_5693_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_5694_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N ) ) ) @ ( semiri681578069525770553at_rat @ N ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_5695_split__mod,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( modulo_modulo_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ M ) )
        & ( ( N != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) )
               => ( P @ J3 ) ) ) ) ) ) ).

% split_mod
thf(fact_5696_mod__nat__eqI,axiom,
    ! [R2: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ R2 @ N )
     => ( ( ord_less_eq_nat @ R2 @ M )
       => ( ( dvd_dvd_nat @ N @ ( minus_minus_nat @ M @ R2 ) )
         => ( ( modulo_modulo_nat @ M @ N )
            = R2 ) ) ) ) ).

% mod_nat_eqI
thf(fact_5697_nat__abs__triangle__ineq,axiom,
    ! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_5698_zdvd__mult__cancel1,axiom,
    ! [M: int,N: int] :
      ( ( M != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ M @ N ) @ M )
        = ( ( abs_abs_int @ N )
          = one_one_int ) ) ) ).

% zdvd_mult_cancel1
thf(fact_5699_real__of__nat__div__aux,axiom,
    ! [X3: nat,D3: nat] :
      ( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( semiri5074537144036343181t_real @ D3 ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X3 @ D3 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X3 @ D3 ) ) @ ( semiri5074537144036343181t_real @ D3 ) ) ) ) ).

% real_of_nat_div_aux
thf(fact_5700_div__abs__eq__div__nat,axiom,
    ! [K: int,L: int] :
      ( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% div_abs_eq_div_nat
thf(fact_5701_pochhammer__rec_H,axiom,
    ! [Z: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ Z @ ( suc @ N ) )
      = ( times_times_complex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ N ) ) @ ( comm_s2602460028002588243omplex @ Z @ N ) ) ) ).

% pochhammer_rec'
thf(fact_5702_pochhammer__rec_H,axiom,
    ! [Z: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ Z @ ( suc @ N ) )
      = ( times_times_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N ) ) @ ( comm_s7457072308508201937r_real @ Z @ N ) ) ) ).

% pochhammer_rec'
thf(fact_5703_pochhammer__rec_H,axiom,
    ! [Z: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N ) )
      = ( times_times_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N ) ) ) ).

% pochhammer_rec'
thf(fact_5704_pochhammer__rec_H,axiom,
    ! [Z: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z @ ( suc @ N ) )
      = ( times_times_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N ) ) @ ( comm_s4663373288045622133er_nat @ Z @ N ) ) ) ).

% pochhammer_rec'
thf(fact_5705_pochhammer__rec_H,axiom,
    ! [Z: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ Z @ ( suc @ N ) )
      = ( times_times_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N ) ) @ ( comm_s4660882817536571857er_int @ Z @ N ) ) ) ).

% pochhammer_rec'
thf(fact_5706_pochhammer__Suc,axiom,
    ! [A: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
      = ( times_times_complex @ ( comm_s2602460028002588243omplex @ A @ N ) @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_5707_pochhammer__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_5708_pochhammer__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_5709_pochhammer__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_5710_pochhammer__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% pochhammer_Suc
thf(fact_5711_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
        = zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5712_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
        = zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5713_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
        = zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5714_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
        = zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5715_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
        = zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_5716_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
        = zero_z3403309356797280102nteger )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5717_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
        = zero_zero_complex )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5718_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
        = zero_zero_real )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5719_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
        = zero_zero_rat )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5720_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
        = zero_zero_int )
      = ( ord_less_nat @ N @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_5721_pochhammer__eq__0__iff,axiom,
    ! [A: complex,N: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N )
        = zero_zero_complex )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ( A
              = ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_5722_pochhammer__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N )
        = zero_zero_real )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ( A
              = ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_5723_pochhammer__eq__0__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N )
        = zero_zero_rat )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ( A
              = ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_5724_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N ) ) @ K )
       != zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5725_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ K )
       != zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5726_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ K )
       != zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5727_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ K )
       != zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5728_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ K )
       != zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_5729_pochhammer__product_H,axiom,
    ! [Z: complex,N: nat,M: nat] :
      ( ( comm_s2602460028002588243omplex @ Z @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ N ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_5730_pochhammer__product_H,axiom,
    ! [Z: real,N: nat,M: nat] :
      ( ( comm_s7457072308508201937r_real @ Z @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ N ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_5731_pochhammer__product_H,axiom,
    ! [Z: rat,N: nat,M: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ N ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_5732_pochhammer__product_H,axiom,
    ! [Z: nat,N: nat,M: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ N ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_5733_pochhammer__product_H,axiom,
    ! [Z: int,N: nat,M: nat] :
      ( ( comm_s4660882817536571857er_int @ Z @ ( plus_plus_nat @ N @ M ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ N ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_5734_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N2: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
       => ~ ! [N2: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).

% int_cases3
thf(fact_5735_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_5736_negD,axiom,
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ zero_zero_int )
     => ? [N2: nat] :
          ( X3
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ).

% negD
thf(fact_5737_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_5738_verit__less__mono__div__int2,axiom,
    ! [A3: int,B5: int,N: int] :
      ( ( ord_less_eq_int @ A3 @ B5 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B5 @ N ) @ ( divide_divide_int @ A3 @ N ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_5739_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_5740_ceiling__divide__eq__div,axiom,
    ! [A: int,B: int] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( ring_1_of_int_real @ A ) @ ( ring_1_of_int_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% ceiling_divide_eq_div
thf(fact_5741_ceiling__divide__eq__div,axiom,
    ! [A: int,B: int] :
      ( ( archim2889992004027027881ng_rat @ ( divide_divide_rat @ ( ring_1_of_int_rat @ A ) @ ( ring_1_of_int_rat @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% ceiling_divide_eq_div
thf(fact_5742_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
     => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_5743_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_5744_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_5745_even__iff__mod__2__eq__zero,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_5746_even__iff__mod__2__eq__zero,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_5747_even__iff__mod__2__eq__zero,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_5748_odd__iff__mod__2__eq__one,axiom,
    ! [A: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_5749_odd__iff__mod__2__eq__one,axiom,
    ! [A: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_5750_odd__iff__mod__2__eq__one,axiom,
    ! [A: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_5751_take__bit__eq__mod,axiom,
    ( bit_se1745604003318907178nteger
    = ( ^ [N3: nat,A4: code_integer] : ( modulo364778990260209775nteger @ A4 @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_5752_take__bit__eq__mod,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,A4: int] : ( modulo_modulo_int @ A4 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_5753_take__bit__eq__mod,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,A4: nat] : ( modulo_modulo_nat @ A4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_eq_mod
thf(fact_5754_Suc__times__mod__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_5755_even__abs__add__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_abs_add_iff
thf(fact_5756_even__add__abs__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_add_abs_iff
thf(fact_5757_nat__abs__int__diff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ B @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ A @ B ) ) ) ) ).

% nat_abs_int_diff
thf(fact_5758_take__bit__nat__def,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,M3: nat] : ( modulo_modulo_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_nat_def
thf(fact_5759_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N2: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% neg_int_cases
thf(fact_5760_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s2602460028002588243omplex @ Z @ N )
        = ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ M ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( semiri8010041392384452111omplex @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_5761_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s7457072308508201937r_real @ Z @ N )
        = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_5762_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z: rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4028243227959126397er_rat @ Z @ N )
        = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_5763_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4663373288045622133er_nat @ Z @ N )
        = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_5764_pochhammer__product,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( comm_s4660882817536571857er_int @ Z @ N )
        = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_5765_nat__mult__distrib__neg,axiom,
    ! [Z: int,Z5: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ ( times_times_int @ Z @ Z5 ) )
        = ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z ) ) @ ( nat2 @ ( uminus_uminus_int @ Z5 ) ) ) ) ) ).

% nat_mult_distrib_neg
thf(fact_5766_divmod__digit__0_I2_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_5767_divmod__digit__0_I2_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_int @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_5768_divmod__digit__0_I2_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
          = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_5769_bits__stable__imp__add__self,axiom,
    ! [A: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_nat ) ) ).

% bits_stable_imp_add_self
thf(fact_5770_bits__stable__imp__add__self,axiom,
    ! [A: int] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = zero_zero_int ) ) ).

% bits_stable_imp_add_self
thf(fact_5771_bits__stable__imp__add__self,axiom,
    ! [A: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% bits_stable_imp_add_self
thf(fact_5772_parity__cases,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
         != zero_zero_nat ) )
     => ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
           != one_one_nat ) ) ) ).

% parity_cases
thf(fact_5773_parity__cases,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
         != zero_zero_int ) )
     => ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
           != one_one_int ) ) ) ).

% parity_cases
thf(fact_5774_parity__cases,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
         != zero_z3403309356797280102nteger ) )
     => ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
           != one_one_Code_integer ) ) ) ).

% parity_cases
thf(fact_5775_mod2__eq__if,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = zero_zero_nat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = one_one_nat ) ) ) ).

% mod2_eq_if
thf(fact_5776_mod2__eq__if,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = zero_zero_int ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = one_one_int ) ) ) ).

% mod2_eq_if
thf(fact_5777_mod2__eq__if,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = zero_z3403309356797280102nteger ) )
      & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = one_one_Code_integer ) ) ) ).

% mod2_eq_if
thf(fact_5778_div__exp__mod__exp__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_5779_div__exp__mod__exp__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_5780_div__exp__mod__exp__eq,axiom,
    ! [A: code_integer,N: nat,M: nat] :
      ( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
      = ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_5781_verit__le__mono__div,axiom,
    ! [A3: nat,B5: nat,N: nat] :
      ( ( ord_less_nat @ A3 @ B5 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A3 @ N )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B5 @ N )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B5 @ N ) ) ) ) ).

% verit_le_mono_div
thf(fact_5782_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ( ord_less_eq_nat @ M @ I3 )
            & ( ord_less_nat @ I3 @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N ) )
           => ? [I3: nat] :
                ( ( ord_less_eq_nat @ M @ I3 )
                & ( ord_less_eq_nat @ I3 @ N )
                & ( ( F @ I3 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_5783_decr__lemma,axiom,
    ! [D3: int,X3: int,Z: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ord_less_int @ ( minus_minus_int @ X3 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ Z ) ) @ one_one_int ) @ D3 ) ) @ Z ) ) ).

% decr_lemma
thf(fact_5784_incr__lemma,axiom,
    ! [D3: int,Z: int,X3: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ord_less_int @ Z @ ( plus_plus_int @ X3 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X3 @ Z ) ) @ one_one_int ) @ D3 ) ) ) ) ).

% incr_lemma
thf(fact_5785_pochhammer__absorb__comp,axiom,
    ! [R2: code_integer,K: nat] :
      ( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R2 @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R2 ) @ K ) )
      = ( times_3573771949741848930nteger @ R2 @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R2 ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5786_pochhammer__absorb__comp,axiom,
    ! [R2: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ R2 @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R2 ) @ K ) )
      = ( times_times_complex @ R2 @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R2 ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5787_pochhammer__absorb__comp,axiom,
    ! [R2: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R2 ) @ K ) )
      = ( times_times_real @ R2 @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R2 ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5788_pochhammer__absorb__comp,axiom,
    ! [R2: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ R2 @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R2 ) @ K ) )
      = ( times_times_rat @ R2 @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R2 ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5789_pochhammer__absorb__comp,axiom,
    ! [R2: int,K: nat] :
      ( ( times_times_int @ ( minus_minus_int @ R2 @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R2 ) @ K ) )
      = ( times_times_int @ R2 @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R2 ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_5790_take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_minus_bit0
thf(fact_5791_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_5792_div__pos__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
       => ( ( divide_divide_int @ K @ L )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_5793_divmod__digit__0_I1_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_5794_divmod__digit__0_I1_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_5795_divmod__digit__0_I1_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_5796_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_5797_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_5798_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
        = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_5799_compl__le__swap2,axiom,
    ! [Y3: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y3 ) @ X3 )
     => ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ X3 ) @ Y3 ) ) ).

% compl_le_swap2
thf(fact_5800_compl__le__swap1,axiom,
    ! [Y3: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ Y3 @ ( uminus5710092332889474511et_nat @ X3 ) )
     => ( ord_less_eq_set_nat @ X3 @ ( uminus5710092332889474511et_nat @ Y3 ) ) ) ).

% compl_le_swap1
thf(fact_5801_compl__mono,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y3 )
     => ( ord_less_eq_set_nat @ ( uminus5710092332889474511et_nat @ Y3 ) @ ( uminus5710092332889474511et_nat @ X3 ) ) ) ).

% compl_mono
thf(fact_5802_nat__ivt__aux,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_5803_complex__mod__minus__le__complex__mod,axiom,
    ! [X3: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X3 ) ) @ ( real_V1022390504157884413omplex @ X3 ) ) ).

% complex_mod_minus_le_complex_mod
thf(fact_5804_pochhammer__minus,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5805_pochhammer__minus,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5806_pochhammer__minus,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5807_pochhammer__minus,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5808_pochhammer__minus,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_5809_pochhammer__minus_H,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5810_pochhammer__minus_H,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5811_pochhammer__minus_H,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5812_pochhammer__minus_H,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5813_pochhammer__minus_H,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_5814_complex__mod__triangle__ineq2,axiom,
    ! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).

% complex_mod_triangle_ineq2
thf(fact_5815_int__bit__induct,axiom,
    ! [P: int > $o,K: int] :
      ( ( P @ zero_zero_int )
     => ( ( P @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K2: int] :
              ( ( P @ K2 )
             => ( ( K2 != zero_zero_int )
               => ( P @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K2: int] :
                ( ( P @ K2 )
               => ( ( K2
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P @ K ) ) ) ) ) ).

% int_bit_induct
thf(fact_5816_mod__double__modulus,axiom,
    ! [M: code_integer,X3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
     => ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X3 )
       => ( ( ( modulo364778990260209775nteger @ X3 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( modulo364778990260209775nteger @ X3 @ M ) )
          | ( ( modulo364778990260209775nteger @ X3 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X3 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_5817_mod__double__modulus,axiom,
    ! [M: nat,X3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
       => ( ( ( modulo_modulo_nat @ X3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_nat @ X3 @ M ) )
          | ( ( modulo_modulo_nat @ X3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_nat @ ( modulo_modulo_nat @ X3 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_5818_mod__double__modulus,axiom,
    ! [M: int,X3: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ X3 )
       => ( ( ( modulo_modulo_int @ X3 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_int @ X3 @ M ) )
          | ( ( modulo_modulo_int @ X3 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_int @ ( modulo_modulo_int @ X3 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_5819_divmod__digit__1_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_5820_divmod__digit__1_I2_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_5821_divmod__digit__1_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_5822_take__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_5823_take__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_5824_take__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% take_bit_Suc
thf(fact_5825_unset__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se8260200283734997820nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_5826_unset__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se4203085406695923979it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_5827_unset__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se4205575877204974255it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_5828_set__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se2793503036327961859nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_5829_set__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se7879613467334960850it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_5830_set__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se7882103937844011126it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_5831_flip__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_5832_flip__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2159334234014336723it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_5833_flip__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se2161824704523386999it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_5834_even__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( suc @ zero_zero_nat ) )
     => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_mod_4_div_2
thf(fact_5835_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_5836_xor__nat__unfold,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% xor_nat_unfold
thf(fact_5837_arctan__add,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( ord_less_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
       => ( ( plus_plus_real @ ( arctan @ X3 ) @ ( arctan @ Y3 ) )
          = ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X3 @ Y3 ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X3 @ Y3 ) ) ) ) ) ) ) ).

% arctan_add
thf(fact_5838_divmod__digit__1_I1_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
            = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_5839_divmod__digit__1_I1_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
            = ( divide_divide_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_5840_divmod__digit__1_I1_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
            = ( divide_divide_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_5841_take__bit__minus__small__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) )
          = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ) ) ).

% take_bit_minus_small_eq
thf(fact_5842_take__bit__rec,axiom,
    ( bit_se1745604003318907178nteger
    = ( ^ [N3: nat,A4: code_integer] : ( if_Code_integer @ ( N3 = zero_zero_nat ) @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_5843_take__bit__rec,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,A4: int] : ( if_int @ ( N3 = zero_zero_nat ) @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_5844_take__bit__rec,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,A4: nat] : ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_5845_powr__int,axiom,
    ! [X3: real,I: int] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X3 @ ( ring_1_of_int_real @ I ) )
            = ( power_power_real @ X3 @ ( nat2 @ I ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X3 @ ( ring_1_of_int_real @ I ) )
            = ( divide_divide_real @ one_one_real @ ( power_power_real @ X3 @ ( nat2 @ ( uminus_uminus_int @ I ) ) ) ) ) ) ) ) ).

% powr_int
thf(fact_5846_arctan__half,axiom,
    ( arctan
    = ( ^ [X: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% arctan_half
thf(fact_5847_in__children__def,axiom,
    ( vEBT_V5917875025757280293ildren
    = ( ^ [N3: nat,TreeList: list_VEBT_VEBT,X: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ N3 ) ) @ ( vEBT_VEBT_low @ X @ N3 ) ) ) ) ).

% in_children_def
thf(fact_5848_signed__take__bit__rec,axiom,
    ( bit_ri6519982836138164636nteger
    = ( ^ [N3: nat,A4: code_integer] : ( if_Code_integer @ ( N3 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_5849_signed__take__bit__rec,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,A4: int] : ( if_int @ ( N3 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_5850_central__binomial__lower__bound,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ) ) ).

% central_binomial_lower_bound
thf(fact_5851_nth__equalityI,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
        = ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( ( nth_VEBT_VEBT @ Xs2 @ I3 )
              = ( nth_VEBT_VEBT @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_5852_nth__equalityI,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs2 )
        = ( size_size_list_o @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
           => ( ( nth_o @ Xs2 @ I3 )
              = ( nth_o @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_5853_nth__equalityI,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
           => ( ( nth_nat @ Xs2 @ I3 )
              = ( nth_nat @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_5854_nth__equalityI,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
           => ( ( nth_int @ Xs2 @ I3 )
              = ( nth_int @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_5855_inthall,axiom,
    ! [Xs2: list_option_nat,P: option_nat > $o,N: nat] :
      ( ! [X4: option_nat] :
          ( ( member_option_nat @ X4 @ ( set_option_nat2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s6086282163384603972on_nat @ Xs2 ) )
       => ( P @ ( nth_option_nat @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_5856_inthall,axiom,
    ! [Xs2: list_real,P: real > $o,N: nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_real2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs2 ) )
       => ( P @ ( nth_real @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_5857_inthall,axiom,
    ! [Xs2: list_set_nat,P: set_nat > $o,N: nat] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ ( set_set_nat2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs2 ) )
       => ( P @ ( nth_set_nat @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_5858_inthall,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,N: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_5859_inthall,axiom,
    ! [Xs2: list_o,P: $o > $o,N: nat] :
      ( ! [X4: $o] :
          ( ( member_o @ X4 @ ( set_o2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
       => ( P @ ( nth_o @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_5860_inthall,axiom,
    ! [Xs2: list_nat,P: nat > $o,N: nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ ( set_nat2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
       => ( P @ ( nth_nat @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_5861_inthall,axiom,
    ! [Xs2: list_int,P: int > $o,N: nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ ( set_int2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
       => ( P @ ( nth_int @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_5862_signed__take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_5863_mod__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( modulo_modulo_int @ K @ L )
          = K ) ) ) ).

% mod_pos_pos_trivial
thf(fact_5864_mod__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( modulo_modulo_int @ K @ L )
          = K ) ) ) ).

% mod_neg_neg_trivial
thf(fact_5865_signed__take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_5866_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri6519982836138164636nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% signed_take_bit_of_minus_1
thf(fact_5867_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_5868_signed__take__bit__numeral__of__1,axiom,
    ! [K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_5869_zmod__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).

% zmod_numeral_Bit0
thf(fact_5870_signed__take__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_bit0
thf(fact_5871_signed__take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_minus_bit0
thf(fact_5872_signed__take__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_5873_signed__take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_5874__C5_Ohyps_C_I1_J,axiom,
    vEBT_invar_vebt @ summary @ m ).

% "5.hyps"(1)
thf(fact_5875_signed__take__bit__minus,axiom,
    ! [N: nat,K: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).

% signed_take_bit_minus
thf(fact_5876_signed__take__bit__mult,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ K @ L ) ) ) ).

% signed_take_bit_mult
thf(fact_5877_signed__take__bit__add,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L ) ) ) ).

% signed_take_bit_add
thf(fact_5878_signed__take__bit__diff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).

% signed_take_bit_diff
thf(fact_5879_length__pos__if__in__set,axiom,
    ! [X3: option_nat,Xs2: list_option_nat] :
      ( ( member_option_nat @ X3 @ ( set_option_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s6086282163384603972on_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_5880_length__pos__if__in__set,axiom,
    ! [X3: real,Xs2: list_real] :
      ( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_5881_length__pos__if__in__set,axiom,
    ! [X3: set_nat,Xs2: list_set_nat] :
      ( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_5882_length__pos__if__in__set,axiom,
    ! [X3: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_5883_length__pos__if__in__set,axiom,
    ! [X3: $o,Xs2: list_o] :
      ( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_5884_length__pos__if__in__set,axiom,
    ! [X3: nat,Xs2: list_nat] :
      ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_5885_length__pos__if__in__set,axiom,
    ! [X3: int,Xs2: list_int] :
      ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_5886_all__set__conv__all__nth,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_5887_all__set__conv__all__nth,axiom,
    ! [Xs2: list_o,P: $o > $o] :
      ( ( ! [X: $o] :
            ( ( member_o @ X @ ( set_o2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs2 ) )
           => ( P @ ( nth_o @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_5888_all__set__conv__all__nth,axiom,
    ! [Xs2: list_nat,P: nat > $o] :
      ( ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs2 ) )
           => ( P @ ( nth_nat @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_5889_all__set__conv__all__nth,axiom,
    ! [Xs2: list_int,P: int > $o] :
      ( ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs2 ) )
           => ( P @ ( nth_int @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_5890_all__nth__imp__all__set,axiom,
    ! [Xs2: list_option_nat,P: option_nat > $o,X3: option_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s6086282163384603972on_nat @ Xs2 ) )
         => ( P @ ( nth_option_nat @ Xs2 @ I3 ) ) )
     => ( ( member_option_nat @ X3 @ ( set_option_nat2 @ Xs2 ) )
       => ( P @ X3 ) ) ) ).

% all_nth_imp_all_set
thf(fact_5891_all__nth__imp__all__set,axiom,
    ! [Xs2: list_real,P: real > $o,X3: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs2 ) )
         => ( P @ ( nth_real @ Xs2 @ I3 ) ) )
     => ( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
       => ( P @ X3 ) ) ) ).

% all_nth_imp_all_set
thf(fact_5892_all__nth__imp__all__set,axiom,
    ! [Xs2: list_set_nat,P: set_nat > $o,X3: set_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
         => ( P @ ( nth_set_nat @ Xs2 @ I3 ) ) )
     => ( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs2 ) )
       => ( P @ X3 ) ) ) ).

% all_nth_imp_all_set
thf(fact_5893_all__nth__imp__all__set,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,X3: vEBT_VEBT] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
         => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I3 ) ) )
     => ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
       => ( P @ X3 ) ) ) ).

% all_nth_imp_all_set
thf(fact_5894_all__nth__imp__all__set,axiom,
    ! [Xs2: list_o,P: $o > $o,X3: $o] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
         => ( P @ ( nth_o @ Xs2 @ I3 ) ) )
     => ( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
       => ( P @ X3 ) ) ) ).

% all_nth_imp_all_set
thf(fact_5895_all__nth__imp__all__set,axiom,
    ! [Xs2: list_nat,P: nat > $o,X3: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
         => ( P @ ( nth_nat @ Xs2 @ I3 ) ) )
     => ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
       => ( P @ X3 ) ) ) ).

% all_nth_imp_all_set
thf(fact_5896_all__nth__imp__all__set,axiom,
    ! [Xs2: list_int,P: int > $o,X3: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
         => ( P @ ( nth_int @ Xs2 @ I3 ) ) )
     => ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
       => ( P @ X3 ) ) ) ).

% all_nth_imp_all_set
thf(fact_5897_in__set__conv__nth,axiom,
    ! [X3: option_nat,Xs2: list_option_nat] :
      ( ( member_option_nat @ X3 @ ( set_option_nat2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s6086282163384603972on_nat @ Xs2 ) )
            & ( ( nth_option_nat @ Xs2 @ I4 )
              = X3 ) ) ) ) ).

% in_set_conv_nth
thf(fact_5898_in__set__conv__nth,axiom,
    ! [X3: real,Xs2: list_real] :
      ( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_real @ Xs2 ) )
            & ( ( nth_real @ Xs2 @ I4 )
              = X3 ) ) ) ) ).

% in_set_conv_nth
thf(fact_5899_in__set__conv__nth,axiom,
    ! [X3: set_nat,Xs2: list_set_nat] :
      ( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
            & ( ( nth_set_nat @ Xs2 @ I4 )
              = X3 ) ) ) ) ).

% in_set_conv_nth
thf(fact_5900_in__set__conv__nth,axiom,
    ! [X3: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
            & ( ( nth_VEBT_VEBT @ Xs2 @ I4 )
              = X3 ) ) ) ) ).

% in_set_conv_nth
thf(fact_5901_in__set__conv__nth,axiom,
    ! [X3: $o,Xs2: list_o] :
      ( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs2 ) )
            & ( ( nth_o @ Xs2 @ I4 )
              = X3 ) ) ) ) ).

% in_set_conv_nth
thf(fact_5902_in__set__conv__nth,axiom,
    ! [X3: nat,Xs2: list_nat] :
      ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs2 ) )
            & ( ( nth_nat @ Xs2 @ I4 )
              = X3 ) ) ) ) ).

% in_set_conv_nth
thf(fact_5903_in__set__conv__nth,axiom,
    ! [X3: int,Xs2: list_int] :
      ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs2 ) )
            & ( ( nth_int @ Xs2 @ I4 )
              = X3 ) ) ) ) ).

% in_set_conv_nth
thf(fact_5904_list__ball__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X4 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N ) ) ) ) ).

% list_ball_nth
thf(fact_5905_list__ball__nth,axiom,
    ! [N: nat,Xs2: list_o,P: $o > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
     => ( ! [X4: $o] :
            ( ( member_o @ X4 @ ( set_o2 @ Xs2 ) )
           => ( P @ X4 ) )
       => ( P @ ( nth_o @ Xs2 @ N ) ) ) ) ).

% list_ball_nth
thf(fact_5906_list__ball__nth,axiom,
    ! [N: nat,Xs2: list_nat,P: nat > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( set_nat2 @ Xs2 ) )
           => ( P @ X4 ) )
       => ( P @ ( nth_nat @ Xs2 @ N ) ) ) ) ).

% list_ball_nth
thf(fact_5907_list__ball__nth,axiom,
    ! [N: nat,Xs2: list_int,P: int > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ ( set_int2 @ Xs2 ) )
           => ( P @ X4 ) )
       => ( P @ ( nth_int @ Xs2 @ N ) ) ) ) ).

% list_ball_nth
thf(fact_5908_nth__mem,axiom,
    ! [N: nat,Xs2: list_option_nat] :
      ( ( ord_less_nat @ N @ ( size_s6086282163384603972on_nat @ Xs2 ) )
     => ( member_option_nat @ ( nth_option_nat @ Xs2 @ N ) @ ( set_option_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_5909_nth__mem,axiom,
    ! [N: nat,Xs2: list_real] :
      ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ ( nth_real @ Xs2 @ N ) @ ( set_real2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_5910_nth__mem,axiom,
    ! [N: nat,Xs2: list_set_nat] :
      ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs2 ) )
     => ( member_set_nat @ ( nth_set_nat @ Xs2 @ N ) @ ( set_set_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_5911_nth__mem,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ N ) @ ( set_VEBT_VEBT2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_5912_nth__mem,axiom,
    ! [N: nat,Xs2: list_o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ ( nth_o @ Xs2 @ N ) @ ( set_o2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_5913_nth__mem,axiom,
    ! [N: nat,Xs2: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ ( nth_nat @ Xs2 @ N ) @ ( set_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_5914_nth__mem,axiom,
    ! [N: nat,Xs2: list_int] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ ( nth_int @ Xs2 @ N ) @ ( set_int2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_5915_zmod__le__nonneg__dividend,axiom,
    ! [M: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).

% zmod_le_nonneg_dividend
thf(fact_5916_neg__mod__bound,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_int @ L @ ( modulo_modulo_int @ K @ L ) ) ) ).

% neg_mod_bound
thf(fact_5917_Euclidean__Division_Opos__mod__bound,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_int @ ( modulo_modulo_int @ K @ L ) @ L ) ) ).

% Euclidean_Division.pos_mod_bound
thf(fact_5918_zmod__zminus2__not__zero,axiom,
    ! [K: int,L: int] :
      ( ( ( modulo_modulo_int @ K @ ( uminus_uminus_int @ L ) )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L )
       != zero_zero_int ) ) ).

% zmod_zminus2_not_zero
thf(fact_5919_zmod__zminus1__not__zero,axiom,
    ! [K: int,L: int] :
      ( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L )
       != zero_zero_int ) ) ).

% zmod_zminus1_not_zero
thf(fact_5920_zmod__eq__0__iff,axiom,
    ! [M: int,D3: int] :
      ( ( ( modulo_modulo_int @ M @ D3 )
        = zero_zero_int )
      = ( ? [Q5: int] :
            ( M
            = ( times_times_int @ D3 @ Q5 ) ) ) ) ).

% zmod_eq_0_iff
thf(fact_5921_zmod__eq__0D,axiom,
    ! [M: int,D3: int] :
      ( ( ( modulo_modulo_int @ M @ D3 )
        = zero_zero_int )
     => ? [Q4: int] :
          ( M
          = ( times_times_int @ D3 @ Q4 ) ) ) ).

% zmod_eq_0D
thf(fact_5922_zmod__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zmod_int
thf(fact_5923_signed__take__bit__eq__iff__take__bit__eq,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ A )
        = ( bit_ri631733984087533419it_int @ N @ B ) )
      = ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
        = ( bit_se2923211474154528505it_int @ ( suc @ N ) @ B ) ) ) ).

% signed_take_bit_eq_iff_take_bit_eq
thf(fact_5924_signed__take__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( if_int_int @ ( ord_less_eq_nat @ N @ M ) @ ( bit_se2923211474154528505it_int @ N ) @ ( bit_ri631733984087533419it_int @ M ) @ A ) ) ).

% signed_take_bit_take_bit
thf(fact_5925_zmod__trivial__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( modulo_modulo_int @ I @ K )
        = I )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zmod_trivial_iff
thf(fact_5926_pos__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
        & ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).

% pos_mod_conj
thf(fact_5927_neg__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
        & ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% neg_mod_conj
thf(fact_5928_Euclidean__Division_Opos__mod__sign,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) ) ) ).

% Euclidean_Division.pos_mod_sign
thf(fact_5929_neg__mod__sign,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L ) @ zero_zero_int ) ) ).

% neg_mod_sign
thf(fact_5930_zdiv__mono__strict,axiom,
    ! [A3: int,B5: int,N: int] :
      ( ( ord_less_int @ A3 @ B5 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ( ( modulo_modulo_int @ A3 @ N )
            = zero_zero_int )
         => ( ( ( modulo_modulo_int @ B5 @ N )
              = zero_zero_int )
           => ( ord_less_int @ ( divide_divide_int @ A3 @ N ) @ ( divide_divide_int @ B5 @ N ) ) ) ) ) ) ).

% zdiv_mono_strict
thf(fact_5931_zmod__zminus2__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).

% zmod_zminus2_eq_if
thf(fact_5932_zmod__zminus1__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% zmod_zminus1_eq_if
thf(fact_5933_abs__mod__less,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L ) ) @ ( abs_abs_int @ L ) ) ) ).

% abs_mod_less
thf(fact_5934_div__mod__decomp__int,axiom,
    ! [A3: int,N: int] :
      ( A3
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A3 @ N ) @ N ) @ ( modulo_modulo_int @ A3 @ N ) ) ) ).

% div_mod_decomp_int
thf(fact_5935_mod__pos__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
       => ( ( modulo_modulo_int @ K @ L )
          = ( plus_plus_int @ K @ L ) ) ) ) ).

% mod_pos_neg_trivial
thf(fact_5936_mod__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( modulo_modulo_int @ K @ L )
          = ( modulo_modulo_int @ ( minus_minus_int @ K @ L ) @ L ) ) ) ) ).

% mod_pos_geq
thf(fact_5937_mod__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( ( L = zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ K ) )
        | ( ord_less_int @ zero_zero_int @ L ) ) ) ).

% mod_int_pos_iff
thf(fact_5938_nat__mod__distrib,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
       => ( ( nat2 @ ( modulo_modulo_int @ X3 @ Y3 ) )
          = ( modulo_modulo_nat @ ( nat2 @ X3 ) @ ( nat2 @ Y3 ) ) ) ) ) ).

% nat_mod_distrib
thf(fact_5939_take__bit__signed__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( bit_se2923211474154528505it_int @ M @ ( bit_ri631733984087533419it_int @ N @ A ) )
        = ( bit_se2923211474154528505it_int @ M @ A ) ) ) ).

% take_bit_signed_take_bit
thf(fact_5940_mod__abs__eq__div__nat,axiom,
    ! [K: int,L: int] :
      ( ( modulo_modulo_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% mod_abs_eq_div_nat
thf(fact_5941_real__of__int__div__aux,axiom,
    ! [X3: int,D3: int] :
      ( ( divide_divide_real @ ( ring_1_of_int_real @ X3 ) @ ( ring_1_of_int_real @ D3 ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X3 @ D3 ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X3 @ D3 ) ) @ ( ring_1_of_int_real @ D3 ) ) ) ) ).

% real_of_int_div_aux
thf(fact_5942_binomial__maximum,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% binomial_maximum
thf(fact_5943_binomial__antimono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_eq_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).

% binomial_antimono
thf(fact_5944_binomial__mono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_mono
thf(fact_5945_binomial__maximum_H,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% binomial_maximum'
thf(fact_5946_split__zmod,axiom,
    ! [P: int > $o,N: int,K: int] :
      ( ( P @ ( modulo_modulo_int @ N @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ N ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) ) ) ) ).

% split_zmod
thf(fact_5947_int__mod__neg__eq,axiom,
    ! [A: int,B: int,Q3: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( modulo_modulo_int @ A @ B )
            = R2 ) ) ) ) ).

% int_mod_neg_eq
thf(fact_5948_int__mod__pos__eq,axiom,
    ! [A: int,B: int,Q3: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q3 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( modulo_modulo_int @ A @ B )
            = R2 ) ) ) ) ).

% int_mod_pos_eq
thf(fact_5949_minus__mod__int__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
        = ( minus_minus_int @ ( minus_minus_int @ L @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L ) ) ) ) ).

% minus_mod_int_eq
thf(fact_5950_zmod__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( minus_minus_int @ B @ one_one_int ) ) ) ).

% zmod_minus1
thf(fact_5951_signed__take__bit__int__less__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% signed_take_bit_int_less_exp
thf(fact_5952_take__bit__int__def,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,K3: int] : ( modulo_modulo_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_int_def
thf(fact_5953_zmod__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% zmod_zmult2_eq
thf(fact_5954_zdiv__zminus2__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus2_eq_if
thf(fact_5955_zdiv__zminus1__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus1_eq_if
thf(fact_5956_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_5957_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_5958_binomial__less__binomial__Suc,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_nat @ K @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).

% binomial_less_binomial_Suc
thf(fact_5959_binomial__strict__mono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_strict_mono
thf(fact_5960_binomial__strict__antimono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).

% binomial_strict_antimono
thf(fact_5961_central__binomial__odd,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( binomial @ N @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% central_binomial_odd
thf(fact_5962_verit__le__mono__div__int,axiom,
    ! [A3: int,B5: int,N: int] :
      ( ( ord_less_int @ A3 @ B5 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int
          @ ( plus_plus_int @ ( divide_divide_int @ A3 @ N )
            @ ( if_int
              @ ( ( modulo_modulo_int @ B5 @ N )
                = zero_zero_int )
              @ one_one_int
              @ zero_zero_int ) )
          @ ( divide_divide_int @ B5 @ N ) ) ) ) ).

% verit_le_mono_div_int
thf(fact_5963_signed__take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% signed_take_bit_int_greater_eq_self_iff
thf(fact_5964_signed__take__bit__int__less__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).

% signed_take_bit_int_less_self_iff
thf(fact_5965_split__pos__lemma,axiom,
    ! [K: int,P: int > int > $o,N: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_pos_lemma
thf(fact_5966_split__neg__lemma,axiom,
    ! [K: int,P: int > int > $o,N: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_neg_lemma
thf(fact_5967_signed__take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K ) ) ).

% signed_take_bit_int_less_eq_self_iff
thf(fact_5968_signed__take__bit__int__greater__eq__minus__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ).

% signed_take_bit_int_greater_eq_minus_exp
thf(fact_5969_signed__take__bit__int__greater__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_greater_self_iff
thf(fact_5970_length__induct,axiom,
    ! [P: list_VEBT_VEBT > $o,Xs2: list_VEBT_VEBT] :
      ( ! [Xs3: list_VEBT_VEBT] :
          ( ! [Ys2: list_VEBT_VEBT] :
              ( ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ Ys2 ) @ ( size_s6755466524823107622T_VEBT @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_5971_length__induct,axiom,
    ! [P: list_o > $o,Xs2: list_o] :
      ( ! [Xs3: list_o] :
          ( ! [Ys2: list_o] :
              ( ( ord_less_nat @ ( size_size_list_o @ Ys2 ) @ ( size_size_list_o @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_5972_length__induct,axiom,
    ! [P: list_nat > $o,Xs2: list_nat] :
      ( ! [Xs3: list_nat] :
          ( ! [Ys2: list_nat] :
              ( ( ord_less_nat @ ( size_size_list_nat @ Ys2 ) @ ( size_size_list_nat @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_5973_length__induct,axiom,
    ! [P: list_int > $o,Xs2: list_int] :
      ( ! [Xs3: list_int] :
          ( ! [Ys2: list_int] :
              ( ( ord_less_nat @ ( size_size_list_int @ Ys2 ) @ ( size_size_list_int @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_5974_signed__take__bit__int__less__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
     => ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) ) ) ).

% signed_take_bit_int_less_eq
thf(fact_5975_signed__take__bit__int__eq__self,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_ri631733984087533419it_int @ N @ K )
          = K ) ) ) ).

% signed_take_bit_int_eq_self
thf(fact_5976_signed__take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ K )
        = K )
      = ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_eq_self_iff
thf(fact_5977_pos__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).

% pos_zmod_mult_2
thf(fact_5978_signed__take__bit__eq__take__bit__shift,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ ( plus_plus_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% signed_take_bit_eq_take_bit_shift
thf(fact_5979_neg__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).

% neg_zmod_mult_2
thf(fact_5980_signed__take__bit__int__greater__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ) ).

% signed_take_bit_int_greater_eq
thf(fact_5981_signed__take__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_5982_signed__take__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_5983_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_VEBT_VEBT,Z2: list_VEBT_VEBT] : ( Y5 = Z2 ) )
    = ( ^ [Xs: list_VEBT_VEBT,Ys3: list_VEBT_VEBT] :
          ( ( ( size_s6755466524823107622T_VEBT @ Xs )
            = ( size_s6755466524823107622T_VEBT @ Ys3 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
             => ( ( nth_VEBT_VEBT @ Xs @ I4 )
                = ( nth_VEBT_VEBT @ Ys3 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_5984_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_o,Z2: list_o] : ( Y5 = Z2 ) )
    = ( ^ [Xs: list_o,Ys3: list_o] :
          ( ( ( size_size_list_o @ Xs )
            = ( size_size_list_o @ Ys3 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) )
             => ( ( nth_o @ Xs @ I4 )
                = ( nth_o @ Ys3 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_5985_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_nat,Z2: list_nat] : ( Y5 = Z2 ) )
    = ( ^ [Xs: list_nat,Ys3: list_nat] :
          ( ( ( size_size_list_nat @ Xs )
            = ( size_size_list_nat @ Ys3 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
             => ( ( nth_nat @ Xs @ I4 )
                = ( nth_nat @ Ys3 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_5986_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y5: list_int,Z2: list_int] : ( Y5 = Z2 ) )
    = ( ^ [Xs: list_int,Ys3: list_int] :
          ( ( ( size_size_list_int @ Xs )
            = ( size_size_list_int @ Ys3 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) )
             => ( ( nth_int @ Xs @ I4 )
                = ( nth_int @ Ys3 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_5987_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > vEBT_VEBT > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X8: vEBT_VEBT] : ( P @ I4 @ X8 ) ) )
      = ( ? [Xs: list_VEBT_VEBT] :
            ( ( ( size_s6755466524823107622T_VEBT @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_VEBT_VEBT @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_5988_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > $o > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X8: $o] : ( P @ I4 @ X8 ) ) )
      = ( ? [Xs: list_o] :
            ( ( ( size_size_list_o @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_o @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_5989_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X8: nat] : ( P @ I4 @ X8 ) ) )
      = ( ? [Xs: list_nat] :
            ( ( ( size_size_list_nat @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_nat @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_5990_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > int > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X8: int] : ( P @ I4 @ X8 ) ) )
      = ( ? [Xs: list_int] :
            ( ( ( size_size_list_int @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_int @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_5991_zero__less__binomial__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) )
      = ( ord_less_eq_nat @ K @ N ) ) ).

% zero_less_binomial_iff
thf(fact_5992_choose__two,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% choose_two
thf(fact_5993_binomial__n__0,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ zero_zero_nat )
      = one_one_nat ) ).

% binomial_n_0
thf(fact_5994_binomial__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( binomial @ N @ K )
        = zero_zero_nat )
      = ( ord_less_nat @ N @ K ) ) ).

% binomial_eq_0_iff
thf(fact_5995_binomial__0__Suc,axiom,
    ! [K: nat] :
      ( ( binomial @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% binomial_0_Suc
thf(fact_5996_binomial__1,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( suc @ zero_zero_nat ) )
      = N ) ).

% binomial_1
thf(fact_5997_valid__0__not,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_0_not
thf(fact_5998_valid__tree__deg__neq__0,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_tree_deg_neq_0
thf(fact_5999_deg__not__0,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% deg_not_0
thf(fact_6000_set__n__deg__not__0,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,M: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
       => ( ord_less_eq_nat @ one_one_nat @ N ) ) ) ).

% set_n_deg_not_0
thf(fact_6001_binomial__eq__0,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( binomial @ N @ K )
        = zero_zero_nat ) ) ).

% binomial_eq_0
thf(fact_6002_binomial__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( binomial @ N @ K )
        = ( binomial @ N @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% binomial_symmetric
thf(fact_6003_binomial__le__pow,axiom,
    ! [R2: nat,N: nat] :
      ( ( ord_less_eq_nat @ R2 @ N )
     => ( ord_less_eq_nat @ ( binomial @ N @ R2 ) @ ( power_power_nat @ N @ R2 ) ) ) ).

% binomial_le_pow
thf(fact_6004_zero__less__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) ) ) ).

% zero_less_binomial
thf(fact_6005_choose__mult,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
          = ( times_times_nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).

% choose_mult
thf(fact_6006_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_6007_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_6008_binomial__le__pow2,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% binomial_le_pow2
thf(fact_6009_choose__reduce__nat,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( binomial @ N @ K )
          = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ) ).

% choose_reduce_nat
thf(fact_6010_times__binomial__minus1__eq,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( times_times_nat @ K @ ( binomial @ N @ K ) )
        = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% times_binomial_minus1_eq
thf(fact_6011_binomial__addition__formula,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( binomial @ N @ ( suc @ K ) )
        = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ).

% binomial_addition_formula
thf(fact_6012_valid__insert__both__member__options__pres,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
         => ( ( vEBT_V8194947554948674370ptions @ T @ X3 )
           => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ Y3 ) @ X3 ) ) ) ) ) ).

% valid_insert_both_member_options_pres
thf(fact_6013_valid__insert__both__member__options__add,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
       => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ X3 ) @ X3 ) ) ) ).

% valid_insert_both_member_options_add
thf(fact_6014_height__double__log__univ__size,axiom,
    ! [U: real,Deg: nat,T: vEBT_VEBT] :
      ( ( U
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Deg ) )
     => ( ( vEBT_invar_vebt @ T @ Deg )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_VEBT_height @ T ) ) @ ( plus_plus_real @ one_one_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).

% height_double_log_univ_size
thf(fact_6015_heigt__uplog__rel,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ T ) )
        = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% heigt_uplog_rel
thf(fact_6016_helpypredd,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X3 )
          = ( some_nat @ Y3 ) )
       => ( ord_less_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% helpypredd
thf(fact_6017_helpyd,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X3 )
          = ( some_nat @ Y3 ) )
       => ( ord_less_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% helpyd
thf(fact_6018_two__powr__height__bound__deg,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_VEBT_height @ T ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% two_powr_height_bound_deg
thf(fact_6019_both__member__options__ding,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ X3 ) ) ) ) ).

% both_member_options_ding
thf(fact_6020_post__member__pre__member,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_nat @ Y3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
         => ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T @ X3 ) @ Y3 )
           => ( ( vEBT_vebt_member @ T @ Y3 )
              | ( X3 = Y3 ) ) ) ) ) ) ).

% post_member_pre_member
thf(fact_6021_buildup__gives__valid,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N ) @ N ) ) ).

% buildup_gives_valid
thf(fact_6022_member__bound,axiom,
    ! [Tree: vEBT_VEBT,X3: nat,N: nat] :
      ( ( vEBT_vebt_member @ Tree @ X3 )
     => ( ( vEBT_invar_vebt @ Tree @ N )
       => ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% member_bound
thf(fact_6023_misiz,axiom,
    ! [T: vEBT_VEBT,N: nat,M: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( some_nat @ M )
          = ( vEBT_vebt_mint @ T ) )
       => ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% misiz
thf(fact_6024_height__compose__child,axiom,
    ! [T: vEBT_VEBT,TreeList2: list_VEBT_VEBT,Info: option4927543243414619207at_nat,Deg: nat,Summary: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ T @ ( set_VEBT_VEBT2 @ TreeList2 ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) @ ( vEBT_VEBT_height @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) ) ) ) ).

% height_compose_child
thf(fact_6025_deg__deg__n,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N )
     => ( Deg = N ) ) ).

% deg_deg_n
thf(fact_6026_deg__SUcn__Node,axiom,
    ! [Tree: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N ) ) )
     => ? [Info2: option4927543243414619207at_nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
          ( Tree
          = ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N ) ) @ TreeList3 @ S3 ) ) ) ).

% deg_SUcn_Node
thf(fact_6027_valid__member__both__member__options,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X3 )
       => ( vEBT_vebt_member @ T @ X3 ) ) ) ).

% valid_member_both_member_options
thf(fact_6028_both__member__options__equiv__member,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X3 )
        = ( vEBT_vebt_member @ T @ X3 ) ) ) ).

% both_member_options_equiv_member
thf(fact_6029_mint__member,axiom,
    ! [T: vEBT_VEBT,N: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% mint_member
thf(fact_6030_height__compose__summary,axiom,
    ! [Summary: vEBT_VEBT,Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT] : ( ord_less_eq_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ Summary ) ) @ ( vEBT_VEBT_height @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) ) ) ).

% height_compose_summary
thf(fact_6031_mint__corr__help,axiom,
    ! [T: vEBT_VEBT,N: nat,Mini: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Mini ) )
       => ( ( vEBT_vebt_member @ T @ X3 )
         => ( ord_less_eq_nat @ Mini @ X3 ) ) ) ) ).

% mint_corr_help
thf(fact_6032_member__correct,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_vebt_member @ T @ X3 )
        = ( member_nat @ X3 @ ( vEBT_set_vebt @ T ) ) ) ) ).

% member_correct
thf(fact_6033_mint__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X3 ) )
       => ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 ) ) ) ).

% mint_corr
thf(fact_6034_mint__sound,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 )
       => ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X3 ) ) ) ) ).

% mint_sound
thf(fact_6035_both__member__options__from__chilf__to__complete__tree,axiom,
    ! [X3: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
     => ( ( ord_less_eq_nat @ one_one_nat @ Deg )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 ) ) ) ) ).

% both_member_options_from_chilf_to_complete_tree
thf(fact_6036_member__inv,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
        & ( ( X3 = Mi )
          | ( X3 = Ma )
          | ( ( ord_less_nat @ X3 @ Ma )
            & ( ord_less_nat @ Mi @ X3 )
            & ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            & ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% member_inv
thf(fact_6037_mintlistlength,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ( Mi != Ma )
       => ( ( ord_less_nat @ Mi @ Ma )
          & ? [M4: nat] :
              ( ( ( some_nat @ M4 )
                = ( vEBT_vebt_mint @ Summary ) )
              & ( ord_less_nat @ M4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% mintlistlength
thf(fact_6038_both__member__options__from__complete__tree__to__child,axiom,
    ! [Deg: nat,Mi: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ Deg )
     => ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          | ( X3 = Mi )
          | ( X3 = Ma ) ) ) ) ).

% both_member_options_from_complete_tree_to_child
thf(fact_6039_set__vebt__set__vebt_H__valid,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_set_vebt @ T )
        = ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_set_vebt'_valid
thf(fact_6040_mi__eq__ma__no__ch,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg )
     => ( ( Mi = Ma )
       => ( ! [X6: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
             => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X_12 ) )
          & ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 ) ) ) ) ).

% mi_eq_ma_no_ch
thf(fact_6041_insert__simp__mima,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X3 = Mi )
        | ( X3 = Ma ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).

% insert_simp_mima
thf(fact_6042_mi__ma__2__deg,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ( ord_less_eq_nat @ Mi @ Ma )
        & ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).

% mi_ma_2_deg
thf(fact_6043_pred__max,axiom,
    ! [Deg: nat,Ma: nat,X3: nat,Mi: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_nat @ Ma @ X3 )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = ( some_nat @ Ma ) ) ) ) ).

% pred_max
thf(fact_6044_succ__min,axiom,
    ! [Deg: nat,X3: nat,Mi: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_nat @ X3 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = ( some_nat @ Mi ) ) ) ) ).

% succ_min
thf(fact_6045_succ__member,axiom,
    ! [T: vEBT_VEBT,X3: nat,Y3: nat] :
      ( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 @ Y3 )
      = ( ( vEBT_vebt_member @ T @ Y3 )
        & ( ord_less_nat @ X3 @ Y3 )
        & ! [Z6: nat] :
            ( ( ( vEBT_vebt_member @ T @ Z6 )
              & ( ord_less_nat @ X3 @ Z6 ) )
           => ( ord_less_eq_nat @ Y3 @ Z6 ) ) ) ) ).

% succ_member
thf(fact_6046_pred__member,axiom,
    ! [T: vEBT_VEBT,X3: nat,Y3: nat] :
      ( ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 @ Y3 )
      = ( ( vEBT_vebt_member @ T @ Y3 )
        & ( ord_less_nat @ Y3 @ X3 )
        & ! [Z6: nat] :
            ( ( ( vEBT_vebt_member @ T @ Z6 )
              & ( ord_less_nat @ Z6 @ X3 ) )
           => ( ord_less_eq_nat @ Z6 @ Y3 ) ) ) ) ).

% pred_member
thf(fact_6047_pred__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Px: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X3 )
          = ( some_nat @ Px ) )
        = ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 @ Px ) ) ) ).

% pred_corr
thf(fact_6048_succ__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X3 )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 @ Sx ) ) ) ).

% succ_corr
thf(fact_6049_pred__correct,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X3 )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_pred_in_set @ ( vEBT_set_vebt @ T ) @ X3 @ Sx ) ) ) ).

% pred_correct
thf(fact_6050_succ__correct,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X3 )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_succ_in_set @ ( vEBT_set_vebt @ T ) @ X3 @ Sx ) ) ) ).

% succ_correct
thf(fact_6051_vebt__mint_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Mi ) ) ).

% vebt_mint.simps(3)
thf(fact_6052_invar__vebt_Ointros_I4_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X8 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X4: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X4 @ N )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X4 )
                                      & ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(4)
thf(fact_6053_invar__vebt_Ointros_I5_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ X8 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X4: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X4 @ N )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X4 )
                                      & ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(5)
thf(fact_6054_nested__mint,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,Va2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ( N
          = ( suc @ ( suc @ Va2 ) ) )
       => ( ~ ( ord_less_nat @ Ma @ Mi )
         => ( ( Ma != Mi )
           => ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Va2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide_nat @ Va2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ).

% nested_mint
thf(fact_6055_divmod__step__eq,axiom,
    ! [L: num,R2: nat,Q3: nat] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
       => ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q3 @ R2 ) )
          = ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q3 ) @ one_one_nat ) @ ( minus_minus_nat @ R2 @ ( numeral_numeral_nat @ L ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
       => ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q3 @ R2 ) )
          = ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q3 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_6056_divmod__step__eq,axiom,
    ! [L: num,R2: int,Q3: int] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
       => ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q3 @ R2 ) )
          = ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q3 ) @ one_one_int ) @ ( minus_minus_int @ R2 @ ( numeral_numeral_int @ L ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
       => ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q3 @ R2 ) )
          = ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q3 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_6057_divmod__step__eq,axiom,
    ! [L: num,R2: code_integer,Q3: code_integer] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
       => ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q3 @ R2 ) )
          = ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q3 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R2 @ ( numera6620942414471956472nteger @ L ) ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
       => ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q3 @ R2 ) )
          = ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q3 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_6058_pred__list__to__short,axiom,
    ! [Deg: nat,X3: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X3 @ Ma )
       => ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
            = none_nat ) ) ) ) ).

% pred_list_to_short
thf(fact_6059_succ__list__to__short,axiom,
    ! [Deg: nat,Mi: nat,X3: nat,TreeList2: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X3 )
       => ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
            = none_nat ) ) ) ) ).

% succ_list_to_short
thf(fact_6060_height__node,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ord_less_eq_nat @ one_one_nat @ ( vEBT_VEBT_height @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).

% height_node
thf(fact_6061_inrange,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_set_nat @ ( vEBT_VEBT_set_vebt @ T ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).

% inrange
thf(fact_6062_geqmaxNone,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ( ord_less_eq_nat @ Ma @ X3 )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = none_nat ) ) ) ).

% geqmaxNone
thf(fact_6063_not__None__eq,axiom,
    ! [X3: option_nat] :
      ( ( X3 != none_nat )
      = ( ? [Y: nat] :
            ( X3
            = ( some_nat @ Y ) ) ) ) ).

% not_None_eq
thf(fact_6064_not__None__eq,axiom,
    ! [X3: option4927543243414619207at_nat] :
      ( ( X3 != none_P5556105721700978146at_nat )
      = ( ? [Y: product_prod_nat_nat] :
            ( X3
            = ( some_P7363390416028606310at_nat @ Y ) ) ) ) ).

% not_None_eq
thf(fact_6065_not__None__eq,axiom,
    ! [X3: option_num] :
      ( ( X3 != none_num )
      = ( ? [Y: num] :
            ( X3
            = ( some_num @ Y ) ) ) ) ).

% not_None_eq
thf(fact_6066_not__Some__eq,axiom,
    ! [X3: option_nat] :
      ( ( ! [Y: nat] :
            ( X3
           != ( some_nat @ Y ) ) )
      = ( X3 = none_nat ) ) ).

% not_Some_eq
thf(fact_6067_not__Some__eq,axiom,
    ! [X3: option4927543243414619207at_nat] :
      ( ( ! [Y: product_prod_nat_nat] :
            ( X3
           != ( some_P7363390416028606310at_nat @ Y ) ) )
      = ( X3 = none_P5556105721700978146at_nat ) ) ).

% not_Some_eq
thf(fact_6068_not__Some__eq,axiom,
    ! [X3: option_num] :
      ( ( ! [Y: num] :
            ( X3
           != ( some_num @ Y ) ) )
      = ( X3 = none_num ) ) ).

% not_Some_eq
thf(fact_6069_option_Ocollapse,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( ( some_nat @ ( the_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_6070_option_Ocollapse,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_6071_option_Ocollapse,axiom,
    ! [Option: option_num] :
      ( ( Option != none_num )
     => ( ( some_num @ ( the_num @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_6072_option_Oexhaust__sel,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( Option
        = ( some_nat @ ( the_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_6073_option_Oexhaust__sel,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( Option
        = ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_6074_option_Oexhaust__sel,axiom,
    ! [Option: option_num] :
      ( ( Option != none_num )
     => ( Option
        = ( some_num @ ( the_num @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_6075_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X3: produc2233624965454879586on_nat] :
      ( ! [Uu: nat > nat > $o,Uv: option_nat] :
          ( X3
         != ( produc4035269172776083154on_nat @ Uu @ ( produc5098337634421038937on_nat @ none_nat @ Uv ) ) )
     => ( ! [Uw: nat > nat > $o,V3: nat] :
            ( X3
           != ( produc4035269172776083154on_nat @ Uw @ ( produc5098337634421038937on_nat @ ( some_nat @ V3 ) @ none_nat ) ) )
       => ~ ! [F2: nat > nat > $o,X4: nat,Y4: nat] :
              ( X3
             != ( produc4035269172776083154on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ X4 ) @ ( some_nat @ Y4 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_6076_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X3: produc5491161045314408544at_nat] :
      ( ! [Uu: product_prod_nat_nat > product_prod_nat_nat > $o,Uv: option4927543243414619207at_nat] :
          ( X3
         != ( produc3994169339658061776at_nat @ Uu @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv ) ) )
     => ( ! [Uw: product_prod_nat_nat > product_prod_nat_nat > $o,V3: product_prod_nat_nat] :
            ( X3
           != ( produc3994169339658061776at_nat @ Uw @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V3 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > $o,X4: product_prod_nat_nat,Y4: product_prod_nat_nat] :
              ( X3
             != ( produc3994169339658061776at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ X4 ) @ ( some_P7363390416028606310at_nat @ Y4 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_6077_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X3: produc7036089656553540234on_num] :
      ( ! [Uu: num > num > $o,Uv: option_num] :
          ( X3
         != ( produc3576312749637752826on_num @ Uu @ ( produc8585076106096196333on_num @ none_num @ Uv ) ) )
     => ( ! [Uw: num > num > $o,V3: num] :
            ( X3
           != ( produc3576312749637752826on_num @ Uw @ ( produc8585076106096196333on_num @ ( some_num @ V3 ) @ none_num ) ) )
       => ~ ! [F2: num > num > $o,X4: num,Y4: num] :
              ( X3
             != ( produc3576312749637752826on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ X4 ) @ ( some_num @ Y4 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_6078_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X3: produc8306885398267862888on_nat] :
      ( ! [Uu: nat > nat > nat,Uv: option_nat] :
          ( X3
         != ( produc8929957630744042906on_nat @ Uu @ ( produc5098337634421038937on_nat @ none_nat @ Uv ) ) )
     => ( ! [Uw: nat > nat > nat,V3: nat] :
            ( X3
           != ( produc8929957630744042906on_nat @ Uw @ ( produc5098337634421038937on_nat @ ( some_nat @ V3 ) @ none_nat ) ) )
       => ~ ! [F2: nat > nat > nat,A5: nat,B4: nat] :
              ( X3
             != ( produc8929957630744042906on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ A5 ) @ ( some_nat @ B4 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_6079_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X3: produc5542196010084753463at_nat] :
      ( ! [Uu: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv: option4927543243414619207at_nat] :
          ( X3
         != ( produc2899441246263362727at_nat @ Uu @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv ) ) )
     => ( ! [Uw: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V3: product_prod_nat_nat] :
            ( X3
           != ( produc2899441246263362727at_nat @ Uw @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V3 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A5: product_prod_nat_nat,B4: product_prod_nat_nat] :
              ( X3
             != ( produc2899441246263362727at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A5 ) @ ( some_P7363390416028606310at_nat @ B4 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_6080_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X3: produc1193250871479095198on_num] :
      ( ! [Uu: num > num > num,Uv: option_num] :
          ( X3
         != ( produc5778274026573060048on_num @ Uu @ ( produc8585076106096196333on_num @ none_num @ Uv ) ) )
     => ( ! [Uw: num > num > num,V3: num] :
            ( X3
           != ( produc5778274026573060048on_num @ Uw @ ( produc8585076106096196333on_num @ ( some_num @ V3 ) @ none_num ) ) )
       => ~ ! [F2: num > num > num,A5: num,B4: num] :
              ( X3
             != ( produc5778274026573060048on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ A5 ) @ ( some_num @ B4 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_6081_option_Oexpand,axiom,
    ! [Option: option_nat,Option2: option_nat] :
      ( ( ( Option = none_nat )
        = ( Option2 = none_nat ) )
     => ( ( ( Option != none_nat )
         => ( ( Option2 != none_nat )
           => ( ( the_nat @ Option )
              = ( the_nat @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_6082_option_Oexpand,axiom,
    ! [Option: option4927543243414619207at_nat,Option2: option4927543243414619207at_nat] :
      ( ( ( Option = none_P5556105721700978146at_nat )
        = ( Option2 = none_P5556105721700978146at_nat ) )
     => ( ( ( Option != none_P5556105721700978146at_nat )
         => ( ( Option2 != none_P5556105721700978146at_nat )
           => ( ( the_Pr8591224930841456533at_nat @ Option )
              = ( the_Pr8591224930841456533at_nat @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_6083_option_Oexpand,axiom,
    ! [Option: option_num,Option2: option_num] :
      ( ( ( Option = none_num )
        = ( Option2 = none_num ) )
     => ( ( ( Option != none_num )
         => ( ( Option2 != none_num )
           => ( ( the_num @ Option )
              = ( the_num @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_6084_option_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( none_nat
     != ( some_nat @ X2 ) ) ).

% option.distinct(1)
thf(fact_6085_option_Odistinct_I1_J,axiom,
    ! [X2: product_prod_nat_nat] :
      ( none_P5556105721700978146at_nat
     != ( some_P7363390416028606310at_nat @ X2 ) ) ).

% option.distinct(1)
thf(fact_6086_option_Odistinct_I1_J,axiom,
    ! [X2: num] :
      ( none_num
     != ( some_num @ X2 ) ) ).

% option.distinct(1)
thf(fact_6087_option_OdiscI,axiom,
    ! [Option: option_nat,X2: nat] :
      ( ( Option
        = ( some_nat @ X2 ) )
     => ( Option != none_nat ) ) ).

% option.discI
thf(fact_6088_option_OdiscI,axiom,
    ! [Option: option4927543243414619207at_nat,X2: product_prod_nat_nat] :
      ( ( Option
        = ( some_P7363390416028606310at_nat @ X2 ) )
     => ( Option != none_P5556105721700978146at_nat ) ) ).

% option.discI
thf(fact_6089_option_OdiscI,axiom,
    ! [Option: option_num,X2: num] :
      ( ( Option
        = ( some_num @ X2 ) )
     => ( Option != none_num ) ) ).

% option.discI
thf(fact_6090_option_Oexhaust,axiom,
    ! [Y3: option_nat] :
      ( ( Y3 != none_nat )
     => ~ ! [X22: nat] :
            ( Y3
           != ( some_nat @ X22 ) ) ) ).

% option.exhaust
thf(fact_6091_option_Oexhaust,axiom,
    ! [Y3: option4927543243414619207at_nat] :
      ( ( Y3 != none_P5556105721700978146at_nat )
     => ~ ! [X22: product_prod_nat_nat] :
            ( Y3
           != ( some_P7363390416028606310at_nat @ X22 ) ) ) ).

% option.exhaust
thf(fact_6092_option_Oexhaust,axiom,
    ! [Y3: option_num] :
      ( ( Y3 != none_num )
     => ~ ! [X22: num] :
            ( Y3
           != ( some_num @ X22 ) ) ) ).

% option.exhaust
thf(fact_6093_split__option__ex,axiom,
    ( ( ^ [P2: option_nat > $o] :
        ? [X5: option_nat] : ( P2 @ X5 ) )
    = ( ^ [P3: option_nat > $o] :
          ( ( P3 @ none_nat )
          | ? [X: nat] : ( P3 @ ( some_nat @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_6094_split__option__ex,axiom,
    ( ( ^ [P2: option4927543243414619207at_nat > $o] :
        ? [X5: option4927543243414619207at_nat] : ( P2 @ X5 ) )
    = ( ^ [P3: option4927543243414619207at_nat > $o] :
          ( ( P3 @ none_P5556105721700978146at_nat )
          | ? [X: product_prod_nat_nat] : ( P3 @ ( some_P7363390416028606310at_nat @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_6095_split__option__ex,axiom,
    ( ( ^ [P2: option_num > $o] :
        ? [X5: option_num] : ( P2 @ X5 ) )
    = ( ^ [P3: option_num > $o] :
          ( ( P3 @ none_num )
          | ? [X: num] : ( P3 @ ( some_num @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_6096_split__option__all,axiom,
    ( ( ^ [P2: option_nat > $o] :
        ! [X5: option_nat] : ( P2 @ X5 ) )
    = ( ^ [P3: option_nat > $o] :
          ( ( P3 @ none_nat )
          & ! [X: nat] : ( P3 @ ( some_nat @ X ) ) ) ) ) ).

% split_option_all
thf(fact_6097_split__option__all,axiom,
    ( ( ^ [P2: option4927543243414619207at_nat > $o] :
        ! [X5: option4927543243414619207at_nat] : ( P2 @ X5 ) )
    = ( ^ [P3: option4927543243414619207at_nat > $o] :
          ( ( P3 @ none_P5556105721700978146at_nat )
          & ! [X: product_prod_nat_nat] : ( P3 @ ( some_P7363390416028606310at_nat @ X ) ) ) ) ) ).

% split_option_all
thf(fact_6098_split__option__all,axiom,
    ( ( ^ [P2: option_num > $o] :
        ! [X5: option_num] : ( P2 @ X5 ) )
    = ( ^ [P3: option_num > $o] :
          ( ( P3 @ none_num )
          & ! [X: num] : ( P3 @ ( some_num @ X ) ) ) ) ) ).

% split_option_all
thf(fact_6099_combine__options__cases,axiom,
    ! [X3: option_nat,P: option_nat > option_nat > $o,Y3: option_nat] :
      ( ( ( X3 = none_nat )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_nat )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: nat,B4: nat] :
              ( ( X3
                = ( some_nat @ A5 ) )
             => ( ( Y3
                  = ( some_nat @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6100_combine__options__cases,axiom,
    ! [X3: option_nat,P: option_nat > option4927543243414619207at_nat > $o,Y3: option4927543243414619207at_nat] :
      ( ( ( X3 = none_nat )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_P5556105721700978146at_nat )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: nat,B4: product_prod_nat_nat] :
              ( ( X3
                = ( some_nat @ A5 ) )
             => ( ( Y3
                  = ( some_P7363390416028606310at_nat @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6101_combine__options__cases,axiom,
    ! [X3: option_nat,P: option_nat > option_num > $o,Y3: option_num] :
      ( ( ( X3 = none_nat )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_num )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: nat,B4: num] :
              ( ( X3
                = ( some_nat @ A5 ) )
             => ( ( Y3
                  = ( some_num @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6102_combine__options__cases,axiom,
    ! [X3: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_nat > $o,Y3: option_nat] :
      ( ( ( X3 = none_P5556105721700978146at_nat )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_nat )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: product_prod_nat_nat,B4: nat] :
              ( ( X3
                = ( some_P7363390416028606310at_nat @ A5 ) )
             => ( ( Y3
                  = ( some_nat @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6103_combine__options__cases,axiom,
    ! [X3: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option4927543243414619207at_nat > $o,Y3: option4927543243414619207at_nat] :
      ( ( ( X3 = none_P5556105721700978146at_nat )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_P5556105721700978146at_nat )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: product_prod_nat_nat,B4: product_prod_nat_nat] :
              ( ( X3
                = ( some_P7363390416028606310at_nat @ A5 ) )
             => ( ( Y3
                  = ( some_P7363390416028606310at_nat @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6104_combine__options__cases,axiom,
    ! [X3: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_num > $o,Y3: option_num] :
      ( ( ( X3 = none_P5556105721700978146at_nat )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_num )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: product_prod_nat_nat,B4: num] :
              ( ( X3
                = ( some_P7363390416028606310at_nat @ A5 ) )
             => ( ( Y3
                  = ( some_num @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6105_combine__options__cases,axiom,
    ! [X3: option_num,P: option_num > option_nat > $o,Y3: option_nat] :
      ( ( ( X3 = none_num )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_nat )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: num,B4: nat] :
              ( ( X3
                = ( some_num @ A5 ) )
             => ( ( Y3
                  = ( some_nat @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6106_combine__options__cases,axiom,
    ! [X3: option_num,P: option_num > option4927543243414619207at_nat > $o,Y3: option4927543243414619207at_nat] :
      ( ( ( X3 = none_num )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_P5556105721700978146at_nat )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: num,B4: product_prod_nat_nat] :
              ( ( X3
                = ( some_num @ A5 ) )
             => ( ( Y3
                  = ( some_P7363390416028606310at_nat @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6107_combine__options__cases,axiom,
    ! [X3: option_num,P: option_num > option_num > $o,Y3: option_num] :
      ( ( ( X3 = none_num )
       => ( P @ X3 @ Y3 ) )
     => ( ( ( Y3 = none_num )
         => ( P @ X3 @ Y3 ) )
       => ( ! [A5: num,B4: num] :
              ( ( X3
                = ( some_num @ A5 ) )
             => ( ( Y3
                  = ( some_num @ B4 ) )
               => ( P @ X3 @ Y3 ) ) )
         => ( P @ X3 @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_6108_option_Osel,axiom,
    ! [X2: nat] :
      ( ( the_nat @ ( some_nat @ X2 ) )
      = X2 ) ).

% option.sel
thf(fact_6109_option_Osel,axiom,
    ! [X2: product_prod_nat_nat] :
      ( ( the_Pr8591224930841456533at_nat @ ( some_P7363390416028606310at_nat @ X2 ) )
      = X2 ) ).

% option.sel
thf(fact_6110_option_Osel,axiom,
    ! [X2: num] :
      ( ( the_num @ ( some_num @ X2 ) )
      = X2 ) ).

% option.sel
thf(fact_6111_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv2: option4927543243414619207at_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ Uu2 @ none_P5556105721700978146at_nat @ Uv2 )
      = none_P5556105721700978146at_nat ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_6112_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu2: num > num > num,Uv2: option_num] :
      ( ( vEBT_V819420779217536731ft_num @ Uu2 @ none_num @ Uv2 )
      = none_num ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_6113_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu2: nat > nat > nat,Uv2: option_nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ Uu2 @ none_nat @ Uv2 )
      = none_nat ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_6114_all__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N )
           => ( P @ M3 ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
           => ( P @ X ) ) ) ) ).

% all_nat_less
thf(fact_6115_ex__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N )
            & ( P @ M3 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
            & ( P @ X ) ) ) ) ).

% ex_nat_less
thf(fact_6116_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ Uw2 @ ( some_P7363390416028606310at_nat @ V ) @ none_P5556105721700978146at_nat )
      = none_P5556105721700978146at_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_6117_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw2: num > num > num,V: num] :
      ( ( vEBT_V819420779217536731ft_num @ Uw2 @ ( some_num @ V ) @ none_num )
      = none_num ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_6118_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw2: nat > nat > nat,V: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ Uw2 @ ( some_nat @ V ) @ none_nat )
      = none_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_6119_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X3: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa: option4927543243414619207at_nat,Xb: option4927543243414619207at_nat,Y3: option4927543243414619207at_nat] :
      ( ( ( vEBT_V1502963449132264192at_nat @ X3 @ Xa @ Xb )
        = Y3 )
     => ( ( ( Xa = none_P5556105721700978146at_nat )
         => ( Y3 != none_P5556105721700978146at_nat ) )
       => ( ( ? [V3: product_prod_nat_nat] :
                ( Xa
                = ( some_P7363390416028606310at_nat @ V3 ) )
           => ( ( Xb = none_P5556105721700978146at_nat )
             => ( Y3 != none_P5556105721700978146at_nat ) ) )
         => ~ ! [A5: product_prod_nat_nat] :
                ( ( Xa
                  = ( some_P7363390416028606310at_nat @ A5 ) )
               => ! [B4: product_prod_nat_nat] :
                    ( ( Xb
                      = ( some_P7363390416028606310at_nat @ B4 ) )
                   => ( Y3
                     != ( some_P7363390416028606310at_nat @ ( X3 @ A5 @ B4 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_6120_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X3: num > num > num,Xa: option_num,Xb: option_num,Y3: option_num] :
      ( ( ( vEBT_V819420779217536731ft_num @ X3 @ Xa @ Xb )
        = Y3 )
     => ( ( ( Xa = none_num )
         => ( Y3 != none_num ) )
       => ( ( ? [V3: num] :
                ( Xa
                = ( some_num @ V3 ) )
           => ( ( Xb = none_num )
             => ( Y3 != none_num ) ) )
         => ~ ! [A5: num] :
                ( ( Xa
                  = ( some_num @ A5 ) )
               => ! [B4: num] :
                    ( ( Xb
                      = ( some_num @ B4 ) )
                   => ( Y3
                     != ( some_num @ ( X3 @ A5 @ B4 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_6121_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X3: nat > nat > nat,Xa: option_nat,Xb: option_nat,Y3: option_nat] :
      ( ( ( vEBT_V4262088993061758097ft_nat @ X3 @ Xa @ Xb )
        = Y3 )
     => ( ( ( Xa = none_nat )
         => ( Y3 != none_nat ) )
       => ( ( ? [V3: nat] :
                ( Xa
                = ( some_nat @ V3 ) )
           => ( ( Xb = none_nat )
             => ( Y3 != none_nat ) ) )
         => ~ ! [A5: nat] :
                ( ( Xa
                  = ( some_nat @ A5 ) )
               => ! [B4: nat] :
                    ( ( Xb
                      = ( some_nat @ B4 ) )
                   => ( Y3
                     != ( some_nat @ ( X3 @ A5 @ B4 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_6122_option_Osize_I3_J,axiom,
    ( ( size_size_option_nat @ none_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_6123_option_Osize_I3_J,axiom,
    ( ( size_s170228958280169651at_nat @ none_P5556105721700978146at_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_6124_option_Osize_I3_J,axiom,
    ( ( size_size_option_num @ none_num )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_6125_atLeastatMost__subset__iff,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat,D3: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_or4548717258645045905et_nat @ A @ B ) @ ( set_or4548717258645045905et_nat @ C @ D3 ) )
      = ( ~ ( ord_less_eq_set_nat @ A @ B )
        | ( ( ord_less_eq_set_nat @ C @ A )
          & ( ord_less_eq_set_nat @ B @ D3 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_6126_atLeastatMost__subset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D3 ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( ( ord_less_eq_rat @ C @ A )
          & ( ord_less_eq_rat @ B @ D3 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_6127_atLeastatMost__subset__iff,axiom,
    ! [A: num,B: num,C: num,D3: num] :
      ( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D3 ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( ( ord_less_eq_num @ C @ A )
          & ( ord_less_eq_num @ B @ D3 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_6128_atLeastatMost__subset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D3 ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( ( ord_less_eq_nat @ C @ A )
          & ( ord_less_eq_nat @ B @ D3 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_6129_atLeastatMost__subset__iff,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D3 ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( ( ord_less_eq_int @ C @ A )
          & ( ord_less_eq_int @ B @ D3 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_6130_atLeastatMost__subset__iff,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D3 ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( ( ord_less_eq_real @ C @ A )
          & ( ord_less_eq_real @ B @ D3 ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_6131_summaxma,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ Deg )
     => ( ( Mi != Ma )
       => ( ( the_nat @ ( vEBT_vebt_maxt @ Summary ) )
          = ( vEBT_VEBT_high @ Ma @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% summaxma
thf(fact_6132_vebt__succ_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi )
      = none_nat ) ).

% vebt_succ.simps(5)
thf(fact_6133_vebt__pred_Osimps_I6_J,axiom,
    ! [V: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj )
      = none_nat ) ).

% vebt_pred.simps(6)
thf(fact_6134__C5_Oprems_C,axiom,
    vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ x ) ).

% "5.prems"
thf(fact_6135_delt__out__of__range,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ X3 @ Mi )
        | ( ord_less_nat @ Ma @ X3 ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ).

% delt_out_of_range
thf(fact_6136_delete__pres__valid,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( vEBT_invar_vebt @ ( vEBT_vebt_delete @ T @ X3 ) @ N ) ) ).

% delete_pres_valid
thf(fact_6137_not__min__Null__member,axiom,
    ! [T: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ T )
     => ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_1 ) ) ).

% not_min_Null_member
thf(fact_6138_min__Null__member,axiom,
    ! [T: vEBT_VEBT,X3: nat] :
      ( ( vEBT_VEBT_minNull @ T )
     => ~ ( vEBT_vebt_member @ T @ X3 ) ) ).

% min_Null_member
thf(fact_6139_maxbmo,axiom,
    ! [T: vEBT_VEBT,X3: nat] :
      ( ( ( vEBT_vebt_maxt @ T )
        = ( some_nat @ X3 ) )
     => ( vEBT_V8194947554948674370ptions @ T @ X3 ) ) ).

% maxbmo
thf(fact_6140_dele__bmo__cont__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ T @ X3 ) @ Y3 )
        = ( ( X3 != Y3 )
          & ( vEBT_V8194947554948674370ptions @ T @ Y3 ) ) ) ) ).

% dele_bmo_cont_corr
thf(fact_6141_minNullmin,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ T )
     => ( ( vEBT_vebt_mint @ T )
        = none_nat ) ) ).

% minNullmin
thf(fact_6142_minminNull,axiom,
    ! [T: vEBT_VEBT] :
      ( ( ( vEBT_vebt_mint @ T )
        = none_nat )
     => ( vEBT_VEBT_minNull @ T ) ) ).

% minminNull
thf(fact_6143_dele__member__cont__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_vebt_member @ ( vEBT_vebt_delete @ T @ X3 ) @ Y3 )
        = ( ( X3 != Y3 )
          & ( vEBT_vebt_member @ T @ Y3 ) ) ) ) ).

% dele_member_cont_corr
thf(fact_6144_maxt__member,axiom,
    ! [T: vEBT_VEBT,N: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% maxt_member
thf(fact_6145_maxt__corr__help,axiom,
    ! [T: vEBT_VEBT,N: nat,Maxi: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( ( vEBT_vebt_member @ T @ X3 )
         => ( ord_less_eq_nat @ X3 @ Maxi ) ) ) ) ).

% maxt_corr_help
thf(fact_6146_maxt__sound,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 )
       => ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X3 ) ) ) ) ).

% maxt_sound
thf(fact_6147_maxt__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X3 ) )
       => ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X3 ) ) ) ).

% maxt_corr
thf(fact_6148_del__single__cont,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X3 = Mi )
        & ( X3 = Ma ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) ) ) ) ).

% del_single_cont
thf(fact_6149_Icc__eq__Icc,axiom,
    ! [L: set_nat,H2: set_nat,L3: set_nat,H3: set_nat] :
      ( ( ( set_or4548717258645045905et_nat @ L @ H2 )
        = ( set_or4548717258645045905et_nat @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_set_nat @ L @ H2 )
          & ~ ( ord_less_eq_set_nat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_6150_Icc__eq__Icc,axiom,
    ! [L: rat,H2: rat,L3: rat,H3: rat] :
      ( ( ( set_or633870826150836451st_rat @ L @ H2 )
        = ( set_or633870826150836451st_rat @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_rat @ L @ H2 )
          & ~ ( ord_less_eq_rat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_6151_Icc__eq__Icc,axiom,
    ! [L: num,H2: num,L3: num,H3: num] :
      ( ( ( set_or7049704709247886629st_num @ L @ H2 )
        = ( set_or7049704709247886629st_num @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_num @ L @ H2 )
          & ~ ( ord_less_eq_num @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_6152_Icc__eq__Icc,axiom,
    ! [L: nat,H2: nat,L3: nat,H3: nat] :
      ( ( ( set_or1269000886237332187st_nat @ L @ H2 )
        = ( set_or1269000886237332187st_nat @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_nat @ L @ H2 )
          & ~ ( ord_less_eq_nat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_6153_Icc__eq__Icc,axiom,
    ! [L: int,H2: int,L3: int,H3: int] :
      ( ( ( set_or1266510415728281911st_int @ L @ H2 )
        = ( set_or1266510415728281911st_int @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_int @ L @ H2 )
          & ~ ( ord_less_eq_int @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_6154_Icc__eq__Icc,axiom,
    ! [L: real,H2: real,L3: real,H3: real] :
      ( ( ( set_or1222579329274155063t_real @ L @ H2 )
        = ( set_or1222579329274155063t_real @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_real @ L @ H2 )
          & ~ ( ord_less_eq_real @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_6155_atLeastAtMost__iff,axiom,
    ! [I: set_nat,L: set_nat,U: set_nat] :
      ( ( member_set_nat @ I @ ( set_or4548717258645045905et_nat @ L @ U ) )
      = ( ( ord_less_eq_set_nat @ L @ I )
        & ( ord_less_eq_set_nat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_6156_atLeastAtMost__iff,axiom,
    ! [I: rat,L: rat,U: rat] :
      ( ( member_rat @ I @ ( set_or633870826150836451st_rat @ L @ U ) )
      = ( ( ord_less_eq_rat @ L @ I )
        & ( ord_less_eq_rat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_6157_atLeastAtMost__iff,axiom,
    ! [I: num,L: num,U: num] :
      ( ( member_num @ I @ ( set_or7049704709247886629st_num @ L @ U ) )
      = ( ( ord_less_eq_num @ L @ I )
        & ( ord_less_eq_num @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_6158_atLeastAtMost__iff,axiom,
    ! [I: nat,L: nat,U: nat] :
      ( ( member_nat @ I @ ( set_or1269000886237332187st_nat @ L @ U ) )
      = ( ( ord_less_eq_nat @ L @ I )
        & ( ord_less_eq_nat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_6159_atLeastAtMost__iff,axiom,
    ! [I: int,L: int,U: int] :
      ( ( member_int @ I @ ( set_or1266510415728281911st_int @ L @ U ) )
      = ( ( ord_less_eq_int @ L @ I )
        & ( ord_less_eq_int @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_6160_atLeastAtMost__iff,axiom,
    ! [I: real,L: real,U: real] :
      ( ( member_real @ I @ ( set_or1222579329274155063t_real @ L @ U ) )
      = ( ( ord_less_eq_real @ L @ I )
        & ( ord_less_eq_real @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_6161_vebt__maxt_Osimps_I2_J,axiom,
    ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
      = none_nat ) ).

% vebt_maxt.simps(2)
thf(fact_6162_aset_I2_J,axiom,
    ! [D5: int,A3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A3 )
                 => ( X4
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D5 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A3 )
                   => ( X4
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( plus_plus_int @ X4 @ D5 ) ) ) )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X6
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
             => ( ( P @ ( plus_plus_int @ X6 @ D5 ) )
                | ( Q @ ( plus_plus_int @ X6 @ D5 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_6163_aset_I1_J,axiom,
    ! [D5: int,A3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A3 )
                 => ( X4
                   != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D5 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A3 )
                   => ( X4
                     != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( plus_plus_int @ X4 @ D5 ) ) ) )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X6
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
             => ( ( P @ ( plus_plus_int @ X6 @ D5 ) )
                & ( Q @ ( plus_plus_int @ X6 @ D5 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_6164_bset_I2_J,axiom,
    ! [D5: int,B5: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B5 )
                 => ( X4
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D5 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X4
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( minus_minus_int @ X4 @ D5 ) ) ) )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X6
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
             => ( ( P @ ( minus_minus_int @ X6 @ D5 ) )
                | ( Q @ ( minus_minus_int @ X6 @ D5 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_6165_bset_I1_J,axiom,
    ! [D5: int,B5: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa2: int] :
              ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B5 )
                 => ( X4
                   != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D5 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa2: int] :
                ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B5 )
                   => ( X4
                     != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( minus_minus_int @ X4 @ D5 ) ) ) )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X6
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
             => ( ( P @ ( minus_minus_int @ X6 @ D5 ) )
                & ( Q @ ( minus_minus_int @ X6 @ D5 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_6166_bounded__Max__nat,axiom,
    ! [P: nat > $o,X3: nat,M7: nat] :
      ( ( P @ X3 )
     => ( ! [X4: nat] :
            ( ( P @ X4 )
           => ( ord_less_eq_nat @ X4 @ M7 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X6: nat] :
                    ( ( P @ X6 )
                   => ( ord_less_eq_nat @ X6 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_6167_vebt__mint_Osimps_I2_J,axiom,
    ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
      = none_nat ) ).

% vebt_mint.simps(2)
thf(fact_6168_bset_I9_J,axiom,
    ! [D3: int,D5: int,B5: set_int,T: int] :
      ( ( dvd_dvd_int @ D3 @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X6
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ T ) )
           => ( dvd_dvd_int @ D3 @ ( plus_plus_int @ ( minus_minus_int @ X6 @ D5 ) @ T ) ) ) ) ) ).

% bset(9)
thf(fact_6169_bset_I10_J,axiom,
    ! [D3: int,D5: int,B5: set_int,T: int] :
      ( ( dvd_dvd_int @ D3 @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X6
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ T ) )
           => ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ ( minus_minus_int @ X6 @ D5 ) @ T ) ) ) ) ) ).

% bset(10)
thf(fact_6170_aset_I9_J,axiom,
    ! [D3: int,D5: int,A3: set_int,T: int] :
      ( ( dvd_dvd_int @ D3 @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X6
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ T ) )
           => ( dvd_dvd_int @ D3 @ ( plus_plus_int @ ( plus_plus_int @ X6 @ D5 ) @ T ) ) ) ) ) ).

% aset(9)
thf(fact_6171_aset_I10_J,axiom,
    ! [D3: int,D5: int,A3: set_int,T: int] :
      ( ( dvd_dvd_int @ D3 @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X6
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ X6 @ T ) )
           => ~ ( dvd_dvd_int @ D3 @ ( plus_plus_int @ ( plus_plus_int @ X6 @ D5 ) @ T ) ) ) ) ) ).

% aset(10)
thf(fact_6172_vebt__maxt_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Ma ) ) ).

% vebt_maxt.simps(3)
thf(fact_6173_periodic__finite__ex,axiom,
    ! [D3: int,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ! [X4: int,K2: int] :
            ( ( P @ X4 )
            = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ( ( ? [X8: int] : ( P @ X8 ) )
          = ( ? [X: int] :
                ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                & ( P @ X ) ) ) ) ) ) ).

% periodic_finite_ex
thf(fact_6174_aset_I7_J,axiom,
    ! [D5: int,A3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X6
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ T @ X6 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X6 @ D5 ) ) ) ) ) ).

% aset(7)
thf(fact_6175_aset_I5_J,axiom,
    ! [D5: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ T @ A3 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X6
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ X6 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X6 @ D5 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_6176_aset_I4_J,axiom,
    ! [D5: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ T @ A3 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X6
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X6 != T )
             => ( ( plus_plus_int @ X6 @ D5 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_6177_aset_I3_J,axiom,
    ! [D5: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A3 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X6
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X6 = T )
             => ( ( plus_plus_int @ X6 @ D5 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_6178_bset_I7_J,axiom,
    ! [D5: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ T @ B5 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X6
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ T @ X6 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X6 @ D5 ) ) ) ) ) ) ).

% bset(7)
thf(fact_6179_bset_I5_J,axiom,
    ! [D5: int,B5: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X6
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ X6 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X6 @ D5 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_6180_bset_I4_J,axiom,
    ! [D5: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ T @ B5 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X6
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X6 != T )
             => ( ( minus_minus_int @ X6 @ D5 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_6181_bset_I3_J,axiom,
    ! [D5: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B5 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X6
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X6 = T )
             => ( ( minus_minus_int @ X6 @ D5 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_6182_bset_I6_J,axiom,
    ! [D5: int,B5: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B5 )
                 => ( X6
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ X6 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X6 @ D5 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_6183_bset_I8_J,axiom,
    ! [D5: int,T: int,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B5 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B5 )
                   => ( X6
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ T @ X6 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X6 @ D5 ) ) ) ) ) ) ).

% bset(8)
thf(fact_6184_aset_I6_J,axiom,
    ! [D5: int,T: int,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A3 )
       => ! [X6: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A3 )
                   => ( X6
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ X6 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X6 @ D5 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_6185_aset_I8_J,axiom,
    ! [D5: int,A3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ! [X6: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A3 )
                 => ( X6
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ T @ X6 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X6 @ D5 ) ) ) ) ) ).

% aset(8)
thf(fact_6186_cppi,axiom,
    ! [D5: int,P: int > $o,P4: int > $o,A3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z4 @ X4 )
           => ( ( P @ X4 )
              = ( P4 @ X4 ) ) )
       => ( ! [X4: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ A3 )
                     => ( X4
                       != ( minus_minus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P @ X4 )
               => ( P @ ( plus_plus_int @ X4 @ D5 ) ) ) )
         => ( ! [X4: int,K2: int] :
                ( ( P4 @ X4 )
                = ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D5 ) ) ) )
           => ( ( ? [X8: int] : ( P @ X8 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
                    & ( P4 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ A3 )
                        & ( P @ ( minus_minus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_6187_cpmi,axiom,
    ! [D5: int,P: int > $o,P4: int > $o,B5: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D5 )
     => ( ? [Z4: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z4 )
           => ( ( P @ X4 )
              = ( P4 @ X4 ) ) )
       => ( ! [X4: int] :
              ( ! [Xa2: int] :
                  ( ( member_int @ Xa2 @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ B5 )
                     => ( X4
                       != ( plus_plus_int @ Xb2 @ Xa2 ) ) ) )
             => ( ( P @ X4 )
               => ( P @ ( minus_minus_int @ X4 @ D5 ) ) ) )
         => ( ! [X4: int,K2: int] :
                ( ( P4 @ X4 )
                = ( P4 @ ( minus_minus_int @ X4 @ ( times_times_int @ K2 @ D5 ) ) ) )
           => ( ( ? [X8: int] : ( P @ X8 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
                    & ( P4 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D5 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ B5 )
                        & ( P @ ( plus_plus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_6188_atLeastatMost__psubset__iff,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat,D3: set_nat] :
      ( ( ord_less_set_set_nat @ ( set_or4548717258645045905et_nat @ A @ B ) @ ( set_or4548717258645045905et_nat @ C @ D3 ) )
      = ( ( ~ ( ord_less_eq_set_nat @ A @ B )
          | ( ( ord_less_eq_set_nat @ C @ A )
            & ( ord_less_eq_set_nat @ B @ D3 )
            & ( ( ord_less_set_nat @ C @ A )
              | ( ord_less_set_nat @ B @ D3 ) ) ) )
        & ( ord_less_eq_set_nat @ C @ D3 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_6189_atLeastatMost__psubset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D3: rat] :
      ( ( ord_less_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D3 ) )
      = ( ( ~ ( ord_less_eq_rat @ A @ B )
          | ( ( ord_less_eq_rat @ C @ A )
            & ( ord_less_eq_rat @ B @ D3 )
            & ( ( ord_less_rat @ C @ A )
              | ( ord_less_rat @ B @ D3 ) ) ) )
        & ( ord_less_eq_rat @ C @ D3 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_6190_atLeastatMost__psubset__iff,axiom,
    ! [A: num,B: num,C: num,D3: num] :
      ( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D3 ) )
      = ( ( ~ ( ord_less_eq_num @ A @ B )
          | ( ( ord_less_eq_num @ C @ A )
            & ( ord_less_eq_num @ B @ D3 )
            & ( ( ord_less_num @ C @ A )
              | ( ord_less_num @ B @ D3 ) ) ) )
        & ( ord_less_eq_num @ C @ D3 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_6191_atLeastatMost__psubset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D3: nat] :
      ( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D3 ) )
      = ( ( ~ ( ord_less_eq_nat @ A @ B )
          | ( ( ord_less_eq_nat @ C @ A )
            & ( ord_less_eq_nat @ B @ D3 )
            & ( ( ord_less_nat @ C @ A )
              | ( ord_less_nat @ B @ D3 ) ) ) )
        & ( ord_less_eq_nat @ C @ D3 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_6192_atLeastatMost__psubset__iff,axiom,
    ! [A: int,B: int,C: int,D3: int] :
      ( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D3 ) )
      = ( ( ~ ( ord_less_eq_int @ A @ B )
          | ( ( ord_less_eq_int @ C @ A )
            & ( ord_less_eq_int @ B @ D3 )
            & ( ( ord_less_int @ C @ A )
              | ( ord_less_int @ B @ D3 ) ) ) )
        & ( ord_less_eq_int @ C @ D3 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_6193_atLeastatMost__psubset__iff,axiom,
    ! [A: real,B: real,C: real,D3: real] :
      ( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D3 ) )
      = ( ( ~ ( ord_less_eq_real @ A @ B )
          | ( ( ord_less_eq_real @ C @ A )
            & ( ord_less_eq_real @ B @ D3 )
            & ( ( ord_less_real @ C @ A )
              | ( ord_less_real @ B @ D3 ) ) ) )
        & ( ord_less_eq_real @ C @ D3 ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_6194_invar__vebt_Ointros_I2_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
               => ( ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(2)
thf(fact_6195_invar__vebt_Ointros_I3_J,axiom,
    ! [TreeList2: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
               => ( ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_1 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(3)
thf(fact_6196_is__pred__in__set__def,axiom,
    ( vEBT_is_pred_in_set
    = ( ^ [Xs: set_nat,X: nat,Y: nat] :
          ( ( member_nat @ Y @ Xs )
          & ( ord_less_nat @ Y @ X )
          & ! [Z6: nat] :
              ( ( member_nat @ Z6 @ Xs )
             => ( ( ord_less_nat @ Z6 @ X )
               => ( ord_less_eq_nat @ Z6 @ Y ) ) ) ) ) ) ).

% is_pred_in_set_def
thf(fact_6197_is__succ__in__set__def,axiom,
    ( vEBT_is_succ_in_set
    = ( ^ [Xs: set_nat,X: nat,Y: nat] :
          ( ( member_nat @ Y @ Xs )
          & ( ord_less_nat @ X @ Y )
          & ! [Z6: nat] :
              ( ( member_nat @ Z6 @ Xs )
             => ( ( ord_less_nat @ X @ Z6 )
               => ( ord_less_eq_nat @ Y @ Z6 ) ) ) ) ) ) ).

% is_succ_in_set_def
thf(fact_6198_vebt__pred_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve ) @ Vf )
      = none_nat ) ).

% vebt_pred.simps(5)
thf(fact_6199_vebt__succ_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc @ Vd ) @ Ve )
      = none_nat ) ).

% vebt_succ.simps(4)
thf(fact_6200_del__x__mi__lets__in__not__minNull,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList2: list_VEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
      ( ( ( X3 = Mi )
        & ( ord_less_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                 => ( ( Newnode
                      = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ Newnode ) )
                     => ( ~ ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi_lets_in_not_minNull
thf(fact_6201_del__x__not__mi__newnode__not__nil,axiom,
    ! [Mi: nat,X3: nat,Ma: nat,Deg: nat,H2: nat,L: nat,Newnode: vEBT_VEBT,TreeList2: list_VEBT_VEBT,Newlist: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X3 )
        & ( ord_less_eq_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L )
             => ( ( Newnode
                  = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
               => ( ~ ( vEBT_VEBT_minNull @ Newnode )
                 => ( ( Newlist
                      = ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ Newnode ) )
                   => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                     => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X3 = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_not_mi_newnode_not_nil
thf(fact_6202__C5_OIH_C_I1_J,axiom,
    ! [X6: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ treeList ) )
     => ( ( vEBT_invar_vebt @ X6 @ na )
        & ( ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ X6 @ x ) )
         => ( ord_less_eq_nat @ ( vEBT_T_d_e_l_e_t_e @ X6 @ x ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% "5.IH"(1)
thf(fact_6203_vebt__delete_Osimps_I6_J,axiom,
    ! [Mi: nat,Ma: nat,Tr: list_VEBT_VEBT,Sm: vEBT_VEBT,X3: nat] :
      ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) @ X3 )
      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) ) ).

% vebt_delete.simps(6)
thf(fact_6204__C5_OIH_C_I2_J,axiom,
    ( ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ summary @ x ) )
   => ( ord_less_eq_nat @ ( vEBT_T_d_e_l_e_t_e @ summary @ x ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% "5.IH"(2)
thf(fact_6205_Leaf__0__not,axiom,
    ! [A: $o,B: $o] :
      ~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat ) ).

% Leaf_0_not
thf(fact_6206_deg1Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
      = ( ? [A4: $o,B3: $o] :
            ( T
            = ( vEBT_Leaf @ A4 @ B3 ) ) ) ) ).

% deg1Leaf
thf(fact_6207_deg__1__Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
     => ? [A5: $o,B4: $o] :
          ( T
          = ( vEBT_Leaf @ A5 @ B4 ) ) ) ).

% deg_1_Leaf
thf(fact_6208_deg__1__Leafy,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( N = one_one_nat )
       => ? [A5: $o,B4: $o] :
            ( T
            = ( vEBT_Leaf @ A5 @ B4 ) ) ) ) ).

% deg_1_Leafy
thf(fact_6209_semiring__norm_I90_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit1 @ M )
        = ( bit1 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(90)
thf(fact_6210_verit__eq__simplify_I9_J,axiom,
    ! [X32: num,Y32: num] :
      ( ( ( bit1 @ X32 )
        = ( bit1 @ Y32 ) )
      = ( X32 = Y32 ) ) ).

% verit_eq_simplify(9)
thf(fact_6211_semiring__norm_I88_J,axiom,
    ! [M: num,N: num] :
      ( ( bit0 @ M )
     != ( bit1 @ N ) ) ).

% semiring_norm(88)
thf(fact_6212_semiring__norm_I89_J,axiom,
    ! [M: num,N: num] :
      ( ( bit1 @ M )
     != ( bit0 @ N ) ) ).

% semiring_norm(89)
thf(fact_6213_semiring__norm_I84_J,axiom,
    ! [N: num] :
      ( one
     != ( bit1 @ N ) ) ).

% semiring_norm(84)
thf(fact_6214_semiring__norm_I86_J,axiom,
    ! [M: num] :
      ( ( bit1 @ M )
     != one ) ).

% semiring_norm(86)
thf(fact_6215_tdeletemimi,axiom,
    ! [Deg: nat,Mi: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ord_less_eq_nat @ ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Mi ) ) @ Deg @ TreeList2 @ Summary ) @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% tdeletemimi
thf(fact_6216_semiring__norm_I80_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(80)
thf(fact_6217_semiring__norm_I73_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(73)
thf(fact_6218_semiring__norm_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(9)
thf(fact_6219_semiring__norm_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(7)
thf(fact_6220_list__update__beyond,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat,X3: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ I )
     => ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X3 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_6221_list__update__beyond,axiom,
    ! [Xs2: list_o,I: nat,X3: $o] :
      ( ( ord_less_eq_nat @ ( size_size_list_o @ Xs2 ) @ I )
     => ( ( list_update_o @ Xs2 @ I @ X3 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_6222_list__update__beyond,axiom,
    ! [Xs2: list_nat,I: nat,X3: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs2 ) @ I )
     => ( ( list_update_nat @ Xs2 @ I @ X3 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_6223_list__update__beyond,axiom,
    ! [Xs2: list_int,I: nat,X3: int] :
      ( ( ord_less_eq_nat @ ( size_size_list_int @ Xs2 ) @ I )
     => ( ( list_update_int @ Xs2 @ I @ X3 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_6224_semiring__norm_I15_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).

% semiring_norm(15)
thf(fact_6225_semiring__norm_I14_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).

% semiring_norm(14)
thf(fact_6226_semiring__norm_I81_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(81)
thf(fact_6227_semiring__norm_I72_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(72)
thf(fact_6228_semiring__norm_I77_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).

% semiring_norm(77)
thf(fact_6229_semiring__norm_I70_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).

% semiring_norm(70)
thf(fact_6230_or__numerals_I8_J,axiom,
    ! [X3: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X3 ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X3 ) ) ) ).

% or_numerals(8)
thf(fact_6231_or__numerals_I8_J,axiom,
    ! [X3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).

% or_numerals(8)
thf(fact_6232_or__numerals_I2_J,axiom,
    ! [Y3: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y3 ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y3 ) ) ) ).

% or_numerals(2)
thf(fact_6233_or__numerals_I2_J,axiom,
    ! [Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).

% or_numerals(2)
thf(fact_6234_zdiv__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit1
thf(fact_6235_semiring__norm_I3_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit0 @ N ) )
      = ( bit1 @ N ) ) ).

% semiring_norm(3)
thf(fact_6236_semiring__norm_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).

% semiring_norm(4)
thf(fact_6237_semiring__norm_I5_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% semiring_norm(5)
thf(fact_6238_semiring__norm_I8_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ one )
      = ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).

% semiring_norm(8)
thf(fact_6239_semiring__norm_I10_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).

% semiring_norm(10)
thf(fact_6240_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,X3: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X3 ) @ I )
        = X3 ) ) ).

% nth_list_update_eq
thf(fact_6241_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_o,X3: $o] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I @ X3 ) @ I )
        = X3 ) ) ).

% nth_list_update_eq
thf(fact_6242_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_nat,X3: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X3 ) @ I )
        = X3 ) ) ).

% nth_list_update_eq
thf(fact_6243_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_int,X3: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X3 ) @ I )
        = X3 ) ) ).

% nth_list_update_eq
thf(fact_6244_semiring__norm_I16_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).

% semiring_norm(16)
thf(fact_6245_semiring__norm_I79_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(79)
thf(fact_6246_semiring__norm_I74_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(74)
thf(fact_6247_or__numerals_I5_J,axiom,
    ! [X3: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X3 ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X3 ) ) ) ).

% or_numerals(5)
thf(fact_6248_or__numerals_I5_J,axiom,
    ! [X3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).

% or_numerals(5)
thf(fact_6249_or__numerals_I1_J,axiom,
    ! [Y3: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y3 ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y3 ) ) ) ).

% or_numerals(1)
thf(fact_6250_or__numerals_I1_J,axiom,
    ! [Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).

% or_numerals(1)
thf(fact_6251_xor__numerals_I1_J,axiom,
    ! [Y3: num] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y3 ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y3 ) ) ) ).

% xor_numerals(1)
thf(fact_6252_xor__numerals_I1_J,axiom,
    ! [Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).

% xor_numerals(1)
thf(fact_6253_xor__numerals_I2_J,axiom,
    ! [Y3: num] :
      ( ( bit_se6526347334894502574or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y3 ) ) )
      = ( numeral_numeral_int @ ( bit0 @ Y3 ) ) ) ).

% xor_numerals(2)
thf(fact_6254_xor__numerals_I2_J,axiom,
    ! [Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) ) ).

% xor_numerals(2)
thf(fact_6255_xor__numerals_I5_J,axiom,
    ! [X3: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X3 ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X3 ) ) ) ).

% xor_numerals(5)
thf(fact_6256_xor__numerals_I5_J,axiom,
    ! [X3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).

% xor_numerals(5)
thf(fact_6257_xor__numerals_I8_J,axiom,
    ! [X3: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X3 ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit0 @ X3 ) ) ) ).

% xor_numerals(8)
thf(fact_6258_xor__numerals_I8_J,axiom,
    ! [X3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit0 @ X3 ) ) ) ).

% xor_numerals(8)
thf(fact_6259_set__swap,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,J: nat] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ ( nth_VEBT_VEBT @ Xs2 @ J ) ) @ J @ ( nth_VEBT_VEBT @ Xs2 @ I ) ) )
          = ( set_VEBT_VEBT2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_6260_set__swap,axiom,
    ! [I: nat,Xs2: list_o,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_o @ Xs2 ) )
       => ( ( set_o2 @ ( list_update_o @ ( list_update_o @ Xs2 @ I @ ( nth_o @ Xs2 @ J ) ) @ J @ ( nth_o @ Xs2 @ I ) ) )
          = ( set_o2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_6261_set__swap,axiom,
    ! [I: nat,Xs2: list_nat,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
       => ( ( set_nat2 @ ( list_update_nat @ ( list_update_nat @ Xs2 @ I @ ( nth_nat @ Xs2 @ J ) ) @ J @ ( nth_nat @ Xs2 @ I ) ) )
          = ( set_nat2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_6262_set__swap,axiom,
    ! [I: nat,Xs2: list_int,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_int @ Xs2 ) )
       => ( ( set_int2 @ ( list_update_int @ ( list_update_int @ Xs2 @ I @ ( nth_int @ Xs2 @ J ) ) @ J @ ( nth_int @ Xs2 @ I ) ) )
          = ( set_int2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_6263_or__nat__numerals_I4_J,axiom,
    ! [X3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).

% or_nat_numerals(4)
thf(fact_6264_or__nat__numerals_I2_J,axiom,
    ! [Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).

% or_nat_numerals(2)
thf(fact_6265_or__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(6)
thf(fact_6266_or__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(2)
thf(fact_6267_div__Suc__eq__div__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% div_Suc_eq_div_add3
thf(fact_6268_Suc__div__eq__add3__div__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_div_eq_add3_div_numeral
thf(fact_6269_xor__numerals_I7_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X3 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y3 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ).

% xor_numerals(7)
thf(fact_6270_xor__numerals_I7_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ).

% xor_numerals(7)
thf(fact_6271_Suc__mod__eq__add3__mod__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_mod_eq_add3_mod_numeral
thf(fact_6272_mod__Suc__eq__mod__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% mod_Suc_eq_mod_add3
thf(fact_6273_or__nat__numerals_I3_J,axiom,
    ! [X3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).

% or_nat_numerals(3)
thf(fact_6274_or__nat__numerals_I1_J,axiom,
    ! [Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).

% or_nat_numerals(1)
thf(fact_6275_xor__nat__numerals_I4_J,axiom,
    ! [X3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit0 @ X3 ) ) ) ).

% xor_nat_numerals(4)
thf(fact_6276_xor__nat__numerals_I3_J,axiom,
    ! [X3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X3 ) ) ) ).

% xor_nat_numerals(3)
thf(fact_6277_xor__nat__numerals_I2_J,axiom,
    ! [Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) ) ).

% xor_nat_numerals(2)
thf(fact_6278_xor__nat__numerals_I1_J,axiom,
    ! [Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) ) ).

% xor_nat_numerals(1)
thf(fact_6279_or__numerals_I4_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X3 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y3 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ) ).

% or_numerals(4)
thf(fact_6280_or__numerals_I4_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ) ).

% or_numerals(4)
thf(fact_6281_or__numerals_I6_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X3 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y3 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ) ).

% or_numerals(6)
thf(fact_6282_or__numerals_I6_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ) ).

% or_numerals(6)
thf(fact_6283_or__numerals_I7_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X3 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y3 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ) ).

% or_numerals(7)
thf(fact_6284_or__numerals_I7_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ) ).

% or_numerals(7)
thf(fact_6285_xor__numerals_I4_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit0 @ X3 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y3 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ) ).

% xor_numerals(4)
thf(fact_6286_xor__numerals_I4_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ) ).

% xor_numerals(4)
thf(fact_6287_xor__numerals_I6_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ ( bit1 @ X3 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y3 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Y3 ) ) ) ) ) ).

% xor_numerals(6)
thf(fact_6288_xor__numerals_I6_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ X3 ) @ ( numeral_numeral_nat @ Y3 ) ) ) ) ) ).

% xor_numerals(6)
thf(fact_6289_zmod__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).

% zmod_numeral_Bit1
thf(fact_6290_signed__take__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_bit1
thf(fact_6291_signed__take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_minus_bit1
thf(fact_6292_VEBT_Osize_I4_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size(4)
thf(fact_6293_verit__eq__simplify_I14_J,axiom,
    ! [X2: num,X32: num] :
      ( ( bit0 @ X2 )
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(14)
thf(fact_6294_verit__eq__simplify_I12_J,axiom,
    ! [X32: num] :
      ( one
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(12)
thf(fact_6295_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I3_J,axiom,
    ! [A: $o,B: $o,N: nat] :
      ( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ N ) ) )
      = one_one_nat ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(3)
thf(fact_6296_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat )
      = one_one_nat ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(1)
thf(fact_6297_vebt__delete_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat )
      = ( vEBT_Leaf @ $false @ B ) ) ).

% vebt_delete.simps(1)
thf(fact_6298_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I2_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(2)
thf(fact_6299_xor__num_Ocases,axiom,
    ! [X3: product_prod_num_num] :
      ( ( X3
       != ( product_Pair_num_num @ one @ one ) )
     => ( ! [N2: num] :
            ( X3
           != ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) )
       => ( ! [N2: num] :
              ( X3
             != ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) )
         => ( ! [M4: num] :
                ( X3
               != ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) )
           => ( ! [M4: num,N2: num] :
                  ( X3
                 != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) )
             => ( ! [M4: num,N2: num] :
                    ( X3
                   != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) )
               => ( ! [M4: num] :
                      ( X3
                     != ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) )
                 => ( ! [M4: num,N2: num] :
                        ( X3
                       != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) )
                   => ~ ! [M4: num,N2: num] :
                          ( X3
                         != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.cases
thf(fact_6300_num_Oexhaust,axiom,
    ! [Y3: num] :
      ( ( Y3 != one )
     => ( ! [X22: num] :
            ( Y3
           != ( bit0 @ X22 ) )
       => ~ ! [X33: num] :
              ( Y3
             != ( bit1 @ X33 ) ) ) ) ).

% num.exhaust
thf(fact_6301_vebt__delete_Osimps_I2_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) )
      = ( vEBT_Leaf @ A @ $false ) ) ).

% vebt_delete.simps(2)
thf(fact_6302_vebt__buildup_Osimps_I1_J,axiom,
    ( ( vEBT_vebt_buildup @ zero_zero_nat )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(1)
thf(fact_6303_VEBT__internal_Onaive__member_Ocases,axiom,
    ! [X3: produc9072475918466114483BT_nat] :
      ( ! [A5: $o,B4: $o,X4: nat] :
          ( X3
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ X4 ) )
     => ( ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux2: nat] :
            ( X3
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Ux2 ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
              ( X3
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ X4 ) ) ) ) ).

% VEBT_internal.naive_member.cases
thf(fact_6304_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).

% numeral_Bit1
thf(fact_6305_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).

% numeral_Bit1
thf(fact_6306_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).

% numeral_Bit1
thf(fact_6307_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).

% numeral_Bit1
thf(fact_6308_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).

% numeral_Bit1
thf(fact_6309_invar__vebt_Ointros_I1_J,axiom,
    ! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).

% invar_vebt.intros(1)
thf(fact_6310_eval__nat__numeral_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).

% eval_nat_numeral(3)
thf(fact_6311_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_6312_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_6313_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_6314_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_6315_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_6316_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_6317_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q3 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_6318_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q3 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_6319_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q3: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q3 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_6320_power__minus__Bit1,axiom,
    ! [X3: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6321_power__minus__Bit1,axiom,
    ! [X3: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6322_power__minus__Bit1,axiom,
    ! [X3: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6323_power__minus__Bit1,axiom,
    ! [X3: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X3 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6324_power__minus__Bit1,axiom,
    ! [X3: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_rat @ ( power_power_rat @ X3 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6325_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I4_J,axiom,
    ! [Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,Uu2: nat] :
      ( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList2 @ Summary ) @ Uu2 )
      = one_one_nat ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(4)
thf(fact_6326_set__update__memI,axiom,
    ! [N: nat,Xs2: list_option_nat,X3: option_nat] :
      ( ( ord_less_nat @ N @ ( size_s6086282163384603972on_nat @ Xs2 ) )
     => ( member_option_nat @ X3 @ ( set_option_nat2 @ ( list_u3411377215356412978on_nat @ Xs2 @ N @ X3 ) ) ) ) ).

% set_update_memI
thf(fact_6327_set__update__memI,axiom,
    ! [N: nat,Xs2: list_real,X3: real] :
      ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ X3 @ ( set_real2 @ ( list_update_real @ Xs2 @ N @ X3 ) ) ) ) ).

% set_update_memI
thf(fact_6328_set__update__memI,axiom,
    ! [N: nat,Xs2: list_set_nat,X3: set_nat] :
      ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs2 ) )
     => ( member_set_nat @ X3 @ ( set_set_nat2 @ ( list_update_set_nat @ Xs2 @ N @ X3 ) ) ) ) ).

% set_update_memI
thf(fact_6329_set__update__memI,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,X3: vEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ N @ X3 ) ) ) ) ).

% set_update_memI
thf(fact_6330_set__update__memI,axiom,
    ! [N: nat,Xs2: list_o,X3: $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ X3 @ ( set_o2 @ ( list_update_o @ Xs2 @ N @ X3 ) ) ) ) ).

% set_update_memI
thf(fact_6331_set__update__memI,axiom,
    ! [N: nat,Xs2: list_nat,X3: nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ X3 @ ( set_nat2 @ ( list_update_nat @ Xs2 @ N @ X3 ) ) ) ) ).

% set_update_memI
thf(fact_6332_set__update__memI,axiom,
    ! [N: nat,Xs2: list_int,X3: int] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ X3 @ ( set_int2 @ ( list_update_int @ Xs2 @ N @ X3 ) ) ) ) ).

% set_update_memI
thf(fact_6333_nth__list__update,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,J: nat,X3: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X3 ) @ J )
            = X3 ) )
        & ( ( I != J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X3 ) @ J )
            = ( nth_VEBT_VEBT @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_6334_nth__list__update,axiom,
    ! [I: nat,Xs2: list_o,X3: $o,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I @ X3 ) @ J )
        = ( ( ( I = J )
           => X3 )
          & ( ( I != J )
           => ( nth_o @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_6335_nth__list__update,axiom,
    ! [I: nat,Xs2: list_nat,J: nat,X3: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X3 ) @ J )
            = X3 ) )
        & ( ( I != J )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I @ X3 ) @ J )
            = ( nth_nat @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_6336_nth__list__update,axiom,
    ! [I: nat,Xs2: list_int,J: nat,X3: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X3 ) @ J )
            = X3 ) )
        & ( ( I != J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X3 ) @ J )
            = ( nth_int @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_6337_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,X3: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X3 )
          = Xs2 )
        = ( ( nth_VEBT_VEBT @ Xs2 @ I )
          = X3 ) ) ) ).

% list_update_same_conv
thf(fact_6338_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_o,X3: $o] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( ( list_update_o @ Xs2 @ I @ X3 )
          = Xs2 )
        = ( ( nth_o @ Xs2 @ I )
          = X3 ) ) ) ).

% list_update_same_conv
thf(fact_6339_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_nat,X3: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( list_update_nat @ Xs2 @ I @ X3 )
          = Xs2 )
        = ( ( nth_nat @ Xs2 @ I )
          = X3 ) ) ) ).

% list_update_same_conv
thf(fact_6340_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_int,X3: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( list_update_int @ Xs2 @ I @ X3 )
          = Xs2 )
        = ( ( nth_int @ Xs2 @ I )
          = X3 ) ) ) ).

% list_update_same_conv
thf(fact_6341_vebt__buildup_Osimps_I2_J,axiom,
    ( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(2)
thf(fact_6342_vebt__pred_Osimps_I1_J,axiom,
    ! [Uu2: $o,Uv2: $o] :
      ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat )
      = none_nat ) ).

% vebt_pred.simps(1)
thf(fact_6343_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_6344_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_6345_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6346_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6347_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6348_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q3: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
     != zero_zero_nat ) ).

% cong_exp_iff_simps(3)
thf(fact_6349_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q3: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
     != zero_zero_int ) ).

% cong_exp_iff_simps(3)
thf(fact_6350_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q3: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
     != zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(3)
thf(fact_6351_power3__eq__cube,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6352_power3__eq__cube,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6353_power3__eq__cube,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6354_power3__eq__cube,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6355_power3__eq__cube,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6356_numeral__3__eq__3,axiom,
    ( ( numeral_numeral_nat @ ( bit1 @ one ) )
    = ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).

% numeral_3_eq_3
thf(fact_6357_Suc3__eq__add__3,axiom,
    ! [N: nat] :
      ( ( suc @ ( suc @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).

% Suc3_eq_add_3
thf(fact_6358_num_Osize_I6_J,axiom,
    ! [X32: num] :
      ( ( size_size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(6)
thf(fact_6359_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Ocases,axiom,
    ! [X3: produc9072475918466114483BT_nat] :
      ( ! [Uu: $o,Uv: $o] :
          ( X3
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat ) )
     => ( ! [A5: $o,Uw: $o] :
            ( X3
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ Uw ) @ ( suc @ zero_zero_nat ) ) )
       => ( ! [A5: $o,B4: $o,Va: nat] :
              ( X3
             != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ ( suc @ Va ) ) ) )
         => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT,Vb: nat] :
                ( X3
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Vb ) )
           => ( ! [V3: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT,Vf2: nat] :
                  ( X3
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Vf2 ) )
             => ( ! [V3: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT,Vj2: nat] :
                    ( X3
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Vj2 ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                      ( X3
                     != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.cases
thf(fact_6360_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Ocases,axiom,
    ! [X3: produc9072475918466114483BT_nat] :
      ( ! [Uu: $o,B4: $o] :
          ( X3
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ B4 ) @ zero_zero_nat ) )
     => ( ! [Uv: $o,Uw: $o,N2: nat] :
            ( X3
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N2 ) ) )
       => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,Va3: nat] :
              ( X3
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Va3 ) )
         => ( ! [V3: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT,Ve2: nat] :
                ( X3
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Ve2 ) )
           => ( ! [V3: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
                  ( X3
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Vi2 ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                    ( X3
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.cases
thf(fact_6361_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Ocases,axiom,
    ! [X3: produc9072475918466114483BT_nat] :
      ( ! [A5: $o,B4: $o,X4: nat] :
          ( X3
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ X4 ) )
     => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
            ( X3
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) @ X4 ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT,X4: nat] :
              ( X3
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) @ X4 ) )
         => ( ! [V3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                ( X3
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) @ X4 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                  ( X3
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.cases
thf(fact_6362_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Ocases,axiom,
    ! [X3: produc9072475918466114483BT_nat] :
      ( ! [A5: $o,B4: $o,X4: nat] :
          ( X3
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ X4 ) )
     => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X4: nat] :
            ( X3
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X4 ) )
       => ( ! [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,X4: nat] :
              ( X3
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ X4 ) )
         => ( ! [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
                ( X3
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ X4 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                  ( X3
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.cases
thf(fact_6363_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Ocases,axiom,
    ! [X3: produc9072475918466114483BT_nat] :
      ( ! [A5: $o,B4: $o] :
          ( X3
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ zero_zero_nat ) )
     => ( ! [A5: $o,B4: $o] :
            ( X3
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ zero_zero_nat ) ) )
       => ( ! [A5: $o,B4: $o,N2: nat] :
              ( X3
             != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ ( suc @ N2 ) ) ) )
         => ( ! [Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,Uu: nat] :
                ( X3
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) @ Uu ) )
           => ( ! [Mi2: nat,Ma2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                  ( X3
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList3 @ Summary2 ) @ X4 ) )
             => ( ! [Mi2: nat,Ma2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                    ( X3
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList3 @ Summary2 ) @ X4 ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                      ( X3
                     != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ) ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.cases
thf(fact_6364_VEBT__internal_Omembermima_Ocases,axiom,
    ! [X3: produc9072475918466114483BT_nat] :
      ( ! [Uu: $o,Uv: $o,Uw: nat] :
          ( X3
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) )
     => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
            ( X3
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
       => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb: vEBT_VEBT,X4: nat] :
              ( X3
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) @ X4 ) )
         => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
                ( X3
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ X4 ) )
           => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT,X4: nat] :
                  ( X3
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ X4 ) ) ) ) ) ) ).

% VEBT_internal.membermima.cases
thf(fact_6365_cong__exp__iff__simps_I7_J,axiom,
    ! [Q3: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q3 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(7)
thf(fact_6366_cong__exp__iff__simps_I7_J,axiom,
    ! [Q3: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q3 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(7)
thf(fact_6367_cong__exp__iff__simps_I7_J,axiom,
    ! [Q3: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q3 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(7)
thf(fact_6368_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q3: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q3 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(11)
thf(fact_6369_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q3: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q3 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(11)
thf(fact_6370_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q3: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q3 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q3 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(11)
thf(fact_6371_Suc__div__eq__add3__div,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_div_eq_add3_div
thf(fact_6372_Suc__mod__eq__add3__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_mod_eq_add3_mod
thf(fact_6373_vebt__mint_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( A
       => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ zero_zero_nat ) ) )
      & ( ~ A
       => ( ( B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ one_one_nat ) ) )
          & ( ~ B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_mint.simps(1)
thf(fact_6374_vebt__maxt_Osimps_I1_J,axiom,
    ! [B: $o,A: $o] :
      ( ( B
       => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ zero_zero_nat ) ) )
          & ( ~ A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_maxt.simps(1)
thf(fact_6375_vebt__pred_Osimps_I2_J,axiom,
    ! [A: $o,Uw2: $o] :
      ( ( A
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw2 ) @ ( suc @ zero_zero_nat ) )
          = ( some_nat @ zero_zero_nat ) ) )
      & ( ~ A
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw2 ) @ ( suc @ zero_zero_nat ) )
          = none_nat ) ) ) ).

% vebt_pred.simps(2)
thf(fact_6376_vebt__succ_Osimps_I1_J,axiom,
    ! [B: $o,Uu2: $o] :
      ( ( B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu2 @ B ) @ zero_zero_nat )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu2 @ B ) @ zero_zero_nat )
          = none_nat ) ) ) ).

% vebt_succ.simps(1)
thf(fact_6377_mod__exhaust__less__4,axiom,
    ! [M: nat] :
      ( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = zero_zero_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = one_one_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).

% mod_exhaust_less_4
thf(fact_6378_vebt__pred_Osimps_I3_J,axiom,
    ! [B: $o,A: $o,Va2: nat] :
      ( ( B
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va2 ) ) )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( A
           => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va2 ) ) )
              = ( some_nat @ zero_zero_nat ) ) )
          & ( ~ A
           => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va2 ) ) )
              = none_nat ) ) ) ) ) ).

% vebt_pred.simps(3)
thf(fact_6379_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TreeList2 @ Summary ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(5)
thf(fact_6380_take__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_bit1
thf(fact_6381_take__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).

% take_bit_Suc_bit1
thf(fact_6382_vebt__mint_Oelims,axiom,
    ! [X3: vEBT_VEBT,Y3: option_nat] :
      ( ( ( vEBT_vebt_mint @ X3 )
        = Y3 )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ~ ( ( A5
                 => ( Y3
                    = ( some_nat @ zero_zero_nat ) ) )
                & ( ~ A5
                 => ( ( B4
                     => ( Y3
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B4
                     => ( Y3 = none_nat ) ) ) ) ) )
       => ( ( ? [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
           => ( Y3 != none_nat ) )
         => ~ ! [Mi2: nat] :
                ( ? [Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y3
                 != ( some_nat @ Mi2 ) ) ) ) ) ) ).

% vebt_mint.elims
thf(fact_6383_vebt__maxt_Oelims,axiom,
    ! [X3: vEBT_VEBT,Y3: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X3 )
        = Y3 )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ~ ( ( B4
                 => ( Y3
                    = ( some_nat @ one_one_nat ) ) )
                & ( ~ B4
                 => ( ( A5
                     => ( Y3
                        = ( some_nat @ zero_zero_nat ) ) )
                    & ( ~ A5
                     => ( Y3 = none_nat ) ) ) ) ) )
       => ( ( ? [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
           => ( Y3 != none_nat ) )
         => ~ ! [Mi2: nat,Ma2: nat] :
                ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y3
                 != ( some_nat @ Ma2 ) ) ) ) ) ) ).

% vebt_maxt.elims
thf(fact_6384_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I6_J,axiom,
    ! [Mi: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ TreeList2 @ Summary ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(6)
thf(fact_6385_odd__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) )
     => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% odd_mod_4_div_2
thf(fact_6386_vebt__delete_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,TrLst: list_VEBT_VEBT,Smry: vEBT_VEBT,X3: nat] :
      ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TrLst @ Smry ) @ X3 )
      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TrLst @ Smry ) ) ).

% vebt_delete.simps(5)
thf(fact_6387_invar__vebt_Ocases,axiom,
    ! [A1: vEBT_VEBT,A22: nat] :
      ( ( vEBT_invar_vebt @ A1 @ A22 )
     => ( ( ? [A5: $o,B4: $o] :
              ( A1
              = ( vEBT_Leaf @ A5 @ B4 ) )
         => ( A22
           != ( suc @ zero_zero_nat ) ) )
       => ( ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( ( A22 = Deg2 )
               => ( ! [X6: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                     => ( vEBT_invar_vebt @ X6 @ N2 ) )
                 => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                   => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                     => ( ( M4 = N2 )
                       => ( ( Deg2
                            = ( plus_plus_nat @ N2 @ M4 ) )
                         => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
                           => ~ ! [X6: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                 => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X_12 ) ) ) ) ) ) ) ) ) )
         => ( ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
                ( ( A1
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( A22 = Deg2 )
                 => ( ! [X6: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ( vEBT_invar_vebt @ X6 @ N2 ) )
                   => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                       => ( ( M4
                            = ( suc @ N2 ) )
                         => ( ( Deg2
                              = ( plus_plus_nat @ N2 @ M4 ) )
                           => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
                             => ~ ! [X6: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X_12 ) ) ) ) ) ) ) ) ) )
           => ( ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                  ( ( A1
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
                 => ( ( A22 = Deg2 )
                   => ( ! [X6: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_invar_vebt @ X6 @ N2 ) )
                     => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                         => ( ( M4 = N2 )
                           => ( ( Deg2
                                = ( plus_plus_nat @ N2 @ M4 ) )
                             => ( ! [I2: nat] :
                                    ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X8 ) )
                                      = ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
                               => ( ( ( Mi2 = Ma2 )
                                   => ! [X6: vEBT_VEBT] :
                                        ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X_12 ) ) )
                                 => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                   => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ~ ( ( Mi2 != Ma2 )
                                         => ! [I2: nat] :
                                              ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                             => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
                                                    = I2 )
                                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
                                                & ! [X6: nat] :
                                                    ( ( ( ( vEBT_VEBT_high @ X6 @ N2 )
                                                        = I2 )
                                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X6 @ N2 ) ) )
                                                   => ( ( ord_less_nat @ Mi2 @ X6 )
                                                      & ( ord_less_eq_nat @ X6 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
             => ~ ! [TreeList3: list_VEBT_VEBT,N2: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                    ( ( A1
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
                   => ( ( A22 = Deg2 )
                     => ( ! [X6: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                           => ( vEBT_invar_vebt @ X6 @ N2 ) )
                       => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                         => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                              = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                           => ( ( M4
                                = ( suc @ N2 ) )
                             => ( ( Deg2
                                  = ( plus_plus_nat @ N2 @ M4 ) )
                               => ( ! [I2: nat] :
                                      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                     => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X8 ) )
                                        = ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
                                 => ( ( ( Mi2 = Ma2 )
                                     => ! [X6: vEBT_VEBT] :
                                          ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                         => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X6 @ X_12 ) ) )
                                   => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                     => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                       => ~ ( ( Mi2 != Ma2 )
                                           => ! [I2: nat] :
                                                ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                               => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N2 )
                                                      = I2 )
                                                   => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma2 @ N2 ) ) )
                                                  & ! [X6: nat] :
                                                      ( ( ( ( vEBT_VEBT_high @ X6 @ N2 )
                                                          = I2 )
                                                        & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X6 @ N2 ) ) )
                                                     => ( ( ord_less_nat @ Mi2 @ X6 )
                                                        & ( ord_less_eq_nat @ X6 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.cases
thf(fact_6388_invar__vebt_Osimps,axiom,
    ( vEBT_invar_vebt
    = ( ^ [A12: vEBT_VEBT,A23: nat] :
          ( ( ? [A4: $o,B3: $o] :
                ( A12
                = ( vEBT_Leaf @ A4 @ B3 ) )
            & ( A23
              = ( suc @ zero_zero_nat ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N3 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ N3 ) )
              & ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X8 )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
              & ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X8 )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N3 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ N3 ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ X8 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                      & ! [X: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X @ N3 )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X @ N3 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) )
          | ? [TreeList: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                 => ( vEBT_invar_vebt @ X @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
              & ( A23
                = ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ X8 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList ) )
                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                      & ! [X: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X @ N3 )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I4 ) @ ( vEBT_VEBT_low @ X @ N3 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.simps
thf(fact_6389_insert__simp__norm,axiom,
    ! [X3: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
     => ( ( ord_less_nat @ Mi @ X3 )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X3 != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( ord_max_nat @ X3 @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_norm
thf(fact_6390_insert__simp__excp,axiom,
    ! [Mi: nat,Deg: nat,TreeList2: list_VEBT_VEBT,X3: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
     => ( ( ord_less_nat @ X3 @ Mi )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X3 != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X3 @ ( ord_max_nat @ Mi @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_excp
thf(fact_6391_member__bound__size__univ,axiom,
    ! [T: vEBT_VEBT,N: nat,U: real,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( U
          = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_m_e_m_b_e_r @ T @ X3 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).

% member_bound_size_univ
thf(fact_6392_vebt__member_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ X3 ) ).

% vebt_member.simps(4)
thf(fact_6393_succ__bound__size__univ,axiom,
    ! [T: vEBT_VEBT,N: nat,U: real,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( U
          = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_s_u_c_c @ T @ X3 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).

% succ_bound_size_univ
thf(fact_6394_pred__bound__size__univ,axiom,
    ! [T: vEBT_VEBT,N: nat,U: real,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( U
          = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_p_r_e_d @ T @ X3 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).

% pred_bound_size_univ
thf(fact_6395_max__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ M @ N ) ) ) ).

% max_Suc_Suc
thf(fact_6396_max__0R,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ N @ zero_zero_nat )
      = N ) ).

% max_0R
thf(fact_6397_max__0L,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ N )
      = N ) ).

% max_0L
thf(fact_6398_max__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ zero_zero_nat )
      = A ) ).

% max_nat.right_neutral
thf(fact_6399_max__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( ord_max_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.neutr_eq_iff
thf(fact_6400_max__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ A )
      = A ) ).

% max_nat.left_neutral
thf(fact_6401_max__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_max_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.eq_neutr_iff
thf(fact_6402_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ V ) ) )
      & ( ~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_6403_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ V ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_6404_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_6405_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_6406_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ V ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_6407_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_6408_max__0__1_I3_J,axiom,
    ! [X3: num] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ X3 ) )
      = ( numera1916890842035813515d_enat @ X3 ) ) ).

% max_0_1(3)
thf(fact_6409_max__0__1_I3_J,axiom,
    ! [X3: num] :
      ( ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ X3 ) )
      = ( numera6620942414471956472nteger @ X3 ) ) ).

% max_0_1(3)
thf(fact_6410_max__0__1_I3_J,axiom,
    ! [X3: num] :
      ( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X3 ) )
      = ( numeral_numeral_real @ X3 ) ) ).

% max_0_1(3)
thf(fact_6411_max__0__1_I3_J,axiom,
    ! [X3: num] :
      ( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X3 ) )
      = ( numeral_numeral_rat @ X3 ) ) ).

% max_0_1(3)
thf(fact_6412_max__0__1_I3_J,axiom,
    ! [X3: num] :
      ( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X3 ) )
      = ( numeral_numeral_nat @ X3 ) ) ).

% max_0_1(3)
thf(fact_6413_max__0__1_I3_J,axiom,
    ! [X3: num] :
      ( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X3 ) )
      = ( numeral_numeral_int @ X3 ) ) ).

% max_0_1(3)
thf(fact_6414_max__0__1_I4_J,axiom,
    ! [X3: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X3 ) @ zero_z5237406670263579293d_enat )
      = ( numera1916890842035813515d_enat @ X3 ) ) ).

% max_0_1(4)
thf(fact_6415_max__0__1_I4_J,axiom,
    ! [X3: num] :
      ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X3 ) @ zero_z3403309356797280102nteger )
      = ( numera6620942414471956472nteger @ X3 ) ) ).

% max_0_1(4)
thf(fact_6416_max__0__1_I4_J,axiom,
    ! [X3: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X3 ) @ zero_zero_real )
      = ( numeral_numeral_real @ X3 ) ) ).

% max_0_1(4)
thf(fact_6417_max__0__1_I4_J,axiom,
    ! [X3: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X3 ) @ zero_zero_rat )
      = ( numeral_numeral_rat @ X3 ) ) ).

% max_0_1(4)
thf(fact_6418_max__0__1_I4_J,axiom,
    ! [X3: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X3 ) @ zero_zero_nat )
      = ( numeral_numeral_nat @ X3 ) ) ).

% max_0_1(4)
thf(fact_6419_max__0__1_I4_J,axiom,
    ! [X3: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X3 ) @ zero_zero_int )
      = ( numeral_numeral_int @ X3 ) ) ).

% max_0_1(4)
thf(fact_6420_max__0__1_I2_J,axiom,
    ( ( ord_max_real @ one_one_real @ zero_zero_real )
    = one_one_real ) ).

% max_0_1(2)
thf(fact_6421_max__0__1_I2_J,axiom,
    ( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
    = one_one_rat ) ).

% max_0_1(2)
thf(fact_6422_max__0__1_I2_J,axiom,
    ( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
    = one_one_nat ) ).

% max_0_1(2)
thf(fact_6423_max__0__1_I2_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(2)
thf(fact_6424_max__0__1_I2_J,axiom,
    ( ( ord_max_int @ one_one_int @ zero_zero_int )
    = one_one_int ) ).

% max_0_1(2)
thf(fact_6425_max__0__1_I2_J,axiom,
    ( ( ord_max_Code_integer @ one_one_Code_integer @ zero_z3403309356797280102nteger )
    = one_one_Code_integer ) ).

% max_0_1(2)
thf(fact_6426_max__0__1_I1_J,axiom,
    ( ( ord_max_real @ zero_zero_real @ one_one_real )
    = one_one_real ) ).

% max_0_1(1)
thf(fact_6427_max__0__1_I1_J,axiom,
    ( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
    = one_one_rat ) ).

% max_0_1(1)
thf(fact_6428_max__0__1_I1_J,axiom,
    ( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
    = one_one_nat ) ).

% max_0_1(1)
thf(fact_6429_max__0__1_I1_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(1)
thf(fact_6430_max__0__1_I1_J,axiom,
    ( ( ord_max_int @ zero_zero_int @ one_one_int )
    = one_one_int ) ).

% max_0_1(1)
thf(fact_6431_max__0__1_I1_J,axiom,
    ( ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% max_0_1(1)
thf(fact_6432_max__0__1_I5_J,axiom,
    ! [X3: num] :
      ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X3 ) )
      = ( numera1916890842035813515d_enat @ X3 ) ) ).

% max_0_1(5)
thf(fact_6433_max__0__1_I5_J,axiom,
    ! [X3: num] :
      ( ( ord_max_Code_integer @ one_one_Code_integer @ ( numera6620942414471956472nteger @ X3 ) )
      = ( numera6620942414471956472nteger @ X3 ) ) ).

% max_0_1(5)
thf(fact_6434_max__0__1_I5_J,axiom,
    ! [X3: num] :
      ( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X3 ) )
      = ( numeral_numeral_real @ X3 ) ) ).

% max_0_1(5)
thf(fact_6435_max__0__1_I5_J,axiom,
    ! [X3: num] :
      ( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X3 ) )
      = ( numeral_numeral_rat @ X3 ) ) ).

% max_0_1(5)
thf(fact_6436_max__0__1_I5_J,axiom,
    ! [X3: num] :
      ( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X3 ) )
      = ( numeral_numeral_nat @ X3 ) ) ).

% max_0_1(5)
thf(fact_6437_max__0__1_I5_J,axiom,
    ! [X3: num] :
      ( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X3 ) )
      = ( numeral_numeral_int @ X3 ) ) ).

% max_0_1(5)
thf(fact_6438_max__0__1_I6_J,axiom,
    ! [X3: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X3 ) @ one_on7984719198319812577d_enat )
      = ( numera1916890842035813515d_enat @ X3 ) ) ).

% max_0_1(6)
thf(fact_6439_max__0__1_I6_J,axiom,
    ! [X3: num] :
      ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X3 ) @ one_one_Code_integer )
      = ( numera6620942414471956472nteger @ X3 ) ) ).

% max_0_1(6)
thf(fact_6440_max__0__1_I6_J,axiom,
    ! [X3: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X3 ) @ one_one_real )
      = ( numeral_numeral_real @ X3 ) ) ).

% max_0_1(6)
thf(fact_6441_max__0__1_I6_J,axiom,
    ! [X3: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X3 ) @ one_one_rat )
      = ( numeral_numeral_rat @ X3 ) ) ).

% max_0_1(6)
thf(fact_6442_max__0__1_I6_J,axiom,
    ! [X3: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X3 ) @ one_one_nat )
      = ( numeral_numeral_nat @ X3 ) ) ).

% max_0_1(6)
thf(fact_6443_max__0__1_I6_J,axiom,
    ! [X3: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X3 ) @ one_one_int )
      = ( numeral_numeral_int @ X3 ) ) ).

% max_0_1(6)
thf(fact_6444_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6445_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( numera6620942414471956472nteger @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6446_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6447_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6448_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6449_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ V ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6450_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6451_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6452_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6453_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6454_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6455_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6456_max__def,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A4: extended_enat,B3: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def
thf(fact_6457_max__def,axiom,
    ( ord_max_Code_integer
    = ( ^ [A4: code_integer,B3: code_integer] : ( if_Code_integer @ ( ord_le3102999989581377725nteger @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def
thf(fact_6458_max__def,axiom,
    ( ord_max_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] : ( if_set_nat @ ( ord_less_eq_set_nat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def
thf(fact_6459_max__def,axiom,
    ( ord_max_rat
    = ( ^ [A4: rat,B3: rat] : ( if_rat @ ( ord_less_eq_rat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def
thf(fact_6460_max__def,axiom,
    ( ord_max_num
    = ( ^ [A4: num,B3: num] : ( if_num @ ( ord_less_eq_num @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def
thf(fact_6461_max__def,axiom,
    ( ord_max_nat
    = ( ^ [A4: nat,B3: nat] : ( if_nat @ ( ord_less_eq_nat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def
thf(fact_6462_max__def,axiom,
    ( ord_max_int
    = ( ^ [A4: int,B3: int] : ( if_int @ ( ord_less_eq_int @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def
thf(fact_6463_max__absorb1,axiom,
    ! [Y3: extended_enat,X3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Y3 @ X3 )
     => ( ( ord_ma741700101516333627d_enat @ X3 @ Y3 )
        = X3 ) ) ).

% max_absorb1
thf(fact_6464_max__absorb1,axiom,
    ! [Y3: code_integer,X3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ Y3 @ X3 )
     => ( ( ord_max_Code_integer @ X3 @ Y3 )
        = X3 ) ) ).

% max_absorb1
thf(fact_6465_max__absorb1,axiom,
    ! [Y3: set_nat,X3: set_nat] :
      ( ( ord_less_eq_set_nat @ Y3 @ X3 )
     => ( ( ord_max_set_nat @ X3 @ Y3 )
        = X3 ) ) ).

% max_absorb1
thf(fact_6466_max__absorb1,axiom,
    ! [Y3: rat,X3: rat] :
      ( ( ord_less_eq_rat @ Y3 @ X3 )
     => ( ( ord_max_rat @ X3 @ Y3 )
        = X3 ) ) ).

% max_absorb1
thf(fact_6467_max__absorb1,axiom,
    ! [Y3: num,X3: num] :
      ( ( ord_less_eq_num @ Y3 @ X3 )
     => ( ( ord_max_num @ X3 @ Y3 )
        = X3 ) ) ).

% max_absorb1
thf(fact_6468_max__absorb1,axiom,
    ! [Y3: nat,X3: nat] :
      ( ( ord_less_eq_nat @ Y3 @ X3 )
     => ( ( ord_max_nat @ X3 @ Y3 )
        = X3 ) ) ).

% max_absorb1
thf(fact_6469_max__absorb1,axiom,
    ! [Y3: int,X3: int] :
      ( ( ord_less_eq_int @ Y3 @ X3 )
     => ( ( ord_max_int @ X3 @ Y3 )
        = X3 ) ) ).

% max_absorb1
thf(fact_6470_max__absorb2,axiom,
    ! [X3: extended_enat,Y3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
     => ( ( ord_ma741700101516333627d_enat @ X3 @ Y3 )
        = Y3 ) ) ).

% max_absorb2
thf(fact_6471_max__absorb2,axiom,
    ! [X3: code_integer,Y3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ X3 @ Y3 )
     => ( ( ord_max_Code_integer @ X3 @ Y3 )
        = Y3 ) ) ).

% max_absorb2
thf(fact_6472_max__absorb2,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_less_eq_set_nat @ X3 @ Y3 )
     => ( ( ord_max_set_nat @ X3 @ Y3 )
        = Y3 ) ) ).

% max_absorb2
thf(fact_6473_max__absorb2,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ X3 @ Y3 )
     => ( ( ord_max_rat @ X3 @ Y3 )
        = Y3 ) ) ).

% max_absorb2
thf(fact_6474_max__absorb2,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_num @ X3 @ Y3 )
     => ( ( ord_max_num @ X3 @ Y3 )
        = Y3 ) ) ).

% max_absorb2
thf(fact_6475_max__absorb2,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X3 @ Y3 )
     => ( ( ord_max_nat @ X3 @ Y3 )
        = Y3 ) ) ).

% max_absorb2
thf(fact_6476_max__absorb2,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ X3 @ Y3 )
     => ( ( ord_max_int @ X3 @ Y3 )
        = Y3 ) ) ).

% max_absorb2
thf(fact_6477_of__int__max,axiom,
    ! [X3: int,Y3: int] :
      ( ( ring_1_of_int_real @ ( ord_max_int @ X3 @ Y3 ) )
      = ( ord_max_real @ ( ring_1_of_int_real @ X3 ) @ ( ring_1_of_int_real @ Y3 ) ) ) ).

% of_int_max
thf(fact_6478_of__int__max,axiom,
    ! [X3: int,Y3: int] :
      ( ( ring_1_of_int_rat @ ( ord_max_int @ X3 @ Y3 ) )
      = ( ord_max_rat @ ( ring_1_of_int_rat @ X3 ) @ ( ring_1_of_int_rat @ Y3 ) ) ) ).

% of_int_max
thf(fact_6479_of__int__max,axiom,
    ! [X3: int,Y3: int] :
      ( ( ring_1_of_int_int @ ( ord_max_int @ X3 @ Y3 ) )
      = ( ord_max_int @ ( ring_1_of_int_int @ X3 ) @ ( ring_1_of_int_int @ Y3 ) ) ) ).

% of_int_max
thf(fact_6480_of__int__max,axiom,
    ! [X3: int,Y3: int] :
      ( ( ring_18347121197199848620nteger @ ( ord_max_int @ X3 @ Y3 ) )
      = ( ord_max_Code_integer @ ( ring_18347121197199848620nteger @ X3 ) @ ( ring_18347121197199848620nteger @ Y3 ) ) ) ).

% of_int_max
thf(fact_6481_of__nat__max,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( semiri4216267220026989637d_enat @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ord_ma741700101516333627d_enat @ ( semiri4216267220026989637d_enat @ X3 ) @ ( semiri4216267220026989637d_enat @ Y3 ) ) ) ).

% of_nat_max
thf(fact_6482_of__nat__max,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( semiri4939895301339042750nteger @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ord_max_Code_integer @ ( semiri4939895301339042750nteger @ X3 ) @ ( semiri4939895301339042750nteger @ Y3 ) ) ) ).

% of_nat_max
thf(fact_6483_of__nat__max,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( semiri5074537144036343181t_real @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ord_max_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( semiri5074537144036343181t_real @ Y3 ) ) ) ).

% of_nat_max
thf(fact_6484_of__nat__max,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( semiri681578069525770553at_rat @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ord_max_rat @ ( semiri681578069525770553at_rat @ X3 ) @ ( semiri681578069525770553at_rat @ Y3 ) ) ) ).

% of_nat_max
thf(fact_6485_of__nat__max,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( semiri1316708129612266289at_nat @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ord_max_nat @ ( semiri1316708129612266289at_nat @ X3 ) @ ( semiri1316708129612266289at_nat @ Y3 ) ) ) ).

% of_nat_max
thf(fact_6486_of__nat__max,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( semiri1314217659103216013at_int @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ord_max_int @ ( semiri1314217659103216013at_int @ X3 ) @ ( semiri1314217659103216013at_int @ Y3 ) ) ) ).

% of_nat_max
thf(fact_6487_max__add__distrib__left,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( plus_plus_real @ ( ord_max_real @ X3 @ Y3 ) @ Z )
      = ( ord_max_real @ ( plus_plus_real @ X3 @ Z ) @ ( plus_plus_real @ Y3 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_6488_max__add__distrib__left,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( plus_plus_rat @ ( ord_max_rat @ X3 @ Y3 ) @ Z )
      = ( ord_max_rat @ ( plus_plus_rat @ X3 @ Z ) @ ( plus_plus_rat @ Y3 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_6489_max__add__distrib__left,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ X3 @ Y3 ) @ Z )
      = ( ord_max_nat @ ( plus_plus_nat @ X3 @ Z ) @ ( plus_plus_nat @ Y3 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_6490_max__add__distrib__left,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( plus_plus_int @ ( ord_max_int @ X3 @ Y3 ) @ Z )
      = ( ord_max_int @ ( plus_plus_int @ X3 @ Z ) @ ( plus_plus_int @ Y3 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_6491_max__add__distrib__left,axiom,
    ! [X3: code_integer,Y3: code_integer,Z: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( ord_max_Code_integer @ X3 @ Y3 ) @ Z )
      = ( ord_max_Code_integer @ ( plus_p5714425477246183910nteger @ X3 @ Z ) @ ( plus_p5714425477246183910nteger @ Y3 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_6492_max__add__distrib__right,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( plus_plus_real @ X3 @ ( ord_max_real @ Y3 @ Z ) )
      = ( ord_max_real @ ( plus_plus_real @ X3 @ Y3 ) @ ( plus_plus_real @ X3 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_6493_max__add__distrib__right,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( plus_plus_rat @ X3 @ ( ord_max_rat @ Y3 @ Z ) )
      = ( ord_max_rat @ ( plus_plus_rat @ X3 @ Y3 ) @ ( plus_plus_rat @ X3 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_6494_max__add__distrib__right,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( plus_plus_nat @ X3 @ ( ord_max_nat @ Y3 @ Z ) )
      = ( ord_max_nat @ ( plus_plus_nat @ X3 @ Y3 ) @ ( plus_plus_nat @ X3 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_6495_max__add__distrib__right,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( plus_plus_int @ X3 @ ( ord_max_int @ Y3 @ Z ) )
      = ( ord_max_int @ ( plus_plus_int @ X3 @ Y3 ) @ ( plus_plus_int @ X3 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_6496_max__add__distrib__right,axiom,
    ! [X3: code_integer,Y3: code_integer,Z: code_integer] :
      ( ( plus_p5714425477246183910nteger @ X3 @ ( ord_max_Code_integer @ Y3 @ Z ) )
      = ( ord_max_Code_integer @ ( plus_p5714425477246183910nteger @ X3 @ Y3 ) @ ( plus_p5714425477246183910nteger @ X3 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_6497_max__diff__distrib__left,axiom,
    ! [X3: code_integer,Y3: code_integer,Z: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( ord_max_Code_integer @ X3 @ Y3 ) @ Z )
      = ( ord_max_Code_integer @ ( minus_8373710615458151222nteger @ X3 @ Z ) @ ( minus_8373710615458151222nteger @ Y3 @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_6498_max__diff__distrib__left,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( minus_minus_real @ ( ord_max_real @ X3 @ Y3 ) @ Z )
      = ( ord_max_real @ ( minus_minus_real @ X3 @ Z ) @ ( minus_minus_real @ Y3 @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_6499_max__diff__distrib__left,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( minus_minus_rat @ ( ord_max_rat @ X3 @ Y3 ) @ Z )
      = ( ord_max_rat @ ( minus_minus_rat @ X3 @ Z ) @ ( minus_minus_rat @ Y3 @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_6500_max__diff__distrib__left,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( minus_minus_int @ ( ord_max_int @ X3 @ Y3 ) @ Z )
      = ( ord_max_int @ ( minus_minus_int @ X3 @ Z ) @ ( minus_minus_int @ Y3 @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_6501_nat__add__max__right,axiom,
    ! [M: nat,N: nat,Q3: nat] :
      ( ( plus_plus_nat @ M @ ( ord_max_nat @ N @ Q3 ) )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ N ) @ ( plus_plus_nat @ M @ Q3 ) ) ) ).

% nat_add_max_right
thf(fact_6502_nat__add__max__left,axiom,
    ! [M: nat,N: nat,Q3: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ M @ N ) @ Q3 )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ Q3 ) @ ( plus_plus_nat @ N @ Q3 ) ) ) ).

% nat_add_max_left
thf(fact_6503_nat__mult__max__left,axiom,
    ! [M: nat,N: nat,Q3: nat] :
      ( ( times_times_nat @ ( ord_max_nat @ M @ N ) @ Q3 )
      = ( ord_max_nat @ ( times_times_nat @ M @ Q3 ) @ ( times_times_nat @ N @ Q3 ) ) ) ).

% nat_mult_max_left
thf(fact_6504_nat__mult__max__right,axiom,
    ! [M: nat,N: nat,Q3: nat] :
      ( ( times_times_nat @ M @ ( ord_max_nat @ N @ Q3 ) )
      = ( ord_max_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q3 ) ) ) ).

% nat_mult_max_right
thf(fact_6505_nat__minus__add__max,axiom,
    ! [N: nat,M: nat] :
      ( ( plus_plus_nat @ ( minus_minus_nat @ N @ M ) @ M )
      = ( ord_max_nat @ N @ M ) ) ).

% nat_minus_add_max
thf(fact_6506_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I1_J,axiom,
    ! [Uu2: $o,Uv2: $o] :
      ( ( vEBT_T_p_r_e_d @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat )
      = one_one_nat ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(1)
thf(fact_6507_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
      ( ( vEBT_T_p_r_e_d @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve ) @ Vf )
      = one_one_nat ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(5)
thf(fact_6508_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I1_J,axiom,
    ! [Uu2: $o,B: $o] :
      ( ( vEBT_T_s_u_c_c @ ( vEBT_Leaf @ Uu2 @ B ) @ zero_zero_nat )
      = ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(1)
thf(fact_6509_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
      ( ( vEBT_T_s_u_c_c @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc @ Vd ) @ Ve )
      = one_one_nat ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(4)
thf(fact_6510_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I2_J,axiom,
    ! [A: $o,Uw2: $o] :
      ( ( vEBT_T_p_r_e_d @ ( vEBT_Leaf @ A @ Uw2 ) @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(2)
thf(fact_6511_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I6_J,axiom,
    ! [V: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
      ( ( vEBT_T_p_r_e_d @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj )
      = one_one_nat ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(6)
thf(fact_6512_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
      ( ( vEBT_T_s_u_c_c @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi )
      = one_one_nat ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(5)
thf(fact_6513_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I2_J,axiom,
    ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ X3 )
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(2)
thf(fact_6514_or__nat__unfold,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% or_nat_unfold
thf(fact_6515_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X3 )
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(3)
thf(fact_6516_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ X3 )
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(4)
thf(fact_6517_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Leaf @ A @ B ) @ X3 )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( X3 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(1)
thf(fact_6518_vebt__member_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X3: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X3 ) ).

% vebt_member.simps(3)
thf(fact_6519_vebt__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X3: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Leaf @ A @ B ) @ X3 )
      = ( ( ( X3 = zero_zero_nat )
         => A )
        & ( ( X3 != zero_zero_nat )
         => ( ( ( X3 = one_one_nat )
             => B )
            & ( X3 = one_one_nat ) ) ) ) ) ).

% vebt_member.simps(1)
thf(fact_6520_pred__bound__height,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_p_r_e_d @ T @ X3 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).

% pred_bound_height
thf(fact_6521_succ__bound__height,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_s_u_c_c @ T @ X3 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).

% succ_bound_height
thf(fact_6522_member__bound__height,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r @ T @ X3 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ).

% member_bound_height
thf(fact_6523_max_Oabsorb3,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_6524_max_Oabsorb3,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ B @ A )
     => ( ( ord_max_Code_integer @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_6525_max_Oabsorb3,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_max_real @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_6526_max_Oabsorb3,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_6527_max_Oabsorb3,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_6528_max_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_6529_max_Oabsorb3,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_6530_max_Oabsorb4,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_6531_max_Oabsorb4,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ( ord_max_Code_integer @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_6532_max_Oabsorb4,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_max_real @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_6533_max_Oabsorb4,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_6534_max_Oabsorb4,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_6535_max_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_6536_max_Oabsorb4,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_6537_max__less__iff__conj,axiom,
    ! [X3: extended_enat,Y3: extended_enat,Z: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ X3 @ Y3 ) @ Z )
      = ( ( ord_le72135733267957522d_enat @ X3 @ Z )
        & ( ord_le72135733267957522d_enat @ Y3 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_6538_max__less__iff__conj,axiom,
    ! [X3: code_integer,Y3: code_integer,Z: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( ord_max_Code_integer @ X3 @ Y3 ) @ Z )
      = ( ( ord_le6747313008572928689nteger @ X3 @ Z )
        & ( ord_le6747313008572928689nteger @ Y3 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_6539_max__less__iff__conj,axiom,
    ! [X3: real,Y3: real,Z: real] :
      ( ( ord_less_real @ ( ord_max_real @ X3 @ Y3 ) @ Z )
      = ( ( ord_less_real @ X3 @ Z )
        & ( ord_less_real @ Y3 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_6540_max__less__iff__conj,axiom,
    ! [X3: rat,Y3: rat,Z: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ X3 @ Y3 ) @ Z )
      = ( ( ord_less_rat @ X3 @ Z )
        & ( ord_less_rat @ Y3 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_6541_max__less__iff__conj,axiom,
    ! [X3: num,Y3: num,Z: num] :
      ( ( ord_less_num @ ( ord_max_num @ X3 @ Y3 ) @ Z )
      = ( ( ord_less_num @ X3 @ Z )
        & ( ord_less_num @ Y3 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_6542_max__less__iff__conj,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ X3 @ Y3 ) @ Z )
      = ( ( ord_less_nat @ X3 @ Z )
        & ( ord_less_nat @ Y3 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_6543_max__less__iff__conj,axiom,
    ! [X3: int,Y3: int,Z: int] :
      ( ( ord_less_int @ ( ord_max_int @ X3 @ Y3 ) @ Z )
      = ( ( ord_less_int @ X3 @ Z )
        & ( ord_less_int @ Y3 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_6544_max_Oabsorb1,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_6545_max_Oabsorb1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ B @ A )
     => ( ( ord_max_Code_integer @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_6546_max_Oabsorb1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_6547_max_Oabsorb1,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_6548_max_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_6549_max_Oabsorb1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_6550_max_Oabsorb2,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_6551_max_Oabsorb2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_max_Code_integer @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_6552_max_Oabsorb2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_6553_max_Oabsorb2,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_6554_max_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_6555_max_Oabsorb2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_6556_max_Obounded__iff,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
      = ( ( ord_le2932123472753598470d_enat @ B @ A )
        & ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_6557_max_Obounded__iff,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ B @ C ) @ A )
      = ( ( ord_le3102999989581377725nteger @ B @ A )
        & ( ord_le3102999989581377725nteger @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_6558_max_Obounded__iff,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_6559_max_Obounded__iff,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
      = ( ( ord_less_eq_num @ B @ A )
        & ( ord_less_eq_num @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_6560_max_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_6561_max_Obounded__iff,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
      = ( ( ord_less_eq_int @ B @ A )
        & ( ord_less_eq_int @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_6562_max__enat__simps_I3_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q3 )
      = Q3 ) ).

% max_enat_simps(3)
thf(fact_6563_max__enat__simps_I2_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ Q3 @ zero_z5237406670263579293d_enat )
      = Q3 ) ).

% max_enat_simps(2)
thf(fact_6564_max_OcoboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ B )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_6565_max_OcoboundedI2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ C @ B )
     => ( ord_le3102999989581377725nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_6566_max_OcoboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ B )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_6567_max_OcoboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_eq_num @ C @ B )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_6568_max_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_6569_max_OcoboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ C @ B )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_6570_max_OcoboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_6571_max_OcoboundedI1,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ C @ A )
     => ( ord_le3102999989581377725nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_6572_max_OcoboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_6573_max_OcoboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_6574_max_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_6575_max_OcoboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_6576_max_Oabsorb__iff2,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [A4: extended_enat,B3: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A4 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_6577_max_Oabsorb__iff2,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [A4: code_integer,B3: code_integer] :
          ( ( ord_max_Code_integer @ A4 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_6578_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B3: rat] :
          ( ( ord_max_rat @ A4 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_6579_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_max_num @ A4 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_6580_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_max_nat @ A4 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_6581_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B3: int] :
          ( ( ord_max_int @ A4 @ B3 )
          = B3 ) ) ) ).

% max.absorb_iff2
thf(fact_6582_max_Oabsorb__iff1,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B3: extended_enat,A4: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A4 @ B3 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_6583_max_Oabsorb__iff1,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [B3: code_integer,A4: code_integer] :
          ( ( ord_max_Code_integer @ A4 @ B3 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_6584_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( ord_max_rat @ A4 @ B3 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_6585_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_max_num @ A4 @ B3 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_6586_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_max_nat @ A4 @ B3 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_6587_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_int
    = ( ^ [B3: int,A4: int] :
          ( ( ord_max_int @ A4 @ B3 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_6588_le__max__iff__disj,axiom,
    ! [Z: extended_enat,X3: extended_enat,Y3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X3 @ Y3 ) )
      = ( ( ord_le2932123472753598470d_enat @ Z @ X3 )
        | ( ord_le2932123472753598470d_enat @ Z @ Y3 ) ) ) ).

% le_max_iff_disj
thf(fact_6589_le__max__iff__disj,axiom,
    ! [Z: code_integer,X3: code_integer,Y3: code_integer] :
      ( ( ord_le3102999989581377725nteger @ Z @ ( ord_max_Code_integer @ X3 @ Y3 ) )
      = ( ( ord_le3102999989581377725nteger @ Z @ X3 )
        | ( ord_le3102999989581377725nteger @ Z @ Y3 ) ) ) ).

% le_max_iff_disj
thf(fact_6590_le__max__iff__disj,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( ord_less_eq_rat @ Z @ ( ord_max_rat @ X3 @ Y3 ) )
      = ( ( ord_less_eq_rat @ Z @ X3 )
        | ( ord_less_eq_rat @ Z @ Y3 ) ) ) ).

% le_max_iff_disj
thf(fact_6591_le__max__iff__disj,axiom,
    ! [Z: num,X3: num,Y3: num] :
      ( ( ord_less_eq_num @ Z @ ( ord_max_num @ X3 @ Y3 ) )
      = ( ( ord_less_eq_num @ Z @ X3 )
        | ( ord_less_eq_num @ Z @ Y3 ) ) ) ).

% le_max_iff_disj
thf(fact_6592_le__max__iff__disj,axiom,
    ! [Z: nat,X3: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ Z @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ( ord_less_eq_nat @ Z @ X3 )
        | ( ord_less_eq_nat @ Z @ Y3 ) ) ) ).

% le_max_iff_disj
thf(fact_6593_le__max__iff__disj,axiom,
    ! [Z: int,X3: int,Y3: int] :
      ( ( ord_less_eq_int @ Z @ ( ord_max_int @ X3 @ Y3 ) )
      = ( ( ord_less_eq_int @ Z @ X3 )
        | ( ord_less_eq_int @ Z @ Y3 ) ) ) ).

% le_max_iff_disj
thf(fact_6594_max_Ocobounded2,axiom,
    ! [B: extended_enat,A: extended_enat] : ( ord_le2932123472753598470d_enat @ B @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded2
thf(fact_6595_max_Ocobounded2,axiom,
    ! [B: code_integer,A: code_integer] : ( ord_le3102999989581377725nteger @ B @ ( ord_max_Code_integer @ A @ B ) ) ).

% max.cobounded2
thf(fact_6596_max_Ocobounded2,axiom,
    ! [B: rat,A: rat] : ( ord_less_eq_rat @ B @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded2
thf(fact_6597_max_Ocobounded2,axiom,
    ! [B: num,A: num] : ( ord_less_eq_num @ B @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded2
thf(fact_6598_max_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded2
thf(fact_6599_max_Ocobounded2,axiom,
    ! [B: int,A: int] : ( ord_less_eq_int @ B @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded2
thf(fact_6600_max_Ocobounded1,axiom,
    ! [A: extended_enat,B: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded1
thf(fact_6601_max_Ocobounded1,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( ord_max_Code_integer @ A @ B ) ) ).

% max.cobounded1
thf(fact_6602_max_Ocobounded1,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ A @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded1
thf(fact_6603_max_Ocobounded1,axiom,
    ! [A: num,B: num] : ( ord_less_eq_num @ A @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded1
thf(fact_6604_max_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded1
thf(fact_6605_max_Ocobounded1,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ A @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded1
thf(fact_6606_max_Oorder__iff,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B3: extended_enat,A4: extended_enat] :
          ( A4
          = ( ord_ma741700101516333627d_enat @ A4 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_6607_max_Oorder__iff,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [B3: code_integer,A4: code_integer] :
          ( A4
          = ( ord_max_Code_integer @ A4 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_6608_max_Oorder__iff,axiom,
    ( ord_less_eq_rat
    = ( ^ [B3: rat,A4: rat] :
          ( A4
          = ( ord_max_rat @ A4 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_6609_max_Oorder__iff,axiom,
    ( ord_less_eq_num
    = ( ^ [B3: num,A4: num] :
          ( A4
          = ( ord_max_num @ A4 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_6610_max_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( A4
          = ( ord_max_nat @ A4 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_6611_max_Oorder__iff,axiom,
    ( ord_less_eq_int
    = ( ^ [B3: int,A4: int] :
          ( A4
          = ( ord_max_int @ A4 @ B3 ) ) ) ) ).

% max.order_iff
thf(fact_6612_max_OboundedI,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_le2932123472753598470d_enat @ C @ A )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_6613_max_OboundedI,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( ord_le3102999989581377725nteger @ B @ A )
     => ( ( ord_le3102999989581377725nteger @ C @ A )
       => ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_6614_max_OboundedI,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ A )
       => ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_6615_max_OboundedI,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ A )
       => ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_6616_max_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_6617_max_OboundedI,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ A )
       => ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_6618_max_OboundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le2932123472753598470d_enat @ B @ A )
         => ~ ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_6619_max_OboundedE,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ B @ C ) @ A )
     => ~ ( ( ord_le3102999989581377725nteger @ B @ A )
         => ~ ( ord_le3102999989581377725nteger @ C @ A ) ) ) ).

% max.boundedE
thf(fact_6620_max_OboundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_rat @ B @ A )
         => ~ ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_6621_max_OboundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_num @ B @ A )
         => ~ ( ord_less_eq_num @ C @ A ) ) ) ).

% max.boundedE
thf(fact_6622_max_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_6623_max_OboundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_int @ B @ A )
         => ~ ( ord_less_eq_int @ C @ A ) ) ) ).

% max.boundedE
thf(fact_6624_max_OorderI,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) )
     => ( ord_le2932123472753598470d_enat @ B @ A ) ) ).

% max.orderI
thf(fact_6625_max_OorderI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( ord_max_Code_integer @ A @ B ) )
     => ( ord_le3102999989581377725nteger @ B @ A ) ) ).

% max.orderI
thf(fact_6626_max_OorderI,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( ord_max_rat @ A @ B ) )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% max.orderI
thf(fact_6627_max_OorderI,axiom,
    ! [A: num,B: num] :
      ( ( A
        = ( ord_max_num @ A @ B ) )
     => ( ord_less_eq_num @ B @ A ) ) ).

% max.orderI
thf(fact_6628_max_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( ord_max_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% max.orderI
thf(fact_6629_max_OorderI,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( ord_max_int @ A @ B ) )
     => ( ord_less_eq_int @ B @ A ) ) ).

% max.orderI
thf(fact_6630_max_OorderE,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.orderE
thf(fact_6631_max_OorderE,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ B @ A )
     => ( A
        = ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.orderE
thf(fact_6632_max_OorderE,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( A
        = ( ord_max_rat @ A @ B ) ) ) ).

% max.orderE
thf(fact_6633_max_OorderE,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( A
        = ( ord_max_num @ A @ B ) ) ) ).

% max.orderE
thf(fact_6634_max_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( ord_max_nat @ A @ B ) ) ) ).

% max.orderE
thf(fact_6635_max_OorderE,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( A
        = ( ord_max_int @ A @ B ) ) ) ).

% max.orderE
thf(fact_6636_max_Omono,axiom,
    ! [C: extended_enat,A: extended_enat,D3: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ( ord_le2932123472753598470d_enat @ D3 @ B )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ C @ D3 ) @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_6637_max_Omono,axiom,
    ! [C: code_integer,A: code_integer,D3: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ C @ A )
     => ( ( ord_le3102999989581377725nteger @ D3 @ B )
       => ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ C @ D3 ) @ ( ord_max_Code_integer @ A @ B ) ) ) ) ).

% max.mono
thf(fact_6638_max_Omono,axiom,
    ! [C: rat,A: rat,D3: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ( ord_less_eq_rat @ D3 @ B )
       => ( ord_less_eq_rat @ ( ord_max_rat @ C @ D3 ) @ ( ord_max_rat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_6639_max_Omono,axiom,
    ! [C: num,A: num,D3: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ( ord_less_eq_num @ D3 @ B )
       => ( ord_less_eq_num @ ( ord_max_num @ C @ D3 ) @ ( ord_max_num @ A @ B ) ) ) ) ).

% max.mono
thf(fact_6640_max_Omono,axiom,
    ! [C: nat,A: nat,D3: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D3 @ B )
       => ( ord_less_eq_nat @ ( ord_max_nat @ C @ D3 ) @ ( ord_max_nat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_6641_max_Omono,axiom,
    ! [C: int,A: int,D3: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ( ord_less_eq_int @ D3 @ B )
       => ( ord_less_eq_int @ ( ord_max_int @ C @ D3 ) @ ( ord_max_int @ A @ B ) ) ) ) ).

% max.mono
thf(fact_6642_max_Ostrict__coboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ B )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_6643_max_Ostrict__coboundedI2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ C @ B )
     => ( ord_le6747313008572928689nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_6644_max_Ostrict__coboundedI2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ B )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_6645_max_Ostrict__coboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ B )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_6646_max_Ostrict__coboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_num @ C @ B )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_6647_max_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_6648_max_Ostrict__coboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_int @ C @ B )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_6649_max_Ostrict__coboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ A )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_6650_max_Ostrict__coboundedI1,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ C @ A )
     => ( ord_le6747313008572928689nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_6651_max_Ostrict__coboundedI1,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ A )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_6652_max_Ostrict__coboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ A )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_6653_max_Ostrict__coboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_num @ C @ A )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_6654_max_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_6655_max_Ostrict__coboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ A )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_6656_max_Ostrict__order__iff,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [B3: extended_enat,A4: extended_enat] :
          ( ( A4
            = ( ord_ma741700101516333627d_enat @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_6657_max_Ostrict__order__iff,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [B3: code_integer,A4: code_integer] :
          ( ( A4
            = ( ord_max_Code_integer @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_6658_max_Ostrict__order__iff,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A4: real] :
          ( ( A4
            = ( ord_max_real @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_6659_max_Ostrict__order__iff,axiom,
    ( ord_less_rat
    = ( ^ [B3: rat,A4: rat] :
          ( ( A4
            = ( ord_max_rat @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_6660_max_Ostrict__order__iff,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A4: num] :
          ( ( A4
            = ( ord_max_num @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_6661_max_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( A4
            = ( ord_max_nat @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_6662_max_Ostrict__order__iff,axiom,
    ( ord_less_int
    = ( ^ [B3: int,A4: int] :
          ( ( A4
            = ( ord_max_int @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% max.strict_order_iff
thf(fact_6663_max_Ostrict__boundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le72135733267957522d_enat @ B @ A )
         => ~ ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_6664_max_Ostrict__boundedE,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( ord_max_Code_integer @ B @ C ) @ A )
     => ~ ( ( ord_le6747313008572928689nteger @ B @ A )
         => ~ ( ord_le6747313008572928689nteger @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_6665_max_Ostrict__boundedE,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( ord_max_real @ B @ C ) @ A )
     => ~ ( ( ord_less_real @ B @ A )
         => ~ ( ord_less_real @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_6666_max_Ostrict__boundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_rat @ B @ A )
         => ~ ( ord_less_rat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_6667_max_Ostrict__boundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_num @ B @ A )
         => ~ ( ord_less_num @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_6668_max_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_6669_max_Ostrict__boundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_int @ B @ A )
         => ~ ( ord_less_int @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_6670_less__max__iff__disj,axiom,
    ! [Z: extended_enat,X3: extended_enat,Y3: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X3 @ Y3 ) )
      = ( ( ord_le72135733267957522d_enat @ Z @ X3 )
        | ( ord_le72135733267957522d_enat @ Z @ Y3 ) ) ) ).

% less_max_iff_disj
thf(fact_6671_less__max__iff__disj,axiom,
    ! [Z: code_integer,X3: code_integer,Y3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z @ ( ord_max_Code_integer @ X3 @ Y3 ) )
      = ( ( ord_le6747313008572928689nteger @ Z @ X3 )
        | ( ord_le6747313008572928689nteger @ Z @ Y3 ) ) ) ).

% less_max_iff_disj
thf(fact_6672_less__max__iff__disj,axiom,
    ! [Z: real,X3: real,Y3: real] :
      ( ( ord_less_real @ Z @ ( ord_max_real @ X3 @ Y3 ) )
      = ( ( ord_less_real @ Z @ X3 )
        | ( ord_less_real @ Z @ Y3 ) ) ) ).

% less_max_iff_disj
thf(fact_6673_less__max__iff__disj,axiom,
    ! [Z: rat,X3: rat,Y3: rat] :
      ( ( ord_less_rat @ Z @ ( ord_max_rat @ X3 @ Y3 ) )
      = ( ( ord_less_rat @ Z @ X3 )
        | ( ord_less_rat @ Z @ Y3 ) ) ) ).

% less_max_iff_disj
thf(fact_6674_less__max__iff__disj,axiom,
    ! [Z: num,X3: num,Y3: num] :
      ( ( ord_less_num @ Z @ ( ord_max_num @ X3 @ Y3 ) )
      = ( ( ord_less_num @ Z @ X3 )
        | ( ord_less_num @ Z @ Y3 ) ) ) ).

% less_max_iff_disj
thf(fact_6675_less__max__iff__disj,axiom,
    ! [Z: nat,X3: nat,Y3: nat] :
      ( ( ord_less_nat @ Z @ ( ord_max_nat @ X3 @ Y3 ) )
      = ( ( ord_less_nat @ Z @ X3 )
        | ( ord_less_nat @ Z @ Y3 ) ) ) ).

% less_max_iff_disj
thf(fact_6676_less__max__iff__disj,axiom,
    ! [Z: int,X3: int,Y3: int] :
      ( ( ord_less_int @ Z @ ( ord_max_int @ X3 @ Y3 ) )
      = ( ( ord_less_int @ Z @ X3 )
        | ( ord_less_int @ Z @ Y3 ) ) ) ).

% less_max_iff_disj
thf(fact_6677_or__int__unfold,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L2: int] :
          ( if_int
          @ ( ( K3
              = ( uminus_uminus_int @ one_one_int ) )
            | ( L2
              = ( uminus_uminus_int @ one_one_int ) ) )
          @ ( uminus_uminus_int @ one_one_int )
          @ ( if_int @ ( K3 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% or_int_unfold
thf(fact_6678_insert__bound__size__univ,axiom,
    ! [T: vEBT_VEBT,N: nat,U: real,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( U
          = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_i_n_s_e_r_t @ T @ X3 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ) ).

% insert_bound_size_univ
thf(fact_6679_pred__less__length__list,axiom,
    ! [Deg: nat,X3: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X3 @ Ma )
       => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
            = ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X3 ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% pred_less_length_list
thf(fact_6680_pred__lesseq__max,axiom,
    ! [Deg: nat,X3: nat,Ma: nat,Mi: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X3 @ Ma )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X3 ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% pred_lesseq_max
thf(fact_6681_succ__greatereq__min,axiom,
    ! [Deg: nat,Mi: nat,X3: nat,Ma: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X3 )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% succ_greatereq_min
thf(fact_6682_succ__less__length__list,axiom,
    ! [Deg: nat,Mi: nat,X3: nat,TreeList2: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X3 )
       => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
            = ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% succ_less_length_list
thf(fact_6683_set__vebt_H__def,axiom,
    ( vEBT_VEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_vebt_member @ T2 ) ) ) ) ).

% set_vebt'_def
thf(fact_6684_del__x__not__mia,axiom,
    ! [Mi: nat,X3: nat,Ma: nat,Deg: nat,H2: nat,L: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X3 )
        & ( ord_less_eq_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L )
             => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
               => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                  = ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
                    @ ( vEBT_Node
                      @ ( some_P7363390416028606310at_nat
                        @ ( product_Pair_nat_nat @ Mi
                          @ ( if_nat @ ( X3 = Ma )
                            @ ( if_nat
                              @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                = none_nat )
                              @ Mi
                              @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                            @ Ma ) ) )
                      @ Deg
                      @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
                      @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                    @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X3 = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) ) @ Summary ) ) ) ) ) ) ) ) ) ).

% del_x_not_mia
thf(fact_6685_del__x__not__mi__new__node__nil,axiom,
    ! [Mi: nat,X3: nat,Ma: nat,Deg: nat,H2: nat,L: nat,Newnode: vEBT_VEBT,TreeList2: list_VEBT_VEBT,Sn: vEBT_VEBT,Summary: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X3 )
        & ( ord_less_eq_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L )
             => ( ( Newnode
                  = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
               => ( ( vEBT_VEBT_minNull @ Newnode )
                 => ( ( Sn
                      = ( vEBT_vebt_delete @ Summary @ H2 ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ Newnode ) )
                     => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                          = ( vEBT_Node
                            @ ( some_P7363390416028606310at_nat
                              @ ( product_Pair_nat_nat @ Mi
                                @ ( if_nat @ ( X3 = Ma )
                                  @ ( if_nat
                                    @ ( ( vEBT_vebt_maxt @ Sn )
                                      = none_nat )
                                    @ Mi
                                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
                                  @ Ma ) ) )
                            @ Deg
                            @ Newlist
                            @ Sn ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_not_mi_new_node_nil
thf(fact_6686_del__x__not__mi,axiom,
    ! [Mi: nat,X3: nat,Ma: nat,Deg: nat,H2: nat,L: nat,Newnode: vEBT_VEBT,TreeList2: list_VEBT_VEBT,Newlist: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X3 )
        & ( ord_less_eq_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L )
             => ( ( Newnode
                  = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
               => ( ( Newlist
                    = ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ Newnode ) )
                 => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                   => ( ( ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                          = ( vEBT_Node
                            @ ( some_P7363390416028606310at_nat
                              @ ( product_Pair_nat_nat @ Mi
                                @ ( if_nat @ ( X3 = Ma )
                                  @ ( if_nat
                                    @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                      = none_nat )
                                    @ Mi
                                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                                  @ Ma ) ) )
                            @ Deg
                            @ Newlist
                            @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
                      & ( ~ ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X3 = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_not_mi
thf(fact_6687_del__x__mia,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X3 = Mi )
        & ( ord_less_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
            = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
              @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                      @ ( if_nat
                        @ ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                          = Ma )
                        @ ( if_nat
                          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            = none_nat )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                      @ ( if_nat
                        @ ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                          = Ma )
                        @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ Summary ) )
              @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ) ) ).

% del_x_mia
thf(fact_6688_del__x__mi__lets__in__minNull,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList2: list_VEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT,Sn: vEBT_VEBT] :
      ( ( ( X3 = Mi )
        & ( ord_less_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                 => ( ( Newnode
                      = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ Newnode ) )
                     => ( ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( Sn
                            = ( vEBT_vebt_delete @ Summary @ H2 ) )
                         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                            = ( vEBT_Node
                              @ ( some_P7363390416028606310at_nat
                                @ ( product_Pair_nat_nat @ Xn
                                  @ ( if_nat @ ( Xn = Ma )
                                    @ ( if_nat
                                      @ ( ( vEBT_vebt_maxt @ Sn )
                                        = none_nat )
                                      @ Xn
                                      @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
                                    @ Ma ) ) )
                              @ Deg
                              @ Newlist
                              @ Sn ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi_lets_in_minNull
thf(fact_6689_del__x__mi__lets__in,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList2: list_VEBT_VEBT,L: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
      ( ( ( X3 = Mi )
        & ( ord_less_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                 => ( ( Newnode
                      = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ Newnode ) )
                     => ( ( ( vEBT_VEBT_minNull @ Newnode )
                         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                            = ( vEBT_Node
                              @ ( some_P7363390416028606310at_nat
                                @ ( product_Pair_nat_nat @ Xn
                                  @ ( if_nat @ ( Xn = Ma )
                                    @ ( if_nat
                                      @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                        = none_nat )
                                      @ Xn
                                      @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                                    @ Ma ) ) )
                              @ Deg
                              @ Newlist
                              @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
                        & ( ~ ( vEBT_VEBT_minNull @ Newnode )
                         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi_lets_in
thf(fact_6690_del__x__mi,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList2: list_VEBT_VEBT,L: nat] :
      ( ( ( X3 = Mi )
        & ( ord_less_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                 => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
                    = ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
                      @ ( vEBT_Node
                        @ ( some_P7363390416028606310at_nat
                          @ ( product_Pair_nat_nat @ Xn
                            @ ( if_nat @ ( Xn = Ma )
                              @ ( if_nat
                                @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                  = none_nat )
                                @ Xn
                                @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                              @ Ma ) ) )
                        @ Deg
                        @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) )
                        @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                      @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ H2 ) @ L ) ) @ Summary ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi
thf(fact_6691_del__in__range,axiom,
    ! [Mi: nat,X3: nat,Ma: nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_eq_nat @ Mi @ X3 )
        & ( ord_less_eq_nat @ X3 @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) @ X3 )
            = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
              @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( if_nat @ ( X3 = Mi ) @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ Mi )
                      @ ( if_nat
                        @ ( ( ( X3 = Mi )
                           => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                              = Ma ) )
                          & ( ( X3 != Mi )
                           => ( X3 = Ma ) ) )
                        @ ( if_nat
                          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            = none_nat )
                          @ ( if_nat @ ( X3 = Mi ) @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ Mi )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( if_nat @ ( X3 = Mi ) @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ Mi )
                      @ ( if_nat
                        @ ( ( ( X3 = Mi )
                           => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                              = Ma ) )
                          & ( ( X3 != Mi )
                           => ( X3 = Ma ) ) )
                        @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ Summary ) )
              @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList2 @ Summary ) ) ) ) ) ) ).

% del_in_range
thf(fact_6692_max__def__raw,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A4: extended_enat,B3: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def_raw
thf(fact_6693_max__def__raw,axiom,
    ( ord_max_Code_integer
    = ( ^ [A4: code_integer,B3: code_integer] : ( if_Code_integer @ ( ord_le3102999989581377725nteger @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def_raw
thf(fact_6694_max__def__raw,axiom,
    ( ord_max_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] : ( if_set_nat @ ( ord_less_eq_set_nat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def_raw
thf(fact_6695_max__def__raw,axiom,
    ( ord_max_rat
    = ( ^ [A4: rat,B3: rat] : ( if_rat @ ( ord_less_eq_rat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def_raw
thf(fact_6696_max__def__raw,axiom,
    ( ord_max_num
    = ( ^ [A4: num,B3: num] : ( if_num @ ( ord_less_eq_num @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def_raw
thf(fact_6697_max__def__raw,axiom,
    ( ord_max_nat
    = ( ^ [A4: nat,B3: nat] : ( if_nat @ ( ord_less_eq_nat @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def_raw
thf(fact_6698_max__def__raw,axiom,
    ( ord_max_int
    = ( ^ [A4: int,B3: int] : ( if_int @ ( ord_less_eq_int @ A4 @ B3 ) @ B3 @ A4 ) ) ) ).

% max_def_raw
thf(fact_6699_lambda__zero,axiom,
    ( ( ^ [H: real] : zero_zero_real )
    = ( times_times_real @ zero_zero_real ) ) ).

% lambda_zero
thf(fact_6700_lambda__zero,axiom,
    ( ( ^ [H: rat] : zero_zero_rat )
    = ( times_times_rat @ zero_zero_rat ) ) ).

% lambda_zero
thf(fact_6701_lambda__zero,axiom,
    ( ( ^ [H: nat] : zero_zero_nat )
    = ( times_times_nat @ zero_zero_nat ) ) ).

% lambda_zero
thf(fact_6702_lambda__zero,axiom,
    ( ( ^ [H: int] : zero_zero_int )
    = ( times_times_int @ zero_zero_int ) ) ).

% lambda_zero
thf(fact_6703_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_code(2)
thf(fact_6704_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_code(2)
thf(fact_6705_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_code(2)
thf(fact_6706_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_code(2)
thf(fact_6707_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_code(2)
thf(fact_6708_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_less_as_int
thf(fact_6709_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).

% nat_leq_as_int
thf(fact_6710_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).

% numeral_code(3)
thf(fact_6711_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).

% numeral_code(3)
thf(fact_6712_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).

% numeral_code(3)
thf(fact_6713_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).

% numeral_code(3)
thf(fact_6714_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).

% numeral_code(3)
thf(fact_6715_power__numeral__even,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_complex @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_6716_power__numeral__even,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_real @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_6717_power__numeral__even,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_rat @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_6718_power__numeral__even,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_6719_power__numeral__even,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_6720_power__numeral__odd,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_complex @ ( times_times_complex @ Z @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6721_power__numeral__odd,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_real @ ( times_times_real @ Z @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6722_power__numeral__odd,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_rat @ ( times_times_rat @ Z @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6723_power__numeral__odd,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_nat @ ( times_times_nat @ Z @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6724_power__numeral__odd,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_int @ ( times_times_int @ Z @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6725_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_6726_nat__times__as__int,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_times_as_int
thf(fact_6727_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_6728_nat__div__as__int,axiom,
    ( divide_divide_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_div_as_int
thf(fact_6729_nat__mod__as__int,axiom,
    ( modulo_modulo_nat
    = ( ^ [A4: nat,B3: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ) ).

% nat_mod_as_int
thf(fact_6730_diff__nat__eq__if,axiom,
    ! [Z5: int,Z: int] :
      ( ( ( ord_less_int @ Z5 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z5 ) )
          = ( nat2 @ Z ) ) )
      & ( ~ ( ord_less_int @ Z5 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z5 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z @ Z5 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z @ Z5 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_6731_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I2_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(2)
thf(fact_6732_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I3_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(3)
thf(fact_6733_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Leaf @ A @ B ) @ X3 )
      = ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( X3 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(1)
thf(fact_6734_vebt__member_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( ( X3 != Mi )
       => ( ( X3 != Ma )
         => ( ~ ( ord_less_nat @ X3 @ Mi )
            & ( ~ ( ord_less_nat @ X3 @ Mi )
             => ( ~ ( ord_less_nat @ Ma @ X3 )
                & ( ~ ( ord_less_nat @ Ma @ X3 )
                 => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                     => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.simps(5)
thf(fact_6735_vebt__member_Oelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_vebt_member @ X3 @ Xa )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ~ ( ( ( Xa = zero_zero_nat )
                 => A5 )
                & ( ( Xa != zero_zero_nat )
                 => ( ( ( Xa = one_one_nat )
                     => B4 )
                    & ( Xa = one_one_nat ) ) ) ) )
       => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [Summary2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
             => ~ ( ( Xa != Mi2 )
                 => ( ( Xa != Ma2 )
                   => ( ~ ( ord_less_nat @ Xa @ Mi2 )
                      & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                       => ( ~ ( ord_less_nat @ Ma2 @ Xa )
                          & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                           => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                               => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                              & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(2)
thf(fact_6736_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( X3 = Mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( X3 = Ma ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma @ X3 ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(5)
thf(fact_6737_vebt__member_Oelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_vebt_member @ X3 @ Xa )
        = Y3 )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( Y3
              = ( ~ ( ( ( Xa = zero_zero_nat )
                     => A5 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
           => Y3 )
         => ( ( ? [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => Y3 )
           => ( ( ? [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
               => Y3 )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y3
                      = ( ~ ( ( Xa != Mi2 )
                           => ( ( Xa != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(1)
thf(fact_6738_vebt__member_Oelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_vebt_member @ X3 @ Xa )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( ( ( Xa = zero_zero_nat )
               => A5 )
              & ( ( Xa != zero_zero_nat )
               => ( ( ( Xa = one_one_nat )
                   => B4 )
                  & ( Xa = one_one_nat ) ) ) ) )
       => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
              ( X3
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
         => ( ! [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                ( X3
               != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
           => ( ! [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( X3
                 != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Xa != Mi2 )
                     => ( ( Xa != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(3)
thf(fact_6739_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I4_J,axiom,
    ! [V: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(4)
thf(fact_6740_insersimp,axiom,
    ! [T: vEBT_VEBT,N: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_1 )
       => ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t @ T @ Y3 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ) ).

% insersimp
thf(fact_6741_insertsimp,axiom,
    ! [T: vEBT_VEBT,N: nat,L: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_minNull @ T )
       => ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t @ T @ L ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ) ).

% insertsimp
thf(fact_6742_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r @ X3 @ Xa )
        = Y3 )
     => ( ( ? [A5: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
         => ( Y3
           != ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
       => ( ( ? [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
           => ( Y3
             != ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ( ? [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => ( Y3
               != ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
           => ( ( ? [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
               => ( Y3
                 != ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y3
                     != ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa = Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa = Ma2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.elims
thf(fact_6743_vebt__succ_Osimps_I6_J,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ X3 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = ( some_nat @ Mi ) ) )
      & ( ~ ( ord_less_nat @ X3 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% vebt_succ.simps(6)
thf(fact_6744_vebt__pred_Osimps_I7_J,axiom,
    ! [Ma: nat,X3: nat,Mi: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Ma @ X3 )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = ( some_nat @ Ma ) ) )
      & ( ~ ( ord_less_nat @ Ma @ X3 )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X3 ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% vebt_pred.simps(7)
thf(fact_6745_vebt__delete_Osimps_I7_J,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ( ord_less_nat @ X3 @ Mi )
          | ( ord_less_nat @ Ma @ X3 ) )
       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) )
      & ( ~ ( ( ord_less_nat @ X3 @ Mi )
            | ( ord_less_nat @ Ma @ X3 ) )
       => ( ( ( ( X3 = Mi )
              & ( X3 = Ma ) )
           => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
              = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) )
          & ( ~ ( ( X3 = Mi )
                & ( X3 = Ma ) )
           => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
              = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_Node
                    @ ( some_P7363390416028606310at_nat
                      @ ( product_Pair_nat_nat @ ( if_nat @ ( X3 = Mi ) @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ Mi )
                        @ ( if_nat
                          @ ( ( ( X3 = Mi )
                             => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                                = Ma ) )
                            & ( ( X3 != Mi )
                             => ( X3 = Ma ) ) )
                          @ ( if_nat
                            @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                              = none_nat )
                            @ ( if_nat @ ( X3 = Mi ) @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ Mi )
                            @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                          @ Ma ) ) )
                    @ ( suc @ ( suc @ Va2 ) )
                    @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_Node
                    @ ( some_P7363390416028606310at_nat
                      @ ( product_Pair_nat_nat @ ( if_nat @ ( X3 = Mi ) @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ Mi )
                        @ ( if_nat
                          @ ( ( ( X3 = Mi )
                             => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                                = Ma ) )
                            & ( ( X3 != Mi )
                             => ( X3 = Ma ) ) )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                          @ Ma ) ) )
                    @ ( suc @ ( suc @ Va2 ) )
                    @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    @ Summary ) )
                @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) ) ) ) ) ) ).

% vebt_delete.simps(7)
thf(fact_6746_vebt__delete_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_vebt_delete @ X3 @ Xa )
        = Y3 )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( ( Xa = zero_zero_nat )
             => ( Y3
               != ( vEBT_Leaf @ $false @ B4 ) ) ) )
       => ( ! [A5: $o] :
              ( ? [B4: $o] :
                  ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Xa
                  = ( suc @ zero_zero_nat ) )
               => ( Y3
                 != ( vEBT_Leaf @ A5 @ $false ) ) ) )
         => ( ! [A5: $o,B4: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
               => ( ? [N2: nat] :
                      ( Xa
                      = ( suc @ ( suc @ N2 ) ) )
                 => ( Y3
                   != ( vEBT_Leaf @ A5 @ B4 ) ) ) )
           => ( ! [Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
                 => ( Y3
                   != ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) ) )
             => ( ! [Mi2: nat,Ma2: nat,TrLst2: list_VEBT_VEBT,Smry2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) )
                   => ( Y3
                     != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) ) )
               => ( ! [Mi2: nat,Ma2: nat,Tr2: list_VEBT_VEBT,Sm2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) )
                     => ( Y3
                       != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ~ ( ( ( ( ord_less_nat @ Xa @ Mi2 )
                                | ( ord_less_nat @ Ma2 @ Xa ) )
                             => ( Y3
                                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) )
                            & ( ~ ( ( ord_less_nat @ Xa @ Mi2 )
                                  | ( ord_less_nat @ Ma2 @ Xa ) )
                             => ( ( ( ( Xa = Mi2 )
                                    & ( Xa = Ma2 ) )
                                 => ( Y3
                                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) )
                                & ( ~ ( ( Xa = Mi2 )
                                      & ( Xa = Ma2 ) )
                                 => ( Y3
                                    = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                      @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        @ ( vEBT_Node
                                          @ ( some_P7363390416028606310at_nat
                                            @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa = Mi2 ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ Mi2 )
                                              @ ( if_nat
                                                @ ( ( ( Xa = Mi2 )
                                                   => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                      = Ma2 ) )
                                                  & ( ( Xa != Mi2 )
                                                   => ( Xa = Ma2 ) ) )
                                                @ ( if_nat
                                                  @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                    = none_nat )
                                                  @ ( if_nat @ ( Xa = Mi2 ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ Mi2 )
                                                  @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                                                @ Ma2 ) ) )
                                          @ ( suc @ ( suc @ Va ) )
                                          @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        @ ( vEBT_Node
                                          @ ( some_P7363390416028606310at_nat
                                            @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa = Mi2 ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ Mi2 )
                                              @ ( if_nat
                                                @ ( ( ( Xa = Mi2 )
                                                   => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                      = Ma2 ) )
                                                  & ( ( Xa != Mi2 )
                                                   => ( Xa = Ma2 ) ) )
                                                @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                                @ Ma2 ) ) )
                                          @ ( suc @ ( suc @ Va ) )
                                          @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ Summary2 ) )
                                      @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_delete.elims
thf(fact_6747_vebt__succ_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: option_nat] :
      ( ( ( vEBT_vebt_succ @ X3 @ Xa )
        = Y3 )
     => ( ! [Uu: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ Uu @ B4 ) )
           => ( ( Xa = zero_zero_nat )
             => ~ ( ( B4
                   => ( Y3
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B4
                   => ( Y3 = none_nat ) ) ) ) )
       => ( ( ? [Uv: $o,Uw: $o] :
                ( X3
                = ( vEBT_Leaf @ Uv @ Uw ) )
           => ( ? [N2: nat] :
                  ( Xa
                  = ( suc @ N2 ) )
             => ( Y3 != none_nat ) ) )
         => ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
             => ( Y3 != none_nat ) )
           => ( ( ? [V3: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
               => ( Y3 != none_nat ) )
             => ( ( ? [V3: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
                 => ( Y3 != none_nat ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ~ ( ( ( ord_less_nat @ Xa @ Mi2 )
                           => ( Y3
                              = ( some_nat @ Mi2 ) ) )
                          & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                           => ( Y3
                              = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                @ ( if_option_nat
                                  @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                     != none_nat )
                                    & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                  @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  @ ( if_option_nat
                                    @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                      = none_nat )
                                    @ none_nat
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                @ none_nat ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.elims
thf(fact_6748_vebt__pred_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: option_nat] :
      ( ( ( vEBT_vebt_pred @ X3 @ Xa )
        = Y3 )
     => ( ( ? [Uu: $o,Uv: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ Uv ) )
         => ( ( Xa = zero_zero_nat )
           => ( Y3 != none_nat ) ) )
       => ( ! [A5: $o] :
              ( ? [Uw: $o] :
                  ( X3
                  = ( vEBT_Leaf @ A5 @ Uw ) )
             => ( ( Xa
                  = ( suc @ zero_zero_nat ) )
               => ~ ( ( A5
                     => ( Y3
                        = ( some_nat @ zero_zero_nat ) ) )
                    & ( ~ A5
                     => ( Y3 = none_nat ) ) ) ) )
         => ( ! [A5: $o,B4: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
               => ( ? [Va: nat] :
                      ( Xa
                      = ( suc @ ( suc @ Va ) ) )
                 => ~ ( ( B4
                       => ( Y3
                          = ( some_nat @ one_one_nat ) ) )
                      & ( ~ B4
                       => ( ( A5
                           => ( Y3
                              = ( some_nat @ zero_zero_nat ) ) )
                          & ( ~ A5
                           => ( Y3 = none_nat ) ) ) ) ) ) )
           => ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
               => ( Y3 != none_nat ) )
             => ( ( ? [V3: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
                 => ( Y3 != none_nat ) )
               => ( ( ? [V3: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
                   => ( Y3 != none_nat ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ~ ( ( ( ord_less_nat @ Ma2 @ Xa )
                             => ( Y3
                                = ( some_nat @ Ma2 ) ) )
                            & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                             => ( Y3
                                = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( if_option_nat
                                    @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( if_option_nat
                                      @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                        = none_nat )
                                      @ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa ) @ ( some_nat @ Mi2 ) @ none_nat )
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                  @ none_nat ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_pred.elims
thf(fact_6749_insert__bound__height,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t @ T @ X3 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% insert_bound_height
thf(fact_6750_vebt__insert_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X3 @ Xa )
        = Y3 )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ~ ( ( ( Xa = zero_zero_nat )
                 => ( Y3
                    = ( vEBT_Leaf @ $true @ B4 ) ) )
                & ( ( Xa != zero_zero_nat )
                 => ( ( ( Xa = one_one_nat )
                     => ( Y3
                        = ( vEBT_Leaf @ A5 @ $true ) ) )
                    & ( ( Xa != one_one_nat )
                     => ( Y3
                        = ( vEBT_Leaf @ A5 @ B4 ) ) ) ) ) ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
              ( ( X3
                = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) )
             => ( Y3
               != ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) )
               => ( Y3
                 != ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) ) )
           => ( ! [V3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) )
                 => ( Y3
                   != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa @ Xa ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y3
                     != ( if_VEBT_VEBT
                        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                          & ~ ( ( Xa = Mi2 )
                              | ( Xa = Ma2 ) ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Xa @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) ) ) ) ) ) ) ) ).

% vebt_insert.elims
thf(fact_6751_vebt__insert_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( if_VEBT_VEBT
        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
          & ~ ( ( X3 = Mi )
              | ( X3 = Ma ) ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ X3 @ Mi ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ Ma ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) ) ) ).

% vebt_insert.simps(5)
thf(fact_6752_of__int__code__if,axiom,
    ( ring_1_of_int_real
    = ( ^ [K3: int] :
          ( if_real @ ( K3 = zero_zero_int ) @ zero_zero_real
          @ ( if_real @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_real @ ( ring_1_of_int_real @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_real
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_real ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_6753_of__int__code__if,axiom,
    ( ring_1_of_int_int
    = ( ^ [K3: int] :
          ( if_int @ ( K3 = zero_zero_int ) @ zero_zero_int
          @ ( if_int @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_int @ ( ring_1_of_int_int @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_int
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_int ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_6754_of__int__code__if,axiom,
    ( ring_17405671764205052669omplex
    = ( ^ [K3: int] :
          ( if_complex @ ( K3 = zero_zero_int ) @ zero_zero_complex
          @ ( if_complex @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_complex
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_complex ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_6755_of__int__code__if,axiom,
    ( ring_18347121197199848620nteger
    = ( ^ [K3: int] :
          ( if_Code_integer @ ( K3 = zero_zero_int ) @ zero_z3403309356797280102nteger
          @ ( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_6756_of__int__code__if,axiom,
    ( ring_1_of_int_rat
    = ( ^ [K3: int] :
          ( if_rat @ ( K3 = zero_zero_int ) @ zero_zero_rat
          @ ( if_rat @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ ( uminus_uminus_int @ K3 ) ) )
            @ ( if_rat
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_rat ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_6757_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_s_u_c_c2 @ X3 @ Xa )
        = Y3 )
     => ( ( ? [Uu: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ B4 ) )
         => ( ( Xa = zero_zero_nat )
           => ( Y3 != one_one_nat ) ) )
       => ( ( ? [Uv: $o,Uw: $o] :
                ( X3
                = ( vEBT_Leaf @ Uv @ Uw ) )
           => ( ? [N2: nat] :
                  ( Xa
                  = ( suc @ N2 ) )
             => ( Y3 != one_one_nat ) ) )
         => ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
             => ( Y3 != one_one_nat ) )
           => ( ( ? [V3: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
               => ( Y3 != one_one_nat ) )
             => ( ( ? [V3: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
                 => ( Y3 != one_one_nat ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ~ ( ( ( ord_less_nat @ Xa @ Mi2 )
                           => ( Y3 = one_one_nat ) )
                          & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                           => ( Y3
                              = ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                @ ( if_nat
                                  @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                     != none_nat )
                                    & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                  @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  @ ( plus_plus_nat @ ( vEBT_T_s_u_c_c2 @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                                @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.elims
thf(fact_6758_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_p_r_e_d2 @ X3 @ Xa )
        = Y3 )
     => ( ( ? [Uu: $o,Uv: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ Uv ) )
         => ( ( Xa = zero_zero_nat )
           => ( Y3 != one_one_nat ) ) )
       => ( ( ? [A5: $o,Uw: $o] :
                ( X3
                = ( vEBT_Leaf @ A5 @ Uw ) )
           => ( ( Xa
                = ( suc @ zero_zero_nat ) )
             => ( Y3 != one_one_nat ) ) )
         => ( ( ? [A5: $o,B4: $o] :
                  ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ? [Va: nat] :
                    ( Xa
                    = ( suc @ ( suc @ Va ) ) )
               => ( Y3 != one_one_nat ) ) )
           => ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
               => ( Y3 != one_one_nat ) )
             => ( ( ? [V3: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
                 => ( Y3 != one_one_nat ) )
               => ( ( ? [V3: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
                   => ( Y3 != one_one_nat ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ~ ( ( ( ord_less_nat @ Ma2 @ Xa )
                             => ( Y3 = one_one_nat ) )
                            & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                             => ( Y3
                                = ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( if_nat
                                    @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( plus_plus_nat @ ( vEBT_T_p_r_e_d2 @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                                  @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.elims
thf(fact_6759_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I1_J,axiom,
    ! [Uu2: $o,Uv2: $o] :
      ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat )
      = one_one_nat ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(1)
thf(fact_6760_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I1_J,axiom,
    ! [Uu2: $o,B: $o] :
      ( ( vEBT_T_s_u_c_c2 @ ( vEBT_Leaf @ Uu2 @ B ) @ zero_zero_nat )
      = one_one_nat ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(1)
thf(fact_6761_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I2_J,axiom,
    ! [A: $o,Uw2: $o] :
      ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Leaf @ A @ Uw2 ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(2)
thf(fact_6762_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
      ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve ) @ Vf )
      = one_one_nat ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(5)
thf(fact_6763_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve: nat] :
      ( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc @ Vd ) @ Ve )
      = one_one_nat ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(4)
thf(fact_6764_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I6_J,axiom,
    ! [V: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
      ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj )
      = one_one_nat ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(6)
thf(fact_6765_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
      ( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi )
      = one_one_nat ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(5)
thf(fact_6766_pred__bound__height_H,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_p_r_e_d2 @ T @ X3 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) ) ) ).

% pred_bound_height'
thf(fact_6767_succ_H__bound__height,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_s_u_c_c2 @ T @ X3 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) ) ) ).

% succ'_bound_height
thf(fact_6768_vebt__insert_Osimps_I2_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S ) @ X3 )
      = ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S ) ) ).

% vebt_insert.simps(2)
thf(fact_6769_pred__bound__size__univ_H,axiom,
    ! [T: vEBT_VEBT,N: nat,U: real,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( U
          = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_p_r_e_d2 @ T @ X3 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).

% pred_bound_size_univ'
thf(fact_6770_succ__bound__size__univ_H,axiom,
    ! [T: vEBT_VEBT,N: nat,U: real,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( U
          = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_T_s_u_c_c2 @ T @ X3 ) ) @ ( plus_plus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).

% succ_bound_size_univ'
thf(fact_6771_vebt__insert_Osimps_I3_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) @ X3 )
      = ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) ) ).

% vebt_insert.simps(3)
thf(fact_6772_vebt__insert_Osimps_I1_J,axiom,
    ! [X3: nat,A: $o,B: $o] :
      ( ( ( X3 = zero_zero_nat )
       => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X3 )
          = ( vEBT_Leaf @ $true @ B ) ) )
      & ( ( X3 != zero_zero_nat )
       => ( ( ( X3 = one_one_nat )
           => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X3 )
              = ( vEBT_Leaf @ A @ $true ) ) )
          & ( ( X3 != one_one_nat )
           => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X3 )
              = ( vEBT_Leaf @ A @ B ) ) ) ) ) ) ).

% vebt_insert.simps(1)
thf(fact_6773_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Osimps_I7_J,axiom,
    ! [Ma: nat,X3: nat,Mi: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Ma @ X3 )
       => ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = one_one_nat ) )
      & ( ~ ( ord_less_nat @ Ma @ X3 )
       => ( ( vEBT_T_p_r_e_d2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( plus_plus_nat @ ( vEBT_T_p_r_e_d2 @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
            @ one_one_nat ) ) ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.simps(7)
thf(fact_6774_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Osimps_I6_J,axiom,
    ! [X3: nat,Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ X3 @ Mi )
       => ( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = one_one_nat ) )
      & ( ~ ( ord_less_nat @ X3 @ Mi )
       => ( ( vEBT_T_s_u_c_c2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
          = ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            @ ( if_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( plus_plus_nat @ ( vEBT_T_s_u_c_c2 @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
            @ one_one_nat ) ) ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.simps(6)
thf(fact_6775_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_i_n_s_e_r_t @ X3 @ Xa )
        = Y3 )
     => ( ( ? [A5: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
         => ( Y3
           != ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
       => ( ( ? [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) )
           => ( Y3 != one_one_nat ) )
         => ( ( ? [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) )
             => ( Y3 != one_one_nat ) )
           => ( ( ? [V3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) )
               => ( Y3
                 != ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y3
                     != ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) )
                        @ ( if_nat
                          @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                            & ~ ( ( Xa = Mi2 )
                                | ( Xa = Ma2 ) ) )
                          @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_T_m_i_n_N_u_l_l @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                          @ one_one_nat ) ) ) ) ) ) ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.elims
thf(fact_6776_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r2 @ X3 @ Xa )
        = Y3 )
     => ( ( ? [A5: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
         => ( Y3 != one_one_nat ) )
       => ( ( ? [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
           => ( Y3 != one_one_nat ) )
         => ( ( ? [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => ( Y3 != one_one_nat ) )
           => ( ( ? [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
               => ( Y3 != one_one_nat ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y3
                     != ( plus_plus_nat @ one_one_nat
                        @ ( if_nat @ ( Xa = Mi2 ) @ zero_zero_nat
                          @ ( if_nat @ ( Xa = Ma2 ) @ zero_zero_nat
                            @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ zero_zero_nat
                              @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa ) @ zero_zero_nat
                                @ ( if_nat
                                  @ ( ( ord_less_nat @ Mi2 @ Xa )
                                    & ( ord_less_nat @ Xa @ Ma2 ) )
                                  @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
                                  @ zero_zero_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.elims
thf(fact_6777_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) )
        @ ( if_nat
          @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
            & ~ ( ( X3 = Mi )
                | ( X3 = Ma ) ) )
          @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_T_m_i_n_N_u_l_l @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
          @ one_one_nat ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.simps(5)
thf(fact_6778_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_i_n_s_e_r_t2 @ X3 @ Xa )
        = Y3 )
     => ( ( ? [A5: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
         => ( Y3 != one_one_nat ) )
       => ( ( ? [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) )
           => ( Y3 != one_one_nat ) )
         => ( ( ? [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) )
             => ( Y3 != one_one_nat ) )
           => ( ( ? [V3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) )
               => ( Y3 != one_one_nat ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y3
                     != ( if_nat
                        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                          & ~ ( ( Xa = Mi2 )
                              | ( Xa = Ma2 ) ) )
                        @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t2 @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                        @ one_one_nat ) ) ) ) ) ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.elims
thf(fact_6779_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( plus_plus_nat @ one_one_nat
        @ ( if_nat @ ( X3 = Mi ) @ zero_zero_nat
          @ ( if_nat @ ( X3 = Ma ) @ zero_zero_nat
            @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ zero_zero_nat
              @ ( if_nat @ ( ord_less_nat @ Ma @ X3 ) @ zero_zero_nat
                @ ( if_nat
                  @ ( ( ord_less_nat @ Mi @ X3 )
                    & ( ord_less_nat @ X3 @ Ma ) )
                  @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
                  @ zero_zero_nat ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(5)
thf(fact_6780_minNull__bound,axiom,
    ! [T: vEBT_VEBT] : ( ord_less_eq_nat @ ( vEBT_T_m_i_n_N_u_l_l @ T ) @ one_one_nat ) ).

% minNull_bound
thf(fact_6781_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I2_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(2)
thf(fact_6782_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I3_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(3)
thf(fact_6783_insersimp_H,axiom,
    ! [T: vEBT_VEBT,N: nat,Y3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_1 )
       => ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t2 @ T @ Y3 ) @ one_one_nat ) ) ) ).

% insersimp'
thf(fact_6784_insertsimp_H,axiom,
    ! [T: vEBT_VEBT,N: nat,L: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_minNull @ T )
       => ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t2 @ T @ L ) @ one_one_nat ) ) ) ).

% insertsimp'
thf(fact_6785_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(3)
thf(fact_6786_insert_H__bound__height,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_i_n_s_e_r_t2 @ T @ X3 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) ) ) ).

% insert'_bound_height
thf(fact_6787_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc ) @ X3 )
      = one_one_nat ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(4)
thf(fact_6788_member__bound__height_H,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r2 @ T @ X3 ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) ) ) ).

% member_bound_height'
thf(fact_6789_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_i_n_s_e_r_t2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( if_nat
        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
          & ~ ( ( X3 = Mi )
              | ( X3 = Ma ) ) )
        @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t2 @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t2 @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ Mi @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
        @ one_one_nat ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.simps(5)
thf(fact_6790_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_d_e_l_e_t_e @ X3 @ Xa )
        = Y3 )
     => ( ( ? [A5: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
         => ( ( Xa = zero_zero_nat )
           => ( Y3 != one_one_nat ) ) )
       => ( ( ? [A5: $o,B4: $o] :
                ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( ( Xa
                = ( suc @ zero_zero_nat ) )
             => ( Y3 != one_one_nat ) ) )
         => ( ( ? [A5: $o,B4: $o] :
                  ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ? [N2: nat] :
                    ( Xa
                    = ( suc @ ( suc @ N2 ) ) )
               => ( Y3 != one_one_nat ) ) )
           => ( ( ? [Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( Y3 != one_one_nat ) )
             => ( ( ? [Mi2: nat,Ma2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList3 @ Summary2 ) )
                 => ( Y3 != one_one_nat ) )
               => ( ( ? [Mi2: nat,Ma2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList3 @ Summary2 ) )
                   => ( Y3 != one_one_nat ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ( Y3
                         != ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                            @ ( if_nat
                              @ ( ( ord_less_nat @ Xa @ Mi2 )
                                | ( ord_less_nat @ Ma2 @ Xa ) )
                              @ one_one_nat
                              @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                                @ ( if_nat
                                  @ ( ( Xa = Mi2 )
                                    & ( Xa = Ma2 ) )
                                  @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                                  @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_m_i_n_t @ Summary2 ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) ) @ one_one_nat ) ) @ one_one_nat )
                                    @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                      @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_d_e_l_e_t_e @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                          @ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                            @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_d_e_l_e_t_e @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                              @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
                                                @ ( if_nat
                                                  @ ( ( ( Xa = Mi2 )
                                                     => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                        = Ma2 ) )
                                                    & ( ( Xa != Mi2 )
                                                     => ( Xa = Ma2 ) ) )
                                                  @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                                    @ ( plus_plus_nat @ one_one_nat
                                                      @ ( if_nat
                                                        @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                          = none_nat )
                                                        @ one_one_nat
                                                        @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
                                                  @ one_one_nat ) ) )
                                            @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
                                              @ ( if_nat
                                                @ ( ( ( Xa = Mi2 )
                                                   => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                      = Ma2 ) )
                                                  & ( ( Xa != Mi2 )
                                                   => ( Xa = Ma2 ) ) )
                                                @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                                @ one_one_nat ) ) ) ) )
                                      @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.elims
thf(fact_6791_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_VEBT_membermima @ X3 @ Xa )
        = Y3 )
     => ( ( ? [Uu: $o,Uv: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ Uv ) )
         => Y3 )
       => ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
           => Y3 )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va3: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) )
               => ( Y3
                  = ( ~ ( ( Xa = Mi2 )
                        | ( Xa = Ma2 ) ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                 => ( Y3
                    = ( ~ ( ( Xa = Mi2 )
                          | ( Xa = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) )
             => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                   => ( Y3
                      = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(1)
thf(fact_6792_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X3 @ Xa )
     => ( ! [Uu: $o,Uv: $o] :
            ( X3
           != ( vEBT_Leaf @ Uu @ Uv ) )
       => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X3
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va3: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) )
               => ( ( Xa = Mi2 )
                  | ( Xa = Ma2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                 => ( ( Xa = Mi2 )
                    | ( Xa = Ma2 )
                    | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
             => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(3)
thf(fact_6793_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X3 @ Xa )
        = Y3 )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( Y3
              = ( ~ ( ( ( Xa = zero_zero_nat )
                     => A5 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) )
           => Y3 )
         => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S3: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
               => ( Y3
                  = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(1)
thf(fact_6794_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_V5719532721284313246member @ X3 @ Xa )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ~ ( ( ( Xa = zero_zero_nat )
                 => A5 )
                & ( ( Xa != zero_zero_nat )
                 => ( ( ( Xa = one_one_nat )
                     => B4 )
                    & ( Xa = one_one_nat ) ) ) ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [S3: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
             => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(2)
thf(fact_6795_buildup__nothing__in__min__max,axiom,
    ! [N: nat,X3: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N ) @ X3 ) ).

% buildup_nothing_in_min_max
thf(fact_6796_buildup__nothing__in__leaf,axiom,
    ! [N: nat,X3: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X3 ) ).

% buildup_nothing_in_leaf
thf(fact_6797_both__member__options__def,axiom,
    ( vEBT_V8194947554948674370ptions
    = ( ^ [T2: vEBT_VEBT,X: nat] :
          ( ( vEBT_V5719532721284313246member @ T2 @ X )
          | ( vEBT_VEBT_membermima @ T2 @ X ) ) ) ) ).

% both_member_options_def
thf(fact_6798_member__valid__both__member__options,axiom,
    ! [Tree: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ Tree @ N )
     => ( ( vEBT_vebt_member @ Tree @ X3 )
       => ( ( vEBT_V5719532721284313246member @ Tree @ X3 )
          | ( vEBT_VEBT_membermima @ Tree @ X3 ) ) ) ) ).

% member_valid_both_member_options
thf(fact_6799_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
    ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux ) ).

% VEBT_internal.naive_member.simps(2)
thf(fact_6800_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
    ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).

% VEBT_internal.membermima.simps(2)
thf(fact_6801_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X3: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X3 )
      = ( ( ( X3 = zero_zero_nat )
         => A )
        & ( ( X3 != zero_zero_nat )
         => ( ( ( X3 = one_one_nat )
             => B )
            & ( X3 = one_one_nat ) ) ) ) ) ).

% VEBT_internal.naive_member.simps(1)
thf(fact_6802_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT,X3: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ X3 )
      = ( ( X3 = Mi )
        | ( X3 = Ma ) ) ) ).

% VEBT_internal.membermima.simps(3)
thf(fact_6803_maxt__bound,axiom,
    ! [T: vEBT_VEBT] : ( ord_less_eq_nat @ ( vEBT_T_m_a_x_t @ T ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).

% maxt_bound
thf(fact_6804_mint__bound,axiom,
    ! [T: vEBT_VEBT] : ( ord_less_eq_nat @ ( vEBT_T_m_i_n_t @ T ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ).

% mint_bound
thf(fact_6805_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_T_m_i_n_t @ ( vEBT_Leaf @ A @ B ) )
      = ( plus_plus_nat @ one_one_nat @ ( if_nat @ A @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).

% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.simps(1)
thf(fact_6806_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Oelims,axiom,
    ! [X3: vEBT_VEBT,Y3: nat] :
      ( ( ( vEBT_T_m_i_n_t @ X3 )
        = Y3 )
     => ( ! [A5: $o] :
            ( ? [B4: $o] :
                ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( Y3
             != ( plus_plus_nat @ one_one_nat @ ( if_nat @ A5 @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
       => ( ( ? [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
           => ( Y3 != one_one_nat ) )
         => ~ ( ? [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
             => ( Y3 != one_one_nat ) ) ) ) ) ).

% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.elims
thf(fact_6807_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
    ! [V: nat,TreeList2: list_VEBT_VEBT,Vd: vEBT_VEBT,X3: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList2 @ Vd ) @ X3 )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).

% VEBT_internal.membermima.simps(5)
thf(fact_6808_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
    ! [Uy: option4927543243414619207at_nat,V: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT,X3: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList2 @ S ) @ X3 )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ).

% VEBT_internal.naive_member.simps(3)
thf(fact_6809_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
    ! [Mi: nat,Ma: nat,V: nat,TreeList2: list_VEBT_VEBT,Vc: vEBT_VEBT,X3: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList2 @ Vc ) @ X3 )
      = ( ( X3 = Mi )
        | ( X3 = Ma )
        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          & ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ).

% VEBT_internal.membermima.simps(4)
thf(fact_6810_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Osimps_I7_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_p_r_e_d @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( plus_plus_nat @ one_one_nat
        @ ( if_nat @ ( ord_less_nat @ Ma @ X3 ) @ one_one_nat
          @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ one_one_nat )
            @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
              @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
                @ ( if_nat
                  @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                     != none_nat )
                    & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                  @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_p_r_e_d @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
                    @ ( if_nat
                      @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                        = none_nat )
                      @ ( plus_plus_nat @ one_one_nat @ one_one_nat )
                      @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
              @ one_one_nat ) ) ) ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.simps(7)
thf(fact_6811_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Osimps_I6_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_s_u_c_c @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( plus_plus_nat @ one_one_nat
        @ ( if_nat @ ( ord_less_nat @ X3 @ Mi ) @ one_one_nat
          @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) )
            @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
              @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                  @ ( if_nat
                    @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                       != none_nat )
                      & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                    @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_s_u_c_c @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
                      @ ( if_nat
                        @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                          = none_nat )
                        @ one_one_nat
                        @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X3 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) )
              @ one_one_nat ) ) ) ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.simps(6)
thf(fact_6812_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_p_r_e_d @ X3 @ Xa )
        = Y3 )
     => ( ( ? [Uu: $o,Uv: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ Uv ) )
         => ( ( Xa = zero_zero_nat )
           => ( Y3 != one_one_nat ) ) )
       => ( ( ? [A5: $o,Uw: $o] :
                ( X3
                = ( vEBT_Leaf @ A5 @ Uw ) )
           => ( ( Xa
                = ( suc @ zero_zero_nat ) )
             => ( Y3
               != ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
         => ( ! [A5: $o,B4: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
               => ( ? [Va: nat] :
                      ( Xa
                      = ( suc @ ( suc @ Va ) ) )
                 => ( Y3
                   != ( plus_plus_nat @ one_one_nat @ ( if_nat @ B4 @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ) )
           => ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
               => ( Y3 != one_one_nat ) )
             => ( ( ? [V3: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
                 => ( Y3 != one_one_nat ) )
               => ( ( ? [V3: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
                        ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
                   => ( Y3 != one_one_nat ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ( Y3
                         != ( plus_plus_nat @ one_one_nat
                            @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa ) @ one_one_nat
                              @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ one_one_nat )
                                @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
                                    @ ( if_nat
                                      @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                         != none_nat )
                                        & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                      @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_p_r_e_d @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
                                        @ ( if_nat
                                          @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                            = none_nat )
                                          @ ( plus_plus_nat @ one_one_nat @ one_one_nat )
                                          @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
                                  @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.elims
thf(fact_6813_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_s_u_c_c @ X3 @ Xa )
        = Y3 )
     => ( ( ? [Uu: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ B4 ) )
         => ( ( Xa = zero_zero_nat )
           => ( Y3
             != ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
       => ( ( ? [Uv: $o,Uw: $o] :
                ( X3
                = ( vEBT_Leaf @ Uv @ Uw ) )
           => ( ? [N2: nat] :
                  ( Xa
                  = ( suc @ N2 ) )
             => ( Y3 != one_one_nat ) ) )
         => ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
             => ( Y3 != one_one_nat ) )
           => ( ( ? [V3: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
               => ( Y3 != one_one_nat ) )
             => ( ( ? [V3: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
                      ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
                 => ( Y3 != one_one_nat ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( Y3
                       != ( plus_plus_nat @ one_one_nat
                          @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ one_one_nat
                            @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) )
                              @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                  @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                                    @ ( if_nat
                                      @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                         != none_nat )
                                        & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                      @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_s_u_c_c @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
                                        @ ( if_nat
                                          @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                            = none_nat )
                                          @ one_one_nat
                                          @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) )
                                @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.elims
thf(fact_6814_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_membermima @ X3 @ Xa )
     => ( ! [Mi2: nat,Ma2: nat] :
            ( ? [Va3: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                ( X3
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) )
           => ~ ( ( Xa = Mi2 )
                | ( Xa = Ma2 ) ) )
       => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [Vc2: vEBT_VEBT] :
                  ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
             => ~ ( ( Xa = Mi2 )
                  | ( Xa = Ma2 )
                  | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
         => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [Vd2: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
               => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(2)
thf(fact_6815_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Osimps_I7_J,axiom,
    ! [Mi: nat,Ma: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,X3: nat] :
      ( ( vEBT_T_d_e_l_e_t_e @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary ) @ X3 )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
        @ ( if_nat
          @ ( ( ord_less_nat @ X3 @ Mi )
            | ( ord_less_nat @ Ma @ X3 ) )
          @ one_one_nat
          @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
            @ ( if_nat
              @ ( ( X3 = Mi )
                & ( X3 = Ma ) )
              @ ( numeral_numeral_nat @ ( bit1 @ one ) )
              @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_m_i_n_t @ Summary ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) ) @ one_one_nat ) ) @ one_one_nat )
                @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                  @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_d_e_l_e_t_e @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                      @ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_d_e_l_e_t_e @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
                            @ ( if_nat
                              @ ( ( ( X3 = Mi )
                                 => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                                    = Ma ) )
                                & ( ( X3 != Mi )
                                 => ( X3 = Ma ) ) )
                              @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                @ ( plus_plus_nat @ one_one_nat
                                  @ ( if_nat
                                    @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      = none_nat )
                                    @ one_one_nat
                                    @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
                              @ one_one_nat ) ) )
                        @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
                          @ ( if_nat
                            @ ( ( ( X3 = Mi )
                               => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                                  = Ma ) )
                              & ( ( X3 != Mi )
                               => ( X3 = Ma ) ) )
                            @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X3 = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X3 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                            @ one_one_nat ) ) ) ) )
                  @ one_one_nat ) ) ) ) ) ) ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.simps(7)
thf(fact_6816_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X3 @ Xa )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( ( ( Xa = zero_zero_nat )
               => A5 )
              & ( ( Xa != zero_zero_nat )
               => ( ( ( Xa = one_one_nat )
                   => B4 )
                  & ( Xa = one_one_nat ) ) ) ) )
       => ( ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
              ( X3
             != ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S3: vEBT_VEBT] :
                    ( X3
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(3)
thf(fact_6817_T_092_060_094sub_062d_092_060_094sub_062e_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062t_092_060_094sub_062e_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_d_e_l_e_t_e @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A5: $o,B4: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
               => ( ( Xa
                    = ( suc @ zero_zero_nat ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A5: $o,B4: $o] :
                  ( ( X3
                    = ( vEBT_Leaf @ A5 @ B4 ) )
                 => ! [N2: nat] :
                      ( ( Xa
                        = ( suc @ ( suc @ N2 ) ) )
                     => ( ( Y3 = one_one_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ ( suc @ N2 ) ) ) ) ) ) )
             => ( ! [Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) @ Xa ) ) ) )
               => ( ! [Mi2: nat,Ma2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList3 @ Summary2 ) )
                     => ( ( Y3 = one_one_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TreeList3 @ Summary2 ) @ Xa ) ) ) )
                 => ( ! [Mi2: nat,Ma2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList3 @ Summary2 ) )
                       => ( ( Y3 = one_one_nat )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X3
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                         => ( ( Y3
                              = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                                @ ( if_nat
                                  @ ( ( ord_less_nat @ Xa @ Mi2 )
                                    | ( ord_less_nat @ Ma2 @ Xa ) )
                                  @ one_one_nat
                                  @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                                    @ ( if_nat
                                      @ ( ( Xa = Mi2 )
                                        & ( Xa = Ma2 ) )
                                      @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                                      @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit1 @ one ) ) ) ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_m_i_n_t @ Summary2 ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) ) @ one_one_nat ) ) @ one_one_nat )
                                        @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                          @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_d_e_l_e_t_e @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                            @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_i_n_N_u_l_l @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                              @ ( if_nat @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_d_e_l_e_t_e @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                  @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
                                                    @ ( if_nat
                                                      @ ( ( ( Xa = Mi2 )
                                                         => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                            = Ma2 ) )
                                                        & ( ( Xa != Mi2 )
                                                         => ( Xa = Ma2 ) ) )
                                                      @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                                        @ ( plus_plus_nat @ one_one_nat
                                                          @ ( if_nat
                                                            @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                              = none_nat )
                                                            @ one_one_nat
                                                            @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
                                                      @ one_one_nat ) ) )
                                                @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
                                                  @ ( if_nat
                                                    @ ( ( ( Xa = Mi2 )
                                                       => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                          = Ma2 ) )
                                                      & ( ( Xa != Mi2 )
                                                       => ( Xa = Ma2 ) ) )
                                                    @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                                    @ one_one_nat ) ) ) ) )
                                          @ one_one_nat ) ) ) ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8441311223069195367_e_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>d\<^sub>e\<^sub>l\<^sub>e\<^sub>t\<^sub>e.pelims
thf(fact_6818_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_s_u_c_c @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ B4 ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( Y3
                    = ( plus_plus_nat @ one_one_nat @ one_one_nat ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ B4 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [Uv: $o,Uw: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ Uv @ Uw ) )
               => ! [N2: nat] :
                    ( ( Xa
                      = ( suc @ N2 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N2 ) ) ) ) ) )
           => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa ) ) ) )
             => ( ! [V3: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Xa ) ) ) )
               => ( ! [V3: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
                     => ( ( Y3 = one_one_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Xa ) ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ( ( Y3
                            = ( plus_plus_nat @ one_one_nat
                              @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ one_one_nat
                                @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) )
                                  @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                    @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                                      @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) )
                                        @ ( if_nat
                                          @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                             != none_nat )
                                            & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                          @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_s_u_c_c @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
                                            @ ( if_nat
                                              @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                                = none_nat )
                                              @ one_one_nat
                                              @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) )
                                    @ one_one_nat ) ) ) ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c.pelims
thf(fact_6819_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_p_r_e_d @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A5: $o,Uw: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ Uw ) )
               => ( ( Xa
                    = ( suc @ zero_zero_nat ) )
                 => ( ( Y3
                      = ( plus_plus_nat @ one_one_nat @ one_one_nat ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ Uw ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A5: $o,B4: $o] :
                  ( ( X3
                    = ( vEBT_Leaf @ A5 @ B4 ) )
                 => ! [Va: nat] :
                      ( ( Xa
                        = ( suc @ ( suc @ Va ) ) )
                     => ( ( Y3
                          = ( plus_plus_nat @ one_one_nat @ ( if_nat @ B4 @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ ( suc @ Va ) ) ) ) ) ) )
             => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Xa ) ) ) )
               => ( ! [V3: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
                     => ( ( Y3 = one_one_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Xa ) ) ) )
                 => ( ! [V3: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
                       => ( ( Y3 = one_one_nat )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Xa ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X3
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                         => ( ( Y3
                              = ( plus_plus_nat @ one_one_nat
                                @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa ) @ one_one_nat
                                  @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ one_one_nat )
                                    @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                      @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_T_m_i_n_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
                                        @ ( if_nat
                                          @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                             != none_nat )
                                            & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                          @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_p_r_e_d @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat )
                                            @ ( if_nat
                                              @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                                = none_nat )
                                              @ ( plus_plus_nat @ one_one_nat @ one_one_nat )
                                              @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( vEBT_T_m_a_x_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) )
                                      @ one_one_nat ) ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel2 @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d.pelims
thf(fact_6820_pred__empty,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X3 )
          = none_nat )
        = ( ( collect_nat
            @ ^ [Y: nat] :
                ( ( vEBT_vebt_member @ T @ Y )
                & ( ord_less_nat @ Y @ X3 ) ) )
          = bot_bot_set_nat ) ) ) ).

% pred_empty
thf(fact_6821_succ__empty,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X3 )
          = none_nat )
        = ( ( collect_nat
            @ ^ [Y: nat] :
                ( ( vEBT_vebt_member @ T @ Y )
                & ( ord_less_nat @ X3 @ Y ) ) )
          = bot_bot_set_nat ) ) ) ).

% succ_empty
thf(fact_6822_buildup__gives__empty,axiom,
    ! [N: nat] :
      ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N ) )
      = bot_bot_set_nat ) ).

% buildup_gives_empty
thf(fact_6823_mint__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% mint_corr_help_empty
thf(fact_6824_maxt__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% maxt_corr_help_empty
thf(fact_6825_max__bot,axiom,
    ! [X3: set_Extended_enat] :
      ( ( ord_ma4205026669011143323d_enat @ bot_bo7653980558646680370d_enat @ X3 )
      = X3 ) ).

% max_bot
thf(fact_6826_max__bot,axiom,
    ! [X3: set_real] :
      ( ( ord_max_set_real @ bot_bot_set_real @ X3 )
      = X3 ) ).

% max_bot
thf(fact_6827_max__bot,axiom,
    ! [X3: set_nat] :
      ( ( ord_max_set_nat @ bot_bot_set_nat @ X3 )
      = X3 ) ).

% max_bot
thf(fact_6828_max__bot,axiom,
    ! [X3: set_int] :
      ( ( ord_max_set_int @ bot_bot_set_int @ X3 )
      = X3 ) ).

% max_bot
thf(fact_6829_max__bot,axiom,
    ! [X3: nat] :
      ( ( ord_max_nat @ bot_bot_nat @ X3 )
      = X3 ) ).

% max_bot
thf(fact_6830_max__bot,axiom,
    ! [X3: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ bot_bo4199563552545308370d_enat @ X3 )
      = X3 ) ).

% max_bot
thf(fact_6831_max__bot2,axiom,
    ! [X3: set_Extended_enat] :
      ( ( ord_ma4205026669011143323d_enat @ X3 @ bot_bo7653980558646680370d_enat )
      = X3 ) ).

% max_bot2
thf(fact_6832_max__bot2,axiom,
    ! [X3: set_real] :
      ( ( ord_max_set_real @ X3 @ bot_bot_set_real )
      = X3 ) ).

% max_bot2
thf(fact_6833_max__bot2,axiom,
    ! [X3: set_nat] :
      ( ( ord_max_set_nat @ X3 @ bot_bot_set_nat )
      = X3 ) ).

% max_bot2
thf(fact_6834_max__bot2,axiom,
    ! [X3: set_int] :
      ( ( ord_max_set_int @ X3 @ bot_bot_set_int )
      = X3 ) ).

% max_bot2
thf(fact_6835_max__bot2,axiom,
    ! [X3: nat] :
      ( ( ord_max_nat @ X3 @ bot_bot_nat )
      = X3 ) ).

% max_bot2
thf(fact_6836_max__bot2,axiom,
    ! [X3: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ X3 @ bot_bo4199563552545308370d_enat )
      = X3 ) ).

% max_bot2
thf(fact_6837_atLeastatMost__empty__iff,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ( set_or5403411693681687835d_enat @ A @ B )
        = bot_bo7653980558646680370d_enat )
      = ( ~ ( ord_le2932123472753598470d_enat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_6838_atLeastatMost__empty__iff,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ( set_or4548717258645045905et_nat @ A @ B )
        = bot_bot_set_set_nat )
      = ( ~ ( ord_less_eq_set_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_6839_atLeastatMost__empty__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_6840_atLeastatMost__empty__iff,axiom,
    ! [A: num,B: num] :
      ( ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_6841_atLeastatMost__empty__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_6842_atLeastatMost__empty__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_6843_atLeastatMost__empty__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_6844_atLeastatMost__empty__iff2,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( bot_bo7653980558646680370d_enat
        = ( set_or5403411693681687835d_enat @ A @ B ) )
      = ( ~ ( ord_le2932123472753598470d_enat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_6845_atLeastatMost__empty__iff2,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( bot_bot_set_set_nat
        = ( set_or4548717258645045905et_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_set_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_6846_atLeastatMost__empty__iff2,axiom,
    ! [A: rat,B: rat] :
      ( ( bot_bot_set_rat
        = ( set_or633870826150836451st_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_6847_atLeastatMost__empty__iff2,axiom,
    ! [A: num,B: num] :
      ( ( bot_bot_set_num
        = ( set_or7049704709247886629st_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_6848_atLeastatMost__empty__iff2,axiom,
    ! [A: nat,B: nat] :
      ( ( bot_bot_set_nat
        = ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_6849_atLeastatMost__empty__iff2,axiom,
    ! [A: int,B: int] :
      ( ( bot_bot_set_int
        = ( set_or1266510415728281911st_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_6850_atLeastatMost__empty__iff2,axiom,
    ! [A: real,B: real] :
      ( ( bot_bot_set_real
        = ( set_or1222579329274155063t_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_6851_atLeastatMost__empty,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ( set_or5403411693681687835d_enat @ A @ B )
        = bot_bo7653980558646680370d_enat ) ) ).

% atLeastatMost_empty
thf(fact_6852_atLeastatMost__empty,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat ) ) ).

% atLeastatMost_empty
thf(fact_6853_atLeastatMost__empty,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num ) ) ).

% atLeastatMost_empty
thf(fact_6854_atLeastatMost__empty,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat ) ) ).

% atLeastatMost_empty
thf(fact_6855_atLeastatMost__empty,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int ) ) ).

% atLeastatMost_empty
thf(fact_6856_atLeastatMost__empty,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real ) ) ).

% atLeastatMost_empty
thf(fact_6857_bot_Oextremum,axiom,
    ! [A: set_Extended_enat] : ( ord_le7203529160286727270d_enat @ bot_bo7653980558646680370d_enat @ A ) ).

% bot.extremum
thf(fact_6858_bot_Oextremum,axiom,
    ! [A: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A ) ).

% bot.extremum
thf(fact_6859_bot_Oextremum,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A ) ).

% bot.extremum
thf(fact_6860_bot_Oextremum,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).

% bot.extremum
thf(fact_6861_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_6862_bot_Oextremum__unique,axiom,
    ! [A: set_Extended_enat] :
      ( ( ord_le7203529160286727270d_enat @ A @ bot_bo7653980558646680370d_enat )
      = ( A = bot_bo7653980558646680370d_enat ) ) ).

% bot.extremum_unique
thf(fact_6863_bot_Oextremum__unique,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
      = ( A = bot_bot_set_real ) ) ).

% bot.extremum_unique
thf(fact_6864_bot_Oextremum__unique,axiom,
    ! [A: set_int] :
      ( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
      = ( A = bot_bot_set_int ) ) ).

% bot.extremum_unique
thf(fact_6865_bot_Oextremum__unique,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
      = ( A = bot_bot_set_nat ) ) ).

% bot.extremum_unique
thf(fact_6866_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_6867_bot_Oextremum__uniqueI,axiom,
    ! [A: set_Extended_enat] :
      ( ( ord_le7203529160286727270d_enat @ A @ bot_bo7653980558646680370d_enat )
     => ( A = bot_bo7653980558646680370d_enat ) ) ).

% bot.extremum_uniqueI
thf(fact_6868_bot_Oextremum__uniqueI,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
     => ( A = bot_bot_set_real ) ) ).

% bot.extremum_uniqueI
thf(fact_6869_bot_Oextremum__uniqueI,axiom,
    ! [A: set_int] :
      ( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
     => ( A = bot_bot_set_int ) ) ).

% bot.extremum_uniqueI
thf(fact_6870_bot_Oextremum__uniqueI,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
     => ( A = bot_bot_set_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_6871_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_6872_bot_Onot__eq__extremum,axiom,
    ! [A: set_Extended_enat] :
      ( ( A != bot_bo7653980558646680370d_enat )
      = ( ord_le2529575680413868914d_enat @ bot_bo7653980558646680370d_enat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_6873_bot_Onot__eq__extremum,axiom,
    ! [A: set_real] :
      ( ( A != bot_bot_set_real )
      = ( ord_less_set_real @ bot_bot_set_real @ A ) ) ).

% bot.not_eq_extremum
thf(fact_6874_bot_Onot__eq__extremum,axiom,
    ! [A: set_nat] :
      ( ( A != bot_bot_set_nat )
      = ( ord_less_set_nat @ bot_bot_set_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_6875_bot_Onot__eq__extremum,axiom,
    ! [A: set_int] :
      ( ( A != bot_bot_set_int )
      = ( ord_less_set_int @ bot_bot_set_int @ A ) ) ).

% bot.not_eq_extremum
thf(fact_6876_bot_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_6877_bot_Oextremum__strict,axiom,
    ! [A: set_Extended_enat] :
      ~ ( ord_le2529575680413868914d_enat @ A @ bot_bo7653980558646680370d_enat ) ).

% bot.extremum_strict
thf(fact_6878_bot_Oextremum__strict,axiom,
    ! [A: set_real] :
      ~ ( ord_less_set_real @ A @ bot_bot_set_real ) ).

% bot.extremum_strict
thf(fact_6879_bot_Oextremum__strict,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ A @ bot_bot_set_nat ) ).

% bot.extremum_strict
thf(fact_6880_bot_Oextremum__strict,axiom,
    ! [A: set_int] :
      ~ ( ord_less_set_int @ A @ bot_bot_set_int ) ).

% bot.extremum_strict
thf(fact_6881_bot_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_6882_diff__shunt__var,axiom,
    ! [X3: set_Extended_enat,Y3: set_Extended_enat] :
      ( ( ( minus_925952699566721837d_enat @ X3 @ Y3 )
        = bot_bo7653980558646680370d_enat )
      = ( ord_le7203529160286727270d_enat @ X3 @ Y3 ) ) ).

% diff_shunt_var
thf(fact_6883_diff__shunt__var,axiom,
    ! [X3: set_real,Y3: set_real] :
      ( ( ( minus_minus_set_real @ X3 @ Y3 )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ X3 @ Y3 ) ) ).

% diff_shunt_var
thf(fact_6884_diff__shunt__var,axiom,
    ! [X3: set_int,Y3: set_int] :
      ( ( ( minus_minus_set_int @ X3 @ Y3 )
        = bot_bot_set_int )
      = ( ord_less_eq_set_int @ X3 @ Y3 ) ) ).

% diff_shunt_var
thf(fact_6885_diff__shunt__var,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ( minus_minus_set_nat @ X3 @ Y3 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ X3 @ Y3 ) ) ).

% diff_shunt_var
thf(fact_6886_vebt__succ_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: option_nat] :
      ( ( ( vEBT_vebt_succ @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ B4 ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( ( B4
                     => ( Y3
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B4
                     => ( Y3 = none_nat ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ B4 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [Uv: $o,Uw: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ Uv @ Uw ) )
               => ! [N2: nat] :
                    ( ( Xa
                      = ( suc @ N2 ) )
                   => ( ( Y3 = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N2 ) ) ) ) ) )
           => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y3 = none_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa ) ) ) )
             => ( ! [V3: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
                   => ( ( Y3 = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Xa ) ) ) )
               => ( ! [V3: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
                     => ( ( Y3 = none_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Xa ) ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ( ( ( ( ord_less_nat @ Xa @ Mi2 )
                             => ( Y3
                                = ( some_nat @ Mi2 ) ) )
                            & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                             => ( Y3
                                = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( if_option_nat
                                    @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( if_option_nat
                                      @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                        = none_nat )
                                      @ none_nat
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                  @ none_nat ) ) ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.pelims
thf(fact_6887_vebt__pred_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: option_nat] :
      ( ( ( vEBT_vebt_pred @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( Y3 = none_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A5: $o,Uw: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ Uw ) )
               => ( ( Xa
                    = ( suc @ zero_zero_nat ) )
                 => ( ( ( A5
                       => ( Y3
                          = ( some_nat @ zero_zero_nat ) ) )
                      & ( ~ A5
                       => ( Y3 = none_nat ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ Uw ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A5: $o,B4: $o] :
                  ( ( X3
                    = ( vEBT_Leaf @ A5 @ B4 ) )
                 => ! [Va: nat] :
                      ( ( Xa
                        = ( suc @ ( suc @ Va ) ) )
                     => ( ( ( B4
                           => ( Y3
                              = ( some_nat @ one_one_nat ) ) )
                          & ( ~ B4
                           => ( ( A5
                               => ( Y3
                                  = ( some_nat @ zero_zero_nat ) ) )
                              & ( ~ A5
                               => ( Y3 = none_nat ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ ( suc @ Va ) ) ) ) ) ) )
             => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
                   => ( ( Y3 = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Xa ) ) ) )
               => ( ! [V3: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
                     => ( ( Y3 = none_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Xa ) ) ) )
                 => ( ! [V3: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
                       => ( ( Y3 = none_nat )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Xa ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X3
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                         => ( ( ( ( ord_less_nat @ Ma2 @ Xa )
                               => ( Y3
                                  = ( some_nat @ Ma2 ) ) )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                               => ( Y3
                                  = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                    @ ( if_option_nat
                                      @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                         != none_nat )
                                        & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      @ ( if_option_nat
                                        @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                          = none_nat )
                                        @ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa ) @ ( some_nat @ Mi2 ) @ none_nat )
                                        @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                    @ none_nat ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_pred.pelims
thf(fact_6888_vebt__delete_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_vebt_delete @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( Y3
                    = ( vEBT_Leaf @ $false @ B4 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A5: $o,B4: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
               => ( ( Xa
                    = ( suc @ zero_zero_nat ) )
                 => ( ( Y3
                      = ( vEBT_Leaf @ A5 @ $false ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A5: $o,B4: $o] :
                  ( ( X3
                    = ( vEBT_Leaf @ A5 @ B4 ) )
                 => ! [N2: nat] :
                      ( ( Xa
                        = ( suc @ ( suc @ N2 ) ) )
                     => ( ( Y3
                          = ( vEBT_Leaf @ A5 @ B4 ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ ( suc @ N2 ) ) ) ) ) ) )
             => ( ! [Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
                   => ( ( Y3
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) @ Xa ) ) ) )
               => ( ! [Mi2: nat,Ma2: nat,TrLst2: list_VEBT_VEBT,Smry2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) )
                     => ( ( Y3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) @ Xa ) ) ) )
                 => ( ! [Mi2: nat,Ma2: nat,Tr2: list_VEBT_VEBT,Sm2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) )
                       => ( ( Y3
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) @ Xa ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X3
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                         => ( ( ( ( ( ord_less_nat @ Xa @ Mi2 )
                                  | ( ord_less_nat @ Ma2 @ Xa ) )
                               => ( Y3
                                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) )
                              & ( ~ ( ( ord_less_nat @ Xa @ Mi2 )
                                    | ( ord_less_nat @ Ma2 @ Xa ) )
                               => ( ( ( ( Xa = Mi2 )
                                      & ( Xa = Ma2 ) )
                                   => ( Y3
                                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) )
                                  & ( ~ ( ( Xa = Mi2 )
                                        & ( Xa = Ma2 ) )
                                   => ( Y3
                                      = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                        @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( vEBT_Node
                                            @ ( some_P7363390416028606310at_nat
                                              @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa = Mi2 ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ Mi2 )
                                                @ ( if_nat
                                                  @ ( ( ( Xa = Mi2 )
                                                     => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                        = Ma2 ) )
                                                    & ( ( Xa != Mi2 )
                                                     => ( Xa = Ma2 ) ) )
                                                  @ ( if_nat
                                                    @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                      = none_nat )
                                                    @ ( if_nat @ ( Xa = Mi2 ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ Mi2 )
                                                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                                                  @ Ma2 ) ) )
                                            @ ( suc @ ( suc @ Va ) )
                                            @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                            @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( vEBT_Node
                                            @ ( some_P7363390416028606310at_nat
                                              @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa = Mi2 ) @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ Mi2 )
                                                @ ( if_nat
                                                  @ ( ( ( Xa = Mi2 )
                                                     => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                        = Ma2 ) )
                                                    & ( ( Xa != Mi2 )
                                                     => ( Xa = Ma2 ) ) )
                                                  @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                                  @ Ma2 ) ) )
                                            @ ( suc @ ( suc @ Va ) )
                                            @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                            @ Summary2 ) )
                                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) ) ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_delete.pelims
thf(fact_6889_T_092_060_094sub_062s_092_060_094sub_062u_092_060_094sub_062c_092_060_094sub_062c_H_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_s_u_c_c2 @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ B4 ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ B4 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [Uv: $o,Uw: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ Uv @ Uw ) )
               => ! [N2: nat] :
                    ( ( Xa
                      = ( suc @ N2 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N2 ) ) ) ) ) )
           => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa ) ) ) )
             => ( ! [V3: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Xa ) ) ) )
               => ( ! [V3: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) )
                     => ( ( Y3 = one_one_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Xa ) ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                       => ( ( ( ( ord_less_nat @ Xa @ Mi2 )
                             => ( Y3 = one_one_nat ) )
                            & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                             => ( Y3
                                = ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( if_nat
                                    @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_s_u_c_c2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( plus_plus_nat @ ( vEBT_T_s_u_c_c2 @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                                  @ one_one_nat ) ) ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_s_u_c_c_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>s\<^sub>u\<^sub>c\<^sub>c'.pelims
thf(fact_6890_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_i_n_s_e_r_t @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3
                  = ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) @ Xa ) ) ) )
           => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) @ Xa ) ) ) )
             => ( ! [V3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Y3
                        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y3
                          = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) )
                            @ ( if_nat
                              @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                & ~ ( ( Xa = Mi2 )
                                    | ( Xa = Ma2 ) ) )
                              @ ( plus_plus_nat @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_T_m_i_n_N_u_l_l @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                              @ one_one_nat ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T9217963907923527482_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t.pelims
thf(fact_6891_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_6892_bot__enat__def,axiom,
    bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).

% bot_enat_def
thf(fact_6893_vebt__insert_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( ( ( Xa = zero_zero_nat )
                   => ( Y3
                      = ( vEBT_Leaf @ $true @ B4 ) ) )
                  & ( ( Xa != zero_zero_nat )
                   => ( ( ( Xa = one_one_nat )
                       => ( Y3
                          = ( vEBT_Leaf @ A5 @ $true ) ) )
                      & ( ( Xa != one_one_nat )
                       => ( Y3
                          = ( vEBT_Leaf @ A5 @ B4 ) ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) )
               => ( ( Y3
                    = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) @ Xa ) ) ) )
           => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) )
                 => ( ( Y3
                      = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) @ Xa ) ) ) )
             => ( ! [V3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Y3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa @ Xa ) ) @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y3
                          = ( if_VEBT_VEBT
                            @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                              & ~ ( ( Xa = Mi2 )
                                  | ( Xa = Ma2 ) ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Xa @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% vebt_insert.pelims
thf(fact_6894_T_092_060_094sub_062p_092_060_094sub_062r_092_060_094sub_062e_092_060_094sub_062d_H_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_p_r_e_d2 @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ( ( Xa = zero_zero_nat )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A5: $o,Uw: $o] :
                ( ( X3
                  = ( vEBT_Leaf @ A5 @ Uw ) )
               => ( ( Xa
                    = ( suc @ zero_zero_nat ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ Uw ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A5: $o,B4: $o] :
                  ( ( X3
                    = ( vEBT_Leaf @ A5 @ B4 ) )
                 => ! [Va: nat] :
                      ( ( Xa
                        = ( suc @ ( suc @ Va ) ) )
                     => ( ( Y3 = one_one_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ ( suc @ ( suc @ Va ) ) ) ) ) ) )
             => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Xa ) ) ) )
               => ( ! [V3: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) )
                     => ( ( Y3 = one_one_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Vd2 @ Ve2 ) @ Xa ) ) ) )
                 => ( ! [V3: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT] :
                        ( ( X3
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) )
                       => ( ( Y3 = one_one_nat )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Xa ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X3
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                         => ( ( ( ( ord_less_nat @ Ma2 @ Xa )
                               => ( Y3 = one_one_nat ) )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                               => ( Y3
                                  = ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                    @ ( if_nat
                                      @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                         != none_nat )
                                        & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                      @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_p_r_e_d2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      @ ( plus_plus_nat @ ( vEBT_T_p_r_e_d2 @ Summary2 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                                    @ one_one_nat ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T_p_r_e_d_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>p\<^sub>r\<^sub>e\<^sub>d'.pelims
thf(fact_6895_T_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062s_092_060_094sub_062e_092_060_094sub_062r_092_060_094sub_062t_H_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_i_n_s_e_r_t2 @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3 = one_one_nat )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S3 ) @ Xa ) ) ) )
           => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S3 ) @ Xa ) ) ) )
             => ( ! [V3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V3 ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y3
                          = ( if_nat
                            @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                              & ~ ( ( Xa = Mi2 )
                                  | ( Xa = Ma2 ) ) )
                            @ ( plus_plus_nat @ ( vEBT_T_i_n_s_e_r_t2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( if_nat @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_T_i_n_s_e_r_t2 @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ Mi2 @ Xa ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ one_one_nat ) )
                            @ one_one_nat ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5076183648494686801_t_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>i\<^sub>n\<^sub>s\<^sub>e\<^sub>r\<^sub>t'.pelims
thf(fact_6896_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3
                  = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
               => ( ( Y3
                    = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ Xa ) ) ) )
           => ( ! [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ( Y3
                      = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa ) ) ) )
             => ( ! [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
                   => ( ( Y3
                        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ Xa ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y3
                          = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa = Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa = Ma2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.pelims
thf(fact_6897_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r2 @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3 = one_one_nat )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ Xa ) ) ) )
           => ( ! [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa ) ) ) )
             => ( ! [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
                   => ( ( Y3 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ Xa ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y3
                          = ( plus_plus_nat @ one_one_nat
                            @ ( if_nat @ ( Xa = Mi2 ) @ zero_zero_nat
                              @ ( if_nat @ ( Xa = Ma2 ) @ zero_zero_nat
                                @ ( if_nat @ ( ord_less_nat @ Xa @ Mi2 ) @ zero_zero_nat
                                  @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa ) @ zero_zero_nat
                                    @ ( if_nat
                                      @ ( ( ord_less_nat @ Mi2 @ Xa )
                                        & ( ord_less_nat @ Xa @ Ma2 ) )
                                      @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
                                      @ zero_zero_nat ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.pelims
thf(fact_6898_vebt__member_Opelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_vebt_member @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3
                  = ( ( ( Xa = zero_zero_nat )
                     => A5 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
               => ( ~ Y3
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ Xa ) ) ) )
           => ( ! [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ~ Y3
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa ) ) ) )
             => ( ! [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
                   => ( ~ Y3
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ Xa ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y3
                          = ( ( Xa != Mi2 )
                           => ( ( Xa != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(1)
thf(fact_6899_vebt__member_Opelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_vebt_member @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) )
               => ( ( ( Xa = zero_zero_nat )
                   => A5 )
                  & ( ( Xa != zero_zero_nat )
                   => ( ( ( Xa = one_one_nat )
                       => B4 )
                      & ( Xa = one_one_nat ) ) ) ) ) )
         => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ Xa ) ) )
           => ( ! [V3: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa ) ) )
             => ( ! [V3: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V3 ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc2 ) @ Xa ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) )
                       => ( ( Xa != Mi2 )
                         => ( ( Xa != Ma2 )
                           => ( ~ ( ord_less_nat @ Xa @ Mi2 )
                              & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                               => ( ~ ( ord_less_nat @ Ma2 @ Xa )
                                  & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                       => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(3)
thf(fact_6900_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3
                  = ( ( ( Xa = zero_zero_nat )
                     => A5 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) )
               => ( ~ Y3
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Xa ) ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
                 => ( ( Y3
                      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ Xa ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(1)
thf(fact_6901_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_V5719532721284313246member @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) )
               => ~ ( ( ( Xa = zero_zero_nat )
                     => A5 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ Xa ) )
                 => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(2)
thf(fact_6902_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) )
               => ( ( ( Xa = zero_zero_nat )
                   => A5 )
                  & ( ( Xa != zero_zero_nat )
                   => ( ( ( Xa = one_one_nat )
                       => B4 )
                      & ( Xa = one_one_nat ) ) ) ) ) )
         => ( ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Xa ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V3: nat,TreeList3: list_VEBT_VEBT,S3: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V3 ) @ TreeList3 @ S3 ) @ Xa ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(3)
thf(fact_6903_vebt__member_Opelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_vebt_member @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) )
               => ~ ( ( ( Xa = zero_zero_nat )
                     => A5 )
                    & ( ( Xa != zero_zero_nat )
                     => ( ( ( Xa = one_one_nat )
                         => B4 )
                        & ( Xa = one_one_nat ) ) ) ) ) )
         => ~ ! [Mi2: nat,Ma2: nat,Va: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList3 @ Summary2 ) @ Xa ) )
                 => ~ ( ( Xa != Mi2 )
                     => ( ( Xa != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(2)
thf(fact_6904_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_VEBT_membermima @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ( ~ Y3
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ Xa ) ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ( ~ Y3
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) )
                 => ( ( Y3
                      = ( ( Xa = Mi2 )
                        | ( Xa = Ma2 ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) @ Xa ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                   => ( ( Y3
                        = ( ( Xa = Mi2 )
                          | ( Xa = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ Xa ) ) ) )
               => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                     => ( ( Y3
                          = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ Xa ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(1)
thf(fact_6905_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ Xa ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) @ Xa ) )
                   => ( ( Xa = Mi2 )
                      | ( Xa = Ma2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X3
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
                   => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ Xa ) )
                     => ( ( Xa = Mi2 )
                        | ( Xa = Ma2 )
                        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
               => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X3
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ Xa ) )
                       => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(3)
thf(fact_6906_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_membermima @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb: vEBT_VEBT] :
              ( ( X3
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb ) @ Xa ) )
               => ~ ( ( Xa = Mi2 )
                    | ( Xa = Ma2 ) ) ) )
         => ( ! [Mi2: nat,Ma2: nat,V3: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V3 ) @ TreeList3 @ Vc2 ) @ Xa ) )
                 => ~ ( ( Xa = Mi2 )
                      | ( Xa = Ma2 )
                      | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
           => ~ ! [V3: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V3 ) @ TreeList3 @ Vd2 ) @ Xa ) )
                   => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa @ ( divide_divide_nat @ ( suc @ V3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(2)
thf(fact_6907_monoseq__arctan__series,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( topolo6980174941875973593q_real
        @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% monoseq_arctan_series
thf(fact_6908_delete__correct,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_delete @ T @ X3 ) )
        = ( minus_minus_set_nat @ ( vEBT_set_vebt @ T ) @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ).

% delete_correct
thf(fact_6909_delete__correct_H,axiom,
    ! [T: vEBT_VEBT,N: nat,X3: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_delete @ T @ X3 ) )
        = ( minus_minus_set_nat @ ( vEBT_VEBT_set_vebt @ T ) @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ).

% delete_correct'
thf(fact_6910_atLeast0__atMost__Suc,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% atLeast0_atMost_Suc
thf(fact_6911_atLeastAtMost__insertL,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
        = ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% atLeastAtMost_insertL
thf(fact_6912_atLeastAtMostSuc__conv,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) )
        = ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ).

% atLeastAtMostSuc_conv
thf(fact_6913_Icc__eq__insert__lb__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( set_or1269000886237332187st_nat @ M @ N )
        = ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ).

% Icc_eq_insert_lb_nat
thf(fact_6914_monoseq__realpow,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( topolo6980174941875973593q_real @ ( power_power_real @ X3 ) ) ) ) ).

% monoseq_realpow
thf(fact_6915_pochhammer__times__pochhammer__half,axiom,
    ! [Z: complex,N: nat] :
      ( ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ ( suc @ N ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
      = ( groups6464643781859351333omplex
        @ ^ [K3: nat] : ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ K3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_6916_pochhammer__times__pochhammer__half,axiom,
    ! [Z: real,N: nat] :
      ( ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ ( suc @ N ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
      = ( groups129246275422532515t_real
        @ ^ [K3: nat] : ( plus_plus_real @ Z @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ K3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_6917_pochhammer__times__pochhammer__half,axiom,
    ! [Z: rat,N: nat] :
      ( ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( suc @ N ) ) )
      = ( groups73079841787564623at_rat
        @ ^ [K3: nat] : ( plus_plus_rat @ Z @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ K3 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_6918_signed__take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_minus_bit1
thf(fact_6919_ln__series,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ( ln_ln_real @ X3 )
          = ( suminf_real
            @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X3 @ one_one_real ) @ ( suc @ N3 ) ) ) ) ) ) ) ).

% ln_series
thf(fact_6920_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6921_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6922_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6923_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6924_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_6925_arctan__series,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( arctan @ X3 )
        = ( suminf_real
          @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).

% arctan_series
thf(fact_6926_of__nat__prod,axiom,
    ! [F: int > nat,A3: set_int] :
      ( ( semiri1314217659103216013at_int @ ( groups1707563613775114915nt_nat @ F @ A3 ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_prod
thf(fact_6927_of__nat__prod,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri8010041392384452111omplex @ ( groups708209901874060359at_nat @ F @ A3 ) )
      = ( groups6464643781859351333omplex
        @ ^ [X: nat] : ( semiri8010041392384452111omplex @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_prod
thf(fact_6928_of__nat__prod,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri5074537144036343181t_real @ ( groups708209901874060359at_nat @ F @ A3 ) )
      = ( groups129246275422532515t_real
        @ ^ [X: nat] : ( semiri5074537144036343181t_real @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_prod
thf(fact_6929_of__nat__prod,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri681578069525770553at_rat @ ( groups708209901874060359at_nat @ F @ A3 ) )
      = ( groups73079841787564623at_rat
        @ ^ [X: nat] : ( semiri681578069525770553at_rat @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_prod
thf(fact_6930_of__nat__prod,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri1314217659103216013at_int @ ( groups708209901874060359at_nat @ F @ A3 ) )
      = ( groups705719431365010083at_int
        @ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_prod
thf(fact_6931_of__nat__prod,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri1316708129612266289at_nat @ ( groups708209901874060359at_nat @ F @ A3 ) )
      = ( groups708209901874060359at_nat
        @ ^ [X: nat] : ( semiri1316708129612266289at_nat @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_prod
thf(fact_6932_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ one_one_complex )
    = one_one_complex ) ).

% dbl_dec_simps(3)
thf(fact_6933_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_6934_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
    = one_one_rat ) ).

% dbl_dec_simps(3)
thf(fact_6935_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_6936_of__int__prod,axiom,
    ! [F: nat > int,A3: set_nat] :
      ( ( ring_1_of_int_real @ ( groups705719431365010083at_int @ F @ A3 ) )
      = ( groups129246275422532515t_real
        @ ^ [X: nat] : ( ring_1_of_int_real @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6937_of__int__prod,axiom,
    ! [F: nat > int,A3: set_nat] :
      ( ( ring_17405671764205052669omplex @ ( groups705719431365010083at_int @ F @ A3 ) )
      = ( groups6464643781859351333omplex
        @ ^ [X: nat] : ( ring_17405671764205052669omplex @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6938_of__int__prod,axiom,
    ! [F: nat > int,A3: set_nat] :
      ( ( ring_1_of_int_rat @ ( groups705719431365010083at_int @ F @ A3 ) )
      = ( groups73079841787564623at_rat
        @ ^ [X: nat] : ( ring_1_of_int_rat @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6939_of__int__prod,axiom,
    ! [F: nat > int,A3: set_nat] :
      ( ( ring_1_of_int_int @ ( groups705719431365010083at_int @ F @ A3 ) )
      = ( groups705719431365010083at_int
        @ ^ [X: nat] : ( ring_1_of_int_int @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6940_of__int__prod,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_1_of_int_real @ ( groups1705073143266064639nt_int @ F @ A3 ) )
      = ( groups2316167850115554303t_real
        @ ^ [X: int] : ( ring_1_of_int_real @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6941_of__int__prod,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_17405671764205052669omplex @ ( groups1705073143266064639nt_int @ F @ A3 ) )
      = ( groups7440179247065528705omplex
        @ ^ [X: int] : ( ring_17405671764205052669omplex @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6942_of__int__prod,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_1_of_int_rat @ ( groups1705073143266064639nt_int @ F @ A3 ) )
      = ( groups1072433553688619179nt_rat
        @ ^ [X: int] : ( ring_1_of_int_rat @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6943_of__int__prod,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_1_of_int_int @ ( groups1705073143266064639nt_int @ F @ A3 ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : ( ring_1_of_int_int @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_prod
thf(fact_6944_pred__numeral__simps_I1_J,axiom,
    ( ( pred_numeral @ one )
    = zero_zero_nat ) ).

% pred_numeral_simps(1)
thf(fact_6945_eq__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K )
        = ( suc @ N ) )
      = ( ( pred_numeral @ K )
        = N ) ) ).

% eq_numeral_Suc
thf(fact_6946_Suc__eq__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ( suc @ N )
        = ( numeral_numeral_nat @ K ) )
      = ( N
        = ( pred_numeral @ K ) ) ) ).

% Suc_eq_numeral
thf(fact_6947_less__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( ord_less_nat @ ( pred_numeral @ K ) @ N ) ) ).

% less_numeral_Suc
thf(fact_6948_less__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_less_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_nat @ N @ ( pred_numeral @ K ) ) ) ).

% less_Suc_numeral
thf(fact_6949_pred__numeral__simps_I3_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit1 @ K ) )
      = ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).

% pred_numeral_simps(3)
thf(fact_6950_le__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_eq_nat @ N @ ( pred_numeral @ K ) ) ) ).

% le_Suc_numeral
thf(fact_6951_le__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N ) ) ).

% le_numeral_Suc
thf(fact_6952_diff__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( minus_minus_nat @ ( pred_numeral @ K ) @ N ) ) ).

% diff_numeral_Suc
thf(fact_6953_diff__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( minus_minus_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( minus_minus_nat @ N @ ( pred_numeral @ K ) ) ) ).

% diff_Suc_numeral
thf(fact_6954_max__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N ) ) ) ).

% max_numeral_Suc
thf(fact_6955_max__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_max_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_max_nat @ N @ ( pred_numeral @ K ) ) ) ) ).

% max_Suc_numeral
thf(fact_6956_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_6957_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_6958_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_dec_simps(2)
thf(fact_6959_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_dec_simps(2)
thf(fact_6960_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_dec_simps(2)
thf(fact_6961_powser__zero,axiom,
    ! [F: nat > complex] :
      ( ( suminf_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_6962_powser__zero,axiom,
    ! [F: nat > real] :
      ( ( suminf_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_6963_prod_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > complex] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = one_one_complex ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( times_times_complex @ ( groups6464643781859351333omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_6964_prod_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > real] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = one_one_real ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_6965_prod_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > rat] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = one_one_rat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_6966_prod_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > int] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = one_one_int ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_6967_prod_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > nat] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = one_one_nat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% prod.cl_ivl_Suc
thf(fact_6968_signed__take__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_bit0
thf(fact_6969_signed__take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_minus_bit0
thf(fact_6970_signed__take__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_bit1
thf(fact_6971_numeral__eq__Suc,axiom,
    ( numeral_numeral_nat
    = ( ^ [K3: num] : ( suc @ ( pred_numeral @ K3 ) ) ) ) ).

% numeral_eq_Suc
thf(fact_6972_pred__numeral__def,axiom,
    ( pred_numeral
    = ( ^ [K3: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K3 ) @ one_one_nat ) ) ) ).

% pred_numeral_def
thf(fact_6973_prod_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% prod.atLeast0_atMost_Suc
thf(fact_6974_prod_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% prod.atLeast0_atMost_Suc
thf(fact_6975_prod_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% prod.atLeast0_atMost_Suc
thf(fact_6976_prod_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% prod.atLeast0_atMost_Suc
thf(fact_6977_prod_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( times_times_real @ ( G @ ( suc @ N ) ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.nat_ivl_Suc'
thf(fact_6978_prod_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( times_times_rat @ ( G @ ( suc @ N ) ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.nat_ivl_Suc'
thf(fact_6979_prod_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( times_times_int @ ( G @ ( suc @ N ) ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.nat_ivl_Suc'
thf(fact_6980_prod_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( times_times_nat @ ( G @ ( suc @ N ) ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.nat_ivl_Suc'
thf(fact_6981_prod_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_real @ ( G @ M ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% prod.atLeast_Suc_atMost
thf(fact_6982_prod_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_rat @ ( G @ M ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% prod.atLeast_Suc_atMost
thf(fact_6983_prod_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_int @ ( G @ M ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% prod.atLeast_Suc_atMost
thf(fact_6984_prod_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_nat @ ( G @ M ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% prod.atLeast_Suc_atMost
thf(fact_6985_prod_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( times_times_real @ ( G @ M )
          @ ( groups129246275422532515t_real
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.Suc_reindex_ivl
thf(fact_6986_prod_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( times_times_rat @ ( G @ M )
          @ ( groups73079841787564623at_rat
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.Suc_reindex_ivl
thf(fact_6987_prod_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( times_times_int @ ( G @ M )
          @ ( groups705719431365010083at_int
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.Suc_reindex_ivl
thf(fact_6988_prod_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( times_times_nat @ ( G @ M )
          @ ( groups708209901874060359at_nat
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% prod.Suc_reindex_ivl
thf(fact_6989_prod_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > real,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( times_times_real @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% prod.ub_add_nat
thf(fact_6990_prod_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > rat,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( times_times_rat @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% prod.ub_add_nat
thf(fact_6991_prod_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > int,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( times_times_int @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% prod.ub_add_nat
thf(fact_6992_prod_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > nat,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( times_times_nat @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% prod.ub_add_nat
thf(fact_6993_dbl__dec__def,axiom,
    ( neg_nu6511756317524482435omplex
    = ( ^ [X: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).

% dbl_dec_def
thf(fact_6994_dbl__dec__def,axiom,
    ( neg_nu6075765906172075777c_real
    = ( ^ [X: real] : ( minus_minus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).

% dbl_dec_def
thf(fact_6995_dbl__dec__def,axiom,
    ( neg_nu3179335615603231917ec_rat
    = ( ^ [X: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).

% dbl_dec_def
thf(fact_6996_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X: int] : ( minus_minus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_6997_pochhammer__Suc__prod,axiom,
    ! [A: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
      = ( groups6464643781859351333omplex
        @ ^ [I4: nat] : ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod
thf(fact_6998_pochhammer__Suc__prod,axiom,
    ! [A: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
      = ( groups129246275422532515t_real
        @ ^ [I4: nat] : ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod
thf(fact_6999_pochhammer__Suc__prod,axiom,
    ! [A: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
      = ( groups73079841787564623at_rat
        @ ^ [I4: nat] : ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod
thf(fact_7000_pochhammer__Suc__prod,axiom,
    ! [A: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
      = ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod
thf(fact_7001_pochhammer__Suc__prod,axiom,
    ! [A: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
      = ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ I4 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod
thf(fact_7002_pochhammer__prod__rev,axiom,
    ( comm_s2602460028002588243omplex
    = ( ^ [A4: complex,N3: nat] :
          ( groups6464643781859351333omplex
          @ ^ [I4: nat] : ( plus_plus_complex @ A4 @ ( semiri8010041392384452111omplex @ ( minus_minus_nat @ N3 @ I4 ) ) )
          @ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).

% pochhammer_prod_rev
thf(fact_7003_pochhammer__prod__rev,axiom,
    ( comm_s7457072308508201937r_real
    = ( ^ [A4: real,N3: nat] :
          ( groups129246275422532515t_real
          @ ^ [I4: nat] : ( plus_plus_real @ A4 @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N3 @ I4 ) ) )
          @ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).

% pochhammer_prod_rev
thf(fact_7004_pochhammer__prod__rev,axiom,
    ( comm_s4028243227959126397er_rat
    = ( ^ [A4: rat,N3: nat] :
          ( groups73079841787564623at_rat
          @ ^ [I4: nat] : ( plus_plus_rat @ A4 @ ( semiri681578069525770553at_rat @ ( minus_minus_nat @ N3 @ I4 ) ) )
          @ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).

% pochhammer_prod_rev
thf(fact_7005_pochhammer__prod__rev,axiom,
    ( comm_s4660882817536571857er_int
    = ( ^ [A4: int,N3: nat] :
          ( groups705719431365010083at_int
          @ ^ [I4: nat] : ( plus_plus_int @ A4 @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N3 @ I4 ) ) )
          @ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).

% pochhammer_prod_rev
thf(fact_7006_pochhammer__prod__rev,axiom,
    ( comm_s4663373288045622133er_nat
    = ( ^ [A4: nat,N3: nat] :
          ( groups708209901874060359at_nat
          @ ^ [I4: nat] : ( plus_plus_nat @ A4 @ ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ N3 @ I4 ) ) )
          @ ( set_or1269000886237332187st_nat @ one_one_nat @ N3 ) ) ) ) ).

% pochhammer_prod_rev
thf(fact_7007_take__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_bit0
thf(fact_7008_take__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_bit0
thf(fact_7009_prod_Oin__pairs,axiom,
    ! [G: nat > real,M: nat,N: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups129246275422532515t_real
        @ ^ [I4: nat] : ( times_times_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% prod.in_pairs
thf(fact_7010_prod_Oin__pairs,axiom,
    ! [G: nat > rat,M: nat,N: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups73079841787564623at_rat
        @ ^ [I4: nat] : ( times_times_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% prod.in_pairs
thf(fact_7011_prod_Oin__pairs,axiom,
    ! [G: nat > int,M: nat,N: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( times_times_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% prod.in_pairs
thf(fact_7012_prod_Oin__pairs,axiom,
    ! [G: nat > nat,M: nat,N: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( times_times_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% prod.in_pairs
thf(fact_7013_pochhammer__Suc__prod__rev,axiom,
    ! [A: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N ) )
      = ( groups6464643781859351333omplex
        @ ^ [I4: nat] : ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ ( minus_minus_nat @ N @ I4 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod_rev
thf(fact_7014_pochhammer__Suc__prod__rev,axiom,
    ! [A: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N ) )
      = ( groups129246275422532515t_real
        @ ^ [I4: nat] : ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N @ I4 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod_rev
thf(fact_7015_pochhammer__Suc__prod__rev,axiom,
    ! [A: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N ) )
      = ( groups73079841787564623at_rat
        @ ^ [I4: nat] : ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ ( minus_minus_nat @ N @ I4 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod_rev
thf(fact_7016_pochhammer__Suc__prod__rev,axiom,
    ! [A: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N ) )
      = ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N @ I4 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod_rev
thf(fact_7017_pochhammer__Suc__prod__rev,axiom,
    ! [A: nat,N: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N ) )
      = ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ N @ I4 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% pochhammer_Suc_prod_rev
thf(fact_7018_take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_minus_bit0
thf(fact_7019_take__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_bit1
thf(fact_7020_take__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( pred_numeral @ L ) @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ).

% take_bit_numeral_bit1
thf(fact_7021_suminf__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( ( suminf_real @ ( power_power_real @ C ) )
        = ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7022_suminf__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( ( suminf_complex @ ( power_power_complex @ C ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7023_suminf__zero,axiom,
    ( ( suminf_real
      @ ^ [N3: nat] : zero_zero_real )
    = zero_zero_real ) ).

% suminf_zero
thf(fact_7024_suminf__zero,axiom,
    ( ( suminf_nat
      @ ^ [N3: nat] : zero_zero_nat )
    = zero_zero_nat ) ).

% suminf_zero
thf(fact_7025_suminf__zero,axiom,
    ( ( suminf_int
      @ ^ [N3: nat] : zero_zero_int )
    = zero_zero_int ) ).

% suminf_zero
thf(fact_7026_pi__series,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( suminf_real
      @ ^ [K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% pi_series
thf(fact_7027_take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_bit1
thf(fact_7028_prod__le__1,axiom,
    ! [A3: set_real,F: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
            & ( ord_less_eq_real @ ( F @ X4 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A3 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_7029_prod__le__1,axiom,
    ! [A3: set_nat,F: nat > real] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
            & ( ord_less_eq_real @ ( F @ X4 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A3 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_7030_prod__le__1,axiom,
    ! [A3: set_int,F: int > real] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
            & ( ord_less_eq_real @ ( F @ X4 ) @ one_one_real ) ) )
     => ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A3 ) @ one_one_real ) ) ).

% prod_le_1
thf(fact_7031_prod__le__1,axiom,
    ! [A3: set_real,F: real > rat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) )
            & ( ord_less_eq_rat @ ( F @ X4 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A3 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_7032_prod__le__1,axiom,
    ! [A3: set_nat,F: nat > rat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) )
            & ( ord_less_eq_rat @ ( F @ X4 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A3 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_7033_prod__le__1,axiom,
    ! [A3: set_int,F: int > rat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) )
            & ( ord_less_eq_rat @ ( F @ X4 ) @ one_one_rat ) ) )
     => ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A3 ) @ one_one_rat ) ) ).

% prod_le_1
thf(fact_7034_prod__le__1,axiom,
    ! [A3: set_real,F: real > nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) )
            & ( ord_less_eq_nat @ ( F @ X4 ) @ one_one_nat ) ) )
     => ( ord_less_eq_nat @ ( groups4696554848551431203al_nat @ F @ A3 ) @ one_one_nat ) ) ).

% prod_le_1
thf(fact_7035_prod__le__1,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) )
            & ( ord_less_eq_nat @ ( F @ X4 ) @ one_one_nat ) ) )
     => ( ord_less_eq_nat @ ( groups1707563613775114915nt_nat @ F @ A3 ) @ one_one_nat ) ) ).

% prod_le_1
thf(fact_7036_prod__le__1,axiom,
    ! [A3: set_real,F: real > int] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) )
            & ( ord_less_eq_int @ ( F @ X4 ) @ one_one_int ) ) )
     => ( ord_less_eq_int @ ( groups4694064378042380927al_int @ F @ A3 ) @ one_one_int ) ) ).

% prod_le_1
thf(fact_7037_prod__le__1,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) )
            & ( ord_less_eq_int @ ( F @ X4 ) @ one_one_int ) ) )
     => ( ord_less_eq_int @ ( groups705719431365010083at_int @ F @ A3 ) @ one_one_int ) ) ).

% prod_le_1
thf(fact_7038_pred__numeral__inc,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( inc @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% pred_numeral_inc
thf(fact_7039_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_7040_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_7041_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_7042_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_7043_add__neg__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ M ) ) ) ) ).

% add_neg_numeral_special(6)
thf(fact_7044_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_7045_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_7046_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_7047_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_7048_add__neg__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).

% add_neg_numeral_special(5)
thf(fact_7049_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( numeral_numeral_real @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_7050_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_7051_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( numera6690914467698888265omplex @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_7052_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( numera6620942414471956472nteger @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_7053_diff__numeral__special_I6_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( numeral_numeral_rat @ ( inc @ M ) ) ) ).

% diff_numeral_special(6)
thf(fact_7054_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_7055_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_7056_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_7057_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_7058_diff__numeral__special_I5_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( inc @ N ) ) ) ) ).

% diff_numeral_special(5)
thf(fact_7059_int__prod,axiom,
    ! [F: int > nat,A3: set_int] :
      ( ( semiri1314217659103216013at_int @ ( groups1707563613775114915nt_nat @ F @ A3 ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% int_prod
thf(fact_7060_int__prod,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri1314217659103216013at_int @ ( groups708209901874060359at_nat @ F @ A3 ) )
      = ( groups705719431365010083at_int
        @ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% int_prod
thf(fact_7061_pi__neq__zero,axiom,
    pi != zero_zero_real ).

% pi_neq_zero
thf(fact_7062_num__induct,axiom,
    ! [P: num > $o,X3: num] :
      ( ( P @ one )
     => ( ! [X4: num] :
            ( ( P @ X4 )
           => ( P @ ( inc @ X4 ) ) )
       => ( P @ X3 ) ) ) ).

% num_induct
thf(fact_7063_add__inc,axiom,
    ! [X3: num,Y3: num] :
      ( ( plus_plus_num @ X3 @ ( inc @ Y3 ) )
      = ( inc @ ( plus_plus_num @ X3 @ Y3 ) ) ) ).

% add_inc
thf(fact_7064_pi__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ pi ).

% pi_gt_zero
thf(fact_7065_pi__not__less__zero,axiom,
    ~ ( ord_less_real @ pi @ zero_zero_real ) ).

% pi_not_less_zero
thf(fact_7066_pi__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ pi ).

% pi_ge_zero
thf(fact_7067_inc_Osimps_I1_J,axiom,
    ( ( inc @ one )
    = ( bit0 @ one ) ) ).

% inc.simps(1)
thf(fact_7068_inc_Osimps_I3_J,axiom,
    ! [X3: num] :
      ( ( inc @ ( bit1 @ X3 ) )
      = ( bit0 @ ( inc @ X3 ) ) ) ).

% inc.simps(3)
thf(fact_7069_inc_Osimps_I2_J,axiom,
    ! [X3: num] :
      ( ( inc @ ( bit0 @ X3 ) )
      = ( bit1 @ X3 ) ) ).

% inc.simps(2)
thf(fact_7070_add__One,axiom,
    ! [X3: num] :
      ( ( plus_plus_num @ X3 @ one )
      = ( inc @ X3 ) ) ).

% add_One
thf(fact_7071_mult__inc,axiom,
    ! [X3: num,Y3: num] :
      ( ( times_times_num @ X3 @ ( inc @ Y3 ) )
      = ( plus_plus_num @ ( times_times_num @ X3 @ Y3 ) @ X3 ) ) ).

% mult_inc
thf(fact_7072_prod__int__eq,axiom,
    ! [I: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ J ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : X
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).

% prod_int_eq
thf(fact_7073_numeral__inc,axiom,
    ! [X3: num] :
      ( ( numera6690914467698888265omplex @ ( inc @ X3 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X3 ) @ one_one_complex ) ) ).

% numeral_inc
thf(fact_7074_numeral__inc,axiom,
    ! [X3: num] :
      ( ( numeral_numeral_real @ ( inc @ X3 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X3 ) @ one_one_real ) ) ).

% numeral_inc
thf(fact_7075_numeral__inc,axiom,
    ! [X3: num] :
      ( ( numeral_numeral_rat @ ( inc @ X3 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X3 ) @ one_one_rat ) ) ).

% numeral_inc
thf(fact_7076_numeral__inc,axiom,
    ! [X3: num] :
      ( ( numeral_numeral_nat @ ( inc @ X3 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X3 ) @ one_one_nat ) ) ).

% numeral_inc
thf(fact_7077_numeral__inc,axiom,
    ! [X3: num] :
      ( ( numeral_numeral_int @ ( inc @ X3 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X3 ) @ one_one_int ) ) ).

% numeral_inc
thf(fact_7078_pi__less__4,axiom,
    ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).

% pi_less_4
thf(fact_7079_pi__ge__two,axiom,
    ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).

% pi_ge_two
thf(fact_7080_pi__half__neq__two,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_neq_two
thf(fact_7081_prod__int__plus__eq,axiom,
    ! [I: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ ( plus_plus_nat @ I @ J ) ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : X
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I @ J ) ) ) ) ) ).

% prod_int_plus_eq
thf(fact_7082_pi__half__neq__zero,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% pi_half_neq_zero
thf(fact_7083_pi__half__less__two,axiom,
    ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_less_two
thf(fact_7084_pi__half__le__two,axiom,
    ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_le_two
thf(fact_7085_pi__half__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_gt_zero
thf(fact_7086_pi__half__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_ge_zero
thf(fact_7087_m2pi__less__pi,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).

% m2pi_less_pi
thf(fact_7088_arctan__ubound,axiom,
    ! [Y3: real] : ( ord_less_real @ ( arctan @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arctan_ubound
thf(fact_7089_arctan__one,axiom,
    ( ( arctan @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% arctan_one
thf(fact_7090_minus__pi__half__less__zero,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).

% minus_pi_half_less_zero
thf(fact_7091_arctan__bounded,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y3 ) )
      & ( ord_less_real @ ( arctan @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arctan_bounded
thf(fact_7092_arctan__lbound,axiom,
    ! [Y3: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y3 ) ) ).

% arctan_lbound
thf(fact_7093_prod__power__distrib,axiom,
    ! [F: nat > int,A3: set_nat,N: nat] :
      ( ( power_power_int @ ( groups705719431365010083at_int @ F @ A3 ) @ N )
      = ( groups705719431365010083at_int
        @ ^ [X: nat] : ( power_power_int @ ( F @ X ) @ N )
        @ A3 ) ) ).

% prod_power_distrib
thf(fact_7094_prod__power__distrib,axiom,
    ! [F: int > int,A3: set_int,N: nat] :
      ( ( power_power_int @ ( groups1705073143266064639nt_int @ F @ A3 ) @ N )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : ( power_power_int @ ( F @ X ) @ N )
        @ A3 ) ) ).

% prod_power_distrib
thf(fact_7095_prod__power__distrib,axiom,
    ! [F: nat > nat,A3: set_nat,N: nat] :
      ( ( power_power_nat @ ( groups708209901874060359at_nat @ F @ A3 ) @ N )
      = ( groups708209901874060359at_nat
        @ ^ [X: nat] : ( power_power_nat @ ( F @ X ) @ N )
        @ A3 ) ) ).

% prod_power_distrib
thf(fact_7096_machin__Euler,axiom,
    ( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% machin_Euler
thf(fact_7097_machin,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% machin
thf(fact_7098_prod__mono,axiom,
    ! [A3: set_real,F: real > real,G: real > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ A3 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A3 ) @ ( groups1681761925125756287l_real @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7099_prod__mono,axiom,
    ! [A3: set_nat,F: nat > real,G: nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A3 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups129246275422532515t_real @ F @ A3 ) @ ( groups129246275422532515t_real @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7100_prod__mono,axiom,
    ! [A3: set_int,F: int > real,G: int > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ A3 )
         => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
            & ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A3 ) @ ( groups2316167850115554303t_real @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7101_prod__mono,axiom,
    ! [A3: set_real,F: real > rat,G: real > rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ A3 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A3 ) @ ( groups4061424788464935467al_rat @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7102_prod__mono,axiom,
    ! [A3: set_nat,F: nat > rat,G: nat > rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A3 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups73079841787564623at_rat @ F @ A3 ) @ ( groups73079841787564623at_rat @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7103_prod__mono,axiom,
    ! [A3: set_int,F: int > rat,G: int > rat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ A3 )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
            & ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A3 ) @ ( groups1072433553688619179nt_rat @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7104_prod__mono,axiom,
    ! [A3: set_real,F: real > nat,G: real > nat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ A3 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) )
            & ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_nat @ ( groups4696554848551431203al_nat @ F @ A3 ) @ ( groups4696554848551431203al_nat @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7105_prod__mono,axiom,
    ! [A3: set_int,F: int > nat,G: int > nat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ A3 )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) )
            & ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_nat @ ( groups1707563613775114915nt_nat @ F @ A3 ) @ ( groups1707563613775114915nt_nat @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7106_prod__mono,axiom,
    ! [A3: set_real,F: real > int,G: real > int] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ A3 )
         => ( ( ord_less_eq_int @ zero_zero_int @ ( F @ I3 ) )
            & ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_int @ ( groups4694064378042380927al_int @ F @ A3 ) @ ( groups4694064378042380927al_int @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7107_prod__mono,axiom,
    ! [A3: set_nat,F: nat > int,G: nat > int] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A3 )
         => ( ( ord_less_eq_int @ zero_zero_int @ ( F @ I3 ) )
            & ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
     => ( ord_less_eq_int @ ( groups705719431365010083at_int @ F @ A3 ) @ ( groups705719431365010083at_int @ G @ A3 ) ) ) ).

% prod_mono
thf(fact_7108_prod__nonneg,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A3 ) ) ) ).

% prod_nonneg
thf(fact_7109_prod__nonneg,axiom,
    ! [A3: set_int,F: int > int] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A3 ) ) ) ).

% prod_nonneg
thf(fact_7110_prod__nonneg,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A3 ) ) ) ).

% prod_nonneg
thf(fact_7111_prod__pos,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_int @ zero_zero_int @ ( F @ X4 ) ) )
     => ( ord_less_int @ zero_zero_int @ ( groups705719431365010083at_int @ F @ A3 ) ) ) ).

% prod_pos
thf(fact_7112_prod__pos,axiom,
    ! [A3: set_int,F: int > int] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_int @ zero_zero_int @ ( F @ X4 ) ) )
     => ( ord_less_int @ zero_zero_int @ ( groups1705073143266064639nt_int @ F @ A3 ) ) ) ).

% prod_pos
thf(fact_7113_prod__pos,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A3 ) ) ) ).

% prod_pos
thf(fact_7114_prod__ge__1,axiom,
    ! [A3: set_real,F: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7115_prod__ge__1,axiom,
    ! [A3: set_nat,F: nat > real] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups129246275422532515t_real @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7116_prod__ge__1,axiom,
    ! [A3: set_int,F: int > real] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7117_prod__ge__1,axiom,
    ! [A3: set_real,F: real > rat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7118_prod__ge__1,axiom,
    ! [A3: set_nat,F: nat > rat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7119_prod__ge__1,axiom,
    ! [A3: set_int,F: int > rat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_rat @ one_one_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7120_prod__ge__1,axiom,
    ! [A3: set_real,F: real > nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_nat @ one_one_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ one_one_nat @ ( groups4696554848551431203al_nat @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7121_prod__ge__1,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_nat @ one_one_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ one_one_nat @ ( groups1707563613775114915nt_nat @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7122_prod__ge__1,axiom,
    ! [A3: set_real,F: real > int] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_int @ one_one_int @ ( F @ X4 ) ) )
     => ( ord_less_eq_int @ one_one_int @ ( groups4694064378042380927al_int @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7123_prod__ge__1,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_int @ one_one_int @ ( F @ X4 ) ) )
     => ( ord_less_eq_int @ one_one_int @ ( groups705719431365010083at_int @ F @ A3 ) ) ) ).

% prod_ge_1
thf(fact_7124_take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_bit1
thf(fact_7125_sin__cos__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% sin_cos_npi
thf(fact_7126_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_7127_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_7128_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_7129_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_7130_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_7131_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_7132_divides__aux__eq,axiom,
    ! [Q3: nat,R2: nat] :
      ( ( unique6322359934112328802ux_nat @ ( product_Pair_nat_nat @ Q3 @ R2 ) )
      = ( R2 = zero_zero_nat ) ) ).

% divides_aux_eq
thf(fact_7133_divides__aux__eq,axiom,
    ! [Q3: int,R2: int] :
      ( ( unique6319869463603278526ux_int @ ( product_Pair_int_int @ Q3 @ R2 ) )
      = ( R2 = zero_zero_int ) ) ).

% divides_aux_eq
thf(fact_7134_summable__arctan__series,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( summable_real
        @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).

% summable_arctan_series
thf(fact_7135_sin__zero,axiom,
    ( ( sin_real @ zero_zero_real )
    = zero_zero_real ) ).

% sin_zero
thf(fact_7136_summable__single,axiom,
    ! [I: nat,F: nat > real] :
      ( summable_real
      @ ^ [R5: nat] : ( if_real @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_real ) ) ).

% summable_single
thf(fact_7137_summable__single,axiom,
    ! [I: nat,F: nat > nat] :
      ( summable_nat
      @ ^ [R5: nat] : ( if_nat @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_nat ) ) ).

% summable_single
thf(fact_7138_summable__single,axiom,
    ! [I: nat,F: nat > int] :
      ( summable_int
      @ ^ [R5: nat] : ( if_int @ ( R5 = I ) @ ( F @ R5 ) @ zero_zero_int ) ) ).

% summable_single
thf(fact_7139_summable__zero,axiom,
    ( summable_real
    @ ^ [N3: nat] : zero_zero_real ) ).

% summable_zero
thf(fact_7140_summable__zero,axiom,
    ( summable_nat
    @ ^ [N3: nat] : zero_zero_nat ) ).

% summable_zero
thf(fact_7141_summable__zero,axiom,
    ( summable_int
    @ ^ [N3: nat] : zero_zero_int ) ).

% summable_zero
thf(fact_7142_sin__pi,axiom,
    ( ( sin_real @ pi )
    = zero_zero_real ) ).

% sin_pi
thf(fact_7143_summable__cmult__iff,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_cmult_iff
thf(fact_7144_summable__divide__iff,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C ) )
      = ( ( C = zero_zero_complex )
        | ( summable_complex @ F ) ) ) ).

% summable_divide_iff
thf(fact_7145_summable__divide__iff,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_divide_iff
thf(fact_7146_sin__of__real__pi,axiom,
    ( ( sin_real @ ( real_V1803761363581548252l_real @ pi ) )
    = zero_zero_real ) ).

% sin_of_real_pi
thf(fact_7147_sin__of__real__pi,axiom,
    ( ( sin_complex @ ( real_V4546457046886955230omplex @ pi ) )
    = zero_zero_complex ) ).

% sin_of_real_pi
thf(fact_7148_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) )
      = ( unique5706413561485394159nteger @ ( unique3479559517661332726nteger @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_7149_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( unique6319869463603278526ux_int @ ( unique5052692396658037445od_int @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_7150_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( unique6322359934112328802ux_nat @ ( unique5055182867167087721od_nat @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_7151_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ M @ one )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).

% divmod_algorithm_code(2)
thf(fact_7152_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5055182867167087721od_nat @ M @ one )
      = ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).

% divmod_algorithm_code(2)
thf(fact_7153_sin__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% sin_npi
thf(fact_7154_sin__npi2,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi2
thf(fact_7155_sin__npi__int,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi_int
thf(fact_7156_summable__geometric__iff,axiom,
    ! [C: real] :
      ( ( summable_real @ ( power_power_real @ C ) )
      = ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7157_summable__geometric__iff,axiom,
    ! [C: complex] :
      ( ( summable_complex @ ( power_power_complex @ C ) )
      = ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7158_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit0 @ N ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_7159_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit0 @ N ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_7160_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit1 @ N ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_7161_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit1 @ N ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_7162_sin__two__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = zero_zero_real ) ).

% sin_two_pi
thf(fact_7163_sin__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_pi_half
thf(fact_7164_sin__periodic,axiom,
    ! [X3: real] :
      ( ( sin_real @ ( plus_plus_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( sin_real @ X3 ) ) ).

% sin_periodic
thf(fact_7165_sin__of__real__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_of_real_pi_half
thf(fact_7166_sin__of__real__pi__half,axiom,
    ( ( sin_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
    = one_one_complex ) ).

% sin_of_real_pi_half
thf(fact_7167_sin__2npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = zero_zero_real ) ).

% sin_2npi
thf(fact_7168_sin__2pi__minus,axiom,
    ! [X3: real] :
      ( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X3 ) )
      = ( uminus_uminus_real @ ( sin_real @ X3 ) ) ) ).

% sin_2pi_minus
thf(fact_7169_sin__int__2pin,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_int_2pin
thf(fact_7170_sin__3over2__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sin_3over2_pi
thf(fact_7171_summable__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N6: nat] :
        ! [N2: nat] :
          ( ( ord_less_eq_nat @ N6 @ N2 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test
thf(fact_7172_summable__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N6: nat] :
        ! [N2: nat] :
          ( ( ord_less_eq_nat @ N6 @ N2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
     => ( ( summable_real @ G )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test
thf(fact_7173_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > real] :
      ( ( summable_real @ G )
     => ( ! [N2: nat] :
            ( ( ord_less_eq_nat @ N4 @ N2 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7174_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > complex] :
      ( ( summable_real @ G )
     => ( ! [N2: nat] :
            ( ( ord_less_eq_nat @ N4 @ N2 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7175_summable__const__iff,axiom,
    ! [C: real] :
      ( ( summable_real
        @ ^ [Uu3: nat] : C )
      = ( C = zero_zero_real ) ) ).

% summable_const_iff
thf(fact_7176_powser__insidea,axiom,
    ! [F: nat > real,X3: real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X3 @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X3 ) )
       => ( summable_real
          @ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7177_powser__insidea,axiom,
    ! [F: nat > complex,X3: complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ X3 @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X3 ) )
       => ( summable_real
          @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7178_suminf__le,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( G @ N2 ) )
     => ( ( summable_real @ F )
       => ( ( summable_real @ G )
         => ( ord_less_eq_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7179_suminf__le,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( G @ N2 ) )
     => ( ( summable_nat @ F )
       => ( ( summable_nat @ G )
         => ( ord_less_eq_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7180_suminf__le,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( G @ N2 ) )
     => ( ( summable_int @ F )
       => ( ( summable_int @ G )
         => ( ord_less_eq_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7181_sin__x__le__x,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( sin_real @ X3 ) @ X3 ) ) ).

% sin_x_le_x
thf(fact_7182_sin__le__one,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( sin_real @ X3 ) @ one_one_real ) ).

% sin_le_one
thf(fact_7183_abs__sin__x__le__abs__x,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X3 ) ) @ ( abs_abs_real @ X3 ) ) ).

% abs_sin_x_le_abs_x
thf(fact_7184_summable__mult__D,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
     => ( ( C != zero_zero_real )
       => ( summable_real @ F ) ) ) ).

% summable_mult_D
thf(fact_7185_summable__zero__power,axiom,
    summable_int @ ( power_power_int @ zero_zero_int ) ).

% summable_zero_power
thf(fact_7186_summable__zero__power,axiom,
    summable_real @ ( power_power_real @ zero_zero_real ) ).

% summable_zero_power
thf(fact_7187_summable__zero__power,axiom,
    summable_complex @ ( power_power_complex @ zero_zero_complex ) ).

% summable_zero_power
thf(fact_7188_sin__int__times__real,axiom,
    ! [M: int,X3: real] :
      ( ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X3 ) ) )
      = ( real_V1803761363581548252l_real @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X3 ) ) ) ) ).

% sin_int_times_real
thf(fact_7189_sin__int__times__real,axiom,
    ! [M: int,X3: real] :
      ( ( sin_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X3 ) ) )
      = ( real_V4546457046886955230omplex @ ( sin_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X3 ) ) ) ) ).

% sin_int_times_real
thf(fact_7190_suminf__nonneg,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7191_suminf__nonneg,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7192_suminf__nonneg,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
       => ( ord_less_eq_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7193_suminf__eq__zero__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
       => ( ( ( suminf_real @ F )
            = zero_zero_real )
          = ( ! [N3: nat] :
                ( ( F @ N3 )
                = zero_zero_real ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7194_suminf__eq__zero__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
       => ( ( ( suminf_nat @ F )
            = zero_zero_nat )
          = ( ! [N3: nat] :
                ( ( F @ N3 )
                = zero_zero_nat ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7195_suminf__eq__zero__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
       => ( ( ( suminf_int @ F )
            = zero_zero_int )
          = ( ! [N3: nat] :
                ( ( F @ N3 )
                = zero_zero_int ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7196_suminf__pos,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N2: nat] : ( ord_less_real @ zero_zero_real @ ( F @ N2 ) )
       => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_pos
thf(fact_7197_suminf__pos,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ N2 ) )
       => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_pos
thf(fact_7198_suminf__pos,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N2: nat] : ( ord_less_int @ zero_zero_int @ ( F @ N2 ) )
       => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_pos
thf(fact_7199_sin__gt__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ pi )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X3 ) ) ) ) ).

% sin_gt_zero
thf(fact_7200_sin__x__ge__neg__x,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ X3 ) @ ( sin_real @ X3 ) ) ) ).

% sin_x_ge_neg_x
thf(fact_7201_sin__ge__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ pi )
       => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X3 ) ) ) ) ).

% sin_ge_zero
thf(fact_7202_summable__0__powser,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) ) ).

% summable_0_powser
thf(fact_7203_summable__0__powser,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) ) ).

% summable_0_powser
thf(fact_7204_summable__zero__power_H,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) ) ).

% summable_zero_power'
thf(fact_7205_summable__zero__power_H,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) ) ).

% summable_zero_power'
thf(fact_7206_summable__zero__power_H,axiom,
    ! [F: nat > int] :
      ( summable_int
      @ ^ [N3: nat] : ( times_times_int @ ( F @ N3 ) @ ( power_power_int @ zero_zero_int @ N3 ) ) ) ).

% summable_zero_power'
thf(fact_7207_sin__ge__minus__one,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X3 ) ) ).

% sin_ge_minus_one
thf(fact_7208_summable__powser__split__head,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
      = ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).

% summable_powser_split_head
thf(fact_7209_summable__powser__split__head,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
      = ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).

% summable_powser_split_head
thf(fact_7210_powser__split__head_I3_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
     => ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).

% powser_split_head(3)
thf(fact_7211_powser__split__head_I3_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
     => ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).

% powser_split_head(3)
thf(fact_7212_abs__sin__le__one,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X3 ) ) @ one_one_real ) ).

% abs_sin_le_one
thf(fact_7213_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > complex,M: nat,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( plus_plus_nat @ N3 @ M ) ) @ ( power_power_complex @ Z @ N3 ) ) )
      = ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7214_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > real,M: nat,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ ( plus_plus_nat @ N3 @ M ) ) @ ( power_power_real @ Z @ N3 ) ) )
      = ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7215_summable__norm__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N6: nat] :
        ! [N2: nat] :
          ( ( ord_less_eq_nat @ N6 @ N2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) ) ).

% summable_norm_comparison_test
thf(fact_7216_summable__rabs__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N6: nat] :
        ! [N2: nat] :
          ( ( ord_less_eq_nat @ N6 @ N2 )
         => ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N2 ) ) @ ( G @ N2 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) ) ) ) ).

% summable_rabs_comparison_test
thf(fact_7217_summable__rabs,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) ) ) ) ).

% summable_rabs
thf(fact_7218_suminf__pos__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
       => ( ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) )
          = ( ? [I4: nat] : ( ord_less_real @ zero_zero_real @ ( F @ I4 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7219_suminf__pos__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) )
          = ( ? [I4: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ I4 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7220_suminf__pos__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
       => ( ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) )
          = ( ? [I4: nat] : ( ord_less_int @ zero_zero_int @ ( F @ I4 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7221_suminf__pos2,axiom,
    ! [F: nat > real,I: nat] :
      ( ( summable_real @ F )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7222_suminf__pos2,axiom,
    ! [F: nat > nat,I: nat] :
      ( ( summable_nat @ F )
     => ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
         => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7223_suminf__pos2,axiom,
    ! [F: nat > int,I: nat] :
      ( ( summable_int @ F )
     => ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
       => ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
         => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7224_powser__inside,axiom,
    ! [F: nat > real,X3: real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X3 @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X3 ) )
       => ( summable_real
          @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ) ).

% powser_inside
thf(fact_7225_powser__inside,axiom,
    ! [F: nat > complex,X3: complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ X3 @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X3 ) )
       => ( summable_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ) ).

% powser_inside
thf(fact_7226_sin__eq__0__pi,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X3 )
     => ( ( ord_less_real @ X3 @ pi )
       => ( ( ( sin_real @ X3 )
            = zero_zero_real )
         => ( X3 = zero_zero_real ) ) ) ) ).

% sin_eq_0_pi
thf(fact_7227_complete__algebra__summable__geometric,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X3 ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ X3 ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7228_complete__algebra__summable__geometric,axiom,
    ! [X3: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X3 ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ X3 ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7229_summable__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ C ) ) ) ).

% summable_geometric
thf(fact_7230_summable__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ C ) ) ) ).

% summable_geometric
thf(fact_7231_suminf__split__head,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
        = ( minus_minus_real @ ( suminf_real @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).

% suminf_split_head
thf(fact_7232_sin__zero__pi__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ pi )
     => ( ( ( sin_real @ X3 )
          = zero_zero_real )
        = ( X3 = zero_zero_real ) ) ) ).

% sin_zero_pi_iff
thf(fact_7233_sin__zero__iff__int2,axiom,
    ! [X3: real] :
      ( ( ( sin_real @ X3 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( X3
            = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ pi ) ) ) ) ).

% sin_zero_iff_int2
thf(fact_7234_divmod__int__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N3: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) ) ) ) ).

% divmod_int_def
thf(fact_7235_summable__norm,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) ) ) ) ).

% summable_norm
thf(fact_7236_summable__norm,axiom,
    ! [F: nat > complex] :
      ( ( summable_real
        @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( suminf_complex @ F ) )
        @ ( suminf_real
          @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) ) ).

% summable_norm
thf(fact_7237_sin__gt__zero__02,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X3 ) ) ) ) ).

% sin_gt_zero_02
thf(fact_7238_divmod__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N3: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N3 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N3 ) ) ) ) ) ).

% divmod_def
thf(fact_7239_divmod__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N3: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) ) ) ) ).

% divmod_def
thf(fact_7240_divmod__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N3: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N3 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N3 ) ) ) ) ) ).

% divmod_def
thf(fact_7241_divmod_H__nat__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N3: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N3 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N3 ) ) ) ) ) ).

% divmod'_nat_def
thf(fact_7242_powser__split__head_I1_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
     => ( ( suminf_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
        = ( plus_plus_complex @ ( F @ zero_zero_nat )
          @ ( times_times_complex
            @ ( suminf_complex
              @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
            @ Z ) ) ) ) ).

% powser_split_head(1)
thf(fact_7243_powser__split__head_I1_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
        = ( plus_plus_real @ ( F @ zero_zero_nat )
          @ ( times_times_real
            @ ( suminf_real
              @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
            @ Z ) ) ) ) ).

% powser_split_head(1)
thf(fact_7244_powser__split__head_I2_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
     => ( ( times_times_complex
          @ ( suminf_complex
            @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
          @ Z )
        = ( minus_minus_complex
          @ ( suminf_complex
            @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7245_powser__split__head_I2_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
     => ( ( times_times_real
          @ ( suminf_real
            @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
          @ Z )
        = ( minus_minus_real
          @ ( suminf_real
            @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7246_suminf__exist__split,axiom,
    ! [R2: real,F: nat > real] :
      ( ( ord_less_real @ zero_zero_real @ R2 )
     => ( ( summable_real @ F )
       => ? [N7: nat] :
          ! [N8: nat] :
            ( ( ord_less_eq_nat @ N7 @ N8 )
           => ( ord_less_real
              @ ( real_V7735802525324610683m_real
                @ ( suminf_real
                  @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N8 ) ) ) )
              @ R2 ) ) ) ) ).

% suminf_exist_split
thf(fact_7247_suminf__exist__split,axiom,
    ! [R2: real,F: nat > complex] :
      ( ( ord_less_real @ zero_zero_real @ R2 )
     => ( ( summable_complex @ F )
       => ? [N7: nat] :
          ! [N8: nat] :
            ( ( ord_less_eq_nat @ N7 @ N8 )
           => ( ord_less_real
              @ ( real_V1022390504157884413omplex
                @ ( suminf_complex
                  @ ^ [I4: nat] : ( F @ ( plus_plus_nat @ I4 @ N8 ) ) ) )
              @ R2 ) ) ) ) ).

% suminf_exist_split
thf(fact_7248_sin__pi__divide__n__ge__0,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_ge_0
thf(fact_7249_summable__power__series,axiom,
    ! [F: nat > real,Z: real] :
      ( ! [I3: nat] : ( ord_less_eq_real @ ( F @ I3 ) @ one_one_real )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ Z )
         => ( ( ord_less_real @ Z @ one_one_real )
           => ( summable_real
              @ ^ [I4: nat] : ( times_times_real @ ( F @ I4 ) @ ( power_power_real @ Z @ I4 ) ) ) ) ) ) ) ).

% summable_power_series
thf(fact_7250_sin__45,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_45
thf(fact_7251_Abel__lemma,axiom,
    ! [R2: real,R0: real,A: nat > complex,M7: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R2 )
     => ( ( ord_less_real @ R2 @ R0 )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N2 ) ) @ ( power_power_real @ R0 @ N2 ) ) @ M7 )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N3 ) ) @ ( power_power_real @ R2 @ N3 ) ) ) ) ) ) ).

% Abel_lemma
thf(fact_7252_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > real] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N2: nat] :
            ( ( ord_less_eq_nat @ N4 @ N2 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ ( suc @ N2 ) ) ) @ ( times_times_real @ C @ ( real_V7735802525324610683m_real @ ( F @ N2 ) ) ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_ratio_test
thf(fact_7253_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > complex] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N2: nat] :
            ( ( ord_less_eq_nat @ N4 @ N2 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ ( suc @ N2 ) ) ) @ ( times_times_real @ C @ ( real_V1022390504157884413omplex @ ( F @ N2 ) ) ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_ratio_test
thf(fact_7254_sin__gt__zero2,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X3 ) ) ) ) ).

% sin_gt_zero2
thf(fact_7255_sin__lt__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ pi @ X3 )
     => ( ( ord_less_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_real @ ( sin_real @ X3 ) @ zero_zero_real ) ) ) ).

% sin_lt_zero
thf(fact_7256_sin__30,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_30
thf(fact_7257_sin__inj__pi,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ( sin_real @ X3 )
                = ( sin_real @ Y3 ) )
             => ( X3 = Y3 ) ) ) ) ) ) ).

% sin_inj_pi
thf(fact_7258_sin__mono__le__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( sin_real @ X3 ) @ ( sin_real @ Y3 ) )
              = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ) ) ) ).

% sin_mono_le_eq
thf(fact_7259_sin__monotone__2pi__le,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ X3 )
       => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sin_real @ Y3 ) @ ( sin_real @ X3 ) ) ) ) ) ).

% sin_monotone_2pi_le
thf(fact_7260_sin__60,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_60
thf(fact_7261_sin__le__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ pi @ X3 )
     => ( ( ord_less_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_eq_real @ ( sin_real @ X3 ) @ zero_zero_real ) ) ) ).

% sin_le_zero
thf(fact_7262_sin__less__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ zero_zero_real )
       => ( ord_less_real @ ( sin_real @ X3 ) @ zero_zero_real ) ) ) ).

% sin_less_zero
thf(fact_7263_sin__mono__less__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( sin_real @ X3 ) @ ( sin_real @ Y3 ) )
              = ( ord_less_real @ X3 @ Y3 ) ) ) ) ) ) ).

% sin_mono_less_eq
thf(fact_7264_sin__monotone__2pi,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
     => ( ( ord_less_real @ Y3 @ X3 )
       => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sin_real @ Y3 ) @ ( sin_real @ X3 ) ) ) ) ) ).

% sin_monotone_2pi
thf(fact_7265_sin__total,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ? [X4: real] :
            ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
            & ( ord_less_eq_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( sin_real @ X4 )
              = Y3 )
            & ! [Y6: real] :
                ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
                  & ( ( sin_real @ Y6 )
                    = Y3 ) )
               => ( Y6 = X4 ) ) ) ) ) ).

% sin_total
thf(fact_7266_sin__pi__divide__n__gt__0,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_gt_0
thf(fact_7267_sin__arctan,axiom,
    ! [X3: real] :
      ( ( sin_real @ ( arctan @ X3 ) )
      = ( divide_divide_real @ X3 @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arctan
thf(fact_7268_divmod__divmod__step,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N3: num] : ( if_Pro6206227464963214023at_nat @ ( ord_less_num @ M3 @ N3 ) @ ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ M3 ) ) @ ( unique5026877609467782581ep_nat @ N3 @ ( unique5055182867167087721od_nat @ M3 @ ( bit0 @ N3 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_7269_divmod__divmod__step,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N3: num] : ( if_Pro3027730157355071871nt_int @ ( ord_less_num @ M3 @ N3 ) @ ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ M3 ) ) @ ( unique5024387138958732305ep_int @ N3 @ ( unique5052692396658037445od_int @ M3 @ ( bit0 @ N3 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_7270_divmod__divmod__step,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N3: num] : ( if_Pro6119634080678213985nteger @ ( ord_less_num @ M3 @ N3 ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ M3 ) ) @ ( unique4921790084139445826nteger @ N3 @ ( unique3479559517661332726nteger @ M3 @ ( bit0 @ N3 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_7271_sin__zero__iff__int,axiom,
    ! [X3: real] :
      ( ( ( sin_real @ X3 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X3
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_iff_int
thf(fact_7272_sin__zero__lemma,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ( sin_real @ X3 )
          = zero_zero_real )
       => ? [N2: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X3
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_lemma
thf(fact_7273_sin__zero__iff,axiom,
    ! [X3: real] :
      ( ( ( sin_real @ X3 )
        = zero_zero_real )
      = ( ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X3
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X3
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% sin_zero_iff
thf(fact_7274_minus__one__div__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_div_numeral
thf(fact_7275_one__div__minus__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% one_div_minus_numeral
thf(fact_7276_pochhammer__code,axiom,
    ( comm_s2602460028002588243omplex
    = ( ^ [A4: complex,N3: nat] :
          ( if_complex @ ( N3 = zero_zero_nat ) @ one_one_complex
          @ ( set_fo1517530859248394432omplex
            @ ^ [O: nat] : ( times_times_complex @ ( plus_plus_complex @ A4 @ ( semiri8010041392384452111omplex @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_complex ) ) ) ) ).

% pochhammer_code
thf(fact_7277_pochhammer__code,axiom,
    ( comm_s7457072308508201937r_real
    = ( ^ [A4: real,N3: nat] :
          ( if_real @ ( N3 = zero_zero_nat ) @ one_one_real
          @ ( set_fo3111899725591712190t_real
            @ ^ [O: nat] : ( times_times_real @ ( plus_plus_real @ A4 @ ( semiri5074537144036343181t_real @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_real ) ) ) ) ).

% pochhammer_code
thf(fact_7278_pochhammer__code,axiom,
    ( comm_s4028243227959126397er_rat
    = ( ^ [A4: rat,N3: nat] :
          ( if_rat @ ( N3 = zero_zero_nat ) @ one_one_rat
          @ ( set_fo1949268297981939178at_rat
            @ ^ [O: nat] : ( times_times_rat @ ( plus_plus_rat @ A4 @ ( semiri681578069525770553at_rat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_rat ) ) ) ) ).

% pochhammer_code
thf(fact_7279_pochhammer__code,axiom,
    ( comm_s4660882817536571857er_int
    = ( ^ [A4: int,N3: nat] :
          ( if_int @ ( N3 = zero_zero_nat ) @ one_one_int
          @ ( set_fo2581907887559384638at_int
            @ ^ [O: nat] : ( times_times_int @ ( plus_plus_int @ A4 @ ( semiri1314217659103216013at_int @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_int ) ) ) ) ).

% pochhammer_code
thf(fact_7280_pochhammer__code,axiom,
    ( comm_s4663373288045622133er_nat
    = ( ^ [A4: nat,N3: nat] :
          ( if_nat @ ( N3 = zero_zero_nat ) @ one_one_nat
          @ ( set_fo2584398358068434914at_nat
            @ ^ [O: nat] : ( times_times_nat @ ( plus_plus_nat @ A4 @ ( semiri1316708129612266289at_nat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_nat ) ) ) ) ).

% pochhammer_code
thf(fact_7281_neg__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q3: int,R2: int] :
      ( ( ord_less_eq_int @ B @ zero_zero_int )
     => ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q3 @ R2 ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q3 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) @ one_one_int ) ) ) ) ) ).

% neg_eucl_rel_int_mult_2
thf(fact_7282_product__nth,axiom,
    ! [N: nat,Xs2: list_num,Ys: list_num] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_num @ Xs2 ) @ ( size_size_list_num @ Ys ) ) )
     => ( ( nth_Pr6456567536196504476um_num @ ( product_num_num @ Xs2 @ Ys ) @ N )
        = ( product_Pair_num_num @ ( nth_num @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7283_product__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr4953567300277697838T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs2 @ Ys ) @ N )
        = ( produc537772716801021591T_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7284_product__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr4606735188037164562VEBT_o @ ( product_VEBT_VEBT_o @ Xs2 @ Ys ) @ N )
        = ( produc8721562602347293563VEBT_o @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7285_product__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,Ys: list_nat] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr1791586995822124652BT_nat @ ( produc7295137177222721919BT_nat @ Xs2 @ Ys ) @ N )
        = ( produc738532404422230701BT_nat @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7286_product__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,Ys: list_int] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr6837108013167703752BT_int @ ( produc7292646706713671643BT_int @ Xs2 @ Ys ) @ N )
        = ( produc736041933913180425BT_int @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7287_product__nth,axiom,
    ! [N: nat,Xs2: list_o,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr6777367263587873994T_VEBT @ ( product_o_VEBT_VEBT @ Xs2 @ Ys ) @ N )
        = ( produc2982872950893828659T_VEBT @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7288_product__nth,axiom,
    ! [N: nat,Xs2: list_o,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Product_prod_o_o @ ( product_o_o @ Xs2 @ Ys ) @ N )
        = ( product_Pair_o_o @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7289_product__nth,axiom,
    ! [N: nat,Xs2: list_o,Ys: list_nat] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr5826913651314560976_o_nat @ ( product_o_nat @ Xs2 @ Ys ) @ N )
        = ( product_Pair_o_nat @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7290_product__nth,axiom,
    ! [N: nat,Xs2: list_o,Ys: list_int] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr1649062631805364268_o_int @ ( product_o_int @ Xs2 @ Ys ) @ N )
        = ( product_Pair_o_int @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7291_product__nth,axiom,
    ! [N: nat,Xs2: list_nat,Ys: list_num] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_size_list_num @ Ys ) ) )
     => ( ( nth_Pr8326237132889035090at_num @ ( product_nat_num @ Xs2 @ Ys ) @ N )
        = ( product_Pair_nat_num @ ( nth_nat @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_7292_minus__numeral__div__numeral,axiom,
    ! [M: num,N: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% minus_numeral_div_numeral
thf(fact_7293_numeral__div__minus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% numeral_div_minus_numeral
thf(fact_7294_eucl__rel__int__by0,axiom,
    ! [K: int] : ( eucl_rel_int @ K @ zero_zero_int @ ( product_Pair_int_int @ zero_zero_int @ K ) ) ).

% eucl_rel_int_by0
thf(fact_7295_eucl__rel__int__dividesI,axiom,
    ! [L: int,K: int,Q3: int] :
      ( ( L != zero_zero_int )
     => ( ( K
          = ( times_times_int @ Q3 @ L ) )
       => ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q3 @ zero_zero_int ) ) ) ) ).

% eucl_rel_int_dividesI
thf(fact_7296_fold__atLeastAtMost__nat_Oelims,axiom,
    ! [X3: nat > nat > nat,Xa: nat,Xb: nat,Xc: nat,Y3: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X3 @ Xa @ Xb @ Xc )
        = Y3 )
     => ( ( ( ord_less_nat @ Xb @ Xa )
         => ( Y3 = Xc ) )
        & ( ~ ( ord_less_nat @ Xb @ Xa )
         => ( Y3
            = ( set_fo2584398358068434914at_nat @ X3 @ ( plus_plus_nat @ Xa @ one_one_nat ) @ Xb @ ( X3 @ Xa @ Xc ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.elims
thf(fact_7297_fold__atLeastAtMost__nat_Osimps,axiom,
    ( set_fo2584398358068434914at_nat
    = ( ^ [F3: nat > nat > nat,A4: nat,B3: nat,Acc: nat] : ( if_nat @ ( ord_less_nat @ B3 @ A4 ) @ Acc @ ( set_fo2584398358068434914at_nat @ F3 @ ( plus_plus_nat @ A4 @ one_one_nat ) @ B3 @ ( F3 @ A4 @ Acc ) ) ) ) ) ).

% fold_atLeastAtMost_nat.simps
thf(fact_7298_zminus1__lemma,axiom,
    ! [A: int,B: int,Q3: int,R2: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q3 @ R2 ) )
     => ( ( B != zero_zero_int )
       => ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R2 = zero_zero_int ) @ ( uminus_uminus_int @ Q3 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q3 ) @ one_one_int ) ) @ ( if_int @ ( R2 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R2 ) ) ) ) ) ) ).

% zminus1_lemma
thf(fact_7299_eucl__rel__int__iff,axiom,
    ! [K: int,L: int,Q3: int,R2: int] :
      ( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q3 @ R2 ) )
      = ( ( K
          = ( plus_plus_int @ ( times_times_int @ L @ Q3 ) @ R2 ) )
        & ( ( ord_less_int @ zero_zero_int @ L )
         => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
            & ( ord_less_int @ R2 @ L ) ) )
        & ( ~ ( ord_less_int @ zero_zero_int @ L )
         => ( ( ( ord_less_int @ L @ zero_zero_int )
             => ( ( ord_less_int @ L @ R2 )
                & ( ord_less_eq_int @ R2 @ zero_zero_int ) ) )
            & ( ~ ( ord_less_int @ L @ zero_zero_int )
             => ( Q3 = zero_zero_int ) ) ) ) ) ) ).

% eucl_rel_int_iff
thf(fact_7300_pos__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q3: int,R2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q3 @ R2 ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q3 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) ) ) ) ) ) ).

% pos_eucl_rel_int_mult_2
thf(fact_7301_xor__int__unfold,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L2: int] :
          ( if_int
          @ ( K3
            = ( uminus_uminus_int @ one_one_int ) )
          @ ( bit_ri7919022796975470100ot_int @ L2 )
          @ ( if_int
            @ ( L2
              = ( uminus_uminus_int @ one_one_int ) )
            @ ( bit_ri7919022796975470100ot_int @ K3 )
            @ ( if_int @ ( K3 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_int_unfold
thf(fact_7302_cos__pi__eq__zero,axiom,
    ! [M: nat] :
      ( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = zero_zero_real ) ).

% cos_pi_eq_zero
thf(fact_7303_sincos__total__2pi,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ~ ! [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
           => ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( ( X3
                  = ( cos_real @ T3 ) )
               => ( Y3
                 != ( sin_real @ T3 ) ) ) ) ) ) ).

% sincos_total_2pi
thf(fact_7304_sin__tan,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( sin_real @ X3 )
        = ( divide_divide_real @ ( tan_real @ X3 ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_tan
thf(fact_7305_vebt__buildup_Oelims,axiom,
    ! [X3: nat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X3 )
        = Y3 )
     => ( ( ( X3 = zero_zero_nat )
         => ( Y3
           != ( vEBT_Leaf @ $false @ $false ) ) )
       => ( ( ( X3
              = ( suc @ zero_zero_nat ) )
           => ( Y3
             != ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Va: nat] :
                ( ( X3
                  = ( suc @ ( suc @ Va ) ) )
               => ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                     => ( Y3
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                    & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                     => ( Y3
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.elims
thf(fact_7306_intind,axiom,
    ! [I: nat,N: nat,P: nat > $o,X3: nat] :
      ( ( ord_less_nat @ I @ N )
     => ( ( P @ X3 )
       => ( P @ ( nth_nat @ ( replicate_nat @ N @ X3 ) @ I ) ) ) ) ).

% intind
thf(fact_7307_intind,axiom,
    ! [I: nat,N: nat,P: int > $o,X3: int] :
      ( ( ord_less_nat @ I @ N )
     => ( ( P @ X3 )
       => ( P @ ( nth_int @ ( replicate_int @ N @ X3 ) @ I ) ) ) ) ).

% intind
thf(fact_7308_intind,axiom,
    ! [I: nat,N: nat,P: vEBT_VEBT > $o,X3: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ N )
     => ( ( P @ X3 )
       => ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X3 ) @ I ) ) ) ) ).

% intind
thf(fact_7309_bit_Ocompl__eq__compl__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ( bit_ri7919022796975470100ot_int @ X3 )
        = ( bit_ri7919022796975470100ot_int @ Y3 ) )
      = ( X3 = Y3 ) ) ).

% bit.compl_eq_compl_iff
thf(fact_7310_bit_Odouble__compl,axiom,
    ! [X3: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( bit_ri7919022796975470100ot_int @ X3 ) )
      = X3 ) ).

% bit.double_compl
thf(fact_7311_tan__zero,axiom,
    ( ( tan_real @ zero_zero_real )
    = zero_zero_real ) ).

% tan_zero
thf(fact_7312_replicate__eq__replicate,axiom,
    ! [M: nat,X3: vEBT_VEBT,N: nat,Y3: vEBT_VEBT] :
      ( ( ( replicate_VEBT_VEBT @ M @ X3 )
        = ( replicate_VEBT_VEBT @ N @ Y3 ) )
      = ( ( M = N )
        & ( ( M != zero_zero_nat )
         => ( X3 = Y3 ) ) ) ) ).

% replicate_eq_replicate
thf(fact_7313_bit_Oxor__compl__right,axiom,
    ! [X3: int,Y3: int] :
      ( ( bit_se6526347334894502574or_int @ X3 @ ( bit_ri7919022796975470100ot_int @ Y3 ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X3 @ Y3 ) ) ) ).

% bit.xor_compl_right
thf(fact_7314_bit_Oxor__compl__left,axiom,
    ! [X3: int,Y3: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X3 ) @ Y3 )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ X3 @ Y3 ) ) ) ).

% bit.xor_compl_left
thf(fact_7315_cos__zero,axiom,
    ( ( cos_complex @ zero_zero_complex )
    = one_one_complex ) ).

% cos_zero
thf(fact_7316_cos__zero,axiom,
    ( ( cos_real @ zero_zero_real )
    = one_one_real ) ).

% cos_zero
thf(fact_7317_in__set__replicate,axiom,
    ! [X3: option_nat,N: nat,Y3: option_nat] :
      ( ( member_option_nat @ X3 @ ( set_option_nat2 @ ( replicate_option_nat @ N @ Y3 ) ) )
      = ( ( X3 = Y3 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_7318_in__set__replicate,axiom,
    ! [X3: real,N: nat,Y3: real] :
      ( ( member_real @ X3 @ ( set_real2 @ ( replicate_real @ N @ Y3 ) ) )
      = ( ( X3 = Y3 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_7319_in__set__replicate,axiom,
    ! [X3: set_nat,N: nat,Y3: set_nat] :
      ( ( member_set_nat @ X3 @ ( set_set_nat2 @ ( replicate_set_nat @ N @ Y3 ) ) )
      = ( ( X3 = Y3 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_7320_in__set__replicate,axiom,
    ! [X3: nat,N: nat,Y3: nat] :
      ( ( member_nat @ X3 @ ( set_nat2 @ ( replicate_nat @ N @ Y3 ) ) )
      = ( ( X3 = Y3 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_7321_in__set__replicate,axiom,
    ! [X3: int,N: nat,Y3: int] :
      ( ( member_int @ X3 @ ( set_int2 @ ( replicate_int @ N @ Y3 ) ) )
      = ( ( X3 = Y3 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_7322_in__set__replicate,axiom,
    ! [X3: vEBT_VEBT,N: nat,Y3: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ Y3 ) ) )
      = ( ( X3 = Y3 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_7323_Bex__set__replicate,axiom,
    ! [N: nat,A: nat,P: nat > $o] :
      ( ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_7324_Bex__set__replicate,axiom,
    ! [N: nat,A: int,P: int > $o] :
      ( ( ? [X: int] :
            ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_7325_Bex__set__replicate,axiom,
    ! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ? [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_7326_Ball__set__replicate,axiom,
    ! [N: nat,A: nat,P: nat > $o] :
      ( ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_7327_Ball__set__replicate,axiom,
    ! [N: nat,A: int,P: int > $o] :
      ( ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_7328_Ball__set__replicate,axiom,
    ! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_7329_nth__replicate,axiom,
    ! [I: nat,N: nat,X3: nat] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_nat @ ( replicate_nat @ N @ X3 ) @ I )
        = X3 ) ) ).

% nth_replicate
thf(fact_7330_nth__replicate,axiom,
    ! [I: nat,N: nat,X3: int] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_int @ ( replicate_int @ N @ X3 ) @ I )
        = X3 ) ) ).

% nth_replicate
thf(fact_7331_nth__replicate,axiom,
    ! [I: nat,N: nat,X3: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X3 ) @ I )
        = X3 ) ) ).

% nth_replicate
thf(fact_7332_tan__pi,axiom,
    ( ( tan_real @ pi )
    = zero_zero_real ) ).

% tan_pi
thf(fact_7333_bit_Ocompl__one,axiom,
    ( ( bit_ri7632146776885996613nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% bit.compl_one
thf(fact_7334_bit_Ocompl__one,axiom,
    ( ( bit_ri7919022796975470100ot_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% bit.compl_one
thf(fact_7335_bit_Ocompl__zero,axiom,
    ( ( bit_ri7632146776885996613nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.compl_zero
thf(fact_7336_bit_Ocompl__zero,axiom,
    ( ( bit_ri7919022796975470100ot_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.compl_zero
thf(fact_7337_bit_Odisj__cancel__right,axiom,
    ! [X3: code_integer] :
      ( ( bit_se1080825931792720795nteger @ X3 @ ( bit_ri7632146776885996613nteger @ X3 ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_cancel_right
thf(fact_7338_bit_Odisj__cancel__right,axiom,
    ! [X3: int] :
      ( ( bit_se1409905431419307370or_int @ X3 @ ( bit_ri7919022796975470100ot_int @ X3 ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_cancel_right
thf(fact_7339_bit_Odisj__cancel__left,axiom,
    ! [X3: code_integer] :
      ( ( bit_se1080825931792720795nteger @ ( bit_ri7632146776885996613nteger @ X3 ) @ X3 )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_cancel_left
thf(fact_7340_bit_Odisj__cancel__left,axiom,
    ! [X3: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ X3 ) @ X3 )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_cancel_left
thf(fact_7341_bit_Oxor__cancel__right,axiom,
    ! [X3: code_integer] :
      ( ( bit_se3222712562003087583nteger @ X3 @ ( bit_ri7632146776885996613nteger @ X3 ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.xor_cancel_right
thf(fact_7342_bit_Oxor__cancel__right,axiom,
    ! [X3: int] :
      ( ( bit_se6526347334894502574or_int @ X3 @ ( bit_ri7919022796975470100ot_int @ X3 ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.xor_cancel_right
thf(fact_7343_bit_Oxor__cancel__left,axiom,
    ! [X3: code_integer] :
      ( ( bit_se3222712562003087583nteger @ ( bit_ri7632146776885996613nteger @ X3 ) @ X3 )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.xor_cancel_left
thf(fact_7344_bit_Oxor__cancel__left,axiom,
    ! [X3: int] :
      ( ( bit_se6526347334894502574or_int @ ( bit_ri7919022796975470100ot_int @ X3 ) @ X3 )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.xor_cancel_left
thf(fact_7345_bit_Oxor__one__right,axiom,
    ! [X3: code_integer] :
      ( ( bit_se3222712562003087583nteger @ X3 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( bit_ri7632146776885996613nteger @ X3 ) ) ).

% bit.xor_one_right
thf(fact_7346_bit_Oxor__one__right,axiom,
    ! [X3: int] :
      ( ( bit_se6526347334894502574or_int @ X3 @ ( uminus_uminus_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ X3 ) ) ).

% bit.xor_one_right
thf(fact_7347_bit_Oxor__one__left,axiom,
    ! [X3: code_integer] :
      ( ( bit_se3222712562003087583nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X3 )
      = ( bit_ri7632146776885996613nteger @ X3 ) ) ).

% bit.xor_one_left
thf(fact_7348_bit_Oxor__one__left,axiom,
    ! [X3: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ one_one_int ) @ X3 )
      = ( bit_ri7919022796975470100ot_int @ X3 ) ) ).

% bit.xor_one_left
thf(fact_7349_not__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% not_negative_int_iff
thf(fact_7350_not__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% not_nonnegative_int_iff
thf(fact_7351_minus__not__numeral__eq,axiom,
    ! [N: num] :
      ( ( uminus1351360451143612070nteger @ ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( inc @ N ) ) ) ).

% minus_not_numeral_eq
thf(fact_7352_minus__not__numeral__eq,axiom,
    ! [N: num] :
      ( ( uminus_uminus_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( inc @ N ) ) ) ).

% minus_not_numeral_eq
thf(fact_7353_even__not__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri7632146776885996613nteger @ A ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_not_iff
thf(fact_7354_even__not__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ A ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_not_iff
thf(fact_7355_set__replicate,axiom,
    ! [N: nat,X3: produc3843707927480180839at_nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_Pr3765526544606949372at_nat @ ( replic2264142908078655527at_nat @ N @ X3 ) )
        = ( insert9069300056098147895at_nat @ X3 @ bot_bo228742789529271731at_nat ) ) ) ).

% set_replicate
thf(fact_7356_set__replicate,axiom,
    ! [N: nat,X3: product_prod_nat_nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ N @ X3 ) )
        = ( insert8211810215607154385at_nat @ X3 @ bot_bo2099793752762293965at_nat ) ) ) ).

% set_replicate
thf(fact_7357_set__replicate,axiom,
    ! [N: nat,X3: vEBT_VEBT] :
      ( ( N != zero_zero_nat )
     => ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ X3 ) )
        = ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% set_replicate
thf(fact_7358_set__replicate,axiom,
    ! [N: nat,X3: extended_enat] :
      ( ( N != zero_zero_nat )
     => ( ( set_Extended_enat2 @ ( replic7216382294607269926d_enat @ N @ X3 ) )
        = ( insert_Extended_enat @ X3 @ bot_bo7653980558646680370d_enat ) ) ) ).

% set_replicate
thf(fact_7359_set__replicate,axiom,
    ! [N: nat,X3: real] :
      ( ( N != zero_zero_nat )
     => ( ( set_real2 @ ( replicate_real @ N @ X3 ) )
        = ( insert_real @ X3 @ bot_bot_set_real ) ) ) ).

% set_replicate
thf(fact_7360_set__replicate,axiom,
    ! [N: nat,X3: nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_nat2 @ ( replicate_nat @ N @ X3 ) )
        = ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ).

% set_replicate
thf(fact_7361_set__replicate,axiom,
    ! [N: nat,X3: int] :
      ( ( N != zero_zero_nat )
     => ( ( set_int2 @ ( replicate_int @ N @ X3 ) )
        = ( insert_int @ X3 @ bot_bot_set_int ) ) ) ).

% set_replicate
thf(fact_7362_tan__npi,axiom,
    ! [N: nat] :
      ( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% tan_npi
thf(fact_7363_tan__periodic__n,axiom,
    ! [X3: real,N: num] :
      ( ( tan_real @ ( plus_plus_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ N ) @ pi ) ) )
      = ( tan_real @ X3 ) ) ).

% tan_periodic_n
thf(fact_7364_tan__periodic__nat,axiom,
    ! [X3: real,N: nat] :
      ( ( tan_real @ ( plus_plus_real @ X3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) ) )
      = ( tan_real @ X3 ) ) ).

% tan_periodic_nat
thf(fact_7365_not__one__eq,axiom,
    ( ( bit_ri7632146776885996613nteger @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% not_one_eq
thf(fact_7366_not__one__eq,axiom,
    ( ( bit_ri7919022796975470100ot_int @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% not_one_eq
thf(fact_7367_cos__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_pi_half
thf(fact_7368_cos__two__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_real ) ).

% cos_two_pi
thf(fact_7369_cos__periodic,axiom,
    ! [X3: real] :
      ( ( cos_real @ ( plus_plus_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cos_real @ X3 ) ) ).

% cos_periodic
thf(fact_7370_cos__2pi__minus,axiom,
    ! [X3: real] :
      ( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X3 ) )
      = ( cos_real @ X3 ) ) ).

% cos_2pi_minus
thf(fact_7371_tan__periodic,axiom,
    ! [X3: real] :
      ( ( tan_real @ ( plus_plus_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( tan_real @ X3 ) ) ).

% tan_periodic
thf(fact_7372_cos__npi2,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi2
thf(fact_7373_cos__npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi
thf(fact_7374_sin__cos__squared__add2,axiom,
    ! [X3: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add2
thf(fact_7375_sin__cos__squared__add2,axiom,
    ! [X3: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add2
thf(fact_7376_sin__cos__squared__add,axiom,
    ! [X3: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add
thf(fact_7377_sin__cos__squared__add,axiom,
    ! [X3: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add
thf(fact_7378_cos__of__real__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_of_real_pi_half
thf(fact_7379_cos__of__real__pi__half,axiom,
    ( ( cos_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
    = zero_zero_complex ) ).

% cos_of_real_pi_half
thf(fact_7380_cos__2npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = one_one_real ) ).

% cos_2npi
thf(fact_7381_cos__int__2pin,axiom,
    ! [N: int] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = one_one_real ) ).

% cos_int_2pin
thf(fact_7382_cos__3over2__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = zero_zero_real ) ).

% cos_3over2_pi
thf(fact_7383_cos__npi__int,axiom,
    ! [N: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% cos_npi_int
thf(fact_7384_of__int__not__eq,axiom,
    ! [K: int] :
      ( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( bit_ri7919022796975470100ot_int @ ( ring_1_of_int_int @ K ) ) ) ).

% of_int_not_eq
thf(fact_7385_take__bit__not__take__bit,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ ( bit_se2923211474154528505it_int @ N @ A ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) ) ) ).

% take_bit_not_take_bit
thf(fact_7386_take__bit__not__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ A ) )
        = ( bit_se2923211474154528505it_int @ N @ ( bit_ri7919022796975470100ot_int @ B ) ) )
      = ( ( bit_se2923211474154528505it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_not_iff
thf(fact_7387_of__int__not__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ K ) ) ) ).

% of_int_not_numeral
thf(fact_7388_not__diff__distrib,axiom,
    ! [A: int,B: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A @ B ) )
      = ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).

% not_diff_distrib
thf(fact_7389_not__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( bit_ri7919022796975470100ot_int @ ( plus_plus_int @ A @ B ) )
      = ( minus_minus_int @ ( bit_ri7919022796975470100ot_int @ A ) @ B ) ) ).

% not_add_distrib
thf(fact_7390_cos__le__one,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( cos_real @ X3 ) @ one_one_real ) ).

% cos_le_one
thf(fact_7391_cos__arctan__not__zero,axiom,
    ! [X3: real] :
      ( ( cos_real @ ( arctan @ X3 ) )
     != zero_zero_real ) ).

% cos_arctan_not_zero
thf(fact_7392_cos__int__times__real,axiom,
    ! [M: int,X3: real] :
      ( ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ ( real_V1803761363581548252l_real @ X3 ) ) )
      = ( real_V1803761363581548252l_real @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X3 ) ) ) ) ).

% cos_int_times_real
thf(fact_7393_cos__int__times__real,axiom,
    ! [M: int,X3: real] :
      ( ( cos_complex @ ( times_times_complex @ ( ring_17405671764205052669omplex @ M ) @ ( real_V4546457046886955230omplex @ X3 ) ) )
      = ( real_V4546457046886955230omplex @ ( cos_real @ ( times_times_real @ ( ring_1_of_int_real @ M ) @ X3 ) ) ) ) ).

% cos_int_times_real
thf(fact_7394_add__tan__eq,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( ( cos_complex @ X3 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y3 )
         != zero_zero_complex )
       => ( ( plus_plus_complex @ ( tan_complex @ X3 ) @ ( tan_complex @ Y3 ) )
          = ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X3 @ Y3 ) ) @ ( times_times_complex @ ( cos_complex @ X3 ) @ ( cos_complex @ Y3 ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_7395_add__tan__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( cos_real @ X3 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y3 )
         != zero_zero_real )
       => ( ( plus_plus_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) )
          = ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X3 @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X3 ) @ ( cos_real @ Y3 ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_7396_cos__one__sin__zero,axiom,
    ! [X3: complex] :
      ( ( ( cos_complex @ X3 )
        = one_one_complex )
     => ( ( sin_complex @ X3 )
        = zero_zero_complex ) ) ).

% cos_one_sin_zero
thf(fact_7397_cos__one__sin__zero,axiom,
    ! [X3: real] :
      ( ( ( cos_real @ X3 )
        = one_one_real )
     => ( ( sin_real @ X3 )
        = zero_zero_real ) ) ).

% cos_one_sin_zero
thf(fact_7398_tan__add,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( ( cos_complex @ X3 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y3 )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( plus_plus_complex @ X3 @ Y3 ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( plus_plus_complex @ X3 @ Y3 ) )
            = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X3 ) @ ( tan_complex @ Y3 ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X3 ) @ ( tan_complex @ Y3 ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_7399_tan__add,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( cos_real @ X3 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y3 )
         != zero_zero_real )
       => ( ( ( cos_real @ ( plus_plus_real @ X3 @ Y3 ) )
           != zero_zero_real )
         => ( ( tan_real @ ( plus_plus_real @ X3 @ Y3 ) )
            = ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_7400_tan__diff,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( ( cos_complex @ X3 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y3 )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( minus_minus_complex @ X3 @ Y3 ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( minus_minus_complex @ X3 @ Y3 ) )
            = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X3 ) @ ( tan_complex @ Y3 ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X3 ) @ ( tan_complex @ Y3 ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_7401_tan__diff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( cos_real @ X3 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y3 )
         != zero_zero_real )
       => ( ( ( cos_real @ ( minus_minus_real @ X3 @ Y3 ) )
           != zero_zero_real )
         => ( ( tan_real @ ( minus_minus_real @ X3 @ Y3 ) )
            = ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_7402_lemma__tan__add1,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( ( cos_complex @ X3 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y3 )
         != zero_zero_complex )
       => ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X3 ) @ ( tan_complex @ Y3 ) ) )
          = ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X3 @ Y3 ) ) @ ( times_times_complex @ ( cos_complex @ X3 ) @ ( cos_complex @ Y3 ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_7403_lemma__tan__add1,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( cos_real @ X3 )
       != zero_zero_real )
     => ( ( ( cos_real @ Y3 )
         != zero_zero_real )
       => ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) ) )
          = ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X3 @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X3 ) @ ( cos_real @ Y3 ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_7404_minus__eq__not__plus__1,axiom,
    ( uminus1351360451143612070nteger
    = ( ^ [A4: code_integer] : ( plus_p5714425477246183910nteger @ ( bit_ri7632146776885996613nteger @ A4 ) @ one_one_Code_integer ) ) ) ).

% minus_eq_not_plus_1
thf(fact_7405_minus__eq__not__plus__1,axiom,
    ( uminus_uminus_int
    = ( ^ [A4: int] : ( plus_plus_int @ ( bit_ri7919022796975470100ot_int @ A4 ) @ one_one_int ) ) ) ).

% minus_eq_not_plus_1
thf(fact_7406_minus__eq__not__minus__1,axiom,
    ( uminus1351360451143612070nteger
    = ( ^ [A4: code_integer] : ( bit_ri7632146776885996613nteger @ ( minus_8373710615458151222nteger @ A4 @ one_one_Code_integer ) ) ) ) ).

% minus_eq_not_minus_1
thf(fact_7407_minus__eq__not__minus__1,axiom,
    ( uminus_uminus_int
    = ( ^ [A4: int] : ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ A4 @ one_one_int ) ) ) ) ).

% minus_eq_not_minus_1
thf(fact_7408_not__eq__complement,axiom,
    ( bit_ri7632146776885996613nteger
    = ( ^ [A4: code_integer] : ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A4 ) @ one_one_Code_integer ) ) ) ).

% not_eq_complement
thf(fact_7409_not__eq__complement,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [A4: int] : ( minus_minus_int @ ( uminus_uminus_int @ A4 ) @ one_one_int ) ) ) ).

% not_eq_complement
thf(fact_7410_cos__monotone__0__pi__le,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ X3 )
       => ( ( ord_less_eq_real @ X3 @ pi )
         => ( ord_less_eq_real @ ( cos_real @ X3 ) @ ( cos_real @ Y3 ) ) ) ) ) ).

% cos_monotone_0_pi_le
thf(fact_7411_cos__mono__le__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ pi )
           => ( ( ord_less_eq_real @ ( cos_real @ X3 ) @ ( cos_real @ Y3 ) )
              = ( ord_less_eq_real @ Y3 @ X3 ) ) ) ) ) ) ).

% cos_mono_le_eq
thf(fact_7412_cos__inj__pi,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ pi )
           => ( ( ( cos_real @ X3 )
                = ( cos_real @ Y3 ) )
             => ( X3 = Y3 ) ) ) ) ) ) ).

% cos_inj_pi
thf(fact_7413_cos__ge__minus__one,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X3 ) ) ).

% cos_ge_minus_one
thf(fact_7414_not__int__def,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K3: int] : ( minus_minus_int @ ( uminus_uminus_int @ K3 ) @ one_one_int ) ) ) ).

% not_int_def
thf(fact_7415_abs__cos__le__one,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X3 ) ) @ one_one_real ) ).

% abs_cos_le_one
thf(fact_7416_or__not__numerals_I1_J,axiom,
    ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(1)
thf(fact_7417_minus__numeral__inc__eq,axiom,
    ! [N: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( inc @ N ) ) )
      = ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% minus_numeral_inc_eq
thf(fact_7418_minus__numeral__inc__eq,axiom,
    ! [N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ).

% minus_numeral_inc_eq
thf(fact_7419_sin__zero__norm__cos__one,axiom,
    ! [X3: real] :
      ( ( ( sin_real @ X3 )
        = zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( cos_real @ X3 ) )
        = one_one_real ) ) ).

% sin_zero_norm_cos_one
thf(fact_7420_sin__zero__norm__cos__one,axiom,
    ! [X3: complex] :
      ( ( ( sin_complex @ X3 )
        = zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( cos_complex @ X3 ) )
        = one_one_real ) ) ).

% sin_zero_norm_cos_one
thf(fact_7421_not__int__div__2,axiom,
    ! [K: int] :
      ( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% not_int_div_2
thf(fact_7422_even__not__iff__int,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_not_iff_int
thf(fact_7423_cos__two__neq__zero,axiom,
    ( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% cos_two_neq_zero
thf(fact_7424_cos__mono__less__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ pi )
           => ( ( ord_less_real @ ( cos_real @ X3 ) @ ( cos_real @ Y3 ) )
              = ( ord_less_real @ Y3 @ X3 ) ) ) ) ) ) ).

% cos_mono_less_eq
thf(fact_7425_cos__monotone__0__pi,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_real @ Y3 @ X3 )
       => ( ( ord_less_eq_real @ X3 @ pi )
         => ( ord_less_real @ ( cos_real @ X3 ) @ ( cos_real @ Y3 ) ) ) ) ) ).

% cos_monotone_0_pi
thf(fact_7426_tan__half,axiom,
    ( tan_complex
    = ( ^ [X: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) ) @ one_one_complex ) ) ) ) ).

% tan_half
thf(fact_7427_tan__half,axiom,
    ( tan_real
    = ( ^ [X: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ) ).

% tan_half
thf(fact_7428_not__numeral__Bit0__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7632146776885996613nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ) ).

% not_numeral_Bit0_eq
thf(fact_7429_not__numeral__Bit0__eq,axiom,
    ! [N: num] :
      ( ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% not_numeral_Bit0_eq
thf(fact_7430_or__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(2)
thf(fact_7431_or__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).

% or_not_numerals(4)
thf(fact_7432_cos__monotone__minus__pi__0_H,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ X3 )
       => ( ( ord_less_eq_real @ X3 @ zero_zero_real )
         => ( ord_less_eq_real @ ( cos_real @ Y3 ) @ ( cos_real @ X3 ) ) ) ) ) ).

% cos_monotone_minus_pi_0'
thf(fact_7433_set__replicate__conv__if,axiom,
    ! [N: nat,X3: produc3843707927480180839at_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_Pr3765526544606949372at_nat @ ( replic2264142908078655527at_nat @ N @ X3 ) )
          = bot_bo228742789529271731at_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_Pr3765526544606949372at_nat @ ( replic2264142908078655527at_nat @ N @ X3 ) )
          = ( insert9069300056098147895at_nat @ X3 @ bot_bo228742789529271731at_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7434_set__replicate__conv__if,axiom,
    ! [N: nat,X3: product_prod_nat_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ N @ X3 ) )
          = bot_bo2099793752762293965at_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_Pr5648618587558075414at_nat @ ( replic4235873036481779905at_nat @ N @ X3 ) )
          = ( insert8211810215607154385at_nat @ X3 @ bot_bo2099793752762293965at_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7435_set__replicate__conv__if,axiom,
    ! [N: nat,X3: vEBT_VEBT] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ X3 ) )
          = bot_bo8194388402131092736T_VEBT ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ X3 ) )
          = ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7436_set__replicate__conv__if,axiom,
    ! [N: nat,X3: extended_enat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_Extended_enat2 @ ( replic7216382294607269926d_enat @ N @ X3 ) )
          = bot_bo7653980558646680370d_enat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_Extended_enat2 @ ( replic7216382294607269926d_enat @ N @ X3 ) )
          = ( insert_Extended_enat @ X3 @ bot_bo7653980558646680370d_enat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7437_set__replicate__conv__if,axiom,
    ! [N: nat,X3: real] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_real2 @ ( replicate_real @ N @ X3 ) )
          = bot_bot_set_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_real2 @ ( replicate_real @ N @ X3 ) )
          = ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7438_set__replicate__conv__if,axiom,
    ! [N: nat,X3: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X3 ) )
          = bot_bot_set_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X3 ) )
          = ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7439_set__replicate__conv__if,axiom,
    ! [N: nat,X3: int] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_int2 @ ( replicate_int @ N @ X3 ) )
          = bot_bot_set_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_int2 @ ( replicate_int @ N @ X3 ) )
          = ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7440_sin__zero__abs__cos__one,axiom,
    ! [X3: real] :
      ( ( ( sin_real @ X3 )
        = zero_zero_real )
     => ( ( abs_abs_real @ ( cos_real @ X3 ) )
        = one_one_real ) ) ).

% sin_zero_abs_cos_one
thf(fact_7441_sin__double,axiom,
    ! [X3: complex] :
      ( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X3 ) ) @ ( cos_complex @ X3 ) ) ) ).

% sin_double
thf(fact_7442_sin__double,axiom,
    ! [X3: real] :
      ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X3 ) ) @ ( cos_real @ X3 ) ) ) ).

% sin_double
thf(fact_7443_cos__two__less__zero,axiom,
    ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_less_zero
thf(fact_7444_cos__is__zero,axiom,
    ? [X4: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X4 )
      & ( ord_less_eq_real @ X4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      & ( ( cos_real @ X4 )
        = zero_zero_real )
      & ! [Y6: real] :
          ( ( ( ord_less_eq_real @ zero_zero_real @ Y6 )
            & ( ord_less_eq_real @ Y6 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ Y6 )
              = zero_zero_real ) )
         => ( Y6 = X4 ) ) ) ).

% cos_is_zero
thf(fact_7445_cos__two__le__zero,axiom,
    ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_le_zero
thf(fact_7446_tan__double,axiom,
    ! [X3: complex] :
      ( ( ( cos_complex @ X3 )
       != zero_zero_complex )
     => ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) )
         != zero_zero_complex )
       => ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X3 ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_7447_tan__double,axiom,
    ! [X3: real] :
      ( ( ( cos_real @ X3 )
       != zero_zero_real )
     => ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) )
         != zero_zero_real )
       => ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) )
          = ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X3 ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_7448_or__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(3)
thf(fact_7449_cos__monotone__minus__pi__0,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y3 )
     => ( ( ord_less_real @ Y3 @ X3 )
       => ( ( ord_less_eq_real @ X3 @ zero_zero_real )
         => ( ord_less_real @ ( cos_real @ Y3 ) @ ( cos_real @ X3 ) ) ) ) ) ).

% cos_monotone_minus_pi_0
thf(fact_7450_or__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(7)
thf(fact_7451_cos__total,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ? [X4: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X4 )
            & ( ord_less_eq_real @ X4 @ pi )
            & ( ( cos_real @ X4 )
              = Y3 )
            & ! [Y6: real] :
                ( ( ( ord_less_eq_real @ zero_zero_real @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ pi )
                  & ( ( cos_real @ Y6 )
                    = Y3 ) )
               => ( Y6 = X4 ) ) ) ) ) ).

% cos_total
thf(fact_7452_sincos__principal__value,axiom,
    ! [X3: real] :
    ? [Y4: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y4 )
      & ( ord_less_eq_real @ Y4 @ pi )
      & ( ( sin_real @ Y4 )
        = ( sin_real @ X3 ) )
      & ( ( cos_real @ Y4 )
        = ( cos_real @ X3 ) ) ) ).

% sincos_principal_value
thf(fact_7453_cos__tan,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( cos_real @ X3 )
        = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_tan
thf(fact_7454_tan__45,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = one_one_real ) ).

% tan_45
thf(fact_7455_or__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% or_not_numerals(6)
thf(fact_7456_tan__60,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% tan_60
thf(fact_7457_cos__45,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_45
thf(fact_7458_sin__cos__le1,axiom,
    ! [X3: real,Y3: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X3 ) @ ( sin_real @ Y3 ) ) @ ( times_times_real @ ( cos_real @ X3 ) @ ( cos_real @ Y3 ) ) ) ) @ one_one_real ) ).

% sin_cos_le1
thf(fact_7459_cos__plus__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_7460_cos__plus__cos,axiom,
    ! [W: real,Z: real] :
      ( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_7461_cos__times__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_7462_cos__times__cos,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_7463_sin__squared__eq,axiom,
    ! [X3: complex] :
      ( ( power_power_complex @ ( sin_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7464_sin__squared__eq,axiom,
    ! [X3: real] :
      ( ( power_power_real @ ( sin_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7465_cos__squared__eq,axiom,
    ! [X3: complex] :
      ( ( power_power_complex @ ( cos_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7466_cos__squared__eq,axiom,
    ! [X3: real] :
      ( ( power_power_real @ ( cos_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7467_tan__gt__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( tan_real @ X3 ) ) ) ) ).

% tan_gt_zero
thf(fact_7468_lemma__tan__total,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ? [X4: real] :
          ( ( ord_less_real @ zero_zero_real @ X4 )
          & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ord_less_real @ Y3 @ ( tan_real @ X4 ) ) ) ) ).

% lemma_tan_total
thf(fact_7469_tan__total,axiom,
    ! [Y3: real] :
    ? [X4: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
      & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X4 )
        = Y3 )
      & ! [Y6: real] :
          ( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y6 )
            & ( ord_less_real @ Y6 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( tan_real @ Y6 )
              = Y3 ) )
         => ( Y6 = X4 ) ) ) ).

% tan_total
thf(fact_7470_tan__monotone,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
     => ( ( ord_less_real @ Y3 @ X3 )
       => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( tan_real @ Y3 ) @ ( tan_real @ X3 ) ) ) ) ) ).

% tan_monotone
thf(fact_7471_tan__monotone_H,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
     => ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
         => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ Y3 @ X3 )
              = ( ord_less_real @ ( tan_real @ Y3 ) @ ( tan_real @ X3 ) ) ) ) ) ) ) ).

% tan_monotone'
thf(fact_7472_tan__mono__lt__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
         => ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) )
              = ( ord_less_real @ X3 @ Y3 ) ) ) ) ) ) ).

% tan_mono_lt_eq
thf(fact_7473_lemma__tan__total1,axiom,
    ! [Y3: real] :
    ? [X4: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
      & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X4 )
        = Y3 ) ) ).

% lemma_tan_total1
thf(fact_7474_tan__minus__45,axiom,
    ( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% tan_minus_45
thf(fact_7475_cos__double__less__one,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_real ) ) ) ).

% cos_double_less_one
thf(fact_7476_tan__inverse,axiom,
    ! [Y3: real] :
      ( ( divide_divide_real @ one_one_real @ ( tan_real @ Y3 ) )
      = ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y3 ) ) ) ).

% tan_inverse
thf(fact_7477_cos__gt__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X3 ) ) ) ) ).

% cos_gt_zero
thf(fact_7478_cos__60,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_60
thf(fact_7479_or__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(5)
thf(fact_7480_cos__30,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_30
thf(fact_7481_cos__one__2pi__int,axiom,
    ! [X3: real] :
      ( ( ( cos_real @ X3 )
        = one_one_real )
      = ( ? [X: int] :
            ( X3
            = ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).

% cos_one_2pi_int
thf(fact_7482_cos__double__cos,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).

% cos_double_cos
thf(fact_7483_cos__double__cos,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).

% cos_double_cos
thf(fact_7484_cos__treble__cos,axiom,
    ! [X3: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X3 ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X3 ) ) ) ) ).

% cos_treble_cos
thf(fact_7485_cos__treble__cos,axiom,
    ! [X3: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X3 ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X3 ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X3 ) ) ) ) ).

% cos_treble_cos
thf(fact_7486_cos__diff__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_7487_cos__diff__cos,axiom,
    ! [W: real,Z: real] :
      ( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_7488_sin__diff__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_7489_sin__diff__sin,axiom,
    ! [W: real,Z: real] :
      ( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_7490_sin__plus__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_7491_sin__plus__sin,axiom,
    ! [W: real,Z: real] :
      ( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_7492_cos__times__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_7493_cos__times__sin,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_7494_sin__times__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_7495_sin__times__cos,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_7496_sin__times__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_7497_sin__times__sin,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_7498_cos__double,axiom,
    ! [X3: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) )
      = ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_7499_cos__double,axiom,
    ! [X3: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) )
      = ( minus_minus_real @ ( power_power_real @ ( cos_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_7500_cos__sin__eq,axiom,
    ( cos_real
    = ( ^ [X: real] : ( sin_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).

% cos_sin_eq
thf(fact_7501_cos__sin__eq,axiom,
    ( cos_complex
    = ( ^ [X: complex] : ( sin_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).

% cos_sin_eq
thf(fact_7502_sin__cos__eq,axiom,
    ( sin_real
    = ( ^ [X: real] : ( cos_real @ ( minus_minus_real @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).

% sin_cos_eq
thf(fact_7503_sin__cos__eq,axiom,
    ( sin_complex
    = ( ^ [X: complex] : ( cos_complex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ X ) ) ) ) ).

% sin_cos_eq
thf(fact_7504_tan__total__pos,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ? [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
          & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( tan_real @ X4 )
            = Y3 ) ) ) ).

% tan_total_pos
thf(fact_7505_tan__pos__pi2__le,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X3 ) ) ) ) ).

% tan_pos_pi2_le
thf(fact_7506_tan__less__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ zero_zero_real )
       => ( ord_less_real @ ( tan_real @ X3 ) @ zero_zero_real ) ) ) ).

% tan_less_zero
thf(fact_7507_tan__mono__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
       => ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) ) ) ) ) ).

% tan_mono_le
thf(fact_7508_tan__mono__le__eq,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y3 )
         => ( ( ord_less_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( tan_real @ X3 ) @ ( tan_real @ Y3 ) )
              = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ) ) ) ).

% tan_mono_le_eq
thf(fact_7509_tan__bound__pi2,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
     => ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X3 ) ) @ one_one_real ) ) ).

% tan_bound_pi2
thf(fact_7510_tan__30,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).

% tan_30
thf(fact_7511_or__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(9)
thf(fact_7512_or__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(8)
thf(fact_7513_cos__gt__zero__pi,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X3 ) ) ) ) ).

% cos_gt_zero_pi
thf(fact_7514_cos__ge__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X3 ) ) ) ) ).

% cos_ge_zero
thf(fact_7515_arctan,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y3 ) )
      & ( ord_less_real @ ( arctan @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ ( arctan @ Y3 ) )
        = Y3 ) ) ).

% arctan
thf(fact_7516_arctan__tan,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arctan @ ( tan_real @ X3 ) )
          = X3 ) ) ) ).

% arctan_tan
thf(fact_7517_arctan__unique,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ( tan_real @ X3 )
            = Y3 )
         => ( ( arctan @ Y3 )
            = X3 ) ) ) ) ).

% arctan_unique
thf(fact_7518_cos__one__2pi,axiom,
    ! [X3: real] :
      ( ( ( cos_real @ X3 )
        = one_one_real )
      = ( ? [X: nat] :
            ( X3
            = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
        | ? [X: nat] :
            ( X3
            = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).

% cos_one_2pi
thf(fact_7519_cos__double__sin,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_7520_cos__double__sin,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_7521_minus__sin__cos__eq,axiom,
    ! [X3: real] :
      ( ( uminus_uminus_real @ ( sin_real @ X3 ) )
      = ( cos_real @ ( plus_plus_real @ X3 @ ( divide_divide_real @ ( real_V1803761363581548252l_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% minus_sin_cos_eq
thf(fact_7522_minus__sin__cos__eq,axiom,
    ! [X3: complex] :
      ( ( uminus1482373934393186551omplex @ ( sin_complex @ X3 ) )
      = ( cos_complex @ ( plus_plus_complex @ X3 @ ( divide1717551699836669952omplex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% minus_sin_cos_eq
thf(fact_7523_tan__total__pi4,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ? [Z3: real] :
          ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z3 )
          & ( ord_less_real @ Z3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
          & ( ( tan_real @ Z3 )
            = X3 ) ) ) ).

% tan_total_pi4
thf(fact_7524_cos__arctan,axiom,
    ! [X3: real] :
      ( ( cos_real @ ( arctan @ X3 ) )
      = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_arctan
thf(fact_7525_sincos__total__pi,axiom,
    ! [Y3: real,X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = one_one_real )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
            & ( ord_less_eq_real @ T3 @ pi )
            & ( X3
              = ( cos_real @ T3 ) )
            & ( Y3
              = ( sin_real @ T3 ) ) ) ) ) ).

% sincos_total_pi
thf(fact_7526_sin__cos__sqrt,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X3 ) )
     => ( ( sin_real @ X3 )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_cos_sqrt
thf(fact_7527_sin__expansion__lemma,axiom,
    ! [X3: real,M: nat] :
      ( ( sin_real @ ( plus_plus_real @ X3 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( cos_real @ ( plus_plus_real @ X3 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_expansion_lemma
thf(fact_7528_cos__zero__iff__int,axiom,
    ! [X3: real] :
      ( ( ( cos_real @ X3 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X3
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_iff_int
thf(fact_7529_vebt__buildup_Osimps_I3_J,axiom,
    ! [Va2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va2 ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.simps(3)
thf(fact_7530_cos__zero__lemma,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ( cos_real @ X3 )
          = zero_zero_real )
       => ? [N2: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X3
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_lemma
thf(fact_7531_cos__zero__iff,axiom,
    ! [X3: real] :
      ( ( ( cos_real @ X3 )
        = zero_zero_real )
      = ( ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X3
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X3
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% cos_zero_iff
thf(fact_7532_cos__expansion__lemma,axiom,
    ! [X3: real,M: nat] :
      ( ( cos_real @ ( plus_plus_real @ X3 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X3 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_expansion_lemma
thf(fact_7533_sincos__total__pi__half,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
            = one_one_real )
         => ? [T3: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ T3 )
              & ( ord_less_eq_real @ T3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( X3
                = ( cos_real @ T3 ) )
              & ( Y3
                = ( sin_real @ T3 ) ) ) ) ) ) ).

% sincos_total_pi_half
thf(fact_7534_sincos__total__2pi__le,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ? [T3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ T3 )
          & ( ord_less_eq_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
          & ( X3
            = ( cos_real @ T3 ) )
          & ( Y3
            = ( sin_real @ T3 ) ) ) ) ).

% sincos_total_2pi_le
thf(fact_7535_complex__unimodular__polar,axiom,
    ! [Z: complex] :
      ( ( ( real_V1022390504157884413omplex @ Z )
        = one_one_real )
     => ~ ! [T3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T3 )
           => ( ( ord_less_real @ T3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( Z
               != ( complex2 @ ( cos_real @ T3 ) @ ( sin_real @ T3 ) ) ) ) ) ) ).

% complex_unimodular_polar
thf(fact_7536_obtain__set__succ,axiom,
    ! [X3: nat,Z: nat,A3: set_nat,B5: set_nat] :
      ( ( ord_less_nat @ X3 @ Z )
     => ( ( vEBT_VEBT_max_in_set @ A3 @ Z )
       => ( ( finite_finite_nat @ B5 )
         => ( ( A3 = B5 )
           => ? [X_1: nat] : ( vEBT_is_succ_in_set @ A3 @ X3 @ X_1 ) ) ) ) ) ).

% obtain_set_succ
thf(fact_7537_obtain__set__pred,axiom,
    ! [Z: nat,X3: nat,A3: set_nat] :
      ( ( ord_less_nat @ Z @ X3 )
     => ( ( vEBT_VEBT_min_in_set @ A3 @ Z )
       => ( ( finite_finite_nat @ A3 )
         => ? [X_1: nat] : ( vEBT_is_pred_in_set @ A3 @ X3 @ X_1 ) ) ) ) ).

% obtain_set_pred
thf(fact_7538_cos__arcsin,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X3 ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_arcsin
thf(fact_7539_sum__gp,axiom,
    ! [N: nat,M: nat,X3: complex] :
      ( ( ( ord_less_nat @ N @ M )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = zero_zero_complex ) )
      & ( ~ ( ord_less_nat @ N @ M )
       => ( ( ( X3 = one_one_complex )
           => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
              = ( semiri8010041392384452111omplex @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
          & ( ( X3 != one_one_complex )
           => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
              = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X3 @ M ) @ ( power_power_complex @ X3 @ ( suc @ N ) ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_7540_sum__gp,axiom,
    ! [N: nat,M: nat,X3: rat] :
      ( ( ( ord_less_nat @ N @ M )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = zero_zero_rat ) )
      & ( ~ ( ord_less_nat @ N @ M )
       => ( ( ( X3 = one_one_rat )
           => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
              = ( semiri681578069525770553at_rat @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
          & ( ( X3 != one_one_rat )
           => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
              = ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X3 @ M ) @ ( power_power_rat @ X3 @ ( suc @ N ) ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_7541_sum__gp,axiom,
    ! [N: nat,M: nat,X3: real] :
      ( ( ( ord_less_nat @ N @ M )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ N @ M )
       => ( ( ( X3 = one_one_real )
           => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
              = ( semiri5074537144036343181t_real @ ( minus_minus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) )
          & ( ( X3 != one_one_real )
           => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
              = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X3 @ M ) @ ( power_power_real @ X3 @ ( suc @ N ) ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_7542_set__vebt__finite,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( finite_finite_nat @ ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_finite
thf(fact_7543_pred__none__empty,axiom,
    ! [Xs2: set_nat,A: nat] :
      ( ~ ? [X_1: nat] : ( vEBT_is_pred_in_set @ Xs2 @ A @ X_1 )
     => ( ( finite_finite_nat @ Xs2 )
       => ~ ? [X6: nat] :
              ( ( member_nat @ X6 @ Xs2 )
              & ( ord_less_nat @ X6 @ A ) ) ) ) ).

% pred_none_empty
thf(fact_7544_succ__none__empty,axiom,
    ! [Xs2: set_nat,A: nat] :
      ( ~ ? [X_1: nat] : ( vEBT_is_succ_in_set @ Xs2 @ A @ X_1 )
     => ( ( finite_finite_nat @ Xs2 )
       => ~ ? [X6: nat] :
              ( ( member_nat @ X6 @ Xs2 )
              & ( ord_less_nat @ A @ X6 ) ) ) ) ).

% succ_none_empty
thf(fact_7545_arcsin__0,axiom,
    ( ( arcsin @ zero_zero_real )
    = zero_zero_real ) ).

% arcsin_0
thf(fact_7546_sum_Oneutral__const,axiom,
    ! [A3: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [Uu3: nat] : zero_zero_nat
        @ A3 )
      = zero_zero_nat ) ).

% sum.neutral_const
thf(fact_7547_sum_Oneutral__const,axiom,
    ! [A3: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [Uu3: complex] : zero_zero_complex
        @ A3 )
      = zero_zero_complex ) ).

% sum.neutral_const
thf(fact_7548_sum_Oneutral__const,axiom,
    ! [A3: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [Uu3: nat] : zero_zero_real
        @ A3 )
      = zero_zero_real ) ).

% sum.neutral_const
thf(fact_7549_sum_Oneutral__const,axiom,
    ! [A3: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [Uu3: int] : zero_zero_int
        @ A3 )
      = zero_zero_int ) ).

% sum.neutral_const
thf(fact_7550_of__nat__sum,axiom,
    ! [F: complex > nat,A3: set_complex] :
      ( ( semiri8010041392384452111omplex @ ( groups5693394587270226106ex_nat @ F @ A3 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( semiri8010041392384452111omplex @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_sum
thf(fact_7551_of__nat__sum,axiom,
    ! [F: int > nat,A3: set_int] :
      ( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A3 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_sum
thf(fact_7552_of__nat__sum,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri8010041392384452111omplex @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups2073611262835488442omplex
        @ ^ [X: nat] : ( semiri8010041392384452111omplex @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_sum
thf(fact_7553_of__nat__sum,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri681578069525770553at_rat @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups2906978787729119204at_rat
        @ ^ [X: nat] : ( semiri681578069525770553at_rat @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_sum
thf(fact_7554_of__nat__sum,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups3539618377306564664at_int
        @ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_sum
thf(fact_7555_of__nat__sum,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri1316708129612266289at_nat @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [X: nat] : ( semiri1316708129612266289at_nat @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_sum
thf(fact_7556_of__nat__sum,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri5074537144036343181t_real @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( semiri5074537144036343181t_real @ ( F @ X ) )
        @ A3 ) ) ).

% of_nat_sum
thf(fact_7557_of__int__sum,axiom,
    ! [F: complex > int,A3: set_complex] :
      ( ( ring_17405671764205052669omplex @ ( groups5690904116761175830ex_int @ F @ A3 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( ring_17405671764205052669omplex @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_sum
thf(fact_7558_of__int__sum,axiom,
    ! [F: nat > int,A3: set_nat] :
      ( ( ring_1_of_int_real @ ( groups3539618377306564664at_int @ F @ A3 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( ring_1_of_int_real @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_sum
thf(fact_7559_of__int__sum,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_1_of_int_real @ ( groups4538972089207619220nt_int @ F @ A3 ) )
      = ( groups8778361861064173332t_real
        @ ^ [X: int] : ( ring_1_of_int_real @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_sum
thf(fact_7560_of__int__sum,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_17405671764205052669omplex @ ( groups4538972089207619220nt_int @ F @ A3 ) )
      = ( groups3049146728041665814omplex
        @ ^ [X: int] : ( ring_17405671764205052669omplex @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_sum
thf(fact_7561_of__int__sum,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_1_of_int_rat @ ( groups4538972089207619220nt_int @ F @ A3 ) )
      = ( groups3906332499630173760nt_rat
        @ ^ [X: int] : ( ring_1_of_int_rat @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_sum
thf(fact_7562_of__int__sum,axiom,
    ! [F: int > int,A3: set_int] :
      ( ( ring_1_of_int_int @ ( groups4538972089207619220nt_int @ F @ A3 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( ring_1_of_int_int @ ( F @ X ) )
        @ A3 ) ) ).

% of_int_sum
thf(fact_7563_sum_Oempty,axiom,
    ! [G: extended_enat > real] :
      ( ( groups4148127829035722712t_real @ G @ bot_bo7653980558646680370d_enat )
      = zero_zero_real ) ).

% sum.empty
thf(fact_7564_sum_Oempty,axiom,
    ! [G: extended_enat > rat] :
      ( ( groups1392844769737527556at_rat @ G @ bot_bo7653980558646680370d_enat )
      = zero_zero_rat ) ).

% sum.empty
thf(fact_7565_sum_Oempty,axiom,
    ! [G: extended_enat > nat] :
      ( ( groups2027974829824023292at_nat @ G @ bot_bo7653980558646680370d_enat )
      = zero_zero_nat ) ).

% sum.empty
thf(fact_7566_sum_Oempty,axiom,
    ! [G: extended_enat > int] :
      ( ( groups2025484359314973016at_int @ G @ bot_bo7653980558646680370d_enat )
      = zero_zero_int ) ).

% sum.empty
thf(fact_7567_sum_Oempty,axiom,
    ! [G: real > real] :
      ( ( groups8097168146408367636l_real @ G @ bot_bot_set_real )
      = zero_zero_real ) ).

% sum.empty
thf(fact_7568_sum_Oempty,axiom,
    ! [G: real > rat] :
      ( ( groups1300246762558778688al_rat @ G @ bot_bot_set_real )
      = zero_zero_rat ) ).

% sum.empty
thf(fact_7569_sum_Oempty,axiom,
    ! [G: real > nat] :
      ( ( groups1935376822645274424al_nat @ G @ bot_bot_set_real )
      = zero_zero_nat ) ).

% sum.empty
thf(fact_7570_sum_Oempty,axiom,
    ! [G: real > int] :
      ( ( groups1932886352136224148al_int @ G @ bot_bot_set_real )
      = zero_zero_int ) ).

% sum.empty
thf(fact_7571_sum_Oempty,axiom,
    ! [G: nat > rat] :
      ( ( groups2906978787729119204at_rat @ G @ bot_bot_set_nat )
      = zero_zero_rat ) ).

% sum.empty
thf(fact_7572_sum_Oempty,axiom,
    ! [G: nat > int] :
      ( ( groups3539618377306564664at_int @ G @ bot_bot_set_nat )
      = zero_zero_int ) ).

% sum.empty
thf(fact_7573_sum_Oinfinite,axiom,
    ! [A3: set_int,G: int > real] :
      ( ~ ( finite_finite_int @ A3 )
     => ( ( groups8778361861064173332t_real @ G @ A3 )
        = zero_zero_real ) ) ).

% sum.infinite
thf(fact_7574_sum_Oinfinite,axiom,
    ! [A3: set_complex,G: complex > real] :
      ( ~ ( finite3207457112153483333omplex @ A3 )
     => ( ( groups5808333547571424918x_real @ G @ A3 )
        = zero_zero_real ) ) ).

% sum.infinite
thf(fact_7575_sum_Oinfinite,axiom,
    ! [A3: set_Extended_enat,G: extended_enat > real] :
      ( ~ ( finite4001608067531595151d_enat @ A3 )
     => ( ( groups4148127829035722712t_real @ G @ A3 )
        = zero_zero_real ) ) ).

% sum.infinite
thf(fact_7576_sum_Oinfinite,axiom,
    ! [A3: set_nat,G: nat > rat] :
      ( ~ ( finite_finite_nat @ A3 )
     => ( ( groups2906978787729119204at_rat @ G @ A3 )
        = zero_zero_rat ) ) ).

% sum.infinite
thf(fact_7577_sum_Oinfinite,axiom,
    ! [A3: set_int,G: int > rat] :
      ( ~ ( finite_finite_int @ A3 )
     => ( ( groups3906332499630173760nt_rat @ G @ A3 )
        = zero_zero_rat ) ) ).

% sum.infinite
thf(fact_7578_sum_Oinfinite,axiom,
    ! [A3: set_complex,G: complex > rat] :
      ( ~ ( finite3207457112153483333omplex @ A3 )
     => ( ( groups5058264527183730370ex_rat @ G @ A3 )
        = zero_zero_rat ) ) ).

% sum.infinite
thf(fact_7579_sum_Oinfinite,axiom,
    ! [A3: set_Extended_enat,G: extended_enat > rat] :
      ( ~ ( finite4001608067531595151d_enat @ A3 )
     => ( ( groups1392844769737527556at_rat @ G @ A3 )
        = zero_zero_rat ) ) ).

% sum.infinite
thf(fact_7580_sum_Oinfinite,axiom,
    ! [A3: set_int,G: int > nat] :
      ( ~ ( finite_finite_int @ A3 )
     => ( ( groups4541462559716669496nt_nat @ G @ A3 )
        = zero_zero_nat ) ) ).

% sum.infinite
thf(fact_7581_sum_Oinfinite,axiom,
    ! [A3: set_complex,G: complex > nat] :
      ( ~ ( finite3207457112153483333omplex @ A3 )
     => ( ( groups5693394587270226106ex_nat @ G @ A3 )
        = zero_zero_nat ) ) ).

% sum.infinite
thf(fact_7582_sum_Oinfinite,axiom,
    ! [A3: set_Extended_enat,G: extended_enat > nat] :
      ( ~ ( finite4001608067531595151d_enat @ A3 )
     => ( ( groups2027974829824023292at_nat @ G @ A3 )
        = zero_zero_nat ) ) ).

% sum.infinite
thf(fact_7583_sum__eq__0__iff,axiom,
    ! [F4: set_int,F: int > nat] :
      ( ( finite_finite_int @ F4 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ F4 )
          = zero_zero_nat )
        = ( ! [X: int] :
              ( ( member_int @ X @ F4 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_7584_sum__eq__0__iff,axiom,
    ! [F4: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ F4 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ F4 )
          = zero_zero_nat )
        = ( ! [X: complex] :
              ( ( member_complex @ X @ F4 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_7585_sum__eq__0__iff,axiom,
    ! [F4: set_Pr1261947904930325089at_nat,F: product_prod_nat_nat > nat] :
      ( ( finite6177210948735845034at_nat @ F4 )
     => ( ( ( groups977919841031483927at_nat @ F @ F4 )
          = zero_zero_nat )
        = ( ! [X: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ X @ F4 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_7586_sum__eq__0__iff,axiom,
    ! [F4: set_Extended_enat,F: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ F4 )
     => ( ( ( groups2027974829824023292at_nat @ F @ F4 )
          = zero_zero_nat )
        = ( ! [X: extended_enat] :
              ( ( member_Extended_enat @ X @ F4 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_7587_sum__eq__0__iff,axiom,
    ! [F4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ F4 )
     => ( ( ( groups3542108847815614940at_nat @ F @ F4 )
          = zero_zero_nat )
        = ( ! [X: nat] :
              ( ( member_nat @ X @ F4 )
             => ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% sum_eq_0_iff
thf(fact_7588_prod__zero__iff,axiom,
    ! [A3: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ( groups129246275422532515t_real @ F @ A3 )
          = zero_zero_real )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_real ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7589_prod__zero__iff,axiom,
    ! [A3: set_int,F: int > real] :
      ( ( finite_finite_int @ A3 )
     => ( ( ( groups2316167850115554303t_real @ F @ A3 )
          = zero_zero_real )
        = ( ? [X: int] :
              ( ( member_int @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_real ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7590_prod__zero__iff,axiom,
    ! [A3: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ( groups766887009212190081x_real @ F @ A3 )
          = zero_zero_real )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_real ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7591_prod__zero__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( ( groups97031904164794029t_real @ F @ A3 )
          = zero_zero_real )
        = ( ? [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_real ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7592_prod__zero__iff,axiom,
    ! [A3: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ( groups73079841787564623at_rat @ F @ A3 )
          = zero_zero_rat )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_rat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7593_prod__zero__iff,axiom,
    ! [A3: set_int,F: int > rat] :
      ( ( finite_finite_int @ A3 )
     => ( ( ( groups1072433553688619179nt_rat @ F @ A3 )
          = zero_zero_rat )
        = ( ? [X: int] :
              ( ( member_int @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_rat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7594_prod__zero__iff,axiom,
    ! [A3: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ( groups225925009352817453ex_rat @ F @ A3 )
          = zero_zero_rat )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_rat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7595_prod__zero__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( ( groups2245840878043517529at_rat @ F @ A3 )
          = zero_zero_rat )
        = ( ? [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_rat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7596_prod__zero__iff,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ( ( groups1707563613775114915nt_nat @ F @ A3 )
          = zero_zero_nat )
        = ( ? [X: int] :
              ( ( member_int @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7597_prod__zero__iff,axiom,
    ! [A3: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ( groups861055069439313189ex_nat @ F @ A3 )
          = zero_zero_nat )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( ( F @ X )
                = zero_zero_nat ) ) ) ) ) ).

% prod_zero_iff
thf(fact_7598_infinite__Icc__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) )
      = ( ord_less_rat @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_7599_infinite__Icc__iff,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) )
      = ( ord_less_real @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_7600_sum_Odelta_H,axiom,
    ! [S2: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S2 )
     => ( ( ( member_real @ A @ S2 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S2 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_7601_sum_Odelta_H,axiom,
    ! [S2: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S2 )
     => ( ( ( member_int @ A @ S2 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S2 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_7602_sum_Odelta_H,axiom,
    ! [S2: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( ( member_complex @ A @ S2 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S2 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_7603_sum_Odelta_H,axiom,
    ! [S2: set_Extended_enat,A: extended_enat,B: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ S2 )
     => ( ( ( member_Extended_enat @ A @ S2 )
         => ( ( groups4148127829035722712t_real
              @ ^ [K3: extended_enat] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_Extended_enat @ A @ S2 )
         => ( ( groups4148127829035722712t_real
              @ ^ [K3: extended_enat] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_7604_sum_Odelta_H,axiom,
    ! [S2: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S2 )
     => ( ( ( member_real @ A @ S2 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S2 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_7605_sum_Odelta_H,axiom,
    ! [S2: set_nat,A: nat,B: nat > rat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( ( member_nat @ A @ S2 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S2 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_7606_sum_Odelta_H,axiom,
    ! [S2: set_int,A: int,B: int > rat] :
      ( ( finite_finite_int @ S2 )
     => ( ( ( member_int @ A @ S2 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S2 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_7607_sum_Odelta_H,axiom,
    ! [S2: set_complex,A: complex,B: complex > rat] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( ( member_complex @ A @ S2 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S2 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_7608_sum_Odelta_H,axiom,
    ! [S2: set_Extended_enat,A: extended_enat,B: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ S2 )
     => ( ( ( member_Extended_enat @ A @ S2 )
         => ( ( groups1392844769737527556at_rat
              @ ^ [K3: extended_enat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_Extended_enat @ A @ S2 )
         => ( ( groups1392844769737527556at_rat
              @ ^ [K3: extended_enat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_7609_sum_Odelta_H,axiom,
    ! [S2: set_real,A: real,B: real > nat] :
      ( ( finite_finite_real @ S2 )
     => ( ( ( member_real @ A @ S2 )
         => ( ( groups1935376822645274424al_nat
              @ ^ [K3: real] : ( if_nat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_nat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S2 )
         => ( ( groups1935376822645274424al_nat
              @ ^ [K3: real] : ( if_nat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_nat )
              @ S2 )
            = zero_zero_nat ) ) ) ) ).

% sum.delta'
thf(fact_7610_sum_Odelta,axiom,
    ! [S2: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S2 )
     => ( ( ( member_real @ A @ S2 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S2 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_7611_sum_Odelta,axiom,
    ! [S2: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S2 )
     => ( ( ( member_int @ A @ S2 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S2 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_7612_sum_Odelta,axiom,
    ! [S2: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( ( member_complex @ A @ S2 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S2 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_7613_sum_Odelta,axiom,
    ! [S2: set_Extended_enat,A: extended_enat,B: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ S2 )
     => ( ( ( member_Extended_enat @ A @ S2 )
         => ( ( groups4148127829035722712t_real
              @ ^ [K3: extended_enat] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_Extended_enat @ A @ S2 )
         => ( ( groups4148127829035722712t_real
              @ ^ [K3: extended_enat] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S2 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_7614_sum_Odelta,axiom,
    ! [S2: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S2 )
     => ( ( ( member_real @ A @ S2 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S2 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_7615_sum_Odelta,axiom,
    ! [S2: set_nat,A: nat,B: nat > rat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( ( member_nat @ A @ S2 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S2 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_7616_sum_Odelta,axiom,
    ! [S2: set_int,A: int,B: int > rat] :
      ( ( finite_finite_int @ S2 )
     => ( ( ( member_int @ A @ S2 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S2 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_7617_sum_Odelta,axiom,
    ! [S2: set_complex,A: complex,B: complex > rat] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( ( member_complex @ A @ S2 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S2 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_7618_sum_Odelta,axiom,
    ! [S2: set_Extended_enat,A: extended_enat,B: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ S2 )
     => ( ( ( member_Extended_enat @ A @ S2 )
         => ( ( groups1392844769737527556at_rat
              @ ^ [K3: extended_enat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_Extended_enat @ A @ S2 )
         => ( ( groups1392844769737527556at_rat
              @ ^ [K3: extended_enat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S2 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_7619_sum_Odelta,axiom,
    ! [S2: set_real,A: real,B: real > nat] :
      ( ( finite_finite_real @ S2 )
     => ( ( ( member_real @ A @ S2 )
         => ( ( groups1935376822645274424al_nat
              @ ^ [K3: real] : ( if_nat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_nat )
              @ S2 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S2 )
         => ( ( groups1935376822645274424al_nat
              @ ^ [K3: real] : ( if_nat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_nat )
              @ S2 )
            = zero_zero_nat ) ) ) ) ).

% sum.delta
thf(fact_7620_sum__abs,axiom,
    ! [F: nat > real,A3: set_nat] :
      ( ord_less_eq_real @ ( abs_abs_real @ ( groups6591440286371151544t_real @ F @ A3 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( abs_abs_real @ ( F @ I4 ) )
        @ A3 ) ) ).

% sum_abs
thf(fact_7621_sum__abs,axiom,
    ! [F: int > int,A3: set_int] :
      ( ord_less_eq_int @ ( abs_abs_int @ ( groups4538972089207619220nt_int @ F @ A3 ) )
      @ ( groups4538972089207619220nt_int
        @ ^ [I4: int] : ( abs_abs_int @ ( F @ I4 ) )
        @ A3 ) ) ).

% sum_abs
thf(fact_7622_summable__If__finite__set,axiom,
    ! [A3: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A3 )
     => ( summable_real
        @ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A3 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).

% summable_If_finite_set
thf(fact_7623_summable__If__finite__set,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A3 )
     => ( summable_nat
        @ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A3 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).

% summable_If_finite_set
thf(fact_7624_summable__If__finite__set,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A3 )
     => ( summable_int
        @ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A3 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).

% summable_If_finite_set
thf(fact_7625_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > real] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_real
        @ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).

% summable_If_finite
thf(fact_7626_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_nat
        @ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).

% summable_If_finite
thf(fact_7627_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > int] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_int
        @ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).

% summable_If_finite
thf(fact_7628_prod__pos__nat__iff,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ( ord_less_nat @ zero_zero_nat @ ( groups1707563613775114915nt_nat @ F @ A3 ) )
        = ( ! [X: int] :
              ( ( member_int @ X @ A3 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).

% prod_pos_nat_iff
thf(fact_7629_prod__pos__nat__iff,axiom,
    ! [A3: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ord_less_nat @ zero_zero_nat @ ( groups861055069439313189ex_nat @ F @ A3 ) )
        = ( ! [X: complex] :
              ( ( member_complex @ X @ A3 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).

% prod_pos_nat_iff
thf(fact_7630_prod__pos__nat__iff,axiom,
    ! [A3: set_Pr1261947904930325089at_nat,F: product_prod_nat_nat > nat] :
      ( ( finite6177210948735845034at_nat @ A3 )
     => ( ( ord_less_nat @ zero_zero_nat @ ( groups4077766827762148844at_nat @ F @ A3 ) )
        = ( ! [X: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ X @ A3 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).

% prod_pos_nat_iff
thf(fact_7631_prod__pos__nat__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( ord_less_nat @ zero_zero_nat @ ( groups2880970938130013265at_nat @ F @ A3 ) )
        = ( ! [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).

% prod_pos_nat_iff
thf(fact_7632_prod__pos__nat__iff,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ord_less_nat @ zero_zero_nat @ ( groups708209901874060359at_nat @ F @ A3 ) )
        = ( ! [X: nat] :
              ( ( member_nat @ X @ A3 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ X ) ) ) ) ) ) ).

% prod_pos_nat_iff
thf(fact_7633_sum__abs__ge__zero,axiom,
    ! [F: nat > real,A3: set_nat] :
      ( ord_less_eq_real @ zero_zero_real
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( abs_abs_real @ ( F @ I4 ) )
        @ A3 ) ) ).

% sum_abs_ge_zero
thf(fact_7634_sum__abs__ge__zero,axiom,
    ! [F: int > int,A3: set_int] :
      ( ord_less_eq_int @ zero_zero_int
      @ ( groups4538972089207619220nt_int
        @ ^ [I4: int] : ( abs_abs_int @ ( F @ I4 ) )
        @ A3 ) ) ).

% sum_abs_ge_zero
thf(fact_7635_sin__arcsin,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ( sin_real @ ( arcsin @ Y3 ) )
          = Y3 ) ) ) ).

% sin_arcsin
thf(fact_7636_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > rat] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_rat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_7637_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > int] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_7638_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > nat] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_nat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_7639_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > real] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_7640_sum__zero__power,axiom,
    ! [A3: set_nat,C: nat > complex] :
      ( ( ( ( finite_finite_nat @ A3 )
          & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) )
            @ A3 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A3 )
            & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) )
            @ A3 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power
thf(fact_7641_sum__zero__power,axiom,
    ! [A3: set_nat,C: nat > rat] :
      ( ( ( ( finite_finite_nat @ A3 )
          & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) )
            @ A3 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A3 )
            & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) )
            @ A3 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power
thf(fact_7642_sum__zero__power,axiom,
    ! [A3: set_nat,C: nat > real] :
      ( ( ( ( finite_finite_nat @ A3 )
          & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) )
            @ A3 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A3 )
            & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) )
            @ A3 )
          = zero_zero_real ) ) ) ).

% sum_zero_power
thf(fact_7643_arcsin__1,axiom,
    ( ( arcsin @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arcsin_1
thf(fact_7644_sum__zero__power_H,axiom,
    ! [A3: set_nat,C: nat > complex,D3: nat > complex] :
      ( ( ( ( finite_finite_nat @ A3 )
          & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) ) @ ( D3 @ I4 ) )
            @ A3 )
          = ( divide1717551699836669952omplex @ ( C @ zero_zero_nat ) @ ( D3 @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A3 )
            & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) ) @ ( D3 @ I4 ) )
            @ A3 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power'
thf(fact_7645_sum__zero__power_H,axiom,
    ! [A3: set_nat,C: nat > rat,D3: nat > rat] :
      ( ( ( ( finite_finite_nat @ A3 )
          & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) ) @ ( D3 @ I4 ) )
            @ A3 )
          = ( divide_divide_rat @ ( C @ zero_zero_nat ) @ ( D3 @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A3 )
            & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) ) @ ( D3 @ I4 ) )
            @ A3 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power'
thf(fact_7646_sum__zero__power_H,axiom,
    ! [A3: set_nat,C: nat > real,D3: nat > real] :
      ( ( ( ( finite_finite_nat @ A3 )
          & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) ) @ ( D3 @ I4 ) )
            @ A3 )
          = ( divide_divide_real @ ( C @ zero_zero_nat ) @ ( D3 @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A3 )
            & ( member_nat @ zero_zero_nat @ A3 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) ) @ ( D3 @ I4 ) )
            @ A3 )
          = zero_zero_real ) ) ) ).

% sum_zero_power'
thf(fact_7647_arcsin__minus__1,axiom,
    ( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arcsin_minus_1
thf(fact_7648_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N2: nat] :
            ( ~ ( member_nat @ N2 @ N4 )
           => ( ( F @ N2 )
              = zero_zero_int ) )
       => ( ( suminf_int @ F )
          = ( groups3539618377306564664at_int @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7649_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N2: nat] :
            ( ~ ( member_nat @ N2 @ N4 )
           => ( ( F @ N2 )
              = zero_zero_nat ) )
       => ( ( suminf_nat @ F )
          = ( groups3542108847815614940at_nat @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7650_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N2: nat] :
            ( ~ ( member_nat @ N2 @ N4 )
           => ( ( F @ N2 )
              = zero_zero_real ) )
       => ( ( suminf_real @ F )
          = ( groups6591440286371151544t_real @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7651_sum__norm__le,axiom,
    ! [S2: set_option_nat,F: option_nat > complex,G: option_nat > real] :
      ( ! [X4: option_nat] :
          ( ( member_option_nat @ X4 @ S2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X4 ) ) @ ( G @ X4 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups3209896439523537802omplex @ F @ S2 ) ) @ ( groups4518532050878116744t_real @ G @ S2 ) ) ) ).

% sum_norm_le
thf(fact_7652_sum__norm__le,axiom,
    ! [S2: set_real,F: real > complex,G: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ S2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X4 ) ) @ ( G @ X4 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups5754745047067104278omplex @ F @ S2 ) ) @ ( groups8097168146408367636l_real @ G @ S2 ) ) ) ).

% sum_norm_le
thf(fact_7653_sum__norm__le,axiom,
    ! [S2: set_set_nat,F: set_nat > complex,G: set_nat > real] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ S2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X4 ) ) @ ( G @ X4 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups8255218700646806128omplex @ F @ S2 ) ) @ ( groups5107569545109728110t_real @ G @ S2 ) ) ) ).

% sum_norm_le
thf(fact_7654_sum__norm__le,axiom,
    ! [S2: set_int,F: int > complex,G: int > real] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ S2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X4 ) ) @ ( G @ X4 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups3049146728041665814omplex @ F @ S2 ) ) @ ( groups8778361861064173332t_real @ G @ S2 ) ) ) ).

% sum_norm_le
thf(fact_7655_sum__norm__le,axiom,
    ! [S2: set_nat,F: nat > complex,G: nat > real] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ S2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X4 ) ) @ ( G @ X4 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ S2 ) ) @ ( groups6591440286371151544t_real @ G @ S2 ) ) ) ).

% sum_norm_le
thf(fact_7656_sum__norm__le,axiom,
    ! [S2: set_complex,F: complex > complex,G: complex > real] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ S2 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X4 ) ) @ ( G @ X4 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ S2 ) ) @ ( groups5808333547571424918x_real @ G @ S2 ) ) ) ).

% sum_norm_le
thf(fact_7657_sum__norm__le,axiom,
    ! [S2: set_nat,F: nat > real,G: nat > real] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ S2 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ X4 ) ) @ ( G @ X4 ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ S2 ) ) @ ( groups6591440286371151544t_real @ G @ S2 ) ) ) ).

% sum_norm_le
thf(fact_7658_norm__sum,axiom,
    ! [F: nat > complex,A3: set_nat] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ A3 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( real_V1022390504157884413omplex @ ( F @ I4 ) )
        @ A3 ) ) ).

% norm_sum
thf(fact_7659_norm__sum,axiom,
    ! [F: complex > complex,A3: set_complex] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ A3 ) )
      @ ( groups5808333547571424918x_real
        @ ^ [I4: complex] : ( real_V1022390504157884413omplex @ ( F @ I4 ) )
        @ A3 ) ) ).

% norm_sum
thf(fact_7660_norm__sum,axiom,
    ! [F: nat > real,A3: set_nat] :
      ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ A3 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( real_V7735802525324610683m_real @ ( F @ I4 ) )
        @ A3 ) ) ).

% norm_sum
thf(fact_7661_complex__eq__cancel__iff2,axiom,
    ! [X3: real,Y3: real,Xa: real] :
      ( ( ( complex2 @ X3 @ Y3 )
        = ( real_V4546457046886955230omplex @ Xa ) )
      = ( ( X3 = Xa )
        & ( Y3 = zero_zero_real ) ) ) ).

% complex_eq_cancel_iff2
thf(fact_7662_complex__of__real__code,axiom,
    ( real_V4546457046886955230omplex
    = ( ^ [X: real] : ( complex2 @ X @ zero_zero_real ) ) ) ).

% complex_of_real_code
thf(fact_7663_complex__of__real__def,axiom,
    ( real_V4546457046886955230omplex
    = ( ^ [R5: real] : ( complex2 @ R5 @ zero_zero_real ) ) ) ).

% complex_of_real_def
thf(fact_7664_zero__complex_Ocode,axiom,
    ( zero_zero_complex
    = ( complex2 @ zero_zero_real @ zero_zero_real ) ) ).

% zero_complex.code
thf(fact_7665_Complex__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_real )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_0
thf(fact_7666_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_real,S2: set_real,I: real > real,J: real > real,T5: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T5 @ T4 ) ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: real] :
                    ( ( member_real @ B4 @ ( minus_minus_set_real @ T5 @ T4 ) )
                   => ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: real] :
                        ( ( member_real @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S2 )
                        = ( groups8097168146408367636l_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7667_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_int,S2: set_real,I: int > real,J: real > int,T5: set_int,G: real > real,H2: int > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T5 @ T4 ) ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: int] :
                    ( ( member_int @ B4 @ ( minus_minus_set_int @ T5 @ T4 ) )
                   => ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: int] :
                        ( ( member_int @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S2 )
                        = ( groups8778361861064173332t_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7668_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_complex,S2: set_real,I: complex > real,J: real > complex,T5: set_complex,G: real > real,H2: complex > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite3207457112153483333omplex @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
               => ( member_complex @ ( J @ A5 ) @ ( minus_811609699411566653omplex @ T5 @ T4 ) ) )
           => ( ! [B4: complex] :
                  ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: complex] :
                    ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T5 @ T4 ) )
                   => ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: complex] :
                        ( ( member_complex @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S2 )
                        = ( groups5808333547571424918x_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7669_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_Extended_enat,S2: set_real,I: extended_enat > real,J: real > extended_enat,T5: set_Extended_enat,G: real > real,H2: extended_enat > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite4001608067531595151d_enat @ T4 )
       => ( ! [A5: real] :
              ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ S2 @ S4 ) )
               => ( member_Extended_enat @ ( J @ A5 ) @ ( minus_925952699566721837d_enat @ T5 @ T4 ) ) )
           => ( ! [B4: extended_enat] :
                  ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: extended_enat] :
                    ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ T5 @ T4 ) )
                   => ( member_real @ ( I @ B4 ) @ ( minus_minus_set_real @ S2 @ S4 ) ) )
               => ( ! [A5: real] :
                      ( ( member_real @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: extended_enat] :
                        ( ( member_Extended_enat @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: real] :
                          ( ( member_real @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S2 )
                        = ( groups4148127829035722712t_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7670_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_real,S2: set_int,I: real > int,J: int > real,T5: set_real,G: int > real,H2: real > real] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T5 @ T4 ) ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: real] :
                    ( ( member_real @ B4 @ ( minus_minus_set_real @ T5 @ T4 ) )
                   => ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: real] :
                        ( ( member_real @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8778361861064173332t_real @ G @ S2 )
                        = ( groups8097168146408367636l_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7671_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_int,S2: set_int,I: int > int,J: int > int,T5: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T5 @ T4 ) ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: int] :
                    ( ( member_int @ B4 @ ( minus_minus_set_int @ T5 @ T4 ) )
                   => ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: int] :
                        ( ( member_int @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8778361861064173332t_real @ G @ S2 )
                        = ( groups8778361861064173332t_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7672_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_complex,S2: set_int,I: complex > int,J: int > complex,T5: set_complex,G: int > real,H2: complex > real] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite3207457112153483333omplex @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
               => ( member_complex @ ( J @ A5 ) @ ( minus_811609699411566653omplex @ T5 @ T4 ) ) )
           => ( ! [B4: complex] :
                  ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: complex] :
                    ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ T5 @ T4 ) )
                   => ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: complex] :
                        ( ( member_complex @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8778361861064173332t_real @ G @ S2 )
                        = ( groups5808333547571424918x_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7673_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_Extended_enat,S2: set_int,I: extended_enat > int,J: int > extended_enat,T5: set_Extended_enat,G: int > real,H2: extended_enat > real] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite4001608067531595151d_enat @ T4 )
       => ( ! [A5: int] :
              ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ S2 @ S4 ) )
               => ( member_Extended_enat @ ( J @ A5 ) @ ( minus_925952699566721837d_enat @ T5 @ T4 ) ) )
           => ( ! [B4: extended_enat] :
                  ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: extended_enat] :
                    ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ T5 @ T4 ) )
                   => ( member_int @ ( I @ B4 ) @ ( minus_minus_set_int @ S2 @ S4 ) ) )
               => ( ! [A5: int] :
                      ( ( member_int @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: extended_enat] :
                        ( ( member_Extended_enat @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: int] :
                          ( ( member_int @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups8778361861064173332t_real @ G @ S2 )
                        = ( groups4148127829035722712t_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7674_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_complex,T4: set_real,S2: set_complex,I: real > complex,J: complex > real,T5: set_real,G: complex > real,H2: real > real] :
      ( ( finite3207457112153483333omplex @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A5: complex] :
              ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ S2 @ S4 ) )
               => ( member_real @ ( J @ A5 ) @ ( minus_minus_set_real @ T5 @ T4 ) ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: real] :
                    ( ( member_real @ B4 @ ( minus_minus_set_real @ T5 @ T4 ) )
                   => ( member_complex @ ( I @ B4 ) @ ( minus_811609699411566653omplex @ S2 @ S4 ) ) )
               => ( ! [A5: complex] :
                      ( ( member_complex @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: real] :
                        ( ( member_real @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: complex] :
                          ( ( member_complex @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups5808333547571424918x_real @ G @ S2 )
                        = ( groups8097168146408367636l_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7675_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_complex,T4: set_int,S2: set_complex,I: int > complex,J: complex > int,T5: set_int,G: complex > real,H2: int > real] :
      ( ( finite3207457112153483333omplex @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A5: complex] :
              ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ S2 @ S4 ) )
             => ( ( I @ ( J @ A5 ) )
                = A5 ) )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ S2 @ S4 ) )
               => ( member_int @ ( J @ A5 ) @ ( minus_minus_set_int @ T5 @ T4 ) ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ T5 @ T4 ) )
                 => ( ( J @ ( I @ B4 ) )
                    = B4 ) )
             => ( ! [B4: int] :
                    ( ( member_int @ B4 @ ( minus_minus_set_int @ T5 @ T4 ) )
                   => ( member_complex @ ( I @ B4 ) @ ( minus_811609699411566653omplex @ S2 @ S4 ) ) )
               => ( ! [A5: complex] :
                      ( ( member_complex @ A5 @ S4 )
                     => ( ( G @ A5 )
                        = zero_zero_real ) )
                 => ( ! [B4: int] :
                        ( ( member_int @ B4 @ T4 )
                       => ( ( H2 @ B4 )
                          = zero_zero_real ) )
                   => ( ! [A5: complex] :
                          ( ( member_complex @ A5 @ S2 )
                         => ( ( H2 @ ( J @ A5 ) )
                            = ( G @ A5 ) ) )
                     => ( ( groups5808333547571424918x_real @ G @ S2 )
                        = ( groups8778361861064173332t_real @ H2 @ T5 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_7676_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_real,G: real > real] :
      ( ( finite_finite_real @ A3 )
     => ( ( groups8097168146408367636l_real @ G
          @ ( minus_minus_set_real @ A3
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups8097168146408367636l_real @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7677_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_int,G: int > real] :
      ( ( finite_finite_int @ A3 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( minus_minus_set_int @ A3
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups8778361861064173332t_real @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7678_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( minus_811609699411566653omplex @ A3
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups5808333547571424918x_real @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7679_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_Extended_enat,G: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( groups4148127829035722712t_real @ G
          @ ( minus_925952699566721837d_enat @ A3
            @ ( collec4429806609662206161d_enat
              @ ^ [X: extended_enat] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups4148127829035722712t_real @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7680_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_real,G: real > rat] :
      ( ( finite_finite_real @ A3 )
     => ( ( groups1300246762558778688al_rat @ G
          @ ( minus_minus_set_real @ A3
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups1300246762558778688al_rat @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7681_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_int,G: int > rat] :
      ( ( finite_finite_int @ A3 )
     => ( ( groups3906332499630173760nt_rat @ G
          @ ( minus_minus_set_int @ A3
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups3906332499630173760nt_rat @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7682_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( groups5058264527183730370ex_rat @ G
          @ ( minus_811609699411566653omplex @ A3
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups5058264527183730370ex_rat @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7683_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_Extended_enat,G: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( groups1392844769737527556at_rat @ G
          @ ( minus_925952699566721837d_enat @ A3
            @ ( collec4429806609662206161d_enat
              @ ^ [X: extended_enat] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups1392844769737527556at_rat @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7684_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_real,G: real > nat] :
      ( ( finite_finite_real @ A3 )
     => ( ( groups1935376822645274424al_nat @ G
          @ ( minus_minus_set_real @ A3
            @ ( collect_real
              @ ^ [X: real] :
                  ( ( G @ X )
                  = zero_zero_nat ) ) ) )
        = ( groups1935376822645274424al_nat @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7685_sum_Osetdiff__irrelevant,axiom,
    ! [A3: set_int,G: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ( groups4541462559716669496nt_nat @ G
          @ ( minus_minus_set_int @ A3
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_nat ) ) ) )
        = ( groups4541462559716669496nt_nat @ G @ A3 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_7686_sum__strict__mono,axiom,
    ! [A3: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( A3 != bot_bot_set_complex )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ A3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A3 ) @ ( groups5808333547571424918x_real @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7687_sum__strict__mono,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > real,G: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( A3 != bot_bo7653980558646680370d_enat )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ A3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups4148127829035722712t_real @ F @ A3 ) @ ( groups4148127829035722712t_real @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7688_sum__strict__mono,axiom,
    ! [A3: set_real,F: real > real,G: real > real] :
      ( ( finite_finite_real @ A3 )
     => ( ( A3 != bot_bot_set_real )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ A3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A3 ) @ ( groups8097168146408367636l_real @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7689_sum__strict__mono,axiom,
    ! [A3: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A3 )
     => ( ( A3 != bot_bot_set_int )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A3 ) @ ( groups8778361861064173332t_real @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7690_sum__strict__mono,axiom,
    ! [A3: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( A3 != bot_bot_set_complex )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ A3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A3 ) @ ( groups5058264527183730370ex_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7691_sum__strict__mono,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > rat,G: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( A3 != bot_bo7653980558646680370d_enat )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ A3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups1392844769737527556at_rat @ F @ A3 ) @ ( groups1392844769737527556at_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7692_sum__strict__mono,axiom,
    ! [A3: set_real,F: real > rat,G: real > rat] :
      ( ( finite_finite_real @ A3 )
     => ( ( A3 != bot_bot_set_real )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ A3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A3 ) @ ( groups1300246762558778688al_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7693_sum__strict__mono,axiom,
    ! [A3: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( A3 != bot_bot_set_nat )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ A3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A3 ) @ ( groups2906978787729119204at_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7694_sum__strict__mono,axiom,
    ! [A3: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A3 )
     => ( ( A3 != bot_bot_set_int )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A3 ) @ ( groups3906332499630173760nt_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7695_sum__strict__mono,axiom,
    ! [A3: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( A3 != bot_bot_set_complex )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ A3 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A3 ) @ ( groups5693394587270226106ex_nat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_7696_sum_Ointer__filter,axiom,
    ! [A3: set_real,G: real > real,P: real > $o] :
      ( ( finite_finite_real @ A3 )
     => ( ( groups8097168146408367636l_real @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups8097168146408367636l_real
          @ ^ [X: real] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7697_sum_Ointer__filter,axiom,
    ! [A3: set_int,G: int > real,P: int > $o] :
      ( ( finite_finite_int @ A3 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups8778361861064173332t_real
          @ ^ [X: int] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7698_sum_Ointer__filter,axiom,
    ! [A3: set_complex,G: complex > real,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( collect_complex
            @ ^ [X: complex] :
                ( ( member_complex @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups5808333547571424918x_real
          @ ^ [X: complex] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7699_sum_Ointer__filter,axiom,
    ! [A3: set_Extended_enat,G: extended_enat > real,P: extended_enat > $o] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( groups4148127829035722712t_real @ G
          @ ( collec4429806609662206161d_enat
            @ ^ [X: extended_enat] :
                ( ( member_Extended_enat @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups4148127829035722712t_real
          @ ^ [X: extended_enat] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7700_sum_Ointer__filter,axiom,
    ! [A3: set_real,G: real > rat,P: real > $o] :
      ( ( finite_finite_real @ A3 )
     => ( ( groups1300246762558778688al_rat @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups1300246762558778688al_rat
          @ ^ [X: real] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7701_sum_Ointer__filter,axiom,
    ! [A3: set_nat,G: nat > rat,P: nat > $o] :
      ( ( finite_finite_nat @ A3 )
     => ( ( groups2906978787729119204at_rat @ G
          @ ( collect_nat
            @ ^ [X: nat] :
                ( ( member_nat @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups2906978787729119204at_rat
          @ ^ [X: nat] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7702_sum_Ointer__filter,axiom,
    ! [A3: set_int,G: int > rat,P: int > $o] :
      ( ( finite_finite_int @ A3 )
     => ( ( groups3906332499630173760nt_rat @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups3906332499630173760nt_rat
          @ ^ [X: int] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7703_sum_Ointer__filter,axiom,
    ! [A3: set_complex,G: complex > rat,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( groups5058264527183730370ex_rat @ G
          @ ( collect_complex
            @ ^ [X: complex] :
                ( ( member_complex @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups5058264527183730370ex_rat
          @ ^ [X: complex] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7704_sum_Ointer__filter,axiom,
    ! [A3: set_Extended_enat,G: extended_enat > rat,P: extended_enat > $o] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( groups1392844769737527556at_rat @ G
          @ ( collec4429806609662206161d_enat
            @ ^ [X: extended_enat] :
                ( ( member_Extended_enat @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups1392844769737527556at_rat
          @ ^ [X: extended_enat] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7705_sum_Ointer__filter,axiom,
    ! [A3: set_real,G: real > nat,P: real > $o] :
      ( ( finite_finite_real @ A3 )
     => ( ( groups1935376822645274424al_nat @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A3 )
                & ( P @ X ) ) ) )
        = ( groups1935376822645274424al_nat
          @ ^ [X: real] : ( if_nat @ ( P @ X ) @ ( G @ X ) @ zero_zero_nat )
          @ A3 ) ) ) ).

% sum.inter_filter
thf(fact_7706_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > real,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S )
            = zero_zero_real )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7707_sum__nonneg__0,axiom,
    ! [S: set_int,F: int > real,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S )
            = zero_zero_real )
         => ( ( member_int @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7708_sum__nonneg__0,axiom,
    ! [S: set_complex,F: complex > real,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S )
            = zero_zero_real )
         => ( ( member_complex @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7709_sum__nonneg__0,axiom,
    ! [S: set_Extended_enat,F: extended_enat > real,I: extended_enat] :
      ( ( finite4001608067531595151d_enat @ S )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups4148127829035722712t_real @ F @ S )
            = zero_zero_real )
         => ( ( member_Extended_enat @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7710_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > rat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7711_sum__nonneg__0,axiom,
    ! [S: set_nat,F: nat > rat,I: nat] :
      ( ( finite_finite_nat @ S )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_nat @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7712_sum__nonneg__0,axiom,
    ! [S: set_int,F: int > rat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_int @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7713_sum__nonneg__0,axiom,
    ! [S: set_complex,F: complex > rat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_complex @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7714_sum__nonneg__0,axiom,
    ! [S: set_Extended_enat,F: extended_enat > rat,I: extended_enat] :
      ( ( finite4001608067531595151d_enat @ S )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1392844769737527556at_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_Extended_enat @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7715_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > nat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S )
            = zero_zero_nat )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_7716_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > real,B5: real,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S )
            = B5 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7717_sum__nonneg__leq__bound,axiom,
    ! [S: set_int,F: int > real,B5: real,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S )
            = B5 )
         => ( ( member_int @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7718_sum__nonneg__leq__bound,axiom,
    ! [S: set_complex,F: complex > real,B5: real,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S )
            = B5 )
         => ( ( member_complex @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7719_sum__nonneg__leq__bound,axiom,
    ! [S: set_Extended_enat,F: extended_enat > real,B5: real,I: extended_enat] :
      ( ( finite4001608067531595151d_enat @ S )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups4148127829035722712t_real @ F @ S )
            = B5 )
         => ( ( member_Extended_enat @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7720_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > rat,B5: rat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S )
            = B5 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7721_sum__nonneg__leq__bound,axiom,
    ! [S: set_nat,F: nat > rat,B5: rat,I: nat] :
      ( ( finite_finite_nat @ S )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S )
            = B5 )
         => ( ( member_nat @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7722_sum__nonneg__leq__bound,axiom,
    ! [S: set_int,F: int > rat,B5: rat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S )
            = B5 )
         => ( ( member_int @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7723_sum__nonneg__leq__bound,axiom,
    ! [S: set_complex,F: complex > rat,B5: rat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S )
            = B5 )
         => ( ( member_complex @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7724_sum__nonneg__leq__bound,axiom,
    ! [S: set_Extended_enat,F: extended_enat > rat,B5: rat,I: extended_enat] :
      ( ( finite4001608067531595151d_enat @ S )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1392844769737527556at_rat @ F @ S )
            = B5 )
         => ( ( member_Extended_enat @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7725_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > nat,B5: nat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S )
            = B5 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_nat @ ( F @ I ) @ B5 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_7726_sum__le__included,axiom,
    ! [S: set_int,T: set_int,G: int > real,I: int > int,F: int > real] :
      ( ( finite_finite_int @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa2: int] :
                    ( ( member_int @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7727_sum__le__included,axiom,
    ! [S: set_int,T: set_complex,G: complex > real,I: complex > int,F: int > real] :
      ( ( finite_finite_int @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa2: complex] :
                    ( ( member_complex @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7728_sum__le__included,axiom,
    ! [S: set_int,T: set_Extended_enat,G: extended_enat > real,I: extended_enat > int,F: int > real] :
      ( ( finite_finite_int @ S )
     => ( ( finite4001608067531595151d_enat @ T )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa2: extended_enat] :
                    ( ( member_Extended_enat @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups4148127829035722712t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7729_sum__le__included,axiom,
    ! [S: set_complex,T: set_int,G: int > real,I: int > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S )
               => ? [Xa2: int] :
                    ( ( member_int @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7730_sum__le__included,axiom,
    ! [S: set_complex,T: set_complex,G: complex > real,I: complex > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S )
               => ? [Xa2: complex] :
                    ( ( member_complex @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7731_sum__le__included,axiom,
    ! [S: set_complex,T: set_Extended_enat,G: extended_enat > real,I: extended_enat > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ( finite4001608067531595151d_enat @ T )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S )
               => ? [Xa2: extended_enat] :
                    ( ( member_Extended_enat @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups4148127829035722712t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7732_sum__le__included,axiom,
    ! [S: set_Extended_enat,T: set_int,G: int > real,I: int > extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S )
               => ? [Xa2: int] :
                    ( ( member_int @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups4148127829035722712t_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7733_sum__le__included,axiom,
    ! [S: set_Extended_enat,T: set_complex,G: complex > real,I: complex > extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S )
               => ? [Xa2: complex] :
                    ( ( member_complex @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups4148127829035722712t_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7734_sum__le__included,axiom,
    ! [S: set_Extended_enat,T: set_Extended_enat,G: extended_enat > real,I: extended_enat > extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ S )
     => ( ( finite4001608067531595151d_enat @ T )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S )
               => ? [Xa2: extended_enat] :
                    ( ( member_Extended_enat @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_real @ ( groups4148127829035722712t_real @ F @ S ) @ ( groups4148127829035722712t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7735_sum__le__included,axiom,
    ! [S: set_nat,T: set_nat,G: nat > rat,I: nat > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S )
     => ( ( finite_finite_nat @ T )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S )
               => ? [Xa2: nat] :
                    ( ( member_nat @ Xa2 @ T )
                    & ( ( I @ Xa2 )
                      = X4 )
                    & ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa2 ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_7736_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_real,F: real > real] :
      ( ( finite_finite_real @ A3 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A3 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ A3 )
            = zero_zero_real )
          = ( ! [X: real] :
                ( ( member_real @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7737_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_int,F: int > real] :
      ( ( finite_finite_int @ A3 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A3 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ A3 )
            = zero_zero_real )
          = ( ! [X: int] :
                ( ( member_int @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7738_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A3 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ A3 )
            = zero_zero_real )
          = ( ! [X: complex] :
                ( ( member_complex @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7739_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( ( groups4148127829035722712t_real @ F @ A3 )
            = zero_zero_real )
          = ( ! [X: extended_enat] :
                ( ( member_Extended_enat @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7740_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_real,F: real > rat] :
      ( ( finite_finite_real @ A3 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A3 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ A3 )
            = zero_zero_rat )
          = ( ! [X: real] :
                ( ( member_real @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7741_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A3 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ A3 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ A3 )
            = zero_zero_rat )
          = ( ! [X: nat] :
                ( ( member_nat @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7742_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_int,F: int > rat] :
      ( ( finite_finite_int @ A3 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A3 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ A3 )
            = zero_zero_rat )
          = ( ! [X: int] :
                ( ( member_int @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7743_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A3 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ A3 )
            = zero_zero_rat )
          = ( ! [X: complex] :
                ( ( member_complex @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7744_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups1392844769737527556at_rat @ F @ A3 )
            = zero_zero_rat )
          = ( ! [X: extended_enat] :
                ( ( member_Extended_enat @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7745_sum__nonneg__eq__0__iff,axiom,
    ! [A3: set_real,F: real > nat] :
      ( ( finite_finite_real @ A3 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A3 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ A3 )
            = zero_zero_nat )
          = ( ! [X: real] :
                ( ( member_real @ X @ A3 )
               => ( ( F @ X )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_7746_sum__mono__inv,axiom,
    ! [F: real > rat,I5: set_real,G: real > rat,I: real] :
      ( ( ( groups1300246762558778688al_rat @ F @ I5 )
        = ( groups1300246762558778688al_rat @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7747_sum__mono__inv,axiom,
    ! [F: nat > rat,I5: set_nat,G: nat > rat,I: nat] :
      ( ( ( groups2906978787729119204at_rat @ F @ I5 )
        = ( groups2906978787729119204at_rat @ G @ I5 ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_nat @ I @ I5 )
         => ( ( finite_finite_nat @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7748_sum__mono__inv,axiom,
    ! [F: int > rat,I5: set_int,G: int > rat,I: int] :
      ( ( ( groups3906332499630173760nt_rat @ F @ I5 )
        = ( groups3906332499630173760nt_rat @ G @ I5 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I @ I5 )
         => ( ( finite_finite_int @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7749_sum__mono__inv,axiom,
    ! [F: complex > rat,I5: set_complex,G: complex > rat,I: complex] :
      ( ( ( groups5058264527183730370ex_rat @ F @ I5 )
        = ( groups5058264527183730370ex_rat @ G @ I5 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I @ I5 )
         => ( ( finite3207457112153483333omplex @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7750_sum__mono__inv,axiom,
    ! [F: extended_enat > rat,I5: set_Extended_enat,G: extended_enat > rat,I: extended_enat] :
      ( ( ( groups1392844769737527556at_rat @ F @ I5 )
        = ( groups1392844769737527556at_rat @ G @ I5 ) )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_Extended_enat @ I @ I5 )
         => ( ( finite4001608067531595151d_enat @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7751_sum__mono__inv,axiom,
    ! [F: real > nat,I5: set_real,G: real > nat,I: real] :
      ( ( ( groups1935376822645274424al_nat @ F @ I5 )
        = ( groups1935376822645274424al_nat @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7752_sum__mono__inv,axiom,
    ! [F: int > nat,I5: set_int,G: int > nat,I: int] :
      ( ( ( groups4541462559716669496nt_nat @ F @ I5 )
        = ( groups4541462559716669496nt_nat @ G @ I5 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I @ I5 )
         => ( ( finite_finite_int @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7753_sum__mono__inv,axiom,
    ! [F: complex > nat,I5: set_complex,G: complex > nat,I: complex] :
      ( ( ( groups5693394587270226106ex_nat @ F @ I5 )
        = ( groups5693394587270226106ex_nat @ G @ I5 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I @ I5 )
         => ( ( finite3207457112153483333omplex @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7754_sum__mono__inv,axiom,
    ! [F: extended_enat > nat,I5: set_Extended_enat,G: extended_enat > nat,I: extended_enat] :
      ( ( ( groups2027974829824023292at_nat @ F @ I5 )
        = ( groups2027974829824023292at_nat @ G @ I5 ) )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_Extended_enat @ I @ I5 )
         => ( ( finite4001608067531595151d_enat @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7755_sum__mono__inv,axiom,
    ! [F: real > int,I5: set_real,G: real > int,I: real] :
      ( ( ( groups1932886352136224148al_int @ F @ I5 )
        = ( groups1932886352136224148al_int @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_7756_sum_Orelated,axiom,
    ! [R3: real > real > $o,S2: set_int,H2: int > real,G: int > real] :
      ( ( R3 @ zero_zero_real @ zero_zero_real )
     => ( ! [X1: real,Y1: real,X22: real,Y22: real] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X22 @ Y22 ) ) )
       => ( ( finite_finite_int @ S2 )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups8778361861064173332t_real @ H2 @ S2 ) @ ( groups8778361861064173332t_real @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7757_sum_Orelated,axiom,
    ! [R3: real > real > $o,S2: set_complex,H2: complex > real,G: complex > real] :
      ( ( R3 @ zero_zero_real @ zero_zero_real )
     => ( ! [X1: real,Y1: real,X22: real,Y22: real] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X22 @ Y22 ) ) )
       => ( ( finite3207457112153483333omplex @ S2 )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups5808333547571424918x_real @ H2 @ S2 ) @ ( groups5808333547571424918x_real @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7758_sum_Orelated,axiom,
    ! [R3: real > real > $o,S2: set_Extended_enat,H2: extended_enat > real,G: extended_enat > real] :
      ( ( R3 @ zero_zero_real @ zero_zero_real )
     => ( ! [X1: real,Y1: real,X22: real,Y22: real] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_real @ X1 @ Y1 ) @ ( plus_plus_real @ X22 @ Y22 ) ) )
       => ( ( finite4001608067531595151d_enat @ S2 )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups4148127829035722712t_real @ H2 @ S2 ) @ ( groups4148127829035722712t_real @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7759_sum_Orelated,axiom,
    ! [R3: rat > rat > $o,S2: set_nat,H2: nat > rat,G: nat > rat] :
      ( ( R3 @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X1: rat,Y1: rat,X22: rat,Y22: rat] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y22 ) ) )
       => ( ( finite_finite_nat @ S2 )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups2906978787729119204at_rat @ H2 @ S2 ) @ ( groups2906978787729119204at_rat @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7760_sum_Orelated,axiom,
    ! [R3: rat > rat > $o,S2: set_int,H2: int > rat,G: int > rat] :
      ( ( R3 @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X1: rat,Y1: rat,X22: rat,Y22: rat] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y22 ) ) )
       => ( ( finite_finite_int @ S2 )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups3906332499630173760nt_rat @ H2 @ S2 ) @ ( groups3906332499630173760nt_rat @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7761_sum_Orelated,axiom,
    ! [R3: rat > rat > $o,S2: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( R3 @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X1: rat,Y1: rat,X22: rat,Y22: rat] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y22 ) ) )
       => ( ( finite3207457112153483333omplex @ S2 )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups5058264527183730370ex_rat @ H2 @ S2 ) @ ( groups5058264527183730370ex_rat @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7762_sum_Orelated,axiom,
    ! [R3: rat > rat > $o,S2: set_Extended_enat,H2: extended_enat > rat,G: extended_enat > rat] :
      ( ( R3 @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X1: rat,Y1: rat,X22: rat,Y22: rat] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_rat @ X1 @ Y1 ) @ ( plus_plus_rat @ X22 @ Y22 ) ) )
       => ( ( finite4001608067531595151d_enat @ S2 )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups1392844769737527556at_rat @ H2 @ S2 ) @ ( groups1392844769737527556at_rat @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7763_sum_Orelated,axiom,
    ! [R3: nat > nat > $o,S2: set_int,H2: int > nat,G: int > nat] :
      ( ( R3 @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X1: nat,Y1: nat,X22: nat,Y22: nat] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_nat @ X1 @ Y1 ) @ ( plus_plus_nat @ X22 @ Y22 ) ) )
       => ( ( finite_finite_int @ S2 )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups4541462559716669496nt_nat @ H2 @ S2 ) @ ( groups4541462559716669496nt_nat @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7764_sum_Orelated,axiom,
    ! [R3: nat > nat > $o,S2: set_complex,H2: complex > nat,G: complex > nat] :
      ( ( R3 @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X1: nat,Y1: nat,X22: nat,Y22: nat] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_nat @ X1 @ Y1 ) @ ( plus_plus_nat @ X22 @ Y22 ) ) )
       => ( ( finite3207457112153483333omplex @ S2 )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups5693394587270226106ex_nat @ H2 @ S2 ) @ ( groups5693394587270226106ex_nat @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7765_sum_Orelated,axiom,
    ! [R3: nat > nat > $o,S2: set_Extended_enat,H2: extended_enat > nat,G: extended_enat > nat] :
      ( ( R3 @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X1: nat,Y1: nat,X22: nat,Y22: nat] :
            ( ( ( R3 @ X1 @ X22 )
              & ( R3 @ Y1 @ Y22 ) )
           => ( R3 @ ( plus_plus_nat @ X1 @ Y1 ) @ ( plus_plus_nat @ X22 @ Y22 ) ) )
       => ( ( finite4001608067531595151d_enat @ S2 )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S2 )
               => ( R3 @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R3 @ ( groups2027974829824023292at_nat @ H2 @ S2 ) @ ( groups2027974829824023292at_nat @ G @ S2 ) ) ) ) ) ) ).

% sum.related
thf(fact_7766_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > real,A3: set_real] :
      ( ( ( groups8097168146408367636l_real @ G @ A3 )
       != zero_zero_real )
     => ~ ! [A5: real] :
            ( ( member_real @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_real ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7767_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: int > real,A3: set_int] :
      ( ( ( groups8778361861064173332t_real @ G @ A3 )
       != zero_zero_real )
     => ~ ! [A5: int] :
            ( ( member_int @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_real ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7768_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > rat,A3: set_real] :
      ( ( ( groups1300246762558778688al_rat @ G @ A3 )
       != zero_zero_rat )
     => ~ ! [A5: real] :
            ( ( member_real @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_rat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7769_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: nat > rat,A3: set_nat] :
      ( ( ( groups2906978787729119204at_rat @ G @ A3 )
       != zero_zero_rat )
     => ~ ! [A5: nat] :
            ( ( member_nat @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_rat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7770_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: int > rat,A3: set_int] :
      ( ( ( groups3906332499630173760nt_rat @ G @ A3 )
       != zero_zero_rat )
     => ~ ! [A5: int] :
            ( ( member_int @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_rat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7771_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > nat,A3: set_real] :
      ( ( ( groups1935376822645274424al_nat @ G @ A3 )
       != zero_zero_nat )
     => ~ ! [A5: real] :
            ( ( member_real @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_nat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7772_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: int > nat,A3: set_int] :
      ( ( ( groups4541462559716669496nt_nat @ G @ A3 )
       != zero_zero_nat )
     => ~ ! [A5: int] :
            ( ( member_int @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_nat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7773_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > int,A3: set_real] :
      ( ( ( groups1932886352136224148al_int @ G @ A3 )
       != zero_zero_int )
     => ~ ! [A5: real] :
            ( ( member_real @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_int ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7774_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: nat > int,A3: set_nat] :
      ( ( ( groups3539618377306564664at_int @ G @ A3 )
       != zero_zero_int )
     => ~ ! [A5: nat] :
            ( ( member_nat @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_int ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7775_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: nat > nat,A3: set_nat] :
      ( ( ( groups3542108847815614940at_nat @ G @ A3 )
       != zero_zero_nat )
     => ~ ! [A5: nat] :
            ( ( member_nat @ A5 @ A3 )
           => ( ( G @ A5 )
              = zero_zero_nat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_7776_sum_Oneutral,axiom,
    ! [A3: set_nat,G: nat > nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ( G @ X4 )
            = zero_zero_nat ) )
     => ( ( groups3542108847815614940at_nat @ G @ A3 )
        = zero_zero_nat ) ) ).

% sum.neutral
thf(fact_7777_sum_Oneutral,axiom,
    ! [A3: set_complex,G: complex > complex] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A3 )
         => ( ( G @ X4 )
            = zero_zero_complex ) )
     => ( ( groups7754918857620584856omplex @ G @ A3 )
        = zero_zero_complex ) ) ).

% sum.neutral
thf(fact_7778_sum_Oneutral,axiom,
    ! [A3: set_nat,G: nat > real] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ( G @ X4 )
            = zero_zero_real ) )
     => ( ( groups6591440286371151544t_real @ G @ A3 )
        = zero_zero_real ) ) ).

% sum.neutral
thf(fact_7779_sum_Oneutral,axiom,
    ! [A3: set_int,G: int > int] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ( G @ X4 )
            = zero_zero_int ) )
     => ( ( groups4538972089207619220nt_int @ G @ A3 )
        = zero_zero_int ) ) ).

% sum.neutral
thf(fact_7780_sum__strict__mono__ex1,axiom,
    ! [A3: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A3 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A3 )
           => ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: int] :
              ( ( member_int @ X6 @ A3 )
              & ( ord_less_real @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A3 ) @ ( groups8778361861064173332t_real @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7781_sum__strict__mono__ex1,axiom,
    ! [A3: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A3 )
           => ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: complex] :
              ( ( member_complex @ X6 @ A3 )
              & ( ord_less_real @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A3 ) @ ( groups5808333547571424918x_real @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7782_sum__strict__mono__ex1,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > real,G: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
           => ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: extended_enat] :
              ( ( member_Extended_enat @ X6 @ A3 )
              & ( ord_less_real @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_real @ ( groups4148127829035722712t_real @ F @ A3 ) @ ( groups4148127829035722712t_real @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7783_sum__strict__mono__ex1,axiom,
    ! [A3: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A3 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ A3 )
           => ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: nat] :
              ( ( member_nat @ X6 @ A3 )
              & ( ord_less_rat @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A3 ) @ ( groups2906978787729119204at_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7784_sum__strict__mono__ex1,axiom,
    ! [A3: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A3 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A3 )
           => ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: int] :
              ( ( member_int @ X6 @ A3 )
              & ( ord_less_rat @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A3 ) @ ( groups3906332499630173760nt_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7785_sum__strict__mono__ex1,axiom,
    ! [A3: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A3 )
           => ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: complex] :
              ( ( member_complex @ X6 @ A3 )
              & ( ord_less_rat @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A3 ) @ ( groups5058264527183730370ex_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7786_sum__strict__mono__ex1,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > rat,G: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
           => ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: extended_enat] :
              ( ( member_Extended_enat @ X6 @ A3 )
              & ( ord_less_rat @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_rat @ ( groups1392844769737527556at_rat @ F @ A3 ) @ ( groups1392844769737527556at_rat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7787_sum__strict__mono__ex1,axiom,
    ! [A3: set_int,F: int > nat,G: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A3 )
           => ( ord_less_eq_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: int] :
              ( ( member_int @ X6 @ A3 )
              & ( ord_less_nat @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A3 ) @ ( groups4541462559716669496nt_nat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7788_sum__strict__mono__ex1,axiom,
    ! [A3: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A3 )
           => ( ord_less_eq_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: complex] :
              ( ( member_complex @ X6 @ A3 )
              & ( ord_less_nat @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A3 ) @ ( groups5693394587270226106ex_nat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7789_sum__strict__mono__ex1,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > nat,G: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
           => ( ord_less_eq_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X6: extended_enat] :
              ( ( member_Extended_enat @ X6 @ A3 )
              & ( ord_less_nat @ ( F @ X6 ) @ ( G @ X6 ) ) )
         => ( ord_less_nat @ ( groups2027974829824023292at_nat @ F @ A3 ) @ ( groups2027974829824023292at_nat @ G @ A3 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_7790_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N9: set_nat] :
        ? [M3: nat] :
        ! [X: nat] :
          ( ( member_nat @ X @ N9 )
         => ( ord_less_eq_nat @ X @ M3 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_7791_bounded__nat__set__is__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ N4 )
         => ( ord_less_nat @ X4 @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% bounded_nat_set_is_finite
thf(fact_7792_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N9: set_nat] :
        ? [M3: nat] :
        ! [X: nat] :
          ( ( member_nat @ X @ N9 )
         => ( ord_less_nat @ X @ M3 ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_7793_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7794_sum__pos2,axiom,
    ! [I5: set_int,I: int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7795_sum__pos2,axiom,
    ! [I5: set_complex,I: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7796_sum__pos2,axiom,
    ! [I5: set_Extended_enat,I: extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( member_Extended_enat @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: extended_enat] :
                ( ( member_Extended_enat @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups4148127829035722712t_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7797_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7798_sum__pos2,axiom,
    ! [I5: set_nat,I: nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( member_nat @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7799_sum__pos2,axiom,
    ! [I5: set_int,I: int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7800_sum__pos2,axiom,
    ! [I5: set_complex,I: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7801_sum__pos2,axiom,
    ! [I5: set_Extended_enat,I: extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( member_Extended_enat @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: extended_enat] :
                ( ( member_Extended_enat @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups1392844769737527556at_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7802_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > nat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_7803_sum__pos,axiom,
    ! [I5: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7804_sum__pos,axiom,
    ! [I5: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( I5 != bot_bo7653980558646680370d_enat )
       => ( ! [I3: extended_enat] :
              ( ( member_Extended_enat @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups4148127829035722712t_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7805_sum__pos,axiom,
    ! [I5: set_real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7806_sum__pos,axiom,
    ! [I5: set_int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7807_sum__pos,axiom,
    ! [I5: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7808_sum__pos,axiom,
    ! [I5: set_Extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( I5 != bot_bo7653980558646680370d_enat )
       => ( ! [I3: extended_enat] :
              ( ( member_Extended_enat @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups1392844769737527556at_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7809_sum__pos,axiom,
    ! [I5: set_real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7810_sum__pos,axiom,
    ! [I5: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( I5 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7811_sum__pos,axiom,
    ! [I5: set_int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7812_sum__pos,axiom,
    ! [I5: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) )
         => ( ord_less_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_7813_sum__mono,axiom,
    ! [K5: set_real,F: real > rat,G: real > rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ K5 ) @ ( groups1300246762558778688al_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7814_sum__mono,axiom,
    ! [K5: set_nat,F: nat > rat,G: nat > rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ K5 ) @ ( groups2906978787729119204at_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7815_sum__mono,axiom,
    ! [K5: set_int,F: int > rat,G: int > rat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ K5 ) @ ( groups3906332499630173760nt_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7816_sum__mono,axiom,
    ! [K5: set_real,F: real > nat,G: real > nat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K5 ) @ ( groups1935376822645274424al_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7817_sum__mono,axiom,
    ! [K5: set_int,F: int > nat,G: int > nat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ K5 ) @ ( groups4541462559716669496nt_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7818_sum__mono,axiom,
    ! [K5: set_real,F: real > int,G: real > int] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K5 ) @ ( groups1932886352136224148al_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7819_sum__mono,axiom,
    ! [K5: set_nat,F: nat > int,G: nat > int] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ K5 ) @ ( groups3539618377306564664at_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7820_sum__mono,axiom,
    ! [K5: set_nat,F: nat > nat,G: nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ K5 ) @ ( groups3542108847815614940at_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7821_sum__mono,axiom,
    ! [K5: set_nat,F: nat > real,G: nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ K5 ) @ ( groups6591440286371151544t_real @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7822_sum__mono,axiom,
    ! [K5: set_int,F: int > int,G: int > int] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups4538972089207619220nt_int @ F @ K5 ) @ ( groups4538972089207619220nt_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_7823_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_real,S2: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ T5 )
     => ( ( ord_less_eq_set_real @ S2 @ T5 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ T5 )
              = ( groups8097168146408367636l_real @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7824_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_int,S2: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups8778361861064173332t_real @ G @ T5 )
              = ( groups8778361861064173332t_real @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7825_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ T5 )
              = ( groups5808333547571424918x_real @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7826_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > real,H2: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups4148127829035722712t_real @ G @ T5 )
              = ( groups4148127829035722712t_real @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7827_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_real,S2: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ T5 )
     => ( ( ord_less_eq_set_real @ S2 @ T5 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ T5 )
              = ( groups1300246762558778688al_rat @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7828_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_int,S2: set_int,G: int > rat,H2: int > rat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups3906332499630173760nt_rat @ G @ T5 )
              = ( groups3906332499630173760nt_rat @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7829_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5058264527183730370ex_rat @ G @ T5 )
              = ( groups5058264527183730370ex_rat @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7830_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > rat,H2: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1392844769737527556at_rat @ G @ T5 )
              = ( groups1392844769737527556at_rat @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7831_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_real,S2: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ T5 )
     => ( ( ord_less_eq_set_real @ S2 @ T5 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1935376822645274424al_nat @ G @ T5 )
              = ( groups1935376822645274424al_nat @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7832_sum_Omono__neutral__cong__right,axiom,
    ! [T5: set_int,S2: set_int,G: int > nat,H2: int > nat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups4541462559716669496nt_nat @ G @ T5 )
              = ( groups4541462559716669496nt_nat @ H2 @ S2 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_7833_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_real,S2: set_real,H2: real > real,G: real > real] :
      ( ( finite_finite_real @ T5 )
     => ( ( ord_less_eq_set_real @ S2 @ T5 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ S2 )
              = ( groups8097168146408367636l_real @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7834_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_int,S2: set_int,H2: int > real,G: int > real] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups8778361861064173332t_real @ G @ S2 )
              = ( groups8778361861064173332t_real @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7835_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_complex,S2: set_complex,H2: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ S2 )
              = ( groups5808333547571424918x_real @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7836_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,H2: extended_enat > real,G: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups4148127829035722712t_real @ G @ S2 )
              = ( groups4148127829035722712t_real @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7837_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_real,S2: set_real,H2: real > rat,G: real > rat] :
      ( ( finite_finite_real @ T5 )
     => ( ( ord_less_eq_set_real @ S2 @ T5 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ S2 )
              = ( groups1300246762558778688al_rat @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7838_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_int,S2: set_int,H2: int > rat,G: int > rat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups3906332499630173760nt_rat @ G @ S2 )
              = ( groups3906332499630173760nt_rat @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7839_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_complex,S2: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5058264527183730370ex_rat @ G @ S2 )
              = ( groups5058264527183730370ex_rat @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7840_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,H2: extended_enat > rat,G: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: extended_enat] :
                ( ( member_Extended_enat @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1392844769737527556at_rat @ G @ S2 )
              = ( groups1392844769737527556at_rat @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7841_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_real,S2: set_real,H2: real > nat,G: real > nat] :
      ( ( finite_finite_real @ T5 )
     => ( ( ord_less_eq_set_real @ S2 @ T5 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1935376822645274424al_nat @ G @ S2 )
              = ( groups1935376822645274424al_nat @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7842_sum_Omono__neutral__cong__left,axiom,
    ! [T5: set_int,S2: set_int,H2: int > nat,G: int > nat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( H2 @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S2 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups4541462559716669496nt_nat @ G @ S2 )
              = ( groups4541462559716669496nt_nat @ H2 @ T5 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_7843_sum_Omono__neutral__right,axiom,
    ! [T5: set_int,S2: set_int,G: int > real] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ T5 )
            = ( groups8778361861064173332t_real @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7844_sum_Omono__neutral__right,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ T5 )
            = ( groups5808333547571424918x_real @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7845_sum_Omono__neutral__right,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups4148127829035722712t_real @ G @ T5 )
            = ( groups4148127829035722712t_real @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7846_sum_Omono__neutral__right,axiom,
    ! [T5: set_int,S2: set_int,G: int > rat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ T5 )
            = ( groups3906332499630173760nt_rat @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7847_sum_Omono__neutral__right,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ T5 )
            = ( groups5058264527183730370ex_rat @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7848_sum_Omono__neutral__right,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups1392844769737527556at_rat @ G @ T5 )
            = ( groups1392844769737527556at_rat @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7849_sum_Omono__neutral__right,axiom,
    ! [T5: set_int,S2: set_int,G: int > nat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups4541462559716669496nt_nat @ G @ T5 )
            = ( groups4541462559716669496nt_nat @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7850_sum_Omono__neutral__right,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ T5 )
            = ( groups5693394587270226106ex_nat @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7851_sum_Omono__neutral__right,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups2027974829824023292at_nat @ G @ T5 )
            = ( groups2027974829824023292at_nat @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7852_sum_Omono__neutral__right,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ T5 )
            = ( groups5690904116761175830ex_int @ G @ S2 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_7853_sum_Omono__neutral__left,axiom,
    ! [T5: set_int,S2: set_int,G: int > real] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ S2 )
            = ( groups8778361861064173332t_real @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7854_sum_Omono__neutral__left,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ S2 )
            = ( groups5808333547571424918x_real @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7855_sum_Omono__neutral__left,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups4148127829035722712t_real @ G @ S2 )
            = ( groups4148127829035722712t_real @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7856_sum_Omono__neutral__left,axiom,
    ! [T5: set_int,S2: set_int,G: int > rat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ S2 )
            = ( groups3906332499630173760nt_rat @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7857_sum_Omono__neutral__left,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ S2 )
            = ( groups5058264527183730370ex_rat @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7858_sum_Omono__neutral__left,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups1392844769737527556at_rat @ G @ S2 )
            = ( groups1392844769737527556at_rat @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7859_sum_Omono__neutral__left,axiom,
    ! [T5: set_int,S2: set_int,G: int > nat] :
      ( ( finite_finite_int @ T5 )
     => ( ( ord_less_eq_set_int @ S2 @ T5 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups4541462559716669496nt_nat @ G @ S2 )
            = ( groups4541462559716669496nt_nat @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7860_sum_Omono__neutral__left,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ S2 )
            = ( groups5693394587270226106ex_nat @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7861_sum_Omono__neutral__left,axiom,
    ! [T5: set_Extended_enat,S2: set_Extended_enat,G: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ T5 )
     => ( ( ord_le7203529160286727270d_enat @ S2 @ T5 )
       => ( ! [X4: extended_enat] :
              ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups2027974829824023292at_nat @ G @ S2 )
            = ( groups2027974829824023292at_nat @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7862_sum_Omono__neutral__left,axiom,
    ! [T5: set_complex,S2: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T5 )
     => ( ( ord_le211207098394363844omplex @ S2 @ T5 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T5 @ S2 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ S2 )
            = ( groups5690904116761175830ex_int @ G @ T5 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_7863_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A3: set_real,B5: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A3 @ C4 )
       => ( ( ord_less_eq_set_real @ B5 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ C4 )
                  = ( groups8097168146408367636l_real @ H2 @ C4 ) )
               => ( ( groups8097168146408367636l_real @ G @ A3 )
                  = ( groups8097168146408367636l_real @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7864_sum_Osame__carrierI,axiom,
    ! [C4: set_int,A3: set_int,B5: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A3 @ C4 )
       => ( ( ord_less_eq_set_int @ B5 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups8778361861064173332t_real @ G @ C4 )
                  = ( groups8778361861064173332t_real @ H2 @ C4 ) )
               => ( ( groups8778361861064173332t_real @ G @ A3 )
                  = ( groups8778361861064173332t_real @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7865_sum_Osame__carrierI,axiom,
    ! [C4: set_complex,A3: set_complex,B5: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A3 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B5 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: complex] :
                  ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ C4 )
                  = ( groups5808333547571424918x_real @ H2 @ C4 ) )
               => ( ( groups5808333547571424918x_real @ G @ A3 )
                  = ( groups5808333547571424918x_real @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7866_sum_Osame__carrierI,axiom,
    ! [C4: set_Extended_enat,A3: set_Extended_enat,B5: set_Extended_enat,G: extended_enat > real,H2: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ C4 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ C4 )
       => ( ( ord_le7203529160286727270d_enat @ B5 @ C4 )
         => ( ! [A5: extended_enat] :
                ( ( member_Extended_enat @ A5 @ ( minus_925952699566721837d_enat @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: extended_enat] :
                  ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups4148127829035722712t_real @ G @ C4 )
                  = ( groups4148127829035722712t_real @ H2 @ C4 ) )
               => ( ( groups4148127829035722712t_real @ G @ A3 )
                  = ( groups4148127829035722712t_real @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7867_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A3: set_real,B5: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A3 @ C4 )
       => ( ( ord_less_eq_set_real @ B5 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ C4 )
                  = ( groups1300246762558778688al_rat @ H2 @ C4 ) )
               => ( ( groups1300246762558778688al_rat @ G @ A3 )
                  = ( groups1300246762558778688al_rat @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7868_sum_Osame__carrierI,axiom,
    ! [C4: set_int,A3: set_int,B5: set_int,G: int > rat,H2: int > rat] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A3 @ C4 )
       => ( ( ord_less_eq_set_int @ B5 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups3906332499630173760nt_rat @ G @ C4 )
                  = ( groups3906332499630173760nt_rat @ H2 @ C4 ) )
               => ( ( groups3906332499630173760nt_rat @ G @ A3 )
                  = ( groups3906332499630173760nt_rat @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7869_sum_Osame__carrierI,axiom,
    ! [C4: set_complex,A3: set_complex,B5: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A3 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B5 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: complex] :
                  ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups5058264527183730370ex_rat @ G @ C4 )
                  = ( groups5058264527183730370ex_rat @ H2 @ C4 ) )
               => ( ( groups5058264527183730370ex_rat @ G @ A3 )
                  = ( groups5058264527183730370ex_rat @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7870_sum_Osame__carrierI,axiom,
    ! [C4: set_Extended_enat,A3: set_Extended_enat,B5: set_Extended_enat,G: extended_enat > rat,H2: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ C4 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ C4 )
       => ( ( ord_le7203529160286727270d_enat @ B5 @ C4 )
         => ( ! [A5: extended_enat] :
                ( ( member_Extended_enat @ A5 @ ( minus_925952699566721837d_enat @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: extended_enat] :
                  ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups1392844769737527556at_rat @ G @ C4 )
                  = ( groups1392844769737527556at_rat @ H2 @ C4 ) )
               => ( ( groups1392844769737527556at_rat @ G @ A3 )
                  = ( groups1392844769737527556at_rat @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7871_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A3: set_real,B5: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A3 @ C4 )
       => ( ( ord_less_eq_set_real @ B5 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_nat ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_nat ) )
             => ( ( ( groups1935376822645274424al_nat @ G @ C4 )
                  = ( groups1935376822645274424al_nat @ H2 @ C4 ) )
               => ( ( groups1935376822645274424al_nat @ G @ A3 )
                  = ( groups1935376822645274424al_nat @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7872_sum_Osame__carrierI,axiom,
    ! [C4: set_int,A3: set_int,B5: set_int,G: int > nat,H2: int > nat] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A3 @ C4 )
       => ( ( ord_less_eq_set_int @ B5 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_nat ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_nat ) )
             => ( ( ( groups4541462559716669496nt_nat @ G @ C4 )
                  = ( groups4541462559716669496nt_nat @ H2 @ C4 ) )
               => ( ( groups4541462559716669496nt_nat @ G @ A3 )
                  = ( groups4541462559716669496nt_nat @ H2 @ B5 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_7873_sum_Osame__carrier,axiom,
    ! [C4: set_real,A3: set_real,B5: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A3 @ C4 )
       => ( ( ord_less_eq_set_real @ B5 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ A3 )
                  = ( groups8097168146408367636l_real @ H2 @ B5 ) )
                = ( ( groups8097168146408367636l_real @ G @ C4 )
                  = ( groups8097168146408367636l_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7874_sum_Osame__carrier,axiom,
    ! [C4: set_int,A3: set_int,B5: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A3 @ C4 )
       => ( ( ord_less_eq_set_int @ B5 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups8778361861064173332t_real @ G @ A3 )
                  = ( groups8778361861064173332t_real @ H2 @ B5 ) )
                = ( ( groups8778361861064173332t_real @ G @ C4 )
                  = ( groups8778361861064173332t_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7875_sum_Osame__carrier,axiom,
    ! [C4: set_complex,A3: set_complex,B5: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A3 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B5 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: complex] :
                  ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ A3 )
                  = ( groups5808333547571424918x_real @ H2 @ B5 ) )
                = ( ( groups5808333547571424918x_real @ G @ C4 )
                  = ( groups5808333547571424918x_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7876_sum_Osame__carrier,axiom,
    ! [C4: set_Extended_enat,A3: set_Extended_enat,B5: set_Extended_enat,G: extended_enat > real,H2: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ C4 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ C4 )
       => ( ( ord_le7203529160286727270d_enat @ B5 @ C4 )
         => ( ! [A5: extended_enat] :
                ( ( member_Extended_enat @ A5 @ ( minus_925952699566721837d_enat @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_real ) )
           => ( ! [B4: extended_enat] :
                  ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_real ) )
             => ( ( ( groups4148127829035722712t_real @ G @ A3 )
                  = ( groups4148127829035722712t_real @ H2 @ B5 ) )
                = ( ( groups4148127829035722712t_real @ G @ C4 )
                  = ( groups4148127829035722712t_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7877_sum_Osame__carrier,axiom,
    ! [C4: set_real,A3: set_real,B5: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A3 @ C4 )
       => ( ( ord_less_eq_set_real @ B5 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ A3 )
                  = ( groups1300246762558778688al_rat @ H2 @ B5 ) )
                = ( ( groups1300246762558778688al_rat @ G @ C4 )
                  = ( groups1300246762558778688al_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7878_sum_Osame__carrier,axiom,
    ! [C4: set_int,A3: set_int,B5: set_int,G: int > rat,H2: int > rat] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A3 @ C4 )
       => ( ( ord_less_eq_set_int @ B5 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups3906332499630173760nt_rat @ G @ A3 )
                  = ( groups3906332499630173760nt_rat @ H2 @ B5 ) )
                = ( ( groups3906332499630173760nt_rat @ G @ C4 )
                  = ( groups3906332499630173760nt_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7879_sum_Osame__carrier,axiom,
    ! [C4: set_complex,A3: set_complex,B5: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A3 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B5 @ C4 )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ ( minus_811609699411566653omplex @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: complex] :
                  ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups5058264527183730370ex_rat @ G @ A3 )
                  = ( groups5058264527183730370ex_rat @ H2 @ B5 ) )
                = ( ( groups5058264527183730370ex_rat @ G @ C4 )
                  = ( groups5058264527183730370ex_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7880_sum_Osame__carrier,axiom,
    ! [C4: set_Extended_enat,A3: set_Extended_enat,B5: set_Extended_enat,G: extended_enat > rat,H2: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ C4 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ C4 )
       => ( ( ord_le7203529160286727270d_enat @ B5 @ C4 )
         => ( ! [A5: extended_enat] :
                ( ( member_Extended_enat @ A5 @ ( minus_925952699566721837d_enat @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_rat ) )
           => ( ! [B4: extended_enat] :
                  ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_rat ) )
             => ( ( ( groups1392844769737527556at_rat @ G @ A3 )
                  = ( groups1392844769737527556at_rat @ H2 @ B5 ) )
                = ( ( groups1392844769737527556at_rat @ G @ C4 )
                  = ( groups1392844769737527556at_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7881_sum_Osame__carrier,axiom,
    ! [C4: set_real,A3: set_real,B5: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A3 @ C4 )
       => ( ( ord_less_eq_set_real @ B5 @ C4 )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ ( minus_minus_set_real @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_nat ) )
           => ( ! [B4: real] :
                  ( ( member_real @ B4 @ ( minus_minus_set_real @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_nat ) )
             => ( ( ( groups1935376822645274424al_nat @ G @ A3 )
                  = ( groups1935376822645274424al_nat @ H2 @ B5 ) )
                = ( ( groups1935376822645274424al_nat @ G @ C4 )
                  = ( groups1935376822645274424al_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7882_sum_Osame__carrier,axiom,
    ! [C4: set_int,A3: set_int,B5: set_int,G: int > nat,H2: int > nat] :
      ( ( finite_finite_int @ C4 )
     => ( ( ord_less_eq_set_int @ A3 @ C4 )
       => ( ( ord_less_eq_set_int @ B5 @ C4 )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ ( minus_minus_set_int @ C4 @ A3 ) )
               => ( ( G @ A5 )
                  = zero_zero_nat ) )
           => ( ! [B4: int] :
                  ( ( member_int @ B4 @ ( minus_minus_set_int @ C4 @ B5 ) )
                 => ( ( H2 @ B4 )
                    = zero_zero_nat ) )
             => ( ( ( groups4541462559716669496nt_nat @ G @ A3 )
                  = ( groups4541462559716669496nt_nat @ H2 @ B5 ) )
                = ( ( groups4541462559716669496nt_nat @ G @ C4 )
                  = ( groups4541462559716669496nt_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_7883_finite__M__bounded__by__nat,axiom,
    ! [P: nat > $o,I: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [K3: nat] :
            ( ( P @ K3 )
            & ( ord_less_nat @ K3 @ I ) ) ) ) ).

% finite_M_bounded_by_nat
thf(fact_7884_finite__less__ub,axiom,
    ! [F: nat > nat,U: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( F @ N2 ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_7885_sum__mono2,axiom,
    ! [B5: set_real,A3: set_real,F: real > real] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ! [B4: real] :
              ( ( member_real @ B4 @ ( minus_minus_set_real @ B5 @ A3 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
         => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A3 ) @ ( groups8097168146408367636l_real @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7886_sum__mono2,axiom,
    ! [B5: set_int,A3: set_int,F: int > real] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ! [B4: int] :
              ( ( member_int @ B4 @ ( minus_minus_set_int @ B5 @ A3 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
         => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A3 ) @ ( groups8778361861064173332t_real @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7887_sum__mono2,axiom,
    ! [B5: set_complex,A3: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B5 )
     => ( ( ord_le211207098394363844omplex @ A3 @ B5 )
       => ( ! [B4: complex] :
              ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B5 @ A3 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
         => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A3 ) @ ( groups5808333547571424918x_real @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7888_sum__mono2,axiom,
    ! [B5: set_Extended_enat,A3: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ B5 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ B5 )
       => ( ! [B4: extended_enat] :
              ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ B5 @ A3 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B4 ) ) )
         => ( ord_less_eq_real @ ( groups4148127829035722712t_real @ F @ A3 ) @ ( groups4148127829035722712t_real @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7889_sum__mono2,axiom,
    ! [B5: set_real,A3: set_real,F: real > rat] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ! [B4: real] :
              ( ( member_real @ B4 @ ( minus_minus_set_real @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
         => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A3 ) @ ( groups1300246762558778688al_rat @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7890_sum__mono2,axiom,
    ! [B5: set_int,A3: set_int,F: int > rat] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ! [B4: int] :
              ( ( member_int @ B4 @ ( minus_minus_set_int @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
         => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A3 ) @ ( groups3906332499630173760nt_rat @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7891_sum__mono2,axiom,
    ! [B5: set_complex,A3: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B5 )
     => ( ( ord_le211207098394363844omplex @ A3 @ B5 )
       => ( ! [B4: complex] :
              ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
         => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A3 ) @ ( groups5058264527183730370ex_rat @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7892_sum__mono2,axiom,
    ! [B5: set_Extended_enat,A3: set_Extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ B5 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ B5 )
       => ( ! [B4: extended_enat] :
              ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B4 ) ) )
         => ( ord_less_eq_rat @ ( groups1392844769737527556at_rat @ F @ A3 ) @ ( groups1392844769737527556at_rat @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7893_sum__mono2,axiom,
    ! [B5: set_real,A3: set_real,F: real > nat] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ! [B4: real] :
              ( ( member_real @ B4 @ ( minus_minus_set_real @ B5 @ A3 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B4 ) ) )
         => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A3 ) @ ( groups1935376822645274424al_nat @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7894_sum__mono2,axiom,
    ! [B5: set_int,A3: set_int,F: int > nat] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ! [B4: int] :
              ( ( member_int @ B4 @ ( minus_minus_set_int @ B5 @ A3 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B4 ) ) )
         => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ A3 ) @ ( groups4541462559716669496nt_nat @ F @ B5 ) ) ) ) ) ).

% sum_mono2
thf(fact_7895_sum__nonneg,axiom,
    ! [A3: set_real,F: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7896_sum__nonneg,axiom,
    ! [A3: set_int,F: int > real] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7897_sum__nonneg,axiom,
    ! [A3: set_real,F: real > rat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7898_sum__nonneg,axiom,
    ! [A3: set_nat,F: nat > rat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7899_sum__nonneg,axiom,
    ! [A3: set_int,F: int > rat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7900_sum__nonneg,axiom,
    ! [A3: set_real,F: real > nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7901_sum__nonneg,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7902_sum__nonneg,axiom,
    ! [A3: set_real,F: real > int] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups1932886352136224148al_int @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7903_sum__nonneg,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups3539618377306564664at_int @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7904_sum__nonneg,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups3542108847815614940at_nat @ F @ A3 ) ) ) ).

% sum_nonneg
thf(fact_7905_sum__nonpos,axiom,
    ! [A3: set_real,F: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A3 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_7906_sum__nonpos,axiom,
    ! [A3: set_int,F: int > real] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A3 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_7907_sum__nonpos,axiom,
    ! [A3: set_real,F: real > rat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A3 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_7908_sum__nonpos,axiom,
    ! [A3: set_nat,F: nat > rat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A3 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_7909_sum__nonpos,axiom,
    ! [A3: set_int,F: int > rat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A3 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_7910_sum__nonpos,axiom,
    ! [A3: set_real,F: real > nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A3 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_7911_sum__nonpos,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ A3 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_7912_sum__nonpos,axiom,
    ! [A3: set_real,F: real > int] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_int @ ( F @ X4 ) @ zero_zero_int ) )
     => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ A3 ) @ zero_zero_int ) ) ).

% sum_nonpos
thf(fact_7913_sum__nonpos,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_int @ ( F @ X4 ) @ zero_zero_int ) )
     => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ A3 ) @ zero_zero_int ) ) ).

% sum_nonpos
thf(fact_7914_sum__nonpos,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ A3 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_7915_sum__le__suminf,axiom,
    ! [F: nat > int,I5: set_nat] :
      ( ( summable_int @ F )
     => ( ( finite_finite_nat @ I5 )
       => ( ! [N2: nat] :
              ( ( member_nat @ N2 @ ( uminus5710092332889474511et_nat @ I5 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) ) )
         => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ I5 ) @ ( suminf_int @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7916_sum__le__suminf,axiom,
    ! [F: nat > nat,I5: set_nat] :
      ( ( summable_nat @ F )
     => ( ( finite_finite_nat @ I5 )
       => ( ! [N2: nat] :
              ( ( member_nat @ N2 @ ( uminus5710092332889474511et_nat @ I5 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) ) )
         => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ I5 ) @ ( suminf_nat @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7917_sum__le__suminf,axiom,
    ! [F: nat > real,I5: set_nat] :
      ( ( summable_real @ F )
     => ( ( finite_finite_nat @ I5 )
       => ( ! [N2: nat] :
              ( ( member_nat @ N2 @ ( uminus5710092332889474511et_nat @ I5 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) ) )
         => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ I5 ) @ ( suminf_real @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7918_sum__cong__Suc,axiom,
    ! [A3: set_nat,F: nat > nat,G: nat > nat] :
      ( ~ ( member_nat @ zero_zero_nat @ A3 )
     => ( ! [X4: nat] :
            ( ( member_nat @ ( suc @ X4 ) @ A3 )
           => ( ( F @ ( suc @ X4 ) )
              = ( G @ ( suc @ X4 ) ) ) )
       => ( ( groups3542108847815614940at_nat @ F @ A3 )
          = ( groups3542108847815614940at_nat @ G @ A3 ) ) ) ) ).

% sum_cong_Suc
thf(fact_7919_sum__cong__Suc,axiom,
    ! [A3: set_nat,F: nat > real,G: nat > real] :
      ( ~ ( member_nat @ zero_zero_nat @ A3 )
     => ( ! [X4: nat] :
            ( ( member_nat @ ( suc @ X4 ) @ A3 )
           => ( ( F @ ( suc @ X4 ) )
              = ( G @ ( suc @ X4 ) ) ) )
       => ( ( groups6591440286371151544t_real @ F @ A3 )
          = ( groups6591440286371151544t_real @ G @ A3 ) ) ) ) ).

% sum_cong_Suc
thf(fact_7920_Complex__eq__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = one_one_complex )
      = ( ( A = one_one_real )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_1
thf(fact_7921_one__complex_Ocode,axiom,
    ( one_one_complex
    = ( complex2 @ one_one_real @ zero_zero_real ) ) ).

% one_complex.code
thf(fact_7922_Complex__eq__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( A
          = ( numeral_numeral_real @ W ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_numeral
thf(fact_7923_infinite__growing,axiom,
    ! [X9: set_Extended_enat] :
      ( ( X9 != bot_bo7653980558646680370d_enat )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ X9 )
           => ? [Xa2: extended_enat] :
                ( ( member_Extended_enat @ Xa2 @ X9 )
                & ( ord_le72135733267957522d_enat @ X4 @ Xa2 ) ) )
       => ~ ( finite4001608067531595151d_enat @ X9 ) ) ) ).

% infinite_growing
thf(fact_7924_infinite__growing,axiom,
    ! [X9: set_real] :
      ( ( X9 != bot_bot_set_real )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ X9 )
           => ? [Xa2: real] :
                ( ( member_real @ Xa2 @ X9 )
                & ( ord_less_real @ X4 @ Xa2 ) ) )
       => ~ ( finite_finite_real @ X9 ) ) ) ).

% infinite_growing
thf(fact_7925_infinite__growing,axiom,
    ! [X9: set_rat] :
      ( ( X9 != bot_bot_set_rat )
     => ( ! [X4: rat] :
            ( ( member_rat @ X4 @ X9 )
           => ? [Xa2: rat] :
                ( ( member_rat @ Xa2 @ X9 )
                & ( ord_less_rat @ X4 @ Xa2 ) ) )
       => ~ ( finite_finite_rat @ X9 ) ) ) ).

% infinite_growing
thf(fact_7926_infinite__growing,axiom,
    ! [X9: set_num] :
      ( ( X9 != bot_bot_set_num )
     => ( ! [X4: num] :
            ( ( member_num @ X4 @ X9 )
           => ? [Xa2: num] :
                ( ( member_num @ Xa2 @ X9 )
                & ( ord_less_num @ X4 @ Xa2 ) ) )
       => ~ ( finite_finite_num @ X9 ) ) ) ).

% infinite_growing
thf(fact_7927_infinite__growing,axiom,
    ! [X9: set_nat] :
      ( ( X9 != bot_bot_set_nat )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ X9 )
           => ? [Xa2: nat] :
                ( ( member_nat @ Xa2 @ X9 )
                & ( ord_less_nat @ X4 @ Xa2 ) ) )
       => ~ ( finite_finite_nat @ X9 ) ) ) ).

% infinite_growing
thf(fact_7928_infinite__growing,axiom,
    ! [X9: set_int] :
      ( ( X9 != bot_bot_set_int )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ X9 )
           => ? [Xa2: int] :
                ( ( member_int @ Xa2 @ X9 )
                & ( ord_less_int @ X4 @ Xa2 ) ) )
       => ~ ( finite_finite_int @ X9 ) ) ) ).

% infinite_growing
thf(fact_7929_ex__min__if__finite,axiom,
    ! [S2: set_Extended_enat] :
      ( ( finite4001608067531595151d_enat @ S2 )
     => ( ( S2 != bot_bo7653980558646680370d_enat )
       => ? [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ S2 )
            & ~ ? [Xa2: extended_enat] :
                  ( ( member_Extended_enat @ Xa2 @ S2 )
                  & ( ord_le72135733267957522d_enat @ Xa2 @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_7930_ex__min__if__finite,axiom,
    ! [S2: set_real] :
      ( ( finite_finite_real @ S2 )
     => ( ( S2 != bot_bot_set_real )
       => ? [X4: real] :
            ( ( member_real @ X4 @ S2 )
            & ~ ? [Xa2: real] :
                  ( ( member_real @ Xa2 @ S2 )
                  & ( ord_less_real @ Xa2 @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_7931_ex__min__if__finite,axiom,
    ! [S2: set_rat] :
      ( ( finite_finite_rat @ S2 )
     => ( ( S2 != bot_bot_set_rat )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ S2 )
            & ~ ? [Xa2: rat] :
                  ( ( member_rat @ Xa2 @ S2 )
                  & ( ord_less_rat @ Xa2 @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_7932_ex__min__if__finite,axiom,
    ! [S2: set_num] :
      ( ( finite_finite_num @ S2 )
     => ( ( S2 != bot_bot_set_num )
       => ? [X4: num] :
            ( ( member_num @ X4 @ S2 )
            & ~ ? [Xa2: num] :
                  ( ( member_num @ Xa2 @ S2 )
                  & ( ord_less_num @ Xa2 @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_7933_ex__min__if__finite,axiom,
    ! [S2: set_nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( S2 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ S2 )
            & ~ ? [Xa2: nat] :
                  ( ( member_nat @ Xa2 @ S2 )
                  & ( ord_less_nat @ Xa2 @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_7934_ex__min__if__finite,axiom,
    ! [S2: set_int] :
      ( ( finite_finite_int @ S2 )
     => ( ( S2 != bot_bot_set_int )
       => ? [X4: int] :
            ( ( member_int @ X4 @ S2 )
            & ~ ? [Xa2: int] :
                  ( ( member_int @ Xa2 @ S2 )
                  & ( ord_less_int @ Xa2 @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_7935_prod__zero,axiom,
    ! [A3: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A3 )
     => ( ? [X6: nat] :
            ( ( member_nat @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_real ) )
       => ( ( groups129246275422532515t_real @ F @ A3 )
          = zero_zero_real ) ) ) ).

% prod_zero
thf(fact_7936_prod__zero,axiom,
    ! [A3: set_int,F: int > real] :
      ( ( finite_finite_int @ A3 )
     => ( ? [X6: int] :
            ( ( member_int @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_real ) )
       => ( ( groups2316167850115554303t_real @ F @ A3 )
          = zero_zero_real ) ) ) ).

% prod_zero
thf(fact_7937_prod__zero,axiom,
    ! [A3: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ? [X6: complex] :
            ( ( member_complex @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_real ) )
       => ( ( groups766887009212190081x_real @ F @ A3 )
          = zero_zero_real ) ) ) ).

% prod_zero
thf(fact_7938_prod__zero,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ? [X6: extended_enat] :
            ( ( member_Extended_enat @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_real ) )
       => ( ( groups97031904164794029t_real @ F @ A3 )
          = zero_zero_real ) ) ) ).

% prod_zero
thf(fact_7939_prod__zero,axiom,
    ! [A3: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A3 )
     => ( ? [X6: nat] :
            ( ( member_nat @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_rat ) )
       => ( ( groups73079841787564623at_rat @ F @ A3 )
          = zero_zero_rat ) ) ) ).

% prod_zero
thf(fact_7940_prod__zero,axiom,
    ! [A3: set_int,F: int > rat] :
      ( ( finite_finite_int @ A3 )
     => ( ? [X6: int] :
            ( ( member_int @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_rat ) )
       => ( ( groups1072433553688619179nt_rat @ F @ A3 )
          = zero_zero_rat ) ) ) ).

% prod_zero
thf(fact_7941_prod__zero,axiom,
    ! [A3: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ? [X6: complex] :
            ( ( member_complex @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_rat ) )
       => ( ( groups225925009352817453ex_rat @ F @ A3 )
          = zero_zero_rat ) ) ) ).

% prod_zero
thf(fact_7942_prod__zero,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ? [X6: extended_enat] :
            ( ( member_Extended_enat @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_rat ) )
       => ( ( groups2245840878043517529at_rat @ F @ A3 )
          = zero_zero_rat ) ) ) ).

% prod_zero
thf(fact_7943_prod__zero,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ? [X6: int] :
            ( ( member_int @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_nat ) )
       => ( ( groups1707563613775114915nt_nat @ F @ A3 )
          = zero_zero_nat ) ) ) ).

% prod_zero
thf(fact_7944_prod__zero,axiom,
    ! [A3: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ? [X6: complex] :
            ( ( member_complex @ X6 @ A3 )
            & ( ( F @ X6 )
              = zero_zero_nat ) )
       => ( ( groups861055069439313189ex_nat @ F @ A3 )
          = zero_zero_nat ) ) ) ).

% prod_zero
thf(fact_7945_infinite__Icc,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_7946_infinite__Icc,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_7947_finite__lists__length__le,axiom,
    ! [A3: set_complex,N: nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( finite8712137658972009173omplex
        @ ( collect_list_complex
          @ ^ [Xs: list_complex] :
              ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A3 )
              & ( ord_less_eq_nat @ ( size_s3451745648224563538omplex @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_7948_finite__lists__length__le,axiom,
    ! [A3: set_Pr1261947904930325089at_nat,N: nat] :
      ( ( finite6177210948735845034at_nat @ A3 )
     => ( finite500796754983035824at_nat
        @ ( collec3343600615725829874at_nat
          @ ^ [Xs: list_P6011104703257516679at_nat] :
              ( ( ord_le3146513528884898305at_nat @ ( set_Pr5648618587558075414at_nat @ Xs ) @ A3 )
              & ( ord_less_eq_nat @ ( size_s5460976970255530739at_nat @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_7949_finite__lists__length__le,axiom,
    ! [A3: set_Extended_enat,N: nat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( finite1862508098717546133d_enat
        @ ( collec8433460942617342167d_enat
          @ ^ [Xs: list_Extended_enat] :
              ( ( ord_le7203529160286727270d_enat @ ( set_Extended_enat2 @ Xs ) @ A3 )
              & ( ord_less_eq_nat @ ( size_s3941691890525107288d_enat @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_7950_finite__lists__length__le,axiom,
    ! [A3: set_VEBT_VEBT,N: nat] :
      ( ( finite5795047828879050333T_VEBT @ A3 )
     => ( finite3004134309566078307T_VEBT
        @ ( collec5608196760682091941T_VEBT
          @ ^ [Xs: list_VEBT_VEBT] :
              ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A3 )
              & ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_7951_finite__lists__length__le,axiom,
    ! [A3: set_o,N: nat] :
      ( ( finite_finite_o @ A3 )
     => ( finite_finite_list_o
        @ ( collect_list_o
          @ ^ [Xs: list_o] :
              ( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A3 )
              & ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_7952_finite__lists__length__le,axiom,
    ! [A3: set_int,N: nat] :
      ( ( finite_finite_int @ A3 )
     => ( finite3922522038869484883st_int
        @ ( collect_list_int
          @ ^ [Xs: list_int] :
              ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A3 )
              & ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_7953_finite__lists__length__le,axiom,
    ! [A3: set_nat,N: nat] :
      ( ( finite_finite_nat @ A3 )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [Xs: list_nat] :
              ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A3 )
              & ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_7954_summable__finite,axiom,
    ! [N4: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N2: nat] :
            ( ~ ( member_nat @ N2 @ N4 )
           => ( ( F @ N2 )
              = zero_zero_real ) )
       => ( summable_real @ F ) ) ) ).

% summable_finite
thf(fact_7955_summable__finite,axiom,
    ! [N4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N2: nat] :
            ( ~ ( member_nat @ N2 @ N4 )
           => ( ( F @ N2 )
              = zero_zero_nat ) )
       => ( summable_nat @ F ) ) ) ).

% summable_finite
thf(fact_7956_summable__finite,axiom,
    ! [N4: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N2: nat] :
            ( ~ ( member_nat @ N2 @ N4 )
           => ( ( F @ N2 )
              = zero_zero_int ) )
       => ( summable_int @ F ) ) ) ).

% summable_finite
thf(fact_7957_sum__strict__mono2,axiom,
    ! [B5: set_real,A3: set_real,B: real,F: real > real] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B5 @ A3 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X4: real] :
                  ( ( member_real @ X4 @ B5 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
             => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A3 ) @ ( groups8097168146408367636l_real @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7958_sum__strict__mono2,axiom,
    ! [B5: set_int,A3: set_int,B: int,F: int > real] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ( member_int @ B @ ( minus_minus_set_int @ B5 @ A3 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X4: int] :
                  ( ( member_int @ X4 @ B5 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
             => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A3 ) @ ( groups8778361861064173332t_real @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7959_sum__strict__mono2,axiom,
    ! [B5: set_complex,A3: set_complex,B: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B5 )
     => ( ( ord_le211207098394363844omplex @ A3 @ B5 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B5 @ A3 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X4: complex] :
                  ( ( member_complex @ X4 @ B5 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
             => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A3 ) @ ( groups5808333547571424918x_real @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7960_sum__strict__mono2,axiom,
    ! [B5: set_Extended_enat,A3: set_Extended_enat,B: extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ B5 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ B5 )
       => ( ( member_Extended_enat @ B @ ( minus_925952699566721837d_enat @ B5 @ A3 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X4: extended_enat] :
                  ( ( member_Extended_enat @ X4 @ B5 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
             => ( ord_less_real @ ( groups4148127829035722712t_real @ F @ A3 ) @ ( groups4148127829035722712t_real @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7961_sum__strict__mono2,axiom,
    ! [B5: set_real,A3: set_real,B: real,F: real > rat] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B5 @ A3 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X4: real] :
                  ( ( member_real @ X4 @ B5 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
             => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A3 ) @ ( groups1300246762558778688al_rat @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7962_sum__strict__mono2,axiom,
    ! [B5: set_int,A3: set_int,B: int,F: int > rat] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ( member_int @ B @ ( minus_minus_set_int @ B5 @ A3 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X4: int] :
                  ( ( member_int @ X4 @ B5 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
             => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A3 ) @ ( groups3906332499630173760nt_rat @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7963_sum__strict__mono2,axiom,
    ! [B5: set_complex,A3: set_complex,B: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B5 )
     => ( ( ord_le211207098394363844omplex @ A3 @ B5 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B5 @ A3 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X4: complex] :
                  ( ( member_complex @ X4 @ B5 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
             => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A3 ) @ ( groups5058264527183730370ex_rat @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7964_sum__strict__mono2,axiom,
    ! [B5: set_Extended_enat,A3: set_Extended_enat,B: extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ B5 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ B5 )
       => ( ( member_Extended_enat @ B @ ( minus_925952699566721837d_enat @ B5 @ A3 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X4: extended_enat] :
                  ( ( member_Extended_enat @ X4 @ B5 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
             => ( ord_less_rat @ ( groups1392844769737527556at_rat @ F @ A3 ) @ ( groups1392844769737527556at_rat @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7965_sum__strict__mono2,axiom,
    ! [B5: set_real,A3: set_real,B: real,F: real > nat] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B5 @ A3 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X4: real] :
                  ( ( member_real @ X4 @ B5 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
             => ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A3 ) @ ( groups1935376822645274424al_nat @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7966_sum__strict__mono2,axiom,
    ! [B5: set_int,A3: set_int,B: int,F: int > nat] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ( member_int @ B @ ( minus_minus_set_int @ B5 @ A3 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X4: int] :
                  ( ( member_int @ X4 @ B5 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
             => ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A3 ) @ ( groups4541462559716669496nt_nat @ F @ B5 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_7967_member__le__sum,axiom,
    ! [I: complex,A3: set_complex,F: complex > real] :
      ( ( member_complex @ I @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ A3 @ ( insert_complex @ I @ bot_bot_set_complex ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite3207457112153483333omplex @ A3 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups5808333547571424918x_real @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7968_member__le__sum,axiom,
    ! [I: extended_enat,A3: set_Extended_enat,F: extended_enat > real] :
      ( ( member_Extended_enat @ I @ A3 )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ A3 @ ( insert_Extended_enat @ I @ bot_bo7653980558646680370d_enat ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite4001608067531595151d_enat @ A3 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups4148127829035722712t_real @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7969_member__le__sum,axiom,
    ! [I: real,A3: set_real,F: real > real] :
      ( ( member_real @ I @ A3 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( minus_minus_set_real @ A3 @ ( insert_real @ I @ bot_bot_set_real ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite_finite_real @ A3 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups8097168146408367636l_real @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7970_member__le__sum,axiom,
    ! [I: int,A3: set_int,F: int > real] :
      ( ( member_int @ I @ A3 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ ( minus_minus_set_int @ A3 @ ( insert_int @ I @ bot_bot_set_int ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite_finite_int @ A3 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups8778361861064173332t_real @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7971_member__le__sum,axiom,
    ! [I: complex,A3: set_complex,F: complex > rat] :
      ( ( member_complex @ I @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ A3 @ ( insert_complex @ I @ bot_bot_set_complex ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite3207457112153483333omplex @ A3 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups5058264527183730370ex_rat @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7972_member__le__sum,axiom,
    ! [I: extended_enat,A3: set_Extended_enat,F: extended_enat > rat] :
      ( ( member_Extended_enat @ I @ A3 )
     => ( ! [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ ( minus_925952699566721837d_enat @ A3 @ ( insert_Extended_enat @ I @ bot_bo7653980558646680370d_enat ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite4001608067531595151d_enat @ A3 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups1392844769737527556at_rat @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7973_member__le__sum,axiom,
    ! [I: real,A3: set_real,F: real > rat] :
      ( ( member_real @ I @ A3 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( minus_minus_set_real @ A3 @ ( insert_real @ I @ bot_bot_set_real ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite_finite_real @ A3 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups1300246762558778688al_rat @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7974_member__le__sum,axiom,
    ! [I: int,A3: set_int,F: int > rat] :
      ( ( member_int @ I @ A3 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ ( minus_minus_set_int @ A3 @ ( insert_int @ I @ bot_bot_set_int ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite_finite_int @ A3 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups3906332499630173760nt_rat @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7975_member__le__sum,axiom,
    ! [I: nat,A3: set_nat,F: nat > rat] :
      ( ( member_nat @ I @ A3 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ ( minus_minus_set_nat @ A3 @ ( insert_nat @ I @ bot_bot_set_nat ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite_finite_nat @ A3 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups2906978787729119204at_rat @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7976_member__le__sum,axiom,
    ! [I: complex,A3: set_complex,F: complex > nat] :
      ( ( member_complex @ I @ A3 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ A3 @ ( insert_complex @ I @ bot_bot_set_complex ) ) )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
       => ( ( finite3207457112153483333omplex @ A3 )
         => ( ord_less_eq_nat @ ( F @ I ) @ ( groups5693394587270226106ex_nat @ F @ A3 ) ) ) ) ) ).

% member_le_sum
thf(fact_7977_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X3: real > real,Y3: real > real] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7978_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X3: nat > real,Y3: nat > real] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7979_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X3: int > real,Y3: int > real] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7980_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X3: complex > real,Y3: complex > real] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7981_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_Extended_enat,X3: extended_enat > real,Y3: extended_enat > real] :
      ( ( finite4001608067531595151d_enat
        @ ( collec4429806609662206161d_enat
          @ ^ [I4: extended_enat] :
              ( ( member_Extended_enat @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite4001608067531595151d_enat
          @ ( collec4429806609662206161d_enat
            @ ^ [I4: extended_enat] :
                ( ( member_Extended_enat @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite4001608067531595151d_enat
          @ ( collec4429806609662206161d_enat
            @ ^ [I4: extended_enat] :
                ( ( member_Extended_enat @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7982_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X3: real > rat,Y3: real > rat] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_rat ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_rat ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( plus_plus_rat @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7983_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X3: nat > rat,Y3: nat > rat] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_rat ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_rat ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( plus_plus_rat @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7984_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X3: int > rat,Y3: int > rat] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_rat ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_rat ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( plus_plus_rat @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7985_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X3: complex > rat,Y3: complex > rat] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_rat ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_rat ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( plus_plus_rat @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7986_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_Extended_enat,X3: extended_enat > rat,Y3: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat
        @ ( collec4429806609662206161d_enat
          @ ^ [I4: extended_enat] :
              ( ( member_Extended_enat @ I4 @ I5 )
              & ( ( X3 @ I4 )
               != zero_zero_rat ) ) ) )
     => ( ( finite4001608067531595151d_enat
          @ ( collec4429806609662206161d_enat
            @ ^ [I4: extended_enat] :
                ( ( member_Extended_enat @ I4 @ I5 )
                & ( ( Y3 @ I4 )
                 != zero_zero_rat ) ) ) )
       => ( finite4001608067531595151d_enat
          @ ( collec4429806609662206161d_enat
            @ ^ [I4: extended_enat] :
                ( ( member_Extended_enat @ I4 @ I5 )
                & ( ( plus_plus_rat @ ( X3 @ I4 ) @ ( Y3 @ I4 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_7987_Complex__eq__neg__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( A
          = ( uminus_uminus_real @ one_one_real ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_1
thf(fact_7988_Complex__eq__neg__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( A
          = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_numeral
thf(fact_7989_finite__ranking__induct,axiom,
    ! [S2: set_complex,P: set_complex > $o,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [X4: complex,S5: set_complex] :
              ( ( finite3207457112153483333omplex @ S5 )
             => ( ! [Y6: complex] :
                    ( ( member_complex @ Y6 @ S5 )
                   => ( ord_less_eq_rat @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_complex @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7990_finite__ranking__induct,axiom,
    ! [S2: set_Extended_enat,P: set_Extended_enat > $o,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ S2 )
     => ( ( P @ bot_bo7653980558646680370d_enat )
       => ( ! [X4: extended_enat,S5: set_Extended_enat] :
              ( ( finite4001608067531595151d_enat @ S5 )
             => ( ! [Y6: extended_enat] :
                    ( ( member_Extended_enat @ Y6 @ S5 )
                   => ( ord_less_eq_rat @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_Extended_enat @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7991_finite__ranking__induct,axiom,
    ! [S2: set_real,P: set_real > $o,F: real > rat] :
      ( ( finite_finite_real @ S2 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X4: real,S5: set_real] :
              ( ( finite_finite_real @ S5 )
             => ( ! [Y6: real] :
                    ( ( member_real @ Y6 @ S5 )
                   => ( ord_less_eq_rat @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_real @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7992_finite__ranking__induct,axiom,
    ! [S2: set_nat,P: set_nat > $o,F: nat > rat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,S5: set_nat] :
              ( ( finite_finite_nat @ S5 )
             => ( ! [Y6: nat] :
                    ( ( member_nat @ Y6 @ S5 )
                   => ( ord_less_eq_rat @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_nat @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7993_finite__ranking__induct,axiom,
    ! [S2: set_int,P: set_int > $o,F: int > rat] :
      ( ( finite_finite_int @ S2 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [X4: int,S5: set_int] :
              ( ( finite_finite_int @ S5 )
             => ( ! [Y6: int] :
                    ( ( member_int @ Y6 @ S5 )
                   => ( ord_less_eq_rat @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_int @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7994_finite__ranking__induct,axiom,
    ! [S2: set_complex,P: set_complex > $o,F: complex > num] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [X4: complex,S5: set_complex] :
              ( ( finite3207457112153483333omplex @ S5 )
             => ( ! [Y6: complex] :
                    ( ( member_complex @ Y6 @ S5 )
                   => ( ord_less_eq_num @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_complex @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7995_finite__ranking__induct,axiom,
    ! [S2: set_Extended_enat,P: set_Extended_enat > $o,F: extended_enat > num] :
      ( ( finite4001608067531595151d_enat @ S2 )
     => ( ( P @ bot_bo7653980558646680370d_enat )
       => ( ! [X4: extended_enat,S5: set_Extended_enat] :
              ( ( finite4001608067531595151d_enat @ S5 )
             => ( ! [Y6: extended_enat] :
                    ( ( member_Extended_enat @ Y6 @ S5 )
                   => ( ord_less_eq_num @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_Extended_enat @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7996_finite__ranking__induct,axiom,
    ! [S2: set_real,P: set_real > $o,F: real > num] :
      ( ( finite_finite_real @ S2 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X4: real,S5: set_real] :
              ( ( finite_finite_real @ S5 )
             => ( ! [Y6: real] :
                    ( ( member_real @ Y6 @ S5 )
                   => ( ord_less_eq_num @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_real @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7997_finite__ranking__induct,axiom,
    ! [S2: set_nat,P: set_nat > $o,F: nat > num] :
      ( ( finite_finite_nat @ S2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,S5: set_nat] :
              ( ( finite_finite_nat @ S5 )
             => ( ! [Y6: nat] :
                    ( ( member_nat @ Y6 @ S5 )
                   => ( ord_less_eq_num @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_nat @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7998_finite__ranking__induct,axiom,
    ! [S2: set_int,P: set_int > $o,F: int > num] :
      ( ( finite_finite_int @ S2 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [X4: int,S5: set_int] :
              ( ( finite_finite_int @ S5 )
             => ( ! [Y6: int] :
                    ( ( member_int @ Y6 @ S5 )
                   => ( ord_less_eq_num @ ( F @ Y6 ) @ ( F @ X4 ) ) )
               => ( ( P @ S5 )
                 => ( P @ ( insert_int @ X4 @ S5 ) ) ) ) )
         => ( P @ S2 ) ) ) ) ).

% finite_ranking_induct
thf(fact_7999_finite__linorder__min__induct,axiom,
    ! [A3: set_Extended_enat,P: set_Extended_enat > $o] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( P @ bot_bo7653980558646680370d_enat )
       => ( ! [B4: extended_enat,A6: set_Extended_enat] :
              ( ( finite4001608067531595151d_enat @ A6 )
             => ( ! [X6: extended_enat] :
                    ( ( member_Extended_enat @ X6 @ A6 )
                   => ( ord_le72135733267957522d_enat @ B4 @ X6 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_Extended_enat @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_8000_finite__linorder__min__induct,axiom,
    ! [A3: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A3 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [B4: real,A6: set_real] :
              ( ( finite_finite_real @ A6 )
             => ( ! [X6: real] :
                    ( ( member_real @ X6 @ A6 )
                   => ( ord_less_real @ B4 @ X6 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_real @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_8001_finite__linorder__min__induct,axiom,
    ! [A3: set_rat,P: set_rat > $o] :
      ( ( finite_finite_rat @ A3 )
     => ( ( P @ bot_bot_set_rat )
       => ( ! [B4: rat,A6: set_rat] :
              ( ( finite_finite_rat @ A6 )
             => ( ! [X6: rat] :
                    ( ( member_rat @ X6 @ A6 )
                   => ( ord_less_rat @ B4 @ X6 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_rat @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_8002_finite__linorder__min__induct,axiom,
    ! [A3: set_num,P: set_num > $o] :
      ( ( finite_finite_num @ A3 )
     => ( ( P @ bot_bot_set_num )
       => ( ! [B4: num,A6: set_num] :
              ( ( finite_finite_num @ A6 )
             => ( ! [X6: num] :
                    ( ( member_num @ X6 @ A6 )
                   => ( ord_less_num @ B4 @ X6 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_num @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_8003_finite__linorder__min__induct,axiom,
    ! [A3: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A3 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B4: nat,A6: set_nat] :
              ( ( finite_finite_nat @ A6 )
             => ( ! [X6: nat] :
                    ( ( member_nat @ X6 @ A6 )
                   => ( ord_less_nat @ B4 @ X6 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_nat @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_8004_finite__linorder__min__induct,axiom,
    ! [A3: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ A3 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [B4: int,A6: set_int] :
              ( ( finite_finite_int @ A6 )
             => ( ! [X6: int] :
                    ( ( member_int @ X6 @ A6 )
                   => ( ord_less_int @ B4 @ X6 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_int @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_8005_finite__linorder__max__induct,axiom,
    ! [A3: set_Extended_enat,P: set_Extended_enat > $o] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( P @ bot_bo7653980558646680370d_enat )
       => ( ! [B4: extended_enat,A6: set_Extended_enat] :
              ( ( finite4001608067531595151d_enat @ A6 )
             => ( ! [X6: extended_enat] :
                    ( ( member_Extended_enat @ X6 @ A6 )
                   => ( ord_le72135733267957522d_enat @ X6 @ B4 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_Extended_enat @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_8006_finite__linorder__max__induct,axiom,
    ! [A3: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A3 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [B4: real,A6: set_real] :
              ( ( finite_finite_real @ A6 )
             => ( ! [X6: real] :
                    ( ( member_real @ X6 @ A6 )
                   => ( ord_less_real @ X6 @ B4 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_real @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_8007_finite__linorder__max__induct,axiom,
    ! [A3: set_rat,P: set_rat > $o] :
      ( ( finite_finite_rat @ A3 )
     => ( ( P @ bot_bot_set_rat )
       => ( ! [B4: rat,A6: set_rat] :
              ( ( finite_finite_rat @ A6 )
             => ( ! [X6: rat] :
                    ( ( member_rat @ X6 @ A6 )
                   => ( ord_less_rat @ X6 @ B4 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_rat @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_8008_finite__linorder__max__induct,axiom,
    ! [A3: set_num,P: set_num > $o] :
      ( ( finite_finite_num @ A3 )
     => ( ( P @ bot_bot_set_num )
       => ( ! [B4: num,A6: set_num] :
              ( ( finite_finite_num @ A6 )
             => ( ! [X6: num] :
                    ( ( member_num @ X6 @ A6 )
                   => ( ord_less_num @ X6 @ B4 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_num @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_8009_finite__linorder__max__induct,axiom,
    ! [A3: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A3 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B4: nat,A6: set_nat] :
              ( ( finite_finite_nat @ A6 )
             => ( ! [X6: nat] :
                    ( ( member_nat @ X6 @ A6 )
                   => ( ord_less_nat @ X6 @ B4 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_nat @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_8010_finite__linorder__max__induct,axiom,
    ! [A3: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ A3 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [B4: int,A6: set_int] :
              ( ( finite_finite_int @ A6 )
             => ( ! [X6: int] :
                    ( ( member_int @ X6 @ A6 )
                   => ( ord_less_int @ X6 @ B4 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_int @ B4 @ A6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_8011_sum__power__add,axiom,
    ! [X3: complex,M: nat,I5: set_nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [I4: nat] : ( power_power_complex @ X3 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_complex @ ( power_power_complex @ X3 @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_8012_sum__power__add,axiom,
    ! [X3: rat,M: nat,I5: set_nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( power_power_rat @ X3 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_rat @ ( power_power_rat @ X3 @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_8013_sum__power__add,axiom,
    ! [X3: int,M: nat,I5: set_nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( power_power_int @ X3 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_int @ ( power_power_int @ X3 @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_8014_sum__power__add,axiom,
    ! [X3: real,M: nat,I5: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( power_power_real @ X3 @ ( plus_plus_nat @ M @ I4 ) )
        @ I5 )
      = ( times_times_real @ ( power_power_real @ X3 @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ I5 ) ) ) ).

% sum_power_add
thf(fact_8015_finite__divisors__nat,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M ) ) ) ) ).

% finite_divisors_nat
thf(fact_8016_arcsin__minus,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ( arcsin @ ( uminus_uminus_real @ X3 ) )
          = ( uminus_uminus_real @ ( arcsin @ X3 ) ) ) ) ) ).

% arcsin_minus
thf(fact_8017_arcsin__le__arcsin,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
       => ( ( ord_less_eq_real @ Y3 @ one_one_real )
         => ( ord_less_eq_real @ ( arcsin @ X3 ) @ ( arcsin @ Y3 ) ) ) ) ) ).

% arcsin_le_arcsin
thf(fact_8018_subset__eq__atLeast0__atMost__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_atMost_finite
thf(fact_8019_arcsin__eq__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
       => ( ( ( arcsin @ X3 )
            = ( arcsin @ Y3 ) )
          = ( X3 = Y3 ) ) ) ) ).

% arcsin_eq_iff
thf(fact_8020_arcsin__le__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arcsin @ X3 ) @ ( arcsin @ Y3 ) )
          = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ) ).

% arcsin_le_mono
thf(fact_8021_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > rat,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_rat )
     => ( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_8022_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > int,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_int )
     => ( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_8023_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > nat,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_nat )
     => ( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_8024_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > real,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_real )
     => ( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_8025_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_8026_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_8027_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_8028_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_8029_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( plus_plus_rat @ ( G @ M ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_8030_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( plus_plus_int @ ( G @ M ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_8031_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( plus_plus_nat @ ( G @ M ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_8032_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( plus_plus_real @ ( G @ M ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_8033_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( plus_plus_rat @ ( G @ ( suc @ N ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_8034_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( plus_plus_int @ ( G @ ( suc @ N ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_8035_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( plus_plus_nat @ ( G @ ( suc @ N ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_8036_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
        = ( plus_plus_real @ ( G @ ( suc @ N ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_8037_less__1__prod2,axiom,
    ! [I5: set_real,I: real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8038_less__1__prod2,axiom,
    ! [I5: set_nat,I: nat,F: nat > real] :
      ( ( finite_finite_nat @ I5 )
     => ( ( member_nat @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups129246275422532515t_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8039_less__1__prod2,axiom,
    ! [I5: set_int,I: int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8040_less__1__prod2,axiom,
    ! [I5: set_complex,I: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups766887009212190081x_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8041_less__1__prod2,axiom,
    ! [I5: set_Extended_enat,I: extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( member_Extended_enat @ I @ I5 )
       => ( ( ord_less_real @ one_one_real @ ( F @ I ) )
         => ( ! [I3: extended_enat] :
                ( ( member_Extended_enat @ I3 @ I5 )
               => ( ord_less_eq_real @ one_one_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ one_one_real @ ( groups97031904164794029t_real @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8042_less__1__prod2,axiom,
    ! [I5: set_real,I: real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8043_less__1__prod2,axiom,
    ! [I5: set_nat,I: nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( member_nat @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8044_less__1__prod2,axiom,
    ! [I5: set_int,I: int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8045_less__1__prod2,axiom,
    ! [I5: set_complex,I: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups225925009352817453ex_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8046_less__1__prod2,axiom,
    ! [I5: set_Extended_enat,I: extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( member_Extended_enat @ I @ I5 )
       => ( ( ord_less_rat @ one_one_rat @ ( F @ I ) )
         => ( ! [I3: extended_enat] :
                ( ( member_Extended_enat @ I3 @ I5 )
               => ( ord_less_eq_rat @ one_one_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ one_one_rat @ ( groups2245840878043517529at_rat @ F @ I5 ) ) ) ) ) ) ).

% less_1_prod2
thf(fact_8047_less__1__prod,axiom,
    ! [I5: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups766887009212190081x_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8048_less__1__prod,axiom,
    ! [I5: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( I5 != bot_bo7653980558646680370d_enat )
       => ( ! [I3: extended_enat] :
              ( ( member_Extended_enat @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups97031904164794029t_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8049_less__1__prod,axiom,
    ! [I5: set_real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups1681761925125756287l_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8050_less__1__prod,axiom,
    ! [I5: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ I5 )
     => ( ( I5 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups129246275422532515t_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8051_less__1__prod,axiom,
    ! [I5: set_int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_real @ one_one_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ one_one_real @ ( groups2316167850115554303t_real @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8052_less__1__prod,axiom,
    ! [I5: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups225925009352817453ex_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8053_less__1__prod,axiom,
    ! [I5: set_Extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ( I5 != bot_bo7653980558646680370d_enat )
       => ( ! [I3: extended_enat] :
              ( ( member_Extended_enat @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups2245840878043517529at_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8054_less__1__prod,axiom,
    ! [I5: set_real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups4061424788464935467al_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8055_less__1__prod,axiom,
    ! [I5: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( I5 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups73079841787564623at_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8056_less__1__prod,axiom,
    ! [I5: set_int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_rat @ one_one_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ one_one_rat @ ( groups1072433553688619179nt_rat @ F @ I5 ) ) ) ) ) ).

% less_1_prod
thf(fact_8057_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( plus_plus_rat @ ( G @ M )
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_8058_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( plus_plus_int @ ( G @ M )
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_8059_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( plus_plus_nat @ ( G @ M )
          @ ( groups3542108847815614940at_nat
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_8060_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) )
        = ( plus_plus_real @ ( G @ M )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_8061_sum__Suc__diff,axiom,
    ! [M: nat,N: nat,F: nat > rat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( minus_minus_rat @ ( F @ ( suc @ I4 ) ) @ ( F @ I4 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( minus_minus_rat @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_8062_sum__Suc__diff,axiom,
    ! [M: nat,N: nat,F: nat > int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( minus_minus_int @ ( F @ ( suc @ I4 ) ) @ ( F @ I4 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( minus_minus_int @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_8063_sum__Suc__diff,axiom,
    ! [M: nat,N: nat,F: nat > real] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( minus_minus_real @ ( F @ ( suc @ I4 ) ) @ ( F @ I4 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( minus_minus_real @ ( F @ ( suc @ N ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_8064_atLeastAtMostPlus1__int__conv,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
     => ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
        = ( insert_int @ ( plus_plus_int @ one_one_int @ N ) @ ( set_or1266510415728281911st_int @ M @ N ) ) ) ) ).

% atLeastAtMostPlus1_int_conv
thf(fact_8065_simp__from__to,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I4: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I4 ) @ bot_bot_set_int @ ( insert_int @ I4 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) ) ) ) ).

% simp_from_to
thf(fact_8066_finite__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [Z6: real] :
              ( ( power_power_real @ Z6 @ N )
              = one_one_real ) ) ) ) ).

% finite_roots_unity
thf(fact_8067_finite__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z6: complex] :
              ( ( power_power_complex @ Z6 @ N )
              = one_one_complex ) ) ) ) ).

% finite_roots_unity
thf(fact_8068_sum__atLeastAtMost__code,axiom,
    ! [F: nat > rat,A: nat,B: nat] :
      ( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo1949268297981939178at_rat
        @ ^ [A4: nat] : ( plus_plus_rat @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_rat ) ) ).

% sum_atLeastAtMost_code
thf(fact_8069_sum__atLeastAtMost__code,axiom,
    ! [F: nat > int,A: nat,B: nat] :
      ( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo2581907887559384638at_int
        @ ^ [A4: nat] : ( plus_plus_int @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_int ) ) ).

% sum_atLeastAtMost_code
thf(fact_8070_sum__atLeastAtMost__code,axiom,
    ! [F: nat > nat,A: nat,B: nat] :
      ( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo2584398358068434914at_nat
        @ ^ [A4: nat] : ( plus_plus_nat @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_nat ) ) ).

% sum_atLeastAtMost_code
thf(fact_8071_sum__atLeastAtMost__code,axiom,
    ! [F: nat > real,A: nat,B: nat] :
      ( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo3111899725591712190t_real
        @ ^ [A4: nat] : ( plus_plus_real @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_real ) ) ).

% sum_atLeastAtMost_code
thf(fact_8072_arcsin__less__arcsin,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ Y3 )
       => ( ( ord_less_eq_real @ Y3 @ one_one_real )
         => ( ord_less_real @ ( arcsin @ X3 ) @ ( arcsin @ Y3 ) ) ) ) ) ).

% arcsin_less_arcsin
thf(fact_8073_arcsin__less__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
       => ( ( ord_less_real @ ( arcsin @ X3 ) @ ( arcsin @ Y3 ) )
          = ( ord_less_real @ X3 @ Y3 ) ) ) ) ).

% arcsin_less_mono
thf(fact_8074_sum_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > rat,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_8075_sum_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > int,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_8076_sum_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > nat,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_8077_sum_Oub__add__nat,axiom,
    ! [M: nat,N: nat,G: nat > real,P6: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N @ one_one_nat ) )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N @ P6 ) ) )
        = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( plus_plus_nat @ N @ P6 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_8078_prod__mono__strict,axiom,
    ! [A3: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ A3 )
           => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
              & ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_complex )
         => ( ord_less_real @ ( groups766887009212190081x_real @ F @ A3 ) @ ( groups766887009212190081x_real @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8079_prod__mono__strict,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > real,G: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ A3 )
           => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
              & ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bo7653980558646680370d_enat )
         => ( ord_less_real @ ( groups97031904164794029t_real @ F @ A3 ) @ ( groups97031904164794029t_real @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8080_prod__mono__strict,axiom,
    ! [A3: set_real,F: real > real,G: real > real] :
      ( ( finite_finite_real @ A3 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ A3 )
           => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
              & ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_real )
         => ( ord_less_real @ ( groups1681761925125756287l_real @ F @ A3 ) @ ( groups1681761925125756287l_real @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8081_prod__mono__strict,axiom,
    ! [A3: set_nat,F: nat > real,G: nat > real] :
      ( ( finite_finite_nat @ A3 )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ A3 )
           => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
              & ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_nat )
         => ( ord_less_real @ ( groups129246275422532515t_real @ F @ A3 ) @ ( groups129246275422532515t_real @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8082_prod__mono__strict,axiom,
    ! [A3: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A3 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ A3 )
           => ( ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
              & ( ord_less_real @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_int )
         => ( ord_less_real @ ( groups2316167850115554303t_real @ F @ A3 ) @ ( groups2316167850115554303t_real @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8083_prod__mono__strict,axiom,
    ! [A3: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ A3 )
           => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
              & ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_complex )
         => ( ord_less_rat @ ( groups225925009352817453ex_rat @ F @ A3 ) @ ( groups225925009352817453ex_rat @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8084_prod__mono__strict,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > rat,G: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ A3 )
           => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
              & ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bo7653980558646680370d_enat )
         => ( ord_less_rat @ ( groups2245840878043517529at_rat @ F @ A3 ) @ ( groups2245840878043517529at_rat @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8085_prod__mono__strict,axiom,
    ! [A3: set_real,F: real > rat,G: real > rat] :
      ( ( finite_finite_real @ A3 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ A3 )
           => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
              & ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_real )
         => ( ord_less_rat @ ( groups4061424788464935467al_rat @ F @ A3 ) @ ( groups4061424788464935467al_rat @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8086_prod__mono__strict,axiom,
    ! [A3: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A3 )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ A3 )
           => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
              & ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_nat )
         => ( ord_less_rat @ ( groups73079841787564623at_rat @ F @ A3 ) @ ( groups73079841787564623at_rat @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8087_prod__mono__strict,axiom,
    ! [A3: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A3 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ A3 )
           => ( ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) )
              & ( ord_less_rat @ ( F @ I3 ) @ ( G @ I3 ) ) ) )
       => ( ( A3 != bot_bot_set_int )
         => ( ord_less_rat @ ( groups1072433553688619179nt_rat @ F @ A3 ) @ ( groups1072433553688619179nt_rat @ G @ A3 ) ) ) ) ) ).

% prod_mono_strict
thf(fact_8088_even__prod__iff,axiom,
    ! [A3: set_nat,F: nat > code_integer] :
      ( ( finite_finite_nat @ A3 )
     => ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups3455450783089532116nteger @ F @ A3 ) )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A3 )
              & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8089_even__prod__iff,axiom,
    ! [A3: set_int,F: int > code_integer] :
      ( ( finite_finite_int @ A3 )
     => ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups3827104343326376752nteger @ F @ A3 ) )
        = ( ? [X: int] :
              ( ( member_int @ X @ A3 )
              & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8090_even__prod__iff,axiom,
    ! [A3: set_complex,F: complex > code_integer] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups8682486955453173170nteger @ F @ A3 ) )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8091_even__prod__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > code_integer] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups845124408420398302nteger @ F @ A3 ) )
        = ( ? [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
              & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8092_even__prod__iff,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups1707563613775114915nt_nat @ F @ A3 ) )
        = ( ? [X: int] :
              ( ( member_int @ X @ A3 )
              & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8093_even__prod__iff,axiom,
    ! [A3: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups861055069439313189ex_nat @ F @ A3 ) )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8094_even__prod__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups2880970938130013265at_nat @ F @ A3 ) )
        = ( ? [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
              & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8095_even__prod__iff,axiom,
    ! [A3: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups858564598930262913ex_int @ F @ A3 ) )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8096_even__prod__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > int] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups2878480467620962989at_int @ F @ A3 ) )
        = ( ? [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
              & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8097_even__prod__iff,axiom,
    ! [A3: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A3 )
     => ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups705719431365010083at_int @ F @ A3 ) )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A3 )
              & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( F @ X ) ) ) ) ) ) ).

% even_prod_iff
thf(fact_8098_convex__sum__bound__le,axiom,
    ! [I5: set_real,X3: real > code_integer,A: real > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X3 @ I3 ) ) )
     => ( ( ( groups7713935264441627589nteger @ X3 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7713935264441627589nteger
                  @ ^ [I4: real] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8099_convex__sum__bound__le,axiom,
    ! [I5: set_nat,X3: nat > code_integer,A: nat > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X3 @ I3 ) ) )
     => ( ( ( groups7501900531339628137nteger @ X3 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7501900531339628137nteger
                  @ ^ [I4: nat] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8100_convex__sum__bound__le,axiom,
    ! [I5: set_int,X3: int > code_integer,A: int > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X3 @ I3 ) ) )
     => ( ( ( groups7873554091576472773nteger @ X3 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7873554091576472773nteger
                  @ ^ [I4: int] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8101_convex__sum__bound__le,axiom,
    ! [I5: set_real,X3: real > real,A: real > real,B: real,Delta: real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I3 ) ) )
     => ( ( ( groups8097168146408367636l_real @ X3 @ I5 )
          = one_one_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8097168146408367636l_real
                  @ ^ [I4: real] : ( times_times_real @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8102_convex__sum__bound__le,axiom,
    ! [I5: set_int,X3: int > real,A: int > real,B: real,Delta: real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I3 ) ) )
     => ( ( ( groups8778361861064173332t_real @ X3 @ I5 )
          = one_one_real )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8778361861064173332t_real
                  @ ^ [I4: int] : ( times_times_real @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8103_convex__sum__bound__le,axiom,
    ! [I5: set_real,X3: real > rat,A: real > rat,B: rat,Delta: rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X3 @ I3 ) ) )
     => ( ( ( groups1300246762558778688al_rat @ X3 @ I5 )
          = one_one_rat )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups1300246762558778688al_rat
                  @ ^ [I4: real] : ( times_times_rat @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8104_convex__sum__bound__le,axiom,
    ! [I5: set_nat,X3: nat > rat,A: nat > rat,B: rat,Delta: rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X3 @ I3 ) ) )
     => ( ( ( groups2906978787729119204at_rat @ X3 @ I5 )
          = one_one_rat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8105_convex__sum__bound__le,axiom,
    ! [I5: set_int,X3: int > rat,A: int > rat,B: rat,Delta: rat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X3 @ I3 ) ) )
     => ( ( ( groups3906332499630173760nt_rat @ X3 @ I5 )
          = one_one_rat )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups3906332499630173760nt_rat
                  @ ^ [I4: int] : ( times_times_rat @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8106_convex__sum__bound__le,axiom,
    ! [I5: set_real,X3: real > int,A: real > int,B: int,Delta: int] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_int @ zero_zero_int @ ( X3 @ I3 ) ) )
     => ( ( ( groups1932886352136224148al_int @ X3 @ I5 )
          = one_one_int )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_int
            @ ( abs_abs_int
              @ ( minus_minus_int
                @ ( groups1932886352136224148al_int
                  @ ^ [I4: real] : ( times_times_int @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8107_convex__sum__bound__le,axiom,
    ! [I5: set_nat,X3: nat > int,A: nat > int,B: int,Delta: int] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_less_eq_int @ zero_zero_int @ ( X3 @ I3 ) ) )
     => ( ( ( groups3539618377306564664at_int @ X3 @ I5 )
          = one_one_int )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_int
            @ ( abs_abs_int
              @ ( minus_minus_int
                @ ( groups3539618377306564664at_int
                  @ ^ [I4: nat] : ( times_times_int @ ( A @ I4 ) @ ( X3 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8108_cos__arcsin__nonzero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X3 ) )
         != zero_zero_real ) ) ) ).

% cos_arcsin_nonzero
thf(fact_8109_prod__mono2,axiom,
    ! [B5: set_real,A3: set_real,F: real > real] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ! [B4: real] :
              ( ( member_real @ B4 @ ( minus_minus_set_real @ B5 @ A3 ) )
             => ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ A3 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ A5 ) ) )
           => ( ord_less_eq_real @ ( groups1681761925125756287l_real @ F @ A3 ) @ ( groups1681761925125756287l_real @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8110_prod__mono2,axiom,
    ! [B5: set_int,A3: set_int,F: int > real] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ! [B4: int] :
              ( ( member_int @ B4 @ ( minus_minus_set_int @ B5 @ A3 ) )
             => ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ A3 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ A5 ) ) )
           => ( ord_less_eq_real @ ( groups2316167850115554303t_real @ F @ A3 ) @ ( groups2316167850115554303t_real @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8111_prod__mono2,axiom,
    ! [B5: set_complex,A3: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B5 )
     => ( ( ord_le211207098394363844omplex @ A3 @ B5 )
       => ( ! [B4: complex] :
              ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B5 @ A3 ) )
             => ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ A3 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ A5 ) ) )
           => ( ord_less_eq_real @ ( groups766887009212190081x_real @ F @ A3 ) @ ( groups766887009212190081x_real @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8112_prod__mono2,axiom,
    ! [B5: set_Extended_enat,A3: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ B5 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ B5 )
       => ( ! [B4: extended_enat] :
              ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ B5 @ A3 ) )
             => ( ord_less_eq_real @ one_one_real @ ( F @ B4 ) ) )
         => ( ! [A5: extended_enat] :
                ( ( member_Extended_enat @ A5 @ A3 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ A5 ) ) )
           => ( ord_less_eq_real @ ( groups97031904164794029t_real @ F @ A3 ) @ ( groups97031904164794029t_real @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8113_prod__mono2,axiom,
    ! [B5: set_real,A3: set_real,F: real > rat] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ! [B4: real] :
              ( ( member_real @ B4 @ ( minus_minus_set_real @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ A3 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A5 ) ) )
           => ( ord_less_eq_rat @ ( groups4061424788464935467al_rat @ F @ A3 ) @ ( groups4061424788464935467al_rat @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8114_prod__mono2,axiom,
    ! [B5: set_int,A3: set_int,F: int > rat] :
      ( ( finite_finite_int @ B5 )
     => ( ( ord_less_eq_set_int @ A3 @ B5 )
       => ( ! [B4: int] :
              ( ( member_int @ B4 @ ( minus_minus_set_int @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
         => ( ! [A5: int] :
                ( ( member_int @ A5 @ A3 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A5 ) ) )
           => ( ord_less_eq_rat @ ( groups1072433553688619179nt_rat @ F @ A3 ) @ ( groups1072433553688619179nt_rat @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8115_prod__mono2,axiom,
    ! [B5: set_complex,A3: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B5 )
     => ( ( ord_le211207098394363844omplex @ A3 @ B5 )
       => ( ! [B4: complex] :
              ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ A3 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A5 ) ) )
           => ( ord_less_eq_rat @ ( groups225925009352817453ex_rat @ F @ A3 ) @ ( groups225925009352817453ex_rat @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8116_prod__mono2,axiom,
    ! [B5: set_Extended_enat,A3: set_Extended_enat,F: extended_enat > rat] :
      ( ( finite4001608067531595151d_enat @ B5 )
     => ( ( ord_le7203529160286727270d_enat @ A3 @ B5 )
       => ( ! [B4: extended_enat] :
              ( ( member_Extended_enat @ B4 @ ( minus_925952699566721837d_enat @ B5 @ A3 ) )
             => ( ord_less_eq_rat @ one_one_rat @ ( F @ B4 ) ) )
         => ( ! [A5: extended_enat] :
                ( ( member_Extended_enat @ A5 @ A3 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ A5 ) ) )
           => ( ord_less_eq_rat @ ( groups2245840878043517529at_rat @ F @ A3 ) @ ( groups2245840878043517529at_rat @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8117_prod__mono2,axiom,
    ! [B5: set_real,A3: set_real,F: real > int] :
      ( ( finite_finite_real @ B5 )
     => ( ( ord_less_eq_set_real @ A3 @ B5 )
       => ( ! [B4: real] :
              ( ( member_real @ B4 @ ( minus_minus_set_real @ B5 @ A3 ) )
             => ( ord_less_eq_int @ one_one_int @ ( F @ B4 ) ) )
         => ( ! [A5: real] :
                ( ( member_real @ A5 @ A3 )
               => ( ord_less_eq_int @ zero_zero_int @ ( F @ A5 ) ) )
           => ( ord_less_eq_int @ ( groups4694064378042380927al_int @ F @ A3 ) @ ( groups4694064378042380927al_int @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8118_prod__mono2,axiom,
    ! [B5: set_complex,A3: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ B5 )
     => ( ( ord_le211207098394363844omplex @ A3 @ B5 )
       => ( ! [B4: complex] :
              ( ( member_complex @ B4 @ ( minus_811609699411566653omplex @ B5 @ A3 ) )
             => ( ord_less_eq_int @ one_one_int @ ( F @ B4 ) ) )
         => ( ! [A5: complex] :
                ( ( member_complex @ A5 @ A3 )
               => ( ord_less_eq_int @ zero_zero_int @ ( F @ A5 ) ) )
           => ( ord_less_eq_int @ ( groups858564598930262913ex_int @ F @ A3 ) @ ( groups858564598930262913ex_int @ F @ B5 ) ) ) ) ) ) ).

% prod_mono2
thf(fact_8119_sum__natinterval__diff,axiom,
    ! [M: nat,N: nat,F: nat > rat] :
      ( ( ( ord_less_eq_nat @ M @ N )
       => ( ( groups2906978787729119204at_rat
            @ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = ( minus_minus_rat @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N )
       => ( ( groups2906978787729119204at_rat
            @ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = zero_zero_rat ) ) ) ).

% sum_natinterval_diff
thf(fact_8120_sum__natinterval__diff,axiom,
    ! [M: nat,N: nat,F: nat > int] :
      ( ( ( ord_less_eq_nat @ M @ N )
       => ( ( groups3539618377306564664at_int
            @ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = ( minus_minus_int @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N )
       => ( ( groups3539618377306564664at_int
            @ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = zero_zero_int ) ) ) ).

% sum_natinterval_diff
thf(fact_8121_sum__natinterval__diff,axiom,
    ! [M: nat,N: nat,F: nat > real] :
      ( ( ( ord_less_eq_nat @ M @ N )
       => ( ( groups6591440286371151544t_real
            @ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = ( minus_minus_real @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N )
       => ( ( groups6591440286371151544t_real
            @ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N ) )
          = zero_zero_real ) ) ) ).

% sum_natinterval_diff
thf(fact_8122_sum__telescope_H_H,axiom,
    ! [M: nat,N: nat,F: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups2906978787729119204at_rat
          @ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
        = ( minus_minus_rat @ ( F @ N ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_8123_sum__telescope_H_H,axiom,
    ! [M: nat,N: nat,F: nat > int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3539618377306564664at_int
          @ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
        = ( minus_minus_int @ ( F @ N ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_8124_sum__telescope_H_H,axiom,
    ! [M: nat,N: nat,F: nat > real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups6591440286371151544t_real
          @ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
        = ( minus_minus_real @ ( F @ N ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_8125_prod__diff1,axiom,
    ! [A3: set_complex,F: complex > complex,A: complex] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ( F @ A )
         != zero_zero_complex )
       => ( ( ( member_complex @ A @ A3 )
           => ( ( groups3708469109370488835omplex @ F @ ( minus_811609699411566653omplex @ A3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
              = ( divide1717551699836669952omplex @ ( groups3708469109370488835omplex @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_complex @ A @ A3 )
           => ( ( groups3708469109370488835omplex @ F @ ( minus_811609699411566653omplex @ A3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
              = ( groups3708469109370488835omplex @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8126_prod__diff1,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > complex,A: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( ( F @ A )
         != zero_zero_complex )
       => ( ( ( member_Extended_enat @ A @ A3 )
           => ( ( groups4622424608036095791omplex @ F @ ( minus_925952699566721837d_enat @ A3 @ ( insert_Extended_enat @ A @ bot_bo7653980558646680370d_enat ) ) )
              = ( divide1717551699836669952omplex @ ( groups4622424608036095791omplex @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_Extended_enat @ A @ A3 )
           => ( ( groups4622424608036095791omplex @ F @ ( minus_925952699566721837d_enat @ A3 @ ( insert_Extended_enat @ A @ bot_bo7653980558646680370d_enat ) ) )
              = ( groups4622424608036095791omplex @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8127_prod__diff1,axiom,
    ! [A3: set_real,F: real > complex,A: real] :
      ( ( finite_finite_real @ A3 )
     => ( ( ( F @ A )
         != zero_zero_complex )
       => ( ( ( member_real @ A @ A3 )
           => ( ( groups713298508707869441omplex @ F @ ( minus_minus_set_real @ A3 @ ( insert_real @ A @ bot_bot_set_real ) ) )
              = ( divide1717551699836669952omplex @ ( groups713298508707869441omplex @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_real @ A @ A3 )
           => ( ( groups713298508707869441omplex @ F @ ( minus_minus_set_real @ A3 @ ( insert_real @ A @ bot_bot_set_real ) ) )
              = ( groups713298508707869441omplex @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8128_prod__diff1,axiom,
    ! [A3: set_int,F: int > complex,A: int] :
      ( ( finite_finite_int @ A3 )
     => ( ( ( F @ A )
         != zero_zero_complex )
       => ( ( ( member_int @ A @ A3 )
           => ( ( groups7440179247065528705omplex @ F @ ( minus_minus_set_int @ A3 @ ( insert_int @ A @ bot_bot_set_int ) ) )
              = ( divide1717551699836669952omplex @ ( groups7440179247065528705omplex @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_int @ A @ A3 )
           => ( ( groups7440179247065528705omplex @ F @ ( minus_minus_set_int @ A3 @ ( insert_int @ A @ bot_bot_set_int ) ) )
              = ( groups7440179247065528705omplex @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8129_prod__diff1,axiom,
    ! [A3: set_nat,F: nat > complex,A: nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ( F @ A )
         != zero_zero_complex )
       => ( ( ( member_nat @ A @ A3 )
           => ( ( groups6464643781859351333omplex @ F @ ( minus_minus_set_nat @ A3 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = ( divide1717551699836669952omplex @ ( groups6464643781859351333omplex @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_nat @ A @ A3 )
           => ( ( groups6464643781859351333omplex @ F @ ( minus_minus_set_nat @ A3 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = ( groups6464643781859351333omplex @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8130_prod__diff1,axiom,
    ! [A3: set_complex,F: complex > real,A: complex] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ( F @ A )
         != zero_zero_real )
       => ( ( ( member_complex @ A @ A3 )
           => ( ( groups766887009212190081x_real @ F @ ( minus_811609699411566653omplex @ A3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
              = ( divide_divide_real @ ( groups766887009212190081x_real @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_complex @ A @ A3 )
           => ( ( groups766887009212190081x_real @ F @ ( minus_811609699411566653omplex @ A3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
              = ( groups766887009212190081x_real @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8131_prod__diff1,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > real,A: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( ( F @ A )
         != zero_zero_real )
       => ( ( ( member_Extended_enat @ A @ A3 )
           => ( ( groups97031904164794029t_real @ F @ ( minus_925952699566721837d_enat @ A3 @ ( insert_Extended_enat @ A @ bot_bo7653980558646680370d_enat ) ) )
              = ( divide_divide_real @ ( groups97031904164794029t_real @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_Extended_enat @ A @ A3 )
           => ( ( groups97031904164794029t_real @ F @ ( minus_925952699566721837d_enat @ A3 @ ( insert_Extended_enat @ A @ bot_bo7653980558646680370d_enat ) ) )
              = ( groups97031904164794029t_real @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8132_prod__diff1,axiom,
    ! [A3: set_real,F: real > real,A: real] :
      ( ( finite_finite_real @ A3 )
     => ( ( ( F @ A )
         != zero_zero_real )
       => ( ( ( member_real @ A @ A3 )
           => ( ( groups1681761925125756287l_real @ F @ ( minus_minus_set_real @ A3 @ ( insert_real @ A @ bot_bot_set_real ) ) )
              = ( divide_divide_real @ ( groups1681761925125756287l_real @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_real @ A @ A3 )
           => ( ( groups1681761925125756287l_real @ F @ ( minus_minus_set_real @ A3 @ ( insert_real @ A @ bot_bot_set_real ) ) )
              = ( groups1681761925125756287l_real @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8133_prod__diff1,axiom,
    ! [A3: set_int,F: int > real,A: int] :
      ( ( finite_finite_int @ A3 )
     => ( ( ( F @ A )
         != zero_zero_real )
       => ( ( ( member_int @ A @ A3 )
           => ( ( groups2316167850115554303t_real @ F @ ( minus_minus_set_int @ A3 @ ( insert_int @ A @ bot_bot_set_int ) ) )
              = ( divide_divide_real @ ( groups2316167850115554303t_real @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_int @ A @ A3 )
           => ( ( groups2316167850115554303t_real @ F @ ( minus_minus_set_int @ A3 @ ( insert_int @ A @ bot_bot_set_int ) ) )
              = ( groups2316167850115554303t_real @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8134_prod__diff1,axiom,
    ! [A3: set_nat,F: nat > real,A: nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ( F @ A )
         != zero_zero_real )
       => ( ( ( member_nat @ A @ A3 )
           => ( ( groups129246275422532515t_real @ F @ ( minus_minus_set_nat @ A3 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = ( divide_divide_real @ ( groups129246275422532515t_real @ F @ A3 ) @ ( F @ A ) ) ) )
          & ( ~ ( member_nat @ A @ A3 )
           => ( ( groups129246275422532515t_real @ F @ ( minus_minus_set_nat @ A3 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = ( groups129246275422532515t_real @ F @ A3 ) ) ) ) ) ) ).

% prod_diff1
thf(fact_8135_summable__partial__sum__bound,axiom,
    ! [F: nat > complex,E2: real] :
      ( ( summable_complex @ F )
     => ( ( ord_less_real @ zero_zero_real @ E2 )
       => ~ ! [N7: nat] :
              ~ ! [M2: nat] :
                  ( ( ord_less_eq_nat @ N7 @ M2 )
                 => ! [N8: nat] : ( ord_less_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ M2 @ N8 ) ) ) @ E2 ) ) ) ) ).

% summable_partial_sum_bound
thf(fact_8136_summable__partial__sum__bound,axiom,
    ! [F: nat > real,E2: real] :
      ( ( summable_real @ F )
     => ( ( ord_less_real @ zero_zero_real @ E2 )
       => ~ ! [N7: nat] :
              ~ ! [M2: nat] :
                  ( ( ord_less_eq_nat @ N7 @ M2 )
                 => ! [N8: nat] : ( ord_less_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ M2 @ N8 ) ) ) @ E2 ) ) ) ) ).

% summable_partial_sum_bound
thf(fact_8137_mask__eq__sum__exp,axiom,
    ! [N: nat] :
      ( ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int )
      = ( groups3539618377306564664at_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_8138_mask__eq__sum__exp,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_8139_sum__gp__multiplied,axiom,
    ! [M: nat,N: nat,X3: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
        = ( minus_minus_complex @ ( power_power_complex @ X3 @ M ) @ ( power_power_complex @ X3 @ ( suc @ N ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_8140_sum__gp__multiplied,axiom,
    ! [M: nat,N: nat,X3: rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
        = ( minus_minus_rat @ ( power_power_rat @ X3 @ M ) @ ( power_power_rat @ X3 @ ( suc @ N ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_8141_sum__gp__multiplied,axiom,
    ! [M: nat,N: nat,X3: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
        = ( minus_minus_int @ ( power_power_int @ X3 @ M ) @ ( power_power_int @ X3 @ ( suc @ N ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_8142_sum__gp__multiplied,axiom,
    ! [M: nat,N: nat,X3: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) )
        = ( minus_minus_real @ ( power_power_real @ X3 @ M ) @ ( power_power_real @ X3 @ ( suc @ N ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_8143_sum_Oin__pairs,axiom,
    ! [G: nat > rat,M: nat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% sum.in_pairs
thf(fact_8144_sum_Oin__pairs,axiom,
    ! [G: nat > int,M: nat,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% sum.in_pairs
thf(fact_8145_sum_Oin__pairs,axiom,
    ! [G: nat > nat,M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% sum.in_pairs
thf(fact_8146_sum_Oin__pairs,axiom,
    ! [G: nat > real,M: nat,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% sum.in_pairs
thf(fact_8147_complex__norm,axiom,
    ! [X3: real,Y3: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ X3 @ Y3 ) )
      = ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_norm
thf(fact_8148_mask__eq__sum__exp__nat,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q5: nat] : ( ord_less_nat @ Q5 @ N ) ) ) ) ).

% mask_eq_sum_exp_nat
thf(fact_8149_gauss__sum__nat,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_nat
thf(fact_8150_double__arith__series,axiom,
    ! [A: complex,D3: complex,N: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
        @ ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( plus_plus_complex @ A @ ( times_times_complex @ ( semiri8010041392384452111omplex @ I4 ) @ D3 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ D3 ) ) ) ) ).

% double_arith_series
thf(fact_8151_double__arith__series,axiom,
    ! [A: rat,D3: rat,N: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( plus_plus_rat @ A @ ( times_times_rat @ ( semiri681578069525770553at_rat @ I4 ) @ D3 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ D3 ) ) ) ) ).

% double_arith_series
thf(fact_8152_double__arith__series,axiom,
    ! [A: int,D3: int,N: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I4 ) @ D3 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ D3 ) ) ) ) ).

% double_arith_series
thf(fact_8153_double__arith__series,axiom,
    ! [A: nat,D3: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I4 ) @ D3 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ D3 ) ) ) ) ).

% double_arith_series
thf(fact_8154_double__arith__series,axiom,
    ! [A: real,D3: real,N: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( plus_plus_real @ A @ ( times_times_real @ ( semiri5074537144036343181t_real @ I4 ) @ D3 ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ D3 ) ) ) ) ).

% double_arith_series
thf(fact_8155_double__gauss__sum,axiom,
    ! [N: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) ) ).

% double_gauss_sum
thf(fact_8156_double__gauss__sum,axiom,
    ! [N: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) ) ).

% double_gauss_sum
thf(fact_8157_double__gauss__sum,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ).

% double_gauss_sum
thf(fact_8158_double__gauss__sum,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) ) ).

% double_gauss_sum
thf(fact_8159_double__gauss__sum,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) ) ).

% double_gauss_sum
thf(fact_8160_arith__series__nat,axiom,
    ! [A: nat,D3: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I4 @ D3 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N @ D3 ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series_nat
thf(fact_8161_Sum__Icc__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or1269000886237332187st_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( plus_plus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Icc_nat
thf(fact_8162_arcsin__lt__bounded,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_real @ Y3 @ one_one_real )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
          & ( ord_less_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_lt_bounded
thf(fact_8163_arcsin__bounded,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_bounded
thf(fact_8164_arcsin__ubound,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ord_less_eq_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arcsin_ubound
thf(fact_8165_arcsin__lbound,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) ) ) ) ).

% arcsin_lbound
thf(fact_8166_arcsin__sin,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arcsin @ ( sin_real @ X3 ) )
          = X3 ) ) ) ).

% arcsin_sin
thf(fact_8167_double__gauss__sum__from__Suc__0,axiom,
    ! [N: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_8168_double__gauss__sum__from__Suc__0,axiom,
    ! [N: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_8169_double__gauss__sum__from__Suc__0,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_8170_double__gauss__sum__from__Suc__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_8171_double__gauss__sum__from__Suc__0,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_8172_gauss__sum,axiom,
    ! [N: nat] :
      ( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% gauss_sum
thf(fact_8173_gauss__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum
thf(fact_8174_arith__series,axiom,
    ! [A: int,D3: int,N: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I4 ) @ D3 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_int @ ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ D3 ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% arith_series
thf(fact_8175_arith__series,axiom,
    ! [A: nat,D3: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I4 ) @ D3 ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ D3 ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series
thf(fact_8176_sum__gp__offset,axiom,
    ! [X3: complex,M: nat,N: nat] :
      ( ( ( X3 = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
          = ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N ) @ one_one_complex ) ) )
      & ( ( X3 != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ X3 @ M ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ ( suc @ N ) ) ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ).

% sum_gp_offset
thf(fact_8177_sum__gp__offset,axiom,
    ! [X3: rat,M: nat,N: nat] :
      ( ( ( X3 = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
          = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N ) @ one_one_rat ) ) )
      & ( ( X3 != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
          = ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ X3 @ M ) @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ ( suc @ N ) ) ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ).

% sum_gp_offset
thf(fact_8178_sum__gp__offset,axiom,
    ! [X3: real,M: nat,N: nat] :
      ( ( ( X3 = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
          = ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) ) )
      & ( ( X3 != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N ) ) )
          = ( divide_divide_real @ ( times_times_real @ ( power_power_real @ X3 @ M ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( suc @ N ) ) ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ).

% sum_gp_offset
thf(fact_8179_arcsin,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( sin_real @ ( arcsin @ Y3 ) )
            = Y3 ) ) ) ) ).

% arcsin
thf(fact_8180_arcsin__pi,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y3 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y3 ) @ pi )
          & ( ( sin_real @ ( arcsin @ Y3 ) )
            = Y3 ) ) ) ) ).

% arcsin_pi
thf(fact_8181_arcsin__le__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( arcsin @ X3 ) @ Y3 )
              = ( ord_less_eq_real @ X3 @ ( sin_real @ Y3 ) ) ) ) ) ) ) ).

% arcsin_le_iff
thf(fact_8182_le__arcsin__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y3 )
         => ( ( ord_less_eq_real @ Y3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ Y3 @ ( arcsin @ X3 ) )
              = ( ord_less_eq_real @ ( sin_real @ Y3 ) @ X3 ) ) ) ) ) ) ).

% le_arcsin_iff
thf(fact_8183_gauss__sum__from__Suc__0,axiom,
    ! [N: nat] :
      ( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_from_Suc_0
thf(fact_8184_gauss__sum__from__Suc__0,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_from_Suc_0
thf(fact_8185_finite__Collect__le__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N3: nat] : ( ord_less_eq_nat @ N3 @ K ) ) ) ).

% finite_Collect_le_nat
thf(fact_8186_finite__Collect__less__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N3: nat] : ( ord_less_nat @ N3 @ K ) ) ) ).

% finite_Collect_less_nat
thf(fact_8187_set__encode__insert,axiom,
    ! [A3: set_nat,N: nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ~ ( member_nat @ N @ A3 )
       => ( ( nat_set_encode @ ( insert_nat @ N @ A3 ) )
          = ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( nat_set_encode @ A3 ) ) ) ) ) ).

% set_encode_insert
thf(fact_8188_lemma__termdiff2,axiom,
    ! [H2: complex,Z: complex,N: nat] :
      ( ( H2 != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N ) @ ( power_power_complex @ Z @ N ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_complex @ H2
          @ ( groups2073611262835488442omplex
            @ ^ [P5: nat] :
                ( groups2073611262835488442omplex
                @ ^ [Q5: nat] : ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ Q5 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q5 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_8189_lemma__termdiff2,axiom,
    ! [H2: rat,Z: rat,N: nat] :
      ( ( H2 != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ N ) @ ( power_power_rat @ Z @ N ) ) @ H2 ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_rat @ H2
          @ ( groups2906978787729119204at_rat
            @ ^ [P5: nat] :
                ( groups2906978787729119204at_rat
                @ ^ [Q5: nat] : ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ Q5 ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q5 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_8190_lemma__termdiff2,axiom,
    ! [H2: real,Z: real,N: nat] :
      ( ( H2 != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N ) @ ( power_power_real @ Z @ N ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_real @ H2
          @ ( groups6591440286371151544t_real
            @ ^ [P5: nat] :
                ( groups6591440286371151544t_real
                @ ^ [Q5: nat] : ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ Q5 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q5 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_8191_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I4: nat] :
                ( if_complex
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 )
                @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I4 ) )
                @ zero_zero_complex )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_8192_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] :
                ( if_rat
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 )
                @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I4 ) )
                @ zero_zero_rat )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_8193_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] :
                ( if_int
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 )
                @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I4 ) )
                @ zero_zero_int )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_8194_choose__odd__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] :
                ( if_real
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 )
                @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I4 ) )
                @ zero_zero_real )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_odd_sum
thf(fact_8195_finite__interval__int1,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_eq_int @ A @ I4 )
            & ( ord_less_eq_int @ I4 @ B ) ) ) ) ).

% finite_interval_int1
thf(fact_8196_finite__interval__int4,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int4
thf(fact_8197_lessThan__iff,axiom,
    ! [I: set_nat,K: set_nat] :
      ( ( member_set_nat @ I @ ( set_or890127255671739683et_nat @ K ) )
      = ( ord_less_set_nat @ I @ K ) ) ).

% lessThan_iff
thf(fact_8198_lessThan__iff,axiom,
    ! [I: rat,K: rat] :
      ( ( member_rat @ I @ ( set_ord_lessThan_rat @ K ) )
      = ( ord_less_rat @ I @ K ) ) ).

% lessThan_iff
thf(fact_8199_lessThan__iff,axiom,
    ! [I: num,K: num] :
      ( ( member_num @ I @ ( set_ord_lessThan_num @ K ) )
      = ( ord_less_num @ I @ K ) ) ).

% lessThan_iff
thf(fact_8200_lessThan__iff,axiom,
    ! [I: int,K: int] :
      ( ( member_int @ I @ ( set_ord_lessThan_int @ K ) )
      = ( ord_less_int @ I @ K ) ) ).

% lessThan_iff
thf(fact_8201_lessThan__iff,axiom,
    ! [I: nat,K: nat] :
      ( ( member_nat @ I @ ( set_ord_lessThan_nat @ K ) )
      = ( ord_less_nat @ I @ K ) ) ).

% lessThan_iff
thf(fact_8202_lessThan__iff,axiom,
    ! [I: real,K: real] :
      ( ( member_real @ I @ ( set_or5984915006950818249n_real @ K ) )
      = ( ord_less_real @ I @ K ) ) ).

% lessThan_iff
thf(fact_8203_atMost__iff,axiom,
    ! [I: real,K: real] :
      ( ( member_real @ I @ ( set_ord_atMost_real @ K ) )
      = ( ord_less_eq_real @ I @ K ) ) ).

% atMost_iff
thf(fact_8204_atMost__iff,axiom,
    ! [I: set_nat,K: set_nat] :
      ( ( member_set_nat @ I @ ( set_or4236626031148496127et_nat @ K ) )
      = ( ord_less_eq_set_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_8205_atMost__iff,axiom,
    ! [I: rat,K: rat] :
      ( ( member_rat @ I @ ( set_ord_atMost_rat @ K ) )
      = ( ord_less_eq_rat @ I @ K ) ) ).

% atMost_iff
thf(fact_8206_atMost__iff,axiom,
    ! [I: num,K: num] :
      ( ( member_num @ I @ ( set_ord_atMost_num @ K ) )
      = ( ord_less_eq_num @ I @ K ) ) ).

% atMost_iff
thf(fact_8207_atMost__iff,axiom,
    ! [I: int,K: int] :
      ( ( member_int @ I @ ( set_ord_atMost_int @ K ) )
      = ( ord_less_eq_int @ I @ K ) ) ).

% atMost_iff
thf(fact_8208_atMost__iff,axiom,
    ! [I: nat,K: nat] :
      ( ( member_nat @ I @ ( set_ord_atMost_nat @ K ) )
      = ( ord_less_eq_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_8209_finite__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z6: complex] :
              ( ( power_power_complex @ Z6 @ N )
              = C ) ) ) ) ).

% finite_nth_roots
thf(fact_8210_finite__interval__int2,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_eq_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int2
thf(fact_8211_finite__interval__int3,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_eq_int @ I4 @ B ) ) ) ) ).

% finite_interval_int3
thf(fact_8212_lessThan__subset__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_lessThan_rat @ X3 ) @ ( set_ord_lessThan_rat @ Y3 ) )
      = ( ord_less_eq_rat @ X3 @ Y3 ) ) ).

% lessThan_subset_iff
thf(fact_8213_lessThan__subset__iff,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_lessThan_num @ X3 ) @ ( set_ord_lessThan_num @ Y3 ) )
      = ( ord_less_eq_num @ X3 @ Y3 ) ) ).

% lessThan_subset_iff
thf(fact_8214_lessThan__subset__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_lessThan_int @ X3 ) @ ( set_ord_lessThan_int @ Y3 ) )
      = ( ord_less_eq_int @ X3 @ Y3 ) ) ).

% lessThan_subset_iff
thf(fact_8215_lessThan__subset__iff,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X3 ) @ ( set_ord_lessThan_nat @ Y3 ) )
      = ( ord_less_eq_nat @ X3 @ Y3 ) ) ).

% lessThan_subset_iff
thf(fact_8216_lessThan__subset__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_set_real @ ( set_or5984915006950818249n_real @ X3 ) @ ( set_or5984915006950818249n_real @ Y3 ) )
      = ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% lessThan_subset_iff
thf(fact_8217_atMost__subset__iff,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_or4236626031148496127et_nat @ X3 ) @ ( set_or4236626031148496127et_nat @ Y3 ) )
      = ( ord_less_eq_set_nat @ X3 @ Y3 ) ) ).

% atMost_subset_iff
thf(fact_8218_atMost__subset__iff,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ X3 ) @ ( set_ord_atMost_rat @ Y3 ) )
      = ( ord_less_eq_rat @ X3 @ Y3 ) ) ).

% atMost_subset_iff
thf(fact_8219_atMost__subset__iff,axiom,
    ! [X3: num,Y3: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ X3 ) @ ( set_ord_atMost_num @ Y3 ) )
      = ( ord_less_eq_num @ X3 @ Y3 ) ) ).

% atMost_subset_iff
thf(fact_8220_atMost__subset__iff,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X3 ) @ ( set_ord_atMost_int @ Y3 ) )
      = ( ord_less_eq_int @ X3 @ Y3 ) ) ).

% atMost_subset_iff
thf(fact_8221_atMost__subset__iff,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X3 ) @ ( set_ord_atMost_nat @ Y3 ) )
      = ( ord_less_eq_nat @ X3 @ Y3 ) ) ).

% atMost_subset_iff
thf(fact_8222_lessThan__0,axiom,
    ( ( set_ord_lessThan_nat @ zero_zero_nat )
    = bot_bot_set_nat ) ).

% lessThan_0
thf(fact_8223_set__encode__empty,axiom,
    ( ( nat_set_encode @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% set_encode_empty
thf(fact_8224_Icc__subset__Iic__iff,axiom,
    ! [L: set_nat,H2: set_nat,H3: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_or4548717258645045905et_nat @ L @ H2 ) @ ( set_or4236626031148496127et_nat @ H3 ) )
      = ( ~ ( ord_less_eq_set_nat @ L @ H2 )
        | ( ord_less_eq_set_nat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8225_Icc__subset__Iic__iff,axiom,
    ! [L: rat,H2: rat,H3: rat] :
      ( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ L @ H2 ) @ ( set_ord_atMost_rat @ H3 ) )
      = ( ~ ( ord_less_eq_rat @ L @ H2 )
        | ( ord_less_eq_rat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8226_Icc__subset__Iic__iff,axiom,
    ! [L: num,H2: num,H3: num] :
      ( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ L @ H2 ) @ ( set_ord_atMost_num @ H3 ) )
      = ( ~ ( ord_less_eq_num @ L @ H2 )
        | ( ord_less_eq_num @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8227_Icc__subset__Iic__iff,axiom,
    ! [L: nat,H2: nat,H3: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ L @ H2 ) @ ( set_ord_atMost_nat @ H3 ) )
      = ( ~ ( ord_less_eq_nat @ L @ H2 )
        | ( ord_less_eq_nat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8228_Icc__subset__Iic__iff,axiom,
    ! [L: int,H2: int,H3: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ L @ H2 ) @ ( set_ord_atMost_int @ H3 ) )
      = ( ~ ( ord_less_eq_int @ L @ H2 )
        | ( ord_less_eq_int @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8229_Icc__subset__Iic__iff,axiom,
    ! [L: real,H2: real,H3: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ L @ H2 ) @ ( set_ord_atMost_real @ H3 ) )
      = ( ~ ( ord_less_eq_real @ L @ H2 )
        | ( ord_less_eq_real @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8230_atMost__0,axiom,
    ( ( set_ord_atMost_nat @ zero_zero_nat )
    = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).

% atMost_0
thf(fact_8231_int__sum,axiom,
    ! [F: int > nat,A3: set_int] :
      ( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A3 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% int_sum
thf(fact_8232_int__sum,axiom,
    ! [F: nat > nat,A3: set_nat] :
      ( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups3539618377306564664at_int
        @ ^ [X: nat] : ( semiri1314217659103216013at_int @ ( F @ X ) )
        @ A3 ) ) ).

% int_sum
thf(fact_8233_Complex__sum_H,axiom,
    ! [F: nat > real,S: set_nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [X: nat] : ( complex2 @ ( F @ X ) @ zero_zero_real )
        @ S )
      = ( complex2 @ ( groups6591440286371151544t_real @ F @ S ) @ zero_zero_real ) ) ).

% Complex_sum'
thf(fact_8234_Complex__sum_H,axiom,
    ! [F: complex > real,S: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( complex2 @ ( F @ X ) @ zero_zero_real )
        @ S )
      = ( complex2 @ ( groups5808333547571424918x_real @ F @ S ) @ zero_zero_real ) ) ).

% Complex_sum'
thf(fact_8235_sum__diff__distrib,axiom,
    ! [Q: real > nat,P: real > nat,N: real] :
      ( ! [X4: real] : ( ord_less_eq_nat @ ( Q @ X4 ) @ ( P @ X4 ) )
     => ( ( minus_minus_nat @ ( groups1935376822645274424al_nat @ P @ ( set_or5984915006950818249n_real @ N ) ) @ ( groups1935376822645274424al_nat @ Q @ ( set_or5984915006950818249n_real @ N ) ) )
        = ( groups1935376822645274424al_nat
          @ ^ [X: real] : ( minus_minus_nat @ ( P @ X ) @ ( Q @ X ) )
          @ ( set_or5984915006950818249n_real @ N ) ) ) ) ).

% sum_diff_distrib
thf(fact_8236_sum__diff__distrib,axiom,
    ! [Q: nat > nat,P: nat > nat,N: nat] :
      ( ! [X4: nat] : ( ord_less_eq_nat @ ( Q @ X4 ) @ ( P @ X4 ) )
     => ( ( minus_minus_nat @ ( groups3542108847815614940at_nat @ P @ ( set_ord_lessThan_nat @ N ) ) @ ( groups3542108847815614940at_nat @ Q @ ( set_ord_lessThan_nat @ N ) ) )
        = ( groups3542108847815614940at_nat
          @ ^ [X: nat] : ( minus_minus_nat @ ( P @ X ) @ ( Q @ X ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum_diff_distrib
thf(fact_8237_Iic__subset__Iio__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ A ) @ ( set_ord_lessThan_rat @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8238_Iic__subset__Iio__iff,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ A ) @ ( set_ord_lessThan_num @ B ) )
      = ( ord_less_num @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8239_Iic__subset__Iio__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ A ) @ ( set_ord_lessThan_int @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8240_Iic__subset__Iio__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ A ) @ ( set_ord_lessThan_nat @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8241_Iic__subset__Iio__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_set_real @ ( set_ord_atMost_real @ A ) @ ( set_or5984915006950818249n_real @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8242_lessThan__def,axiom,
    ( set_or890127255671739683et_nat
    = ( ^ [U2: set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] : ( ord_less_set_nat @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_8243_lessThan__def,axiom,
    ( set_ord_lessThan_rat
    = ( ^ [U2: rat] :
          ( collect_rat
          @ ^ [X: rat] : ( ord_less_rat @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_8244_lessThan__def,axiom,
    ( set_ord_lessThan_num
    = ( ^ [U2: num] :
          ( collect_num
          @ ^ [X: num] : ( ord_less_num @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_8245_lessThan__def,axiom,
    ( set_ord_lessThan_int
    = ( ^ [U2: int] :
          ( collect_int
          @ ^ [X: int] : ( ord_less_int @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_8246_lessThan__def,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [U2: nat] :
          ( collect_nat
          @ ^ [X: nat] : ( ord_less_nat @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_8247_lessThan__def,axiom,
    ( set_or5984915006950818249n_real
    = ( ^ [U2: real] :
          ( collect_real
          @ ^ [X: real] : ( ord_less_real @ X @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_8248_atMost__def,axiom,
    ( set_ord_atMost_real
    = ( ^ [U2: real] :
          ( collect_real
          @ ^ [X: real] : ( ord_less_eq_real @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8249_atMost__def,axiom,
    ( set_or4236626031148496127et_nat
    = ( ^ [U2: set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] : ( ord_less_eq_set_nat @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8250_atMost__def,axiom,
    ( set_ord_atMost_rat
    = ( ^ [U2: rat] :
          ( collect_rat
          @ ^ [X: rat] : ( ord_less_eq_rat @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8251_atMost__def,axiom,
    ( set_ord_atMost_num
    = ( ^ [U2: num] :
          ( collect_num
          @ ^ [X: num] : ( ord_less_eq_num @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8252_atMost__def,axiom,
    ( set_ord_atMost_int
    = ( ^ [U2: int] :
          ( collect_int
          @ ^ [X: int] : ( ord_less_eq_int @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8253_atMost__def,axiom,
    ( set_ord_atMost_nat
    = ( ^ [U2: nat] :
          ( collect_nat
          @ ^ [X: nat] : ( ord_less_eq_nat @ X @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8254_sum_OatMost__shift,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.atMost_shift
thf(fact_8255_sum_OatMost__shift,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.atMost_shift
thf(fact_8256_sum_OatMost__shift,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.atMost_shift
thf(fact_8257_sum_OatMost__shift,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.atMost_shift
thf(fact_8258_prod_OatMost__shift,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_real @ ( G @ zero_zero_nat )
        @ ( groups129246275422532515t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.atMost_shift
thf(fact_8259_prod_OatMost__shift,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_rat @ ( G @ zero_zero_nat )
        @ ( groups73079841787564623at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.atMost_shift
thf(fact_8260_prod_OatMost__shift,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_int @ ( G @ zero_zero_nat )
        @ ( groups705719431365010083at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.atMost_shift
thf(fact_8261_prod_OatMost__shift,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_nat @ ( G @ zero_zero_nat )
        @ ( groups708209901874060359at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.atMost_shift
thf(fact_8262_atMost__atLeast0,axiom,
    ( set_ord_atMost_nat
    = ( set_or1269000886237332187st_nat @ zero_zero_nat ) ) ).

% atMost_atLeast0
thf(fact_8263_lessThan__strict__subset__iff,axiom,
    ! [M: rat,N: rat] :
      ( ( ord_less_set_rat @ ( set_ord_lessThan_rat @ M ) @ ( set_ord_lessThan_rat @ N ) )
      = ( ord_less_rat @ M @ N ) ) ).

% lessThan_strict_subset_iff
thf(fact_8264_lessThan__strict__subset__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_set_num @ ( set_ord_lessThan_num @ M ) @ ( set_ord_lessThan_num @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% lessThan_strict_subset_iff
thf(fact_8265_lessThan__strict__subset__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_set_int @ ( set_ord_lessThan_int @ M ) @ ( set_ord_lessThan_int @ N ) )
      = ( ord_less_int @ M @ N ) ) ).

% lessThan_strict_subset_iff
thf(fact_8266_lessThan__strict__subset__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_set_nat @ ( set_ord_lessThan_nat @ M ) @ ( set_ord_lessThan_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% lessThan_strict_subset_iff
thf(fact_8267_lessThan__strict__subset__iff,axiom,
    ! [M: real,N: real] :
      ( ( ord_less_set_real @ ( set_or5984915006950818249n_real @ M ) @ ( set_or5984915006950818249n_real @ N ) )
      = ( ord_less_real @ M @ N ) ) ).

% lessThan_strict_subset_iff
thf(fact_8268_finite__maxlen,axiom,
    ! [M7: set_list_VEBT_VEBT] :
      ( ( finite3004134309566078307T_VEBT @ M7 )
     => ? [N2: nat] :
        ! [X6: list_VEBT_VEBT] :
          ( ( member2936631157270082147T_VEBT @ X6 @ M7 )
         => ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ X6 ) @ N2 ) ) ) ).

% finite_maxlen
thf(fact_8269_finite__maxlen,axiom,
    ! [M7: set_list_o] :
      ( ( finite_finite_list_o @ M7 )
     => ? [N2: nat] :
        ! [X6: list_o] :
          ( ( member_list_o @ X6 @ M7 )
         => ( ord_less_nat @ ( size_size_list_o @ X6 ) @ N2 ) ) ) ).

% finite_maxlen
thf(fact_8270_finite__maxlen,axiom,
    ! [M7: set_list_nat] :
      ( ( finite8100373058378681591st_nat @ M7 )
     => ? [N2: nat] :
        ! [X6: list_nat] :
          ( ( member_list_nat @ X6 @ M7 )
         => ( ord_less_nat @ ( size_size_list_nat @ X6 ) @ N2 ) ) ) ).

% finite_maxlen
thf(fact_8271_finite__maxlen,axiom,
    ! [M7: set_list_int] :
      ( ( finite3922522038869484883st_int @ M7 )
     => ? [N2: nat] :
        ! [X6: list_int] :
          ( ( member_list_int @ X6 @ M7 )
         => ( ord_less_nat @ ( size_size_list_int @ X6 ) @ N2 ) ) ) ).

% finite_maxlen
thf(fact_8272_lessThan__empty__iff,axiom,
    ! [N: nat] :
      ( ( ( set_ord_lessThan_nat @ N )
        = bot_bot_set_nat )
      = ( N = zero_zero_nat ) ) ).

% lessThan_empty_iff
thf(fact_8273_sum__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X: complex] : X
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = one_one_complex ) ) )
        = zero_zero_complex ) ) ).

% sum_roots_unity
thf(fact_8274_sum__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X: complex] : X
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = C ) ) )
        = zero_zero_complex ) ) ).

% sum_nth_roots
thf(fact_8275_power__sum,axiom,
    ! [C: real,F: nat > nat,A3: set_nat] :
      ( ( power_power_real @ C @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups129246275422532515t_real
        @ ^ [A4: nat] : ( power_power_real @ C @ ( F @ A4 ) )
        @ A3 ) ) ).

% power_sum
thf(fact_8276_power__sum,axiom,
    ! [C: complex,F: nat > nat,A3: set_nat] :
      ( ( power_power_complex @ C @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups6464643781859351333omplex
        @ ^ [A4: nat] : ( power_power_complex @ C @ ( F @ A4 ) )
        @ A3 ) ) ).

% power_sum
thf(fact_8277_power__sum,axiom,
    ! [C: int,F: nat > nat,A3: set_nat] :
      ( ( power_power_int @ C @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups705719431365010083at_int
        @ ^ [A4: nat] : ( power_power_int @ C @ ( F @ A4 ) )
        @ A3 ) ) ).

% power_sum
thf(fact_8278_power__sum,axiom,
    ! [C: int,F: int > nat,A3: set_int] :
      ( ( power_power_int @ C @ ( groups4541462559716669496nt_nat @ F @ A3 ) )
      = ( groups1705073143266064639nt_int
        @ ^ [A4: int] : ( power_power_int @ C @ ( F @ A4 ) )
        @ A3 ) ) ).

% power_sum
thf(fact_8279_power__sum,axiom,
    ! [C: nat,F: nat > nat,A3: set_nat] :
      ( ( power_power_nat @ C @ ( groups3542108847815614940at_nat @ F @ A3 ) )
      = ( groups708209901874060359at_nat
        @ ^ [A4: nat] : ( power_power_nat @ C @ ( F @ A4 ) )
        @ A3 ) ) ).

% power_sum
thf(fact_8280_sum__subtractf__nat,axiom,
    ! [A3: set_option_nat,G: option_nat > nat,F: option_nat > nat] :
      ( ! [X4: option_nat] :
          ( ( member_option_nat @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
     => ( ( groups1921984841883549356at_nat
          @ ^ [X: option_nat] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A3 )
        = ( minus_minus_nat @ ( groups1921984841883549356at_nat @ F @ A3 ) @ ( groups1921984841883549356at_nat @ G @ A3 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_8281_sum__subtractf__nat,axiom,
    ! [A3: set_real,G: real > nat,F: real > nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
     => ( ( groups1935376822645274424al_nat
          @ ^ [X: real] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A3 )
        = ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A3 ) @ ( groups1935376822645274424al_nat @ G @ A3 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_8282_sum__subtractf__nat,axiom,
    ! [A3: set_set_nat,G: set_nat > nat,F: set_nat > nat] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
     => ( ( groups8294997508430121362at_nat
          @ ^ [X: set_nat] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A3 )
        = ( minus_minus_nat @ ( groups8294997508430121362at_nat @ F @ A3 ) @ ( groups8294997508430121362at_nat @ G @ A3 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_8283_sum__subtractf__nat,axiom,
    ! [A3: set_int,G: int > nat,F: int > nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
     => ( ( groups4541462559716669496nt_nat
          @ ^ [X: int] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A3 )
        = ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A3 ) @ ( groups4541462559716669496nt_nat @ G @ A3 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_8284_sum__subtractf__nat,axiom,
    ! [A3: set_nat,G: nat > nat,F: nat > nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( ord_less_eq_nat @ ( G @ X4 ) @ ( F @ X4 ) ) )
     => ( ( groups3542108847815614940at_nat
          @ ^ [X: nat] : ( minus_minus_nat @ ( F @ X ) @ ( G @ X ) )
          @ A3 )
        = ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A3 ) @ ( groups3542108847815614940at_nat @ G @ A3 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_8285_polyfun__linear__factor__root,axiom,
    ! [C: nat > complex,A: complex,N: nat] :
      ( ( ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_complex )
     => ~ ! [B4: nat > complex] :
            ~ ! [Z4: complex] :
                ( ( groups2073611262835488442omplex
                  @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ Z4 @ I4 ) )
                  @ ( set_ord_atMost_nat @ N ) )
                = ( times_times_complex @ ( minus_minus_complex @ Z4 @ A )
                  @ ( groups2073611262835488442omplex
                    @ ^ [I4: nat] : ( times_times_complex @ ( B4 @ I4 ) @ ( power_power_complex @ Z4 @ I4 ) )
                    @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8286_polyfun__linear__factor__root,axiom,
    ! [C: nat > rat,A: rat,N: nat] :
      ( ( ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_rat )
     => ~ ! [B4: nat > rat] :
            ~ ! [Z4: rat] :
                ( ( groups2906978787729119204at_rat
                  @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ Z4 @ I4 ) )
                  @ ( set_ord_atMost_nat @ N ) )
                = ( times_times_rat @ ( minus_minus_rat @ Z4 @ A )
                  @ ( groups2906978787729119204at_rat
                    @ ^ [I4: nat] : ( times_times_rat @ ( B4 @ I4 ) @ ( power_power_rat @ Z4 @ I4 ) )
                    @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8287_polyfun__linear__factor__root,axiom,
    ! [C: nat > int,A: int,N: nat] :
      ( ( ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( times_times_int @ ( C @ I4 ) @ ( power_power_int @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_int )
     => ~ ! [B4: nat > int] :
            ~ ! [Z4: int] :
                ( ( groups3539618377306564664at_int
                  @ ^ [I4: nat] : ( times_times_int @ ( C @ I4 ) @ ( power_power_int @ Z4 @ I4 ) )
                  @ ( set_ord_atMost_nat @ N ) )
                = ( times_times_int @ ( minus_minus_int @ Z4 @ A )
                  @ ( groups3539618377306564664at_int
                    @ ^ [I4: nat] : ( times_times_int @ ( B4 @ I4 ) @ ( power_power_int @ Z4 @ I4 ) )
                    @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8288_polyfun__linear__factor__root,axiom,
    ! [C: nat > real,A: real,N: nat] :
      ( ( ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_real )
     => ~ ! [B4: nat > real] :
            ~ ! [Z4: real] :
                ( ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ Z4 @ I4 ) )
                  @ ( set_ord_atMost_nat @ N ) )
                = ( times_times_real @ ( minus_minus_real @ Z4 @ A )
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( B4 @ I4 ) @ ( power_power_real @ Z4 @ I4 ) )
                    @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8289_polyfun__linear__factor,axiom,
    ! [C: nat > complex,N: nat,A: complex] :
    ? [B4: nat > complex] :
    ! [Z4: complex] :
      ( ( groups2073611262835488442omplex
        @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ Z4 @ I4 ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_complex
        @ ( times_times_complex @ ( minus_minus_complex @ Z4 @ A )
          @ ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( B4 @ I4 ) @ ( power_power_complex @ Z4 @ I4 ) )
            @ ( set_ord_lessThan_nat @ N ) ) )
        @ ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8290_polyfun__linear__factor,axiom,
    ! [C: nat > rat,N: nat,A: rat] :
    ? [B4: nat > rat] :
    ! [Z4: rat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ Z4 @ I4 ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_rat
        @ ( times_times_rat @ ( minus_minus_rat @ Z4 @ A )
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( B4 @ I4 ) @ ( power_power_rat @ Z4 @ I4 ) )
            @ ( set_ord_lessThan_nat @ N ) ) )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8291_polyfun__linear__factor,axiom,
    ! [C: nat > int,N: nat,A: int] :
    ? [B4: nat > int] :
    ! [Z4: int] :
      ( ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( times_times_int @ ( C @ I4 ) @ ( power_power_int @ Z4 @ I4 ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_int
        @ ( times_times_int @ ( minus_minus_int @ Z4 @ A )
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( times_times_int @ ( B4 @ I4 ) @ ( power_power_int @ Z4 @ I4 ) )
            @ ( set_ord_lessThan_nat @ N ) ) )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( times_times_int @ ( C @ I4 ) @ ( power_power_int @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8292_polyfun__linear__factor,axiom,
    ! [C: nat > real,N: nat,A: real] :
    ? [B4: nat > real] :
    ! [Z4: real] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ Z4 @ I4 ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( plus_plus_real
        @ ( times_times_real @ ( minus_minus_real @ Z4 @ A )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( B4 @ I4 ) @ ( power_power_real @ Z4 @ I4 ) )
            @ ( set_ord_lessThan_nat @ N ) ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ A @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8293_finite__divisors__int,axiom,
    ! [I: int] :
      ( ( I != zero_zero_int )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [D4: int] : ( dvd_dvd_int @ D4 @ I ) ) ) ) ).

% finite_divisors_int
thf(fact_8294_sum__eq__Suc0__iff,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ A3 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: int] :
              ( ( member_int @ X @ A3 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y: int] :
                  ( ( member_int @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_8295_sum__eq__Suc0__iff,axiom,
    ! [A3: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ A3 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y: complex] :
                  ( ( member_complex @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_8296_sum__eq__Suc0__iff,axiom,
    ! [A3: set_Pr1261947904930325089at_nat,F: product_prod_nat_nat > nat] :
      ( ( finite6177210948735845034at_nat @ A3 )
     => ( ( ( groups977919841031483927at_nat @ F @ A3 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ X @ A3 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y: product_prod_nat_nat] :
                  ( ( member8440522571783428010at_nat @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_8297_sum__eq__Suc0__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( ( groups2027974829824023292at_nat @ F @ A3 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y: extended_enat] :
                  ( ( member_Extended_enat @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_8298_sum__eq__Suc0__iff,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ( groups3542108847815614940at_nat @ F @ A3 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A3 )
              & ( ( F @ X )
                = ( suc @ zero_zero_nat ) )
              & ! [Y: nat] :
                  ( ( member_nat @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_8299_sum__SucD,axiom,
    ! [F: nat > nat,A3: set_nat,N: nat] :
      ( ( ( groups3542108847815614940at_nat @ F @ A3 )
        = ( suc @ N ) )
     => ? [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
          & ( ord_less_nat @ zero_zero_nat @ ( F @ X4 ) ) ) ) ).

% sum_SucD
thf(fact_8300_sum__eq__1__iff,axiom,
    ! [A3: set_int,F: int > nat] :
      ( ( finite_finite_int @ A3 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ A3 )
          = one_one_nat )
        = ( ? [X: int] :
              ( ( member_int @ X @ A3 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y: int] :
                  ( ( member_int @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_8301_sum__eq__1__iff,axiom,
    ! [A3: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A3 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ A3 )
          = one_one_nat )
        = ( ? [X: complex] :
              ( ( member_complex @ X @ A3 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y: complex] :
                  ( ( member_complex @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_8302_sum__eq__1__iff,axiom,
    ! [A3: set_Pr1261947904930325089at_nat,F: product_prod_nat_nat > nat] :
      ( ( finite6177210948735845034at_nat @ A3 )
     => ( ( ( groups977919841031483927at_nat @ F @ A3 )
          = one_one_nat )
        = ( ? [X: product_prod_nat_nat] :
              ( ( member8440522571783428010at_nat @ X @ A3 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y: product_prod_nat_nat] :
                  ( ( member8440522571783428010at_nat @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_8303_sum__eq__1__iff,axiom,
    ! [A3: set_Extended_enat,F: extended_enat > nat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( ( groups2027974829824023292at_nat @ F @ A3 )
          = one_one_nat )
        = ( ? [X: extended_enat] :
              ( ( member_Extended_enat @ X @ A3 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y: extended_enat] :
                  ( ( member_Extended_enat @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_8304_sum__eq__1__iff,axiom,
    ! [A3: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( ( groups3542108847815614940at_nat @ F @ A3 )
          = one_one_nat )
        = ( ? [X: nat] :
              ( ( member_nat @ X @ A3 )
              & ( ( F @ X )
                = one_one_nat )
              & ! [Y: nat] :
                  ( ( member_nat @ Y @ A3 )
                 => ( ( X != Y )
                   => ( ( F @ Y )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_8305_atMost__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).

% atMost_nat_numeral
thf(fact_8306_lessThan__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).

% lessThan_nat_numeral
thf(fact_8307_set__encode__inf,axiom,
    ! [A3: set_nat] :
      ( ~ ( finite_finite_nat @ A3 )
     => ( ( nat_set_encode @ A3 )
        = zero_zero_nat ) ) ).

% set_encode_inf
thf(fact_8308_polyfun__diff__alt,axiom,
    ! [N: nat,A: nat > complex,X3: complex,Y3: complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_complex
          @ ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( A @ I4 ) @ ( power_power_complex @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( A @ I4 ) @ ( power_power_complex @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_complex @ ( minus_minus_complex @ X3 @ Y3 )
          @ ( groups2073611262835488442omplex
            @ ^ [J3: nat] :
                ( groups2073611262835488442omplex
                @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_complex @ Y3 @ K3 ) ) @ ( power_power_complex @ X3 @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8309_polyfun__diff__alt,axiom,
    ! [N: nat,A: nat > rat,X3: rat,Y3: rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_rat
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( power_power_rat @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( power_power_rat @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_rat @ ( minus_minus_rat @ X3 @ Y3 )
          @ ( groups2906978787729119204at_rat
            @ ^ [J3: nat] :
                ( groups2906978787729119204at_rat
                @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_rat @ Y3 @ K3 ) ) @ ( power_power_rat @ X3 @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8310_polyfun__diff__alt,axiom,
    ! [N: nat,A: nat > int,X3: int,Y3: int] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_int
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( times_times_int @ ( A @ I4 ) @ ( power_power_int @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( times_times_int @ ( A @ I4 ) @ ( power_power_int @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_int @ ( minus_minus_int @ X3 @ Y3 )
          @ ( groups3539618377306564664at_int
            @ ^ [J3: nat] :
                ( groups3539618377306564664at_int
                @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_int @ Y3 @ K3 ) ) @ ( power_power_int @ X3 @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8311_polyfun__diff__alt,axiom,
    ! [N: nat,A: nat > real,X3: real,Y3: real] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_real
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( A @ I4 ) @ ( power_power_real @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( A @ I4 ) @ ( power_power_real @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_real @ ( minus_minus_real @ X3 @ Y3 )
          @ ( groups6591440286371151544t_real
            @ ^ [J3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_real @ Y3 @ K3 ) ) @ ( power_power_real @ X3 @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8312_suminf__le__const,axiom,
    ! [F: nat > int,X3: int] :
      ( ( summable_int @ F )
     => ( ! [N2: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X3 )
       => ( ord_less_eq_int @ ( suminf_int @ F ) @ X3 ) ) ) ).

% suminf_le_const
thf(fact_8313_suminf__le__const,axiom,
    ! [F: nat > nat,X3: nat] :
      ( ( summable_nat @ F )
     => ( ! [N2: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X3 )
       => ( ord_less_eq_nat @ ( suminf_nat @ F ) @ X3 ) ) ) ).

% suminf_le_const
thf(fact_8314_suminf__le__const,axiom,
    ! [F: nat > real,X3: real] :
      ( ( summable_real @ F )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X3 )
       => ( ord_less_eq_real @ ( suminf_real @ F ) @ X3 ) ) ) ).

% suminf_le_const
thf(fact_8315_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8316_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8317_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8318_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8319_sum__telescope,axiom,
    ! [F: nat > rat,I: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( minus_minus_rat @ ( F @ I4 ) @ ( F @ ( suc @ I4 ) ) )
        @ ( set_ord_atMost_nat @ I ) )
      = ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).

% sum_telescope
thf(fact_8320_sum__telescope,axiom,
    ! [F: nat > int,I: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( minus_minus_int @ ( F @ I4 ) @ ( F @ ( suc @ I4 ) ) )
        @ ( set_ord_atMost_nat @ I ) )
      = ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).

% sum_telescope
thf(fact_8321_sum__telescope,axiom,
    ! [F: nat > real,I: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( minus_minus_real @ ( F @ I4 ) @ ( F @ ( suc @ I4 ) ) )
        @ ( set_ord_atMost_nat @ I ) )
      = ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I ) ) ) ) ).

% sum_telescope
thf(fact_8322_polyfun__eq__coeffs,axiom,
    ! [C: nat > complex,N: nat,D3: nat > complex] :
      ( ( ! [X: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) )
            = ( groups2073611262835488442omplex
              @ ^ [I4: nat] : ( times_times_complex @ ( D3 @ I4 ) @ ( power_power_complex @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_eq_nat @ I4 @ N )
           => ( ( C @ I4 )
              = ( D3 @ I4 ) ) ) ) ) ).

% polyfun_eq_coeffs
thf(fact_8323_polyfun__eq__coeffs,axiom,
    ! [C: nat > real,N: nat,D3: nat > real] :
      ( ( ! [X: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) )
            = ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( D3 @ I4 ) @ ( power_power_real @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_eq_nat @ I4 @ N )
           => ( ( C @ I4 )
              = ( D3 @ I4 ) ) ) ) ) ).

% polyfun_eq_coeffs
thf(fact_8324_bounded__imp__summable,axiom,
    ! [A: nat > int,B5: int] :
      ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( A @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ A @ ( set_ord_atMost_nat @ N2 ) ) @ B5 )
       => ( summable_int @ A ) ) ) ).

% bounded_imp_summable
thf(fact_8325_bounded__imp__summable,axiom,
    ! [A: nat > nat,B5: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( A @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ A @ ( set_ord_atMost_nat @ N2 ) ) @ B5 )
       => ( summable_nat @ A ) ) ) ).

% bounded_imp_summable
thf(fact_8326_bounded__imp__summable,axiom,
    ! [A: nat > real,B5: real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ A @ ( set_ord_atMost_nat @ N2 ) ) @ B5 )
       => ( summable_real @ A ) ) ) ).

% bounded_imp_summable
thf(fact_8327_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( times_times_real @ ( G @ zero_zero_nat )
        @ ( groups129246275422532515t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8328_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( times_times_rat @ ( G @ zero_zero_nat )
        @ ( groups73079841787564623at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8329_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( times_times_int @ ( G @ zero_zero_nat )
        @ ( groups705719431365010083at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8330_prod_OatMost__Suc__shift,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N ) ) )
      = ( times_times_nat @ ( G @ zero_zero_nat )
        @ ( groups708209901874060359at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% prod.atMost_Suc_shift
thf(fact_8331_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_8332_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_8333_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_8334_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_8335_sum__lessThan__telescope,axiom,
    ! [F: nat > rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [N3: nat] : ( minus_minus_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_rat @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_8336_sum__lessThan__telescope,axiom,
    ! [F: nat > int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [N3: nat] : ( minus_minus_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_int @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_8337_sum__lessThan__telescope,axiom,
    ! [F: nat > real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [N3: nat] : ( minus_minus_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_real @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_8338_sum__lessThan__telescope_H,axiom,
    ! [F: nat > rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [N3: nat] : ( minus_minus_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_8339_sum__lessThan__telescope_H,axiom,
    ! [F: nat > int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [N3: nat] : ( minus_minus_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_8340_sum__lessThan__telescope_H,axiom,
    ! [F: nat > real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_8341_sumr__diff__mult__const2,axiom,
    ! [F: nat > complex,N: nat,R2: complex] :
      ( ( minus_minus_complex @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N ) @ R2 ) )
      = ( groups2073611262835488442omplex
        @ ^ [I4: nat] : ( minus_minus_complex @ ( F @ I4 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% sumr_diff_mult_const2
thf(fact_8342_sumr__diff__mult__const2,axiom,
    ! [F: nat > rat,N: nat,R2: rat] :
      ( ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ R2 ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( minus_minus_rat @ ( F @ I4 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% sumr_diff_mult_const2
thf(fact_8343_sumr__diff__mult__const2,axiom,
    ! [F: nat > int,N: nat,R2: int] :
      ( ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ R2 ) )
      = ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( minus_minus_int @ ( F @ I4 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% sumr_diff_mult_const2
thf(fact_8344_sumr__diff__mult__const2,axiom,
    ! [F: nat > real,N: nat,R2: real] :
      ( ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ R2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( minus_minus_real @ ( F @ I4 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% sumr_diff_mult_const2
thf(fact_8345_summableI__nonneg__bounded,axiom,
    ! [F: nat > int,X3: int] :
      ( ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X3 )
       => ( summable_int @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_8346_summableI__nonneg__bounded,axiom,
    ! [F: nat > nat,X3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X3 )
       => ( summable_nat @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_8347_summableI__nonneg__bounded,axiom,
    ! [F: nat > real,X3: real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ X3 )
       => ( summable_real @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_8348_prod_OlessThan__Suc__shift,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( times_times_real @ ( G @ zero_zero_nat )
        @ ( groups129246275422532515t_real
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.lessThan_Suc_shift
thf(fact_8349_prod_OlessThan__Suc__shift,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( times_times_rat @ ( G @ zero_zero_nat )
        @ ( groups73079841787564623at_rat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.lessThan_Suc_shift
thf(fact_8350_prod_OlessThan__Suc__shift,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( times_times_int @ ( G @ zero_zero_nat )
        @ ( groups705719431365010083at_int
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.lessThan_Suc_shift
thf(fact_8351_prod_OlessThan__Suc__shift,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = ( times_times_nat @ ( G @ zero_zero_nat )
        @ ( groups708209901874060359at_nat
          @ ^ [I4: nat] : ( G @ ( suc @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% prod.lessThan_Suc_shift
thf(fact_8352_sum__choose__diagonal,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3542108847815614940at_nat
          @ ^ [K3: nat] : ( binomial @ ( minus_minus_nat @ N @ K3 ) @ ( minus_minus_nat @ M @ K3 ) )
          @ ( set_ord_atMost_nat @ M ) )
        = ( binomial @ ( suc @ N ) @ M ) ) ) ).

% sum_choose_diagonal
thf(fact_8353_sum_OatLeast1__atMost__eq,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% sum.atLeast1_atMost_eq
thf(fact_8354_sum_OatLeast1__atMost__eq,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% sum.atLeast1_atMost_eq
thf(fact_8355_polyfun__diff,axiom,
    ! [N: nat,A: nat > complex,X3: complex,Y3: complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_complex
          @ ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( A @ I4 ) @ ( power_power_complex @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( A @ I4 ) @ ( power_power_complex @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_complex @ ( minus_minus_complex @ X3 @ Y3 )
          @ ( groups2073611262835488442omplex
            @ ^ [J3: nat] :
                ( times_times_complex
                @ ( groups2073611262835488442omplex
                  @ ^ [I4: nat] : ( times_times_complex @ ( A @ I4 ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
                @ ( power_power_complex @ X3 @ J3 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff
thf(fact_8356_polyfun__diff,axiom,
    ! [N: nat,A: nat > rat,X3: rat,Y3: rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_rat
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( power_power_rat @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( power_power_rat @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_rat @ ( minus_minus_rat @ X3 @ Y3 )
          @ ( groups2906978787729119204at_rat
            @ ^ [J3: nat] :
                ( times_times_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
                @ ( power_power_rat @ X3 @ J3 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff
thf(fact_8357_polyfun__diff,axiom,
    ! [N: nat,A: nat > int,X3: int,Y3: int] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_int
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( times_times_int @ ( A @ I4 ) @ ( power_power_int @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( times_times_int @ ( A @ I4 ) @ ( power_power_int @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_int @ ( minus_minus_int @ X3 @ Y3 )
          @ ( groups3539618377306564664at_int
            @ ^ [J3: nat] :
                ( times_times_int
                @ ( groups3539618377306564664at_int
                  @ ^ [I4: nat] : ( times_times_int @ ( A @ I4 ) @ ( power_power_int @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
                @ ( power_power_int @ X3 @ J3 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff
thf(fact_8358_polyfun__diff,axiom,
    ! [N: nat,A: nat > real,X3: real,Y3: real] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( minus_minus_real
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( A @ I4 ) @ ( power_power_real @ X3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( A @ I4 ) @ ( power_power_real @ Y3 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( times_times_real @ ( minus_minus_real @ X3 @ Y3 )
          @ ( groups6591440286371151544t_real
            @ ^ [J3: nat] :
                ( times_times_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( A @ I4 ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ ( minus_minus_nat @ I4 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N ) )
                @ ( power_power_real @ X3 @ J3 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) ) ) ).

% polyfun_diff
thf(fact_8359_prod_OatLeast1__atMost__eq,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( groups705719431365010083at_int
        @ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% prod.atLeast1_atMost_eq
thf(fact_8360_prod_OatLeast1__atMost__eq,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( groups708209901874060359at_nat
        @ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ N ) ) ) ).

% prod.atLeast1_atMost_eq
thf(fact_8361_norm__prod__diff,axiom,
    ! [I5: set_option_nat,Z: option_nat > real,W: option_nat > real] :
      ( ! [I3: option_nat] :
          ( ( member_option_nat @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: option_nat] :
            ( ( member_option_nat @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups6579596140936342515t_real @ Z @ I5 ) @ ( groups6579596140936342515t_real @ W @ I5 ) ) )
          @ ( groups4518532050878116744t_real
            @ ^ [I4: option_nat] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8362_norm__prod__diff,axiom,
    ! [I5: set_real,Z: real > real,W: real > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups1681761925125756287l_real @ Z @ I5 ) @ ( groups1681761925125756287l_real @ W @ I5 ) ) )
          @ ( groups8097168146408367636l_real
            @ ^ [I4: real] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8363_norm__prod__diff,axiom,
    ! [I5: set_set_nat,Z: set_nat > real,W: set_nat > real] :
      ( ! [I3: set_nat] :
          ( ( member_set_nat @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: set_nat] :
            ( ( member_set_nat @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups3619160379726066777t_real @ Z @ I5 ) @ ( groups3619160379726066777t_real @ W @ I5 ) ) )
          @ ( groups5107569545109728110t_real
            @ ^ [I4: set_nat] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8364_norm__prod__diff,axiom,
    ! [I5: set_int,Z: int > real,W: int > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups2316167850115554303t_real @ Z @ I5 ) @ ( groups2316167850115554303t_real @ W @ I5 ) ) )
          @ ( groups8778361861064173332t_real
            @ ^ [I4: int] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8365_norm__prod__diff,axiom,
    ! [I5: set_option_nat,Z: option_nat > complex,W: option_nat > complex] :
      ( ! [I3: option_nat] :
          ( ( member_option_nat @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: option_nat] :
            ( ( member_option_nat @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups1917955009447795573omplex @ Z @ I5 ) @ ( groups1917955009447795573omplex @ W @ I5 ) ) )
          @ ( groups4518532050878116744t_real
            @ ^ [I4: option_nat] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8366_norm__prod__diff,axiom,
    ! [I5: set_real,Z: real > complex,W: real > complex] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups713298508707869441omplex @ Z @ I5 ) @ ( groups713298508707869441omplex @ W @ I5 ) ) )
          @ ( groups8097168146408367636l_real
            @ ^ [I4: real] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8367_norm__prod__diff,axiom,
    ! [I5: set_set_nat,Z: set_nat > complex,W: set_nat > complex] :
      ( ! [I3: set_nat] :
          ( ( member_set_nat @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: set_nat] :
            ( ( member_set_nat @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups1092910753850256091omplex @ Z @ I5 ) @ ( groups1092910753850256091omplex @ W @ I5 ) ) )
          @ ( groups5107569545109728110t_real
            @ ^ [I4: set_nat] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8368_norm__prod__diff,axiom,
    ! [I5: set_int,Z: int > complex,W: int > complex] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups7440179247065528705omplex @ Z @ I5 ) @ ( groups7440179247065528705omplex @ W @ I5 ) ) )
          @ ( groups8778361861064173332t_real
            @ ^ [I4: int] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8369_norm__prod__diff,axiom,
    ! [I5: set_nat,Z: nat > real,W: nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( groups129246275422532515t_real @ Z @ I5 ) @ ( groups129246275422532515t_real @ W @ I5 ) ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8370_norm__prod__diff,axiom,
    ! [I5: set_nat,Z: nat > complex,W: nat > complex] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( Z @ I3 ) ) @ one_one_real ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( W @ I3 ) ) @ one_one_real ) )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( groups6464643781859351333omplex @ Z @ I5 ) @ ( groups6464643781859351333omplex @ W @ I5 ) ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( Z @ I4 ) @ ( W @ I4 ) ) )
            @ I5 ) ) ) ) ).

% norm_prod_diff
thf(fact_8371_zero__polynom__imp__zero__coeffs,axiom,
    ! [C: nat > complex,N: nat,K: nat] :
      ( ! [W2: complex] :
          ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ W2 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_complex )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( C @ K )
          = zero_zero_complex ) ) ) ).

% zero_polynom_imp_zero_coeffs
thf(fact_8372_zero__polynom__imp__zero__coeffs,axiom,
    ! [C: nat > real,N: nat,K: nat] :
      ( ! [W2: real] :
          ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ W2 @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_real )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( C @ K )
          = zero_zero_real ) ) ) ).

% zero_polynom_imp_zero_coeffs
thf(fact_8373_polyfun__eq__0,axiom,
    ! [C: nat > complex,N: nat] :
      ( ( ! [X: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) )
            = zero_zero_complex ) )
      = ( ! [I4: nat] :
            ( ( ord_less_eq_nat @ I4 @ N )
           => ( ( C @ I4 )
              = zero_zero_complex ) ) ) ) ).

% polyfun_eq_0
thf(fact_8374_polyfun__eq__0,axiom,
    ! [C: nat > real,N: nat] :
      ( ( ! [X: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) )
            = zero_zero_real ) )
      = ( ! [I4: nat] :
            ( ( ord_less_eq_nat @ I4 @ N )
           => ( ( C @ I4 )
              = zero_zero_real ) ) ) ) ).

% polyfun_eq_0
thf(fact_8375_one__diff__power__eq,axiom,
    ! [X3: complex,N: nat] :
      ( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ N ) )
      = ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq
thf(fact_8376_one__diff__power__eq,axiom,
    ! [X3: rat,N: nat] :
      ( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ N ) )
      = ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq
thf(fact_8377_one__diff__power__eq,axiom,
    ! [X3: int,N: nat] :
      ( ( minus_minus_int @ one_one_int @ ( power_power_int @ X3 @ N ) )
      = ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq
thf(fact_8378_one__diff__power__eq,axiom,
    ! [X3: real,N: nat] :
      ( ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ N ) )
      = ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq
thf(fact_8379_power__diff__1__eq,axiom,
    ! [X3: complex,N: nat] :
      ( ( minus_minus_complex @ ( power_power_complex @ X3 @ N ) @ one_one_complex )
      = ( times_times_complex @ ( minus_minus_complex @ X3 @ one_one_complex ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_1_eq
thf(fact_8380_power__diff__1__eq,axiom,
    ! [X3: rat,N: nat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X3 @ N ) @ one_one_rat )
      = ( times_times_rat @ ( minus_minus_rat @ X3 @ one_one_rat ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_1_eq
thf(fact_8381_power__diff__1__eq,axiom,
    ! [X3: int,N: nat] :
      ( ( minus_minus_int @ ( power_power_int @ X3 @ N ) @ one_one_int )
      = ( times_times_int @ ( minus_minus_int @ X3 @ one_one_int ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_1_eq
thf(fact_8382_power__diff__1__eq,axiom,
    ! [X3: real,N: nat] :
      ( ( minus_minus_real @ ( power_power_real @ X3 @ N ) @ one_one_real )
      = ( times_times_real @ ( minus_minus_real @ X3 @ one_one_real ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_1_eq
thf(fact_8383_geometric__sum,axiom,
    ! [X3: complex,N: nat] :
      ( ( X3 != one_one_complex )
     => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X3 @ N ) @ one_one_complex ) @ ( minus_minus_complex @ X3 @ one_one_complex ) ) ) ) ).

% geometric_sum
thf(fact_8384_geometric__sum,axiom,
    ! [X3: rat,N: nat] :
      ( ( X3 != one_one_rat )
     => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X3 @ N ) @ one_one_rat ) @ ( minus_minus_rat @ X3 @ one_one_rat ) ) ) ) ).

% geometric_sum
thf(fact_8385_geometric__sum,axiom,
    ! [X3: real,N: nat] :
      ( ( X3 != one_one_real )
     => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X3 @ N ) @ one_one_real ) @ ( minus_minus_real @ X3 @ one_one_real ) ) ) ) ).

% geometric_sum
thf(fact_8386_choose__row__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ N ) @ ( set_ord_atMost_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% choose_row_sum
thf(fact_8387_binomial,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial
thf(fact_8388_ln__prod,axiom,
    ! [I5: set_option_nat,F: option_nat > real] :
      ( ( finite5523153139673422903on_nat @ I5 )
     => ( ! [I3: option_nat] :
            ( ( member_option_nat @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups6579596140936342515t_real @ F @ I5 ) )
          = ( groups4518532050878116744t_real
            @ ^ [X: option_nat] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8389_ln__prod,axiom,
    ! [I5: set_real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups1681761925125756287l_real @ F @ I5 ) )
          = ( groups8097168146408367636l_real
            @ ^ [X: real] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8390_ln__prod,axiom,
    ! [I5: set_set_nat,F: set_nat > real] :
      ( ( finite1152437895449049373et_nat @ I5 )
     => ( ! [I3: set_nat] :
            ( ( member_set_nat @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups3619160379726066777t_real @ F @ I5 ) )
          = ( groups5107569545109728110t_real
            @ ^ [X: set_nat] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8391_ln__prod,axiom,
    ! [I5: set_int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups2316167850115554303t_real @ F @ I5 ) )
          = ( groups8778361861064173332t_real
            @ ^ [X: int] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8392_ln__prod,axiom,
    ! [I5: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups766887009212190081x_real @ F @ I5 ) )
          = ( groups5808333547571424918x_real
            @ ^ [X: complex] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8393_ln__prod,axiom,
    ! [I5: set_Pr1261947904930325089at_nat,F: product_prod_nat_nat > real] :
      ( ( finite6177210948735845034at_nat @ I5 )
     => ( ! [I3: product_prod_nat_nat] :
            ( ( member8440522571783428010at_nat @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups6036352826371341000t_real @ F @ I5 ) )
          = ( groups4567486121110086003t_real
            @ ^ [X: product_prod_nat_nat] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8394_ln__prod,axiom,
    ! [I5: set_Extended_enat,F: extended_enat > real] :
      ( ( finite4001608067531595151d_enat @ I5 )
     => ( ! [I3: extended_enat] :
            ( ( member_Extended_enat @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups97031904164794029t_real @ F @ I5 ) )
          = ( groups4148127829035722712t_real
            @ ^ [X: extended_enat] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8395_ln__prod,axiom,
    ! [I5: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ I5 )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ln_ln_real @ ( groups129246275422532515t_real @ F @ I5 ) )
          = ( groups6591440286371151544t_real
            @ ^ [X: nat] : ( ln_ln_real @ ( F @ X ) )
            @ I5 ) ) ) ) ).

% ln_prod
thf(fact_8396_sum__less__suminf,axiom,
    ! [F: nat > int,N: nat] :
      ( ( summable_int @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N @ M4 )
           => ( ord_less_int @ zero_zero_int @ ( F @ M4 ) ) )
       => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_int @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_8397_sum__less__suminf,axiom,
    ! [F: nat > nat,N: nat] :
      ( ( summable_nat @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N @ M4 )
           => ( ord_less_nat @ zero_zero_nat @ ( F @ M4 ) ) )
       => ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_nat @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_8398_sum__less__suminf,axiom,
    ! [F: nat > real,N: nat] :
      ( ( summable_real @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N @ M4 )
           => ( ord_less_real @ zero_zero_real @ ( F @ M4 ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_8399_sum__gp__basic,axiom,
    ! [X3: complex,N: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_8400_sum__gp__basic,axiom,
    ! [X3: rat,N: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_8401_sum__gp__basic,axiom,
    ! [X3: int,N: nat] :
      ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_int @ one_one_int @ ( power_power_int @ X3 @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_8402_sum__gp__basic,axiom,
    ! [X3: real,N: nat] :
      ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ N ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( suc @ N ) ) ) ) ).

% sum_gp_basic
thf(fact_8403_polyfun__roots__finite,axiom,
    ! [C: nat > complex,K: nat,N: nat] :
      ( ( ( C @ K )
       != zero_zero_complex )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( groups2073611262835488442omplex
                  @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ Z6 @ I4 ) )
                  @ ( set_ord_atMost_nat @ N ) )
                = zero_zero_complex ) ) ) ) ) ).

% polyfun_roots_finite
thf(fact_8404_polyfun__roots__finite,axiom,
    ! [C: nat > real,K: nat,N: nat] :
      ( ( ( C @ K )
       != zero_zero_real )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [Z6: real] :
                ( ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ Z6 @ I4 ) )
                  @ ( set_ord_atMost_nat @ N ) )
                = zero_zero_real ) ) ) ) ) ).

% polyfun_roots_finite
thf(fact_8405_polyfun__finite__roots,axiom,
    ! [C: nat > complex,N: nat] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( groups2073611262835488442omplex
                @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ X @ I4 ) )
                @ ( set_ord_atMost_nat @ N ) )
              = zero_zero_complex ) ) )
      = ( ? [I4: nat] :
            ( ( ord_less_eq_nat @ I4 @ N )
            & ( ( C @ I4 )
             != zero_zero_complex ) ) ) ) ).

% polyfun_finite_roots
thf(fact_8406_polyfun__finite__roots,axiom,
    ! [C: nat > real,N: nat] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [X: real] :
              ( ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ X @ I4 ) )
                @ ( set_ord_atMost_nat @ N ) )
              = zero_zero_real ) ) )
      = ( ? [I4: nat] :
            ( ( ord_less_eq_nat @ I4 @ N )
            & ( ( C @ I4 )
             != zero_zero_real ) ) ) ) ).

% polyfun_finite_roots
thf(fact_8407_sum__gp__strict,axiom,
    ! [X3: complex,N: nat] :
      ( ( ( X3 = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
          = ( semiri8010041392384452111omplex @ N ) ) )
      & ( ( X3 != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ N ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ).

% sum_gp_strict
thf(fact_8408_sum__gp__strict,axiom,
    ! [X3: rat,N: nat] :
      ( ( ( X3 = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
          = ( semiri681578069525770553at_rat @ N ) ) )
      & ( ( X3 != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ N ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ).

% sum_gp_strict
thf(fact_8409_sum__gp__strict,axiom,
    ! [X3: real,N: nat] :
      ( ( ( X3 = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
          = ( semiri5074537144036343181t_real @ N ) ) )
      & ( ( X3 != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_lessThan_nat @ N ) )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ N ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ).

% sum_gp_strict
thf(fact_8410_lemma__termdiff1,axiom,
    ! [Z: complex,H2: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [P5: nat] : ( minus_minus_complex @ ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z @ P5 ) ) @ ( power_power_complex @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups2073611262835488442omplex
        @ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ Z @ P5 ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_8411_lemma__termdiff1,axiom,
    ! [Z: rat,H2: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [P5: nat] : ( minus_minus_rat @ ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z @ P5 ) ) @ ( power_power_rat @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups2906978787729119204at_rat
        @ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ Z @ P5 ) @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_8412_lemma__termdiff1,axiom,
    ! [Z: int,H2: int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [P5: nat] : ( minus_minus_int @ ( times_times_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z @ P5 ) ) @ ( power_power_int @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups3539618377306564664at_int
        @ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ Z @ P5 ) @ ( minus_minus_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_8413_lemma__termdiff1,axiom,
    ! [Z: real,H2: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [P5: nat] : ( minus_minus_real @ ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z @ P5 ) ) @ ( power_power_real @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ Z @ P5 ) @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_8414_power__diff__sumr2,axiom,
    ! [X3: complex,N: nat,Y3: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ X3 @ N ) @ ( power_power_complex @ Y3 @ N ) )
      = ( times_times_complex @ ( minus_minus_complex @ X3 @ Y3 )
        @ ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( times_times_complex @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) ) @ ( power_power_complex @ X3 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_sumr2
thf(fact_8415_power__diff__sumr2,axiom,
    ! [X3: rat,N: nat,Y3: rat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X3 @ N ) @ ( power_power_rat @ Y3 @ N ) )
      = ( times_times_rat @ ( minus_minus_rat @ X3 @ Y3 )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( times_times_rat @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) ) @ ( power_power_rat @ X3 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_sumr2
thf(fact_8416_power__diff__sumr2,axiom,
    ! [X3: int,N: nat,Y3: int] :
      ( ( minus_minus_int @ ( power_power_int @ X3 @ N ) @ ( power_power_int @ Y3 @ N ) )
      = ( times_times_int @ ( minus_minus_int @ X3 @ Y3 )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( times_times_int @ ( power_power_int @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) ) @ ( power_power_int @ X3 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_sumr2
thf(fact_8417_power__diff__sumr2,axiom,
    ! [X3: real,N: nat,Y3: real] :
      ( ( minus_minus_real @ ( power_power_real @ X3 @ N ) @ ( power_power_real @ Y3 @ N ) )
      = ( times_times_real @ ( minus_minus_real @ X3 @ Y3 )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ Y3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) ) @ ( power_power_real @ X3 @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% power_diff_sumr2
thf(fact_8418_diff__power__eq__sum,axiom,
    ! [X3: complex,N: nat,Y3: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ X3 @ ( suc @ N ) ) @ ( power_power_complex @ Y3 @ ( suc @ N ) ) )
      = ( times_times_complex @ ( minus_minus_complex @ X3 @ Y3 )
        @ ( groups2073611262835488442omplex
          @ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ X3 @ P5 ) @ ( power_power_complex @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_8419_diff__power__eq__sum,axiom,
    ! [X3: rat,N: nat,Y3: rat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X3 @ ( suc @ N ) ) @ ( power_power_rat @ Y3 @ ( suc @ N ) ) )
      = ( times_times_rat @ ( minus_minus_rat @ X3 @ Y3 )
        @ ( groups2906978787729119204at_rat
          @ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ X3 @ P5 ) @ ( power_power_rat @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_8420_diff__power__eq__sum,axiom,
    ! [X3: int,N: nat,Y3: int] :
      ( ( minus_minus_int @ ( power_power_int @ X3 @ ( suc @ N ) ) @ ( power_power_int @ Y3 @ ( suc @ N ) ) )
      = ( times_times_int @ ( minus_minus_int @ X3 @ Y3 )
        @ ( groups3539618377306564664at_int
          @ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ X3 @ P5 ) @ ( power_power_int @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_8421_diff__power__eq__sum,axiom,
    ! [X3: real,N: nat,Y3: real] :
      ( ( minus_minus_real @ ( power_power_real @ X3 @ ( suc @ N ) ) @ ( power_power_real @ Y3 @ ( suc @ N ) ) )
      = ( times_times_real @ ( minus_minus_real @ X3 @ Y3 )
        @ ( groups6591440286371151544t_real
          @ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ X3 @ P5 ) @ ( power_power_real @ Y3 @ ( minus_minus_nat @ N @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_8422_polynomial__product__nat,axiom,
    ! [M: nat,A: nat > nat,N: nat,B: nat > nat,X3: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_nat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_nat ) )
       => ( ( times_times_nat
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( power_power_nat @ X3 @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3542108847815614940at_nat
              @ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X3 @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups3542108847815614940at_nat
            @ ^ [R5: nat] :
                ( times_times_nat
                @ ( groups3542108847815614940at_nat
                  @ ^ [K3: nat] : ( times_times_nat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_nat @ X3 @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product_nat
thf(fact_8423_sum__power__shift,axiom,
    ! [M: nat,N: nat,X3: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_complex @ ( power_power_complex @ X3 @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8424_sum__power__shift,axiom,
    ! [M: nat,N: nat,X3: rat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_rat @ ( power_power_rat @ X3 @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8425_sum__power__shift,axiom,
    ! [M: nat,N: nat,X3: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_int @ ( power_power_int @ X3 @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8426_sum__power__shift,axiom,
    ! [M: nat,N: nat,X3: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_or1269000886237332187st_nat @ M @ N ) )
        = ( times_times_real @ ( power_power_real @ X3 @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8427_choose__square__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( power_power_nat @ ( binomial @ N @ K3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% choose_square_sum
thf(fact_8428_set__encode__def,axiom,
    ( nat_set_encode
    = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% set_encode_def
thf(fact_8429_atLeast1__atMost__eq__remove0,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_atMost_eq_remove0
thf(fact_8430_real__sum__nat__ivl__bounded2,axiom,
    ! [N: nat,F: nat > rat,K5: rat,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N )
         => ( ord_less_eq_rat @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ K5 )
       => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_8431_real__sum__nat__ivl__bounded2,axiom,
    ! [N: nat,F: nat > int,K5: int,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N )
         => ( ord_less_eq_int @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ K5 )
       => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_8432_real__sum__nat__ivl__bounded2,axiom,
    ! [N: nat,F: nat > nat,K5: nat,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N )
         => ( ord_less_eq_nat @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ K5 )
       => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_8433_real__sum__nat__ivl__bounded2,axiom,
    ! [N: nat,F: nat > real,K5: real,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N )
         => ( ord_less_eq_real @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ K5 )
       => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_8434_finite__has__minimal2,axiom,
    ! [A3: set_real,A: real] :
      ( ( finite_finite_real @ A3 )
     => ( ( member_real @ A @ A3 )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A3 )
            & ( ord_less_eq_real @ X4 @ A )
            & ! [Xa2: real] :
                ( ( member_real @ Xa2 @ A3 )
               => ( ( ord_less_eq_real @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_8435_finite__has__minimal2,axiom,
    ! [A3: set_Extended_enat,A: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( member_Extended_enat @ A @ A3 )
       => ? [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
            & ( ord_le2932123472753598470d_enat @ X4 @ A )
            & ! [Xa2: extended_enat] :
                ( ( member_Extended_enat @ Xa2 @ A3 )
               => ( ( ord_le2932123472753598470d_enat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_8436_finite__has__minimal2,axiom,
    ! [A3: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A3 )
     => ( ( member_set_nat @ A @ A3 )
       => ? [X4: set_nat] :
            ( ( member_set_nat @ X4 @ A3 )
            & ( ord_less_eq_set_nat @ X4 @ A )
            & ! [Xa2: set_nat] :
                ( ( member_set_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_set_nat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_8437_finite__has__minimal2,axiom,
    ! [A3: set_rat,A: rat] :
      ( ( finite_finite_rat @ A3 )
     => ( ( member_rat @ A @ A3 )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A3 )
            & ( ord_less_eq_rat @ X4 @ A )
            & ! [Xa2: rat] :
                ( ( member_rat @ Xa2 @ A3 )
               => ( ( ord_less_eq_rat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_8438_finite__has__minimal2,axiom,
    ! [A3: set_num,A: num] :
      ( ( finite_finite_num @ A3 )
     => ( ( member_num @ A @ A3 )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A3 )
            & ( ord_less_eq_num @ X4 @ A )
            & ! [Xa2: num] :
                ( ( member_num @ Xa2 @ A3 )
               => ( ( ord_less_eq_num @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_8439_finite__has__minimal2,axiom,
    ! [A3: set_nat,A: nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( member_nat @ A @ A3 )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A3 )
            & ( ord_less_eq_nat @ X4 @ A )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_nat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_8440_finite__has__minimal2,axiom,
    ! [A3: set_int,A: int] :
      ( ( finite_finite_int @ A3 )
     => ( ( member_int @ A @ A3 )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A3 )
            & ( ord_less_eq_int @ X4 @ A )
            & ! [Xa2: int] :
                ( ( member_int @ Xa2 @ A3 )
               => ( ( ord_less_eq_int @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_8441_finite__has__maximal2,axiom,
    ! [A3: set_real,A: real] :
      ( ( finite_finite_real @ A3 )
     => ( ( member_real @ A @ A3 )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A3 )
            & ( ord_less_eq_real @ A @ X4 )
            & ! [Xa2: real] :
                ( ( member_real @ Xa2 @ A3 )
               => ( ( ord_less_eq_real @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_8442_finite__has__maximal2,axiom,
    ! [A3: set_Extended_enat,A: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( member_Extended_enat @ A @ A3 )
       => ? [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
            & ( ord_le2932123472753598470d_enat @ A @ X4 )
            & ! [Xa2: extended_enat] :
                ( ( member_Extended_enat @ Xa2 @ A3 )
               => ( ( ord_le2932123472753598470d_enat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_8443_finite__has__maximal2,axiom,
    ! [A3: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A3 )
     => ( ( member_set_nat @ A @ A3 )
       => ? [X4: set_nat] :
            ( ( member_set_nat @ X4 @ A3 )
            & ( ord_less_eq_set_nat @ A @ X4 )
            & ! [Xa2: set_nat] :
                ( ( member_set_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_set_nat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_8444_finite__has__maximal2,axiom,
    ! [A3: set_rat,A: rat] :
      ( ( finite_finite_rat @ A3 )
     => ( ( member_rat @ A @ A3 )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A3 )
            & ( ord_less_eq_rat @ A @ X4 )
            & ! [Xa2: rat] :
                ( ( member_rat @ Xa2 @ A3 )
               => ( ( ord_less_eq_rat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_8445_finite__has__maximal2,axiom,
    ! [A3: set_num,A: num] :
      ( ( finite_finite_num @ A3 )
     => ( ( member_num @ A @ A3 )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A3 )
            & ( ord_less_eq_num @ A @ X4 )
            & ! [Xa2: num] :
                ( ( member_num @ Xa2 @ A3 )
               => ( ( ord_less_eq_num @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_8446_finite__has__maximal2,axiom,
    ! [A3: set_nat,A: nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( member_nat @ A @ A3 )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A3 )
            & ( ord_less_eq_nat @ A @ X4 )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_nat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_8447_finite__has__maximal2,axiom,
    ! [A3: set_int,A: int] :
      ( ( finite_finite_int @ A3 )
     => ( ( member_int @ A @ A3 )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A3 )
            & ( ord_less_eq_int @ A @ X4 )
            & ! [Xa2: int] :
                ( ( member_int @ Xa2 @ A3 )
               => ( ( ord_less_eq_int @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_8448_sum__less__suminf2,axiom,
    ! [F: nat > int,N: nat,I: nat] :
      ( ( summable_int @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N @ M4 )
           => ( ord_less_eq_int @ zero_zero_int @ ( F @ M4 ) ) )
       => ( ( ord_less_eq_nat @ N @ I )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ I ) )
           => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_int @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_8449_sum__less__suminf2,axiom,
    ! [F: nat > nat,N: nat,I: nat] :
      ( ( summable_nat @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N @ M4 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ M4 ) ) )
       => ( ( ord_less_eq_nat @ N @ I )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
           => ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_nat @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_8450_sum__less__suminf2,axiom,
    ! [F: nat > real,N: nat,I: nat] :
      ( ( summable_real @ F )
     => ( ! [M4: nat] :
            ( ( ord_less_eq_nat @ N @ M4 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ M4 ) ) )
       => ( ( ord_less_eq_nat @ N @ I )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
           => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ ( suminf_real @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_8451_sum_Oin__pairs__0,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I4: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_8452_sum_Oin__pairs__0,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups3539618377306564664at_int
        @ ^ [I4: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_8453_sum_Oin__pairs__0,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_8454_sum_Oin__pairs__0,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% sum.in_pairs_0
thf(fact_8455_polynomial__product,axiom,
    ! [M: nat,A: nat > complex,N: nat,B: nat > complex,X3: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_complex ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_complex ) )
       => ( ( times_times_complex
            @ ( groups2073611262835488442omplex
              @ ^ [I4: nat] : ( times_times_complex @ ( A @ I4 ) @ ( power_power_complex @ X3 @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups2073611262835488442omplex
              @ ^ [J3: nat] : ( times_times_complex @ ( B @ J3 ) @ ( power_power_complex @ X3 @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups2073611262835488442omplex
            @ ^ [R5: nat] :
                ( times_times_complex
                @ ( groups2073611262835488442omplex
                  @ ^ [K3: nat] : ( times_times_complex @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_complex @ X3 @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8456_polynomial__product,axiom,
    ! [M: nat,A: nat > rat,N: nat,B: nat > rat,X3: rat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_rat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_rat ) )
       => ( ( times_times_rat
            @ ( groups2906978787729119204at_rat
              @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( power_power_rat @ X3 @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups2906978787729119204at_rat
              @ ^ [J3: nat] : ( times_times_rat @ ( B @ J3 ) @ ( power_power_rat @ X3 @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups2906978787729119204at_rat
            @ ^ [R5: nat] :
                ( times_times_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [K3: nat] : ( times_times_rat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_rat @ X3 @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8457_polynomial__product,axiom,
    ! [M: nat,A: nat > int,N: nat,B: nat > int,X3: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_int ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_int ) )
       => ( ( times_times_int
            @ ( groups3539618377306564664at_int
              @ ^ [I4: nat] : ( times_times_int @ ( A @ I4 ) @ ( power_power_int @ X3 @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3539618377306564664at_int
              @ ^ [J3: nat] : ( times_times_int @ ( B @ J3 ) @ ( power_power_int @ X3 @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups3539618377306564664at_int
            @ ^ [R5: nat] :
                ( times_times_int
                @ ( groups3539618377306564664at_int
                  @ ^ [K3: nat] : ( times_times_int @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_int @ X3 @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8458_polynomial__product,axiom,
    ! [M: nat,A: nat > real,N: nat,B: nat > real,X3: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_real ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_real ) )
       => ( ( times_times_real
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( A @ I4 ) @ ( power_power_real @ X3 @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups6591440286371151544t_real
              @ ^ [J3: nat] : ( times_times_real @ ( B @ J3 ) @ ( power_power_real @ X3 @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups6591440286371151544t_real
            @ ^ [R5: nat] :
                ( times_times_real
                @ ( groups6591440286371151544t_real
                  @ ^ [K3: nat] : ( times_times_real @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_real @ X3 @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8459_prod_Oin__pairs__0,axiom,
    ! [G: nat > real,N: nat] :
      ( ( groups129246275422532515t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups129246275422532515t_real
        @ ^ [I4: nat] : ( times_times_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% prod.in_pairs_0
thf(fact_8460_prod_Oin__pairs__0,axiom,
    ! [G: nat > rat,N: nat] :
      ( ( groups73079841787564623at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups73079841787564623at_rat
        @ ^ [I4: nat] : ( times_times_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% prod.in_pairs_0
thf(fact_8461_prod_Oin__pairs__0,axiom,
    ! [G: nat > int,N: nat] :
      ( ( groups705719431365010083at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups705719431365010083at_int
        @ ^ [I4: nat] : ( times_times_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% prod.in_pairs_0
thf(fact_8462_prod_Oin__pairs__0,axiom,
    ! [G: nat > nat,N: nat] :
      ( ( groups708209901874060359at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
      = ( groups708209901874060359at_nat
        @ ^ [I4: nat] : ( times_times_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% prod.in_pairs_0
thf(fact_8463_polyfun__eq__const,axiom,
    ! [C: nat > complex,N: nat,K: complex] :
      ( ( ! [X: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) )
            = K ) )
      = ( ( ( C @ zero_zero_nat )
          = K )
        & ! [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) )
           => ( ( C @ X )
              = zero_zero_complex ) ) ) ) ).

% polyfun_eq_const
thf(fact_8464_polyfun__eq__const,axiom,
    ! [C: nat > real,N: nat,K: real] :
      ( ( ! [X: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ X @ I4 ) )
              @ ( set_ord_atMost_nat @ N ) )
            = K ) )
      = ( ( ( C @ zero_zero_nat )
          = K )
        & ! [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ one_one_nat @ N ) )
           => ( ( C @ X )
              = zero_zero_real ) ) ) ) ).

% polyfun_eq_const
thf(fact_8465_one__diff__power__eq_H,axiom,
    ! [X3: complex,N: nat] :
      ( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ N ) )
      = ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X3 )
        @ ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( power_power_complex @ X3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq'
thf(fact_8466_one__diff__power__eq_H,axiom,
    ! [X3: rat,N: nat] :
      ( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ N ) )
      = ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X3 )
        @ ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( power_power_rat @ X3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq'
thf(fact_8467_one__diff__power__eq_H,axiom,
    ! [X3: int,N: nat] :
      ( ( minus_minus_int @ one_one_int @ ( power_power_int @ X3 @ N ) )
      = ( times_times_int @ ( minus_minus_int @ one_one_int @ X3 )
        @ ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( power_power_int @ X3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq'
thf(fact_8468_one__diff__power__eq_H,axiom,
    ! [X3: real,N: nat] :
      ( ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ N ) )
      = ( times_times_real @ ( minus_minus_real @ one_one_real @ X3 )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( power_power_real @ X3 @ ( minus_minus_nat @ N @ ( suc @ I4 ) ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% one_diff_power_eq'
thf(fact_8469_binomial__ring,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( plus_plus_complex @ A @ B ) @ N )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K3 ) ) @ ( power_power_complex @ A @ K3 ) ) @ ( power_power_complex @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_8470_binomial__ring,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( plus_plus_rat @ A @ B ) @ N )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K3 ) ) @ ( power_power_rat @ A @ K3 ) ) @ ( power_power_rat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_8471_binomial__ring,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( plus_plus_int @ A @ B ) @ N )
      = ( groups3539618377306564664at_int
        @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N @ K3 ) ) @ ( power_power_int @ A @ K3 ) ) @ ( power_power_int @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_8472_binomial__ring,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_8473_binomial__ring,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( plus_plus_real @ A @ B ) @ N )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K3 ) ) @ ( power_power_real @ A @ K3 ) ) @ ( power_power_real @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial_ring
thf(fact_8474_pochhammer__binomial__sum,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ B ) @ N )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( binomial @ N @ K3 ) ) @ ( comm_s2602460028002588243omplex @ A @ K3 ) ) @ ( comm_s2602460028002588243omplex @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8475_pochhammer__binomial__sum,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ B ) @ N )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ A @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8476_pochhammer__binomial__sum,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ B ) @ N )
      = ( groups3539618377306564664at_int
        @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N @ K3 ) ) @ ( comm_s4660882817536571857er_int @ A @ K3 ) ) @ ( comm_s4660882817536571857er_int @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8477_pochhammer__binomial__sum,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ B ) @ N )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N @ K3 ) ) @ ( comm_s7457072308508201937r_real @ A @ K3 ) ) @ ( comm_s7457072308508201937r_real @ B @ ( minus_minus_nat @ N @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8478_sum_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > rat,H2: nat > rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups2906978787729119204at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ zero_zero_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups2906978787729119204at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8479_sum_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > int,H2: nat > int] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups3539618377306564664at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ zero_zero_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups3539618377306564664at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8480_sum_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > nat,H2: nat > nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ zero_zero_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8481_sum_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > real,H2: nat > real] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ zero_zero_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8482_prod_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > complex,H2: nat > complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups6464643781859351333omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ one_one_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups6464643781859351333omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8483_prod_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > real,H2: nat > real] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups129246275422532515t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ one_one_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups129246275422532515t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8484_prod_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > rat,H2: nat > rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups73079841787564623at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ one_one_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups73079841787564623at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8485_prod_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > int,H2: nat > int] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups705719431365010083at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ one_one_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups705719431365010083at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8486_prod_Ozero__middle,axiom,
    ! [P6: nat,K: nat,G: nat > nat,H2: nat > nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P6 )
     => ( ( ord_less_eq_nat @ K @ P6 )
       => ( ( groups708209901874060359at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ one_one_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P6 ) )
          = ( groups708209901874060359at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P6 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% prod.zero_middle
thf(fact_8487_binomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% binomial_r_part_sum
thf(fact_8488_choose__linear__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( times_times_nat @ I4 @ ( binomial @ N @ I4 ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% choose_linear_sum
thf(fact_8489_sum__split__even__odd,axiom,
    ! [F: nat > real,G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( F @ I4 ) @ ( G @ I4 ) )
        @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ one_one_nat ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum_split_even_odd
thf(fact_8490_root__polyfun,axiom,
    ! [N: nat,Z: int,A: int] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_int @ Z @ N )
          = A )
        = ( ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( times_times_int @ ( if_int @ ( I4 = zero_zero_nat ) @ ( uminus_uminus_int @ A ) @ ( if_int @ ( I4 = N ) @ one_one_int @ zero_zero_int ) ) @ ( power_power_int @ Z @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_int ) ) ) ).

% root_polyfun
thf(fact_8491_root__polyfun,axiom,
    ! [N: nat,Z: complex,A: complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_complex @ Z @ N )
          = A )
        = ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( if_complex @ ( I4 = zero_zero_nat ) @ ( uminus1482373934393186551omplex @ A ) @ ( if_complex @ ( I4 = N ) @ one_one_complex @ zero_zero_complex ) ) @ ( power_power_complex @ Z @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_complex ) ) ) ).

% root_polyfun
thf(fact_8492_root__polyfun,axiom,
    ! [N: nat,Z: code_integer,A: code_integer] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_8256067586552552935nteger @ Z @ N )
          = A )
        = ( ( groups7501900531339628137nteger
            @ ^ [I4: nat] : ( times_3573771949741848930nteger @ ( if_Code_integer @ ( I4 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ A ) @ ( if_Code_integer @ ( I4 = N ) @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) @ ( power_8256067586552552935nteger @ Z @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_z3403309356797280102nteger ) ) ) ).

% root_polyfun
thf(fact_8493_root__polyfun,axiom,
    ! [N: nat,Z: rat,A: rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_rat @ Z @ N )
          = A )
        = ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( if_rat @ ( I4 = zero_zero_nat ) @ ( uminus_uminus_rat @ A ) @ ( if_rat @ ( I4 = N ) @ one_one_rat @ zero_zero_rat ) ) @ ( power_power_rat @ Z @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_rat ) ) ) ).

% root_polyfun
thf(fact_8494_root__polyfun,axiom,
    ! [N: nat,Z: real,A: real] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( ( ( power_power_real @ Z @ N )
          = A )
        = ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( if_real @ ( I4 = zero_zero_nat ) @ ( uminus_uminus_real @ A ) @ ( if_real @ ( I4 = N ) @ one_one_real @ zero_zero_real ) ) @ ( power_power_real @ Z @ I4 ) )
            @ ( set_ord_atMost_nat @ N ) )
          = zero_zero_real ) ) ) ).

% root_polyfun
thf(fact_8495_sum__gp0,axiom,
    ! [X3: complex,N: nat] :
      ( ( ( X3 = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ N ) )
          = ( semiri8010041392384452111omplex @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
      & ( ( X3 != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X3 ) @ ( set_ord_atMost_nat @ N ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X3 @ ( suc @ N ) ) ) @ ( minus_minus_complex @ one_one_complex @ X3 ) ) ) ) ) ).

% sum_gp0
thf(fact_8496_sum__gp0,axiom,
    ! [X3: rat,N: nat] :
      ( ( ( X3 = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ N ) )
          = ( semiri681578069525770553at_rat @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
      & ( ( X3 != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X3 ) @ ( set_ord_atMost_nat @ N ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X3 @ ( suc @ N ) ) ) @ ( minus_minus_rat @ one_one_rat @ X3 ) ) ) ) ) ).

% sum_gp0
thf(fact_8497_sum__gp0,axiom,
    ! [X3: real,N: nat] :
      ( ( ( X3 = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ N ) )
          = ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N @ one_one_nat ) ) ) )
      & ( ( X3 != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X3 ) @ ( set_ord_atMost_nat @ N ) )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( suc @ N ) ) ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) ) ) ).

% sum_gp0
thf(fact_8498_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups7501900531339628137nteger
          @ ^ [I4: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I4 ) @ ( semiri4939895301339042750nteger @ I4 ) ) @ ( semiri4939895301339042750nteger @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_z3403309356797280102nteger ) ) ).

% choose_alternating_linear_sum
thf(fact_8499_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I4 ) @ ( semiri8010041392384452111omplex @ I4 ) ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_complex ) ) ).

% choose_alternating_linear_sum
thf(fact_8500_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I4 ) @ ( semiri681578069525770553at_rat @ I4 ) ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_rat ) ) ).

% choose_alternating_linear_sum
thf(fact_8501_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( times_times_int @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I4 ) @ ( semiri1314217659103216013at_int @ I4 ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_int ) ) ).

% choose_alternating_linear_sum
thf(fact_8502_choose__alternating__linear__sum,axiom,
    ! [N: nat] :
      ( ( N != one_one_nat )
     => ( ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( semiri5074537144036343181t_real @ I4 ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_real ) ) ).

% choose_alternating_linear_sum
thf(fact_8503_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups7501900531339628137nteger
          @ ^ [I4: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I4 ) @ ( semiri4939895301339042750nteger @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_z3403309356797280102nteger ) ) ).

% choose_alternating_sum
thf(fact_8504_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups2073611262835488442omplex
          @ ^ [I4: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I4 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_complex ) ) ).

% choose_alternating_sum
thf(fact_8505_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I4: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I4 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_rat ) ) ).

% choose_alternating_sum
thf(fact_8506_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups3539618377306564664at_int
          @ ^ [I4: nat] : ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I4 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_int ) ) ).

% choose_alternating_sum
thf(fact_8507_choose__alternating__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I4 ) ) )
          @ ( set_ord_atMost_nat @ N ) )
        = zero_zero_real ) ) ).

% choose_alternating_sum
thf(fact_8508_polyfun__extremal__lemma,axiom,
    ! [E2: real,C: nat > complex,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ E2 )
     => ? [M8: real] :
        ! [Z4: complex] :
          ( ( ord_less_eq_real @ M8 @ ( real_V1022390504157884413omplex @ Z4 ) )
         => ( ord_less_eq_real
            @ ( real_V1022390504157884413omplex
              @ ( groups2073611262835488442omplex
                @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ Z4 @ I4 ) )
                @ ( set_ord_atMost_nat @ N ) ) )
            @ ( times_times_real @ E2 @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( suc @ N ) ) ) ) ) ) ).

% polyfun_extremal_lemma
thf(fact_8509_polyfun__extremal__lemma,axiom,
    ! [E2: real,C: nat > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ E2 )
     => ? [M8: real] :
        ! [Z4: real] :
          ( ( ord_less_eq_real @ M8 @ ( real_V7735802525324610683m_real @ Z4 ) )
         => ( ord_less_eq_real
            @ ( real_V7735802525324610683m_real
              @ ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ Z4 @ I4 ) )
                @ ( set_ord_atMost_nat @ N ) ) )
            @ ( times_times_real @ E2 @ ( power_power_real @ ( real_V7735802525324610683m_real @ Z4 ) @ ( suc @ N ) ) ) ) ) ) ).

% polyfun_extremal_lemma
thf(fact_8510_even__set__encode__iff,axiom,
    ! [A3: set_nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A3 ) )
        = ( ~ ( member_nat @ zero_zero_nat @ A3 ) ) ) ) ).

% even_set_encode_iff
thf(fact_8511_sum__pos__lt__pair,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ! [D6: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D6 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D6 ) @ one_one_nat ) ) ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_pos_lt_pair
thf(fact_8512_Sum__Icc__int,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ N )
     => ( ( groups4538972089207619220nt_int
          @ ^ [X: int] : X
          @ ( set_or1266510415728281911st_int @ M @ N ) )
        = ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N @ ( plus_plus_int @ N @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% Sum_Icc_int
thf(fact_8513_finite__has__minimal,axiom,
    ! [A3: set_Extended_enat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( A3 != bot_bo7653980558646680370d_enat )
       => ? [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
            & ! [Xa2: extended_enat] :
                ( ( member_Extended_enat @ Xa2 @ A3 )
               => ( ( ord_le2932123472753598470d_enat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_8514_finite__has__minimal,axiom,
    ! [A3: set_real] :
      ( ( finite_finite_real @ A3 )
     => ( ( A3 != bot_bot_set_real )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A3 )
            & ! [Xa2: real] :
                ( ( member_real @ Xa2 @ A3 )
               => ( ( ord_less_eq_real @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_8515_finite__has__minimal,axiom,
    ! [A3: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ A3 )
     => ( ( A3 != bot_bot_set_set_nat )
       => ? [X4: set_nat] :
            ( ( member_set_nat @ X4 @ A3 )
            & ! [Xa2: set_nat] :
                ( ( member_set_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_set_nat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_8516_finite__has__minimal,axiom,
    ! [A3: set_rat] :
      ( ( finite_finite_rat @ A3 )
     => ( ( A3 != bot_bot_set_rat )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A3 )
            & ! [Xa2: rat] :
                ( ( member_rat @ Xa2 @ A3 )
               => ( ( ord_less_eq_rat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_8517_finite__has__minimal,axiom,
    ! [A3: set_num] :
      ( ( finite_finite_num @ A3 )
     => ( ( A3 != bot_bot_set_num )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A3 )
            & ! [Xa2: num] :
                ( ( member_num @ Xa2 @ A3 )
               => ( ( ord_less_eq_num @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_8518_finite__has__minimal,axiom,
    ! [A3: set_nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( A3 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A3 )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_nat @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_8519_finite__has__minimal,axiom,
    ! [A3: set_int] :
      ( ( finite_finite_int @ A3 )
     => ( ( A3 != bot_bot_set_int )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A3 )
            & ! [Xa2: int] :
                ( ( member_int @ Xa2 @ A3 )
               => ( ( ord_less_eq_int @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_8520_finite__has__maximal,axiom,
    ! [A3: set_Extended_enat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( A3 != bot_bo7653980558646680370d_enat )
       => ? [X4: extended_enat] :
            ( ( member_Extended_enat @ X4 @ A3 )
            & ! [Xa2: extended_enat] :
                ( ( member_Extended_enat @ Xa2 @ A3 )
               => ( ( ord_le2932123472753598470d_enat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_8521_finite__has__maximal,axiom,
    ! [A3: set_real] :
      ( ( finite_finite_real @ A3 )
     => ( ( A3 != bot_bot_set_real )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A3 )
            & ! [Xa2: real] :
                ( ( member_real @ Xa2 @ A3 )
               => ( ( ord_less_eq_real @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_8522_finite__has__maximal,axiom,
    ! [A3: set_set_nat] :
      ( ( finite1152437895449049373et_nat @ A3 )
     => ( ( A3 != bot_bot_set_set_nat )
       => ? [X4: set_nat] :
            ( ( member_set_nat @ X4 @ A3 )
            & ! [Xa2: set_nat] :
                ( ( member_set_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_set_nat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_8523_finite__has__maximal,axiom,
    ! [A3: set_rat] :
      ( ( finite_finite_rat @ A3 )
     => ( ( A3 != bot_bot_set_rat )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A3 )
            & ! [Xa2: rat] :
                ( ( member_rat @ Xa2 @ A3 )
               => ( ( ord_less_eq_rat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_8524_finite__has__maximal,axiom,
    ! [A3: set_num] :
      ( ( finite_finite_num @ A3 )
     => ( ( A3 != bot_bot_set_num )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A3 )
            & ! [Xa2: num] :
                ( ( member_num @ Xa2 @ A3 )
               => ( ( ord_less_eq_num @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_8525_finite__has__maximal,axiom,
    ! [A3: set_nat] :
      ( ( finite_finite_nat @ A3 )
     => ( ( A3 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A3 )
            & ! [Xa2: nat] :
                ( ( member_nat @ Xa2 @ A3 )
               => ( ( ord_less_eq_nat @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_8526_finite__has__maximal,axiom,
    ! [A3: set_int] :
      ( ( finite_finite_int @ A3 )
     => ( ( A3 != bot_bot_set_int )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A3 )
            & ! [Xa2: int] :
                ( ( member_int @ Xa2 @ A3 )
               => ( ( ord_less_eq_int @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_8527_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N @ I4 ) ) @ zero_zero_complex )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_8528_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( if_rat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N @ I4 ) ) @ zero_zero_rat )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_8529_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I4: nat] : ( if_int @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N @ I4 ) ) @ zero_zero_int )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_8530_choose__even__sum,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N @ I4 ) ) @ zero_zero_real )
            @ ( set_ord_atMost_nat @ N ) ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ) ).

% choose_even_sum
thf(fact_8531_sumr__cos__zero__one,axiom,
    ! [N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ zero_zero_real @ M3 ) )
        @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = one_one_real ) ).

% sumr_cos_zero_one
thf(fact_8532_gbinomial__partial__row__sum,axiom,
    ! [A: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K3 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ one_one_complex ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8533_gbinomial__partial__row__sum,axiom,
    ! [A: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K3 ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ one_one_rat ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8534_gbinomial__partial__row__sum,axiom,
    ! [A: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ A @ K3 ) @ ( minus_minus_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8535_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups2073611262835488442omplex @ ( gbinomial_complex @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M ) ) @ one_one_complex ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_8536_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups2906978787729119204at_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M ) ) @ one_one_rat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_8537_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups6591440286371151544t_real @ ( gbinomial_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_8538_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_8539_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_8540_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_8541_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_8542_sin__arccos__abs,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
     => ( ( sin_real @ ( arccos @ Y3 ) )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arccos_abs
thf(fact_8543_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_real @ zero_zero_real @ ( suc @ K ) )
      = zero_zero_real ) ).

% gbinomial_0(2)
thf(fact_8544_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_rat @ zero_zero_rat @ ( suc @ K ) )
      = zero_zero_rat ) ).

% gbinomial_0(2)
thf(fact_8545_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_nat @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% gbinomial_0(2)
thf(fact_8546_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_int @ zero_zero_int @ ( suc @ K ) )
      = zero_zero_int ) ).

% gbinomial_0(2)
thf(fact_8547_gbinomial__0_I1_J,axiom,
    ! [A: complex] :
      ( ( gbinomial_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% gbinomial_0(1)
thf(fact_8548_gbinomial__0_I1_J,axiom,
    ! [A: real] :
      ( ( gbinomial_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% gbinomial_0(1)
thf(fact_8549_gbinomial__0_I1_J,axiom,
    ! [A: rat] :
      ( ( gbinomial_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% gbinomial_0(1)
thf(fact_8550_gbinomial__0_I1_J,axiom,
    ! [A: nat] :
      ( ( gbinomial_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% gbinomial_0(1)
thf(fact_8551_gbinomial__0_I1_J,axiom,
    ! [A: int] :
      ( ( gbinomial_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% gbinomial_0(1)
thf(fact_8552_arccos__1,axiom,
    ( ( arccos @ one_one_real )
    = zero_zero_real ) ).

% arccos_1
thf(fact_8553_cos__coeff__0,axiom,
    ( ( cos_coeff @ zero_zero_nat )
    = one_one_real ) ).

% cos_coeff_0
thf(fact_8554_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
    = one_one_complex ) ).

% dbl_inc_simps(2)
thf(fact_8555_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_8556_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
    = one_one_rat ) ).

% dbl_inc_simps(2)
thf(fact_8557_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_8558_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_8559_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_8560_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_inc_simps(4)
thf(fact_8561_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_inc_simps(4)
thf(fact_8562_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_inc_simps(4)
thf(fact_8563_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_8564_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_8565_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_8566_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_8567_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_8568_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_8569_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_8570_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_8571_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_8572_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_8573_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_8574_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_8575_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_8576_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_8577_cos__arccos,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ( cos_real @ ( arccos @ Y3 ) )
          = Y3 ) ) ) ).

% cos_arccos
thf(fact_8578_arccos__0,axiom,
    ( ( arccos @ zero_zero_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arccos_0
thf(fact_8579_of__nat__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri8010041392384452111omplex @ ( gbinomial_nat @ N @ K ) )
      = ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K ) ) ).

% of_nat_gbinomial
thf(fact_8580_of__nat__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri5074537144036343181t_real @ ( gbinomial_nat @ N @ K ) )
      = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).

% of_nat_gbinomial
thf(fact_8581_of__nat__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri681578069525770553at_rat @ ( gbinomial_nat @ N @ K ) )
      = ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K ) ) ).

% of_nat_gbinomial
thf(fact_8582_binomial__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri8010041392384452111omplex @ ( binomial @ N @ K ) )
      = ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K ) ) ).

% binomial_gbinomial
thf(fact_8583_binomial__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri5074537144036343181t_real @ ( binomial @ N @ K ) )
      = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K ) ) ).

% binomial_gbinomial
thf(fact_8584_binomial__gbinomial,axiom,
    ! [N: nat,K: nat] :
      ( ( semiri681578069525770553at_rat @ ( binomial @ N @ K ) )
      = ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K ) ) ).

% binomial_gbinomial
thf(fact_8585_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ K )
        = ( gbinomial_complex @ ( semiri8010041392384452111omplex @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_8586_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ K )
        = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_8587_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ K )
        = ( gbinomial_rat @ ( semiri681578069525770553at_rat @ N ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_8588_arccos__le__arccos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
       => ( ( ord_less_eq_real @ Y3 @ one_one_real )
         => ( ord_less_eq_real @ ( arccos @ Y3 ) @ ( arccos @ X3 ) ) ) ) ) ).

% arccos_le_arccos
thf(fact_8589_arccos__eq__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
        & ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real ) )
     => ( ( ( arccos @ X3 )
          = ( arccos @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% arccos_eq_iff
thf(fact_8590_arccos__le__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arccos @ X3 ) @ ( arccos @ Y3 ) )
          = ( ord_less_eq_real @ Y3 @ X3 ) ) ) ) ).

% arccos_le_mono
thf(fact_8591_gbinomial__absorb__comp,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ A @ K ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8592_gbinomial__absorb__comp,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ A @ K ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8593_gbinomial__absorb__comp,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ A @ K ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8594_gbinomial__mult__1,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ A @ ( gbinomial_complex @ A @ K ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8595_gbinomial__mult__1,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8596_gbinomial__mult__1,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8597_gbinomial__mult__1_H,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ A )
      = ( plus_plus_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ K ) @ ( gbinomial_complex @ A @ K ) ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8598_gbinomial__mult__1_H,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8599_gbinomial__mult__1_H,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8600_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8601_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8602_dbl__inc__def,axiom,
    ( neg_nu8557863876264182079omplex
    = ( ^ [X: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).

% dbl_inc_def
thf(fact_8603_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X: real] : ( plus_plus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_8604_dbl__inc__def,axiom,
    ( neg_nu5219082963157363817nc_rat
    = ( ^ [X: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).

% dbl_inc_def
thf(fact_8605_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X: int] : ( plus_plus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_8606_arccos__lbound,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y3 ) ) ) ) ).

% arccos_lbound
thf(fact_8607_arccos__less__arccos,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ Y3 )
       => ( ( ord_less_eq_real @ Y3 @ one_one_real )
         => ( ord_less_real @ ( arccos @ Y3 ) @ ( arccos @ X3 ) ) ) ) ) ).

% arccos_less_arccos
thf(fact_8608_arccos__less__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
       => ( ( ord_less_real @ ( arccos @ X3 ) @ ( arccos @ Y3 ) )
          = ( ord_less_real @ Y3 @ X3 ) ) ) ) ).

% arccos_less_mono
thf(fact_8609_arccos__ubound,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y3 ) @ pi ) ) ) ).

% arccos_ubound
thf(fact_8610_arccos__cos,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ pi )
       => ( ( arccos @ ( cos_real @ X3 ) )
          = X3 ) ) ) ).

% arccos_cos
thf(fact_8611_cos__arccos__abs,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y3 ) @ one_one_real )
     => ( ( cos_real @ ( arccos @ Y3 ) )
        = Y3 ) ) ).

% cos_arccos_abs
thf(fact_8612_arccos__cos__eq__abs,axiom,
    ! [Theta: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
     => ( ( arccos @ ( cos_real @ Theta ) )
        = ( abs_abs_real @ Theta ) ) ) ).

% arccos_cos_eq_abs
thf(fact_8613_Suc__times__gbinomial,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8614_Suc__times__gbinomial,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
      = ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8615_Suc__times__gbinomial,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8616_gbinomial__absorption,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8617_gbinomial__absorption,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8618_gbinomial__absorption,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8619_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: complex] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_complex @ ( gbinomial_complex @ A @ M ) @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ M ) @ K ) )
        = ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8620_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: real] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
        = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8621_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: rat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
        = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8622_gbinomial__parallel__sum,axiom,
    ! [A: complex,N: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( gbinomial_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( gbinomial_complex @ ( plus_plus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ N ) ) ).

% gbinomial_parallel_sum
thf(fact_8623_gbinomial__parallel__sum,axiom,
    ! [A: rat,N: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( gbinomial_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( gbinomial_rat @ ( plus_plus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ N ) ) ).

% gbinomial_parallel_sum
thf(fact_8624_gbinomial__parallel__sum,axiom,
    ! [A: real,N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( gbinomial_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( gbinomial_real @ ( plus_plus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ N ) ) ).

% gbinomial_parallel_sum
thf(fact_8625_arccos__lt__bounded,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_real @ Y3 @ one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y3 ) )
          & ( ord_less_real @ ( arccos @ Y3 ) @ pi ) ) ) ) ).

% arccos_lt_bounded
thf(fact_8626_arccos__bounded,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y3 ) )
          & ( ord_less_eq_real @ ( arccos @ Y3 ) @ pi ) ) ) ) ).

% arccos_bounded
thf(fact_8627_gbinomial__factors,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8628_gbinomial__factors,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8629_gbinomial__factors,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8630_gbinomial__rec,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8631_gbinomial__rec,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8632_gbinomial__rec,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8633_gbinomial__index__swap,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N ) ) @ one_one_complex ) @ K ) )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_8634_gbinomial__index__swap,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ one_one_real ) @ K ) )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_8635_gbinomial__index__swap,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N ) ) @ one_one_rat ) @ K ) )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ N ) ) ) ).

% gbinomial_index_swap
thf(fact_8636_gbinomial__negated__upper,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A4 ) @ one_one_rat ) @ K3 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8637_sin__arccos__nonzero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( ( sin_real @ ( arccos @ X3 ) )
         != zero_zero_real ) ) ) ).

% sin_arccos_nonzero
thf(fact_8638_arccos__cos2,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X3 )
       => ( ( arccos @ ( cos_real @ X3 ) )
          = ( uminus_uminus_real @ X3 ) ) ) ) ).

% arccos_cos2
thf(fact_8639_arccos__minus,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ( arccos @ ( uminus_uminus_real @ X3 ) )
          = ( minus_minus_real @ pi @ ( arccos @ X3 ) ) ) ) ) ).

% arccos_minus
thf(fact_8640_arccos,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y3 ) )
          & ( ord_less_eq_real @ ( arccos @ Y3 ) @ pi )
          & ( ( cos_real @ ( arccos @ Y3 ) )
            = Y3 ) ) ) ) ).

% arccos
thf(fact_8641_arccos__minus__abs,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( ( arccos @ ( uminus_uminus_real @ X3 ) )
        = ( minus_minus_real @ pi @ ( arccos @ X3 ) ) ) ) ).

% arccos_minus_abs
thf(fact_8642_arccos__le__pi2,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arccos_le_pi2
thf(fact_8643_arccos__cos__eq__abs__2pi,axiom,
    ! [Theta: real] :
      ~ ! [K2: int] :
          ( ( arccos @ ( cos_real @ Theta ) )
         != ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).

% arccos_cos_eq_abs_2pi
thf(fact_8644_sin__arccos,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ( sin_real @ ( arccos @ X3 ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_arccos
thf(fact_8645_Maclaurin__minus__cos__expansion,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X3 @ zero_zero_real )
       => ? [T3: real] :
            ( ( ord_less_real @ X3 @ T3 )
            & ( ord_less_real @ T3 @ zero_zero_real )
            & ( ( cos_real @ X3 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ) ).

% Maclaurin_minus_cos_expansion
thf(fact_8646_Maclaurin__cos__expansion2,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ T3 )
            & ( ord_less_real @ T3 @ X3 )
            & ( ( cos_real @ X3 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ) ).

% Maclaurin_cos_expansion2
thf(fact_8647_Maclaurin__cos__expansion,axiom,
    ! [X3: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
      & ( ( cos_real @ X3 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ).

% Maclaurin_cos_expansion
thf(fact_8648_infinite__int__iff__unbounded,axiom,
    ! [S2: set_int] :
      ( ( ~ ( finite_finite_int @ S2 ) )
      = ( ! [M3: int] :
          ? [N3: int] :
            ( ( ord_less_int @ M3 @ ( abs_abs_int @ N3 ) )
            & ( member_int @ N3 @ S2 ) ) ) ) ).

% infinite_int_iff_unbounded
thf(fact_8649_square__fact__le__2__fact,axiom,
    ! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% square_fact_le_2_fact
thf(fact_8650_infinite__nat__iff__unbounded,axiom,
    ! [S2: set_nat] :
      ( ( ~ ( finite_finite_nat @ S2 ) )
      = ( ! [M3: nat] :
          ? [N3: nat] :
            ( ( ord_less_nat @ M3 @ N3 )
            & ( member_nat @ N3 @ S2 ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_8651_unbounded__k__infinite,axiom,
    ! [K: nat,S2: set_nat] :
      ( ! [M4: nat] :
          ( ( ord_less_nat @ K @ M4 )
         => ? [N8: nat] :
              ( ( ord_less_nat @ M4 @ N8 )
              & ( member_nat @ N8 @ S2 ) ) )
     => ~ ( finite_finite_nat @ S2 ) ) ).

% unbounded_k_infinite
thf(fact_8652_infinite__nat__iff__unbounded__le,axiom,
    ! [S2: set_nat] :
      ( ( ~ ( finite_finite_nat @ S2 ) )
      = ( ! [M3: nat] :
          ? [N3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N3 )
            & ( member_nat @ N3 @ S2 ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_8653_Maclaurin__lemma,axiom,
    ! [H2: real,F: real > real,J: nat > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ? [B6: real] :
          ( ( F @ H2 )
          = ( plus_plus_real
            @ ( groups6591440286371151544t_real
              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
              @ ( set_ord_lessThan_nat @ N ) )
            @ ( times_times_real @ B6 @ ( divide_divide_real @ ( power_power_real @ H2 @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ) ).

% Maclaurin_lemma
thf(fact_8654_cos__coeff__def,axiom,
    ( cos_coeff
    = ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) @ zero_zero_real ) ) ) ).

% cos_coeff_def
thf(fact_8655_infinite__int__iff__unbounded__le,axiom,
    ! [S2: set_int] :
      ( ( ~ ( finite_finite_int @ S2 ) )
      = ( ! [M3: int] :
          ? [N3: int] :
            ( ( ord_less_eq_int @ M3 @ ( abs_abs_int @ N3 ) )
            & ( member_int @ N3 @ S2 ) ) ) ) ).

% infinite_int_iff_unbounded_le
thf(fact_8656_Maclaurin__sin__expansion3,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ T3 )
            & ( ord_less_real @ T3 @ X3 )
            & ( ( sin_real @ X3 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ) ).

% Maclaurin_sin_expansion3
thf(fact_8657_Maclaurin__sin__expansion4,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ? [T3: real] :
          ( ( ord_less_real @ zero_zero_real @ T3 )
          & ( ord_less_eq_real @ T3 @ X3 )
          & ( ( sin_real @ X3 )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ).

% Maclaurin_sin_expansion4
thf(fact_8658_Maclaurin__sin__expansion2,axiom,
    ! [X3: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
      & ( ( sin_real @ X3 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ).

% Maclaurin_sin_expansion2
thf(fact_8659_Maclaurin__sin__expansion,axiom,
    ! [X3: real,N: nat] :
    ? [T3: real] :
      ( ( sin_real @ X3 )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T3 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ).

% Maclaurin_sin_expansion
thf(fact_8660_sin__coeff__0,axiom,
    ( ( sin_coeff @ zero_zero_nat )
    = zero_zero_real ) ).

% sin_coeff_0
thf(fact_8661_fact__ge__self,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_self
thf(fact_8662_fact__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% fact_mono_nat
thf(fact_8663_fact__less__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono_nat
thf(fact_8664_fact__ge__Suc__0__nat,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_Suc_0_nat
thf(fact_8665_dvd__fact,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% dvd_fact
thf(fact_8666_fact__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ ( suc @ M ) )
     => ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) )
        = ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).

% fact_diff_Suc
thf(fact_8667_fact__div__fact__le__pow,axiom,
    ! [R2: nat,N: nat] :
      ( ( ord_less_eq_nat @ R2 @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ R2 ) ) ) @ ( power_power_nat @ N @ R2 ) ) ) ).

% fact_div_fact_le_pow
thf(fact_8668_binomial__fact__lemma,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( binomial @ N @ K ) )
        = ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% binomial_fact_lemma
thf(fact_8669_fact__eq__fact__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1408675320244567234ct_nat @ M )
        = ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N )
          @ ( groups708209901874060359at_nat
            @ ^ [X: nat] : X
            @ ( set_or1269000886237332187st_nat @ ( suc @ N ) @ M ) ) ) ) ) ).

% fact_eq_fact_times
thf(fact_8670_binomial__altdef__nat,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( binomial @ N @ K )
        = ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).

% binomial_altdef_nat
thf(fact_8671_fact__div__fact,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) )
        = ( groups708209901874060359at_nat
          @ ^ [X: nat] : X
          @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) ) ).

% fact_div_fact
thf(fact_8672_sin__coeff__Suc,axiom,
    ! [N: nat] :
      ( ( sin_coeff @ ( suc @ N ) )
      = ( divide_divide_real @ ( cos_coeff @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).

% sin_coeff_Suc
thf(fact_8673_cos__coeff__Suc,axiom,
    ! [N: nat] :
      ( ( cos_coeff @ ( suc @ N ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).

% cos_coeff_Suc
thf(fact_8674_binomial__code,axiom,
    ( binomial
    = ( ^ [N3: nat,K3: nat] : ( if_nat @ ( ord_less_nat @ N3 @ K3 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K3 ) ) @ ( binomial @ N3 @ ( minus_minus_nat @ N3 @ K3 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N3 @ K3 ) @ one_one_nat ) @ N3 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K3 ) ) ) ) ) ) ).

% binomial_code
thf(fact_8675_sin__coeff__def,axiom,
    ( sin_coeff
    = ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) ) ) ) ).

% sin_coeff_def
thf(fact_8676_Maclaurin__exp__lt,axiom,
    ! [X3: real,N: nat] :
      ( ( X3 != zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T3: real] :
            ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
            & ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
            & ( ( exp_real @ X3 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X3 @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ) ).

% Maclaurin_exp_lt
thf(fact_8677_sin__paired,axiom,
    ! [X3: real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
      @ ( sin_real @ X3 ) ) ).

% sin_paired
thf(fact_8678_VEBT__internal_Oheight_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_VEBT_height @ ( vEBT_Leaf @ A @ B ) )
      = zero_zero_nat ) ).

% VEBT_internal.height.simps(1)
thf(fact_8679_exp__less__cancel__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( exp_real @ X3 ) @ ( exp_real @ Y3 ) )
      = ( ord_less_real @ X3 @ Y3 ) ) ).

% exp_less_cancel_iff
thf(fact_8680_exp__less__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ( ord_less_real @ ( exp_real @ X3 ) @ ( exp_real @ Y3 ) ) ) ).

% exp_less_mono
thf(fact_8681_exp__le__cancel__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X3 ) @ ( exp_real @ Y3 ) )
      = ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% exp_le_cancel_iff
thf(fact_8682_exp__eq__one__iff,axiom,
    ! [X3: real] :
      ( ( ( exp_real @ X3 )
        = one_one_real )
      = ( X3 = zero_zero_real ) ) ).

% exp_eq_one_iff
thf(fact_8683_exp__less__one__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( exp_real @ X3 ) @ one_one_real )
      = ( ord_less_real @ X3 @ zero_zero_real ) ) ).

% exp_less_one_iff
thf(fact_8684_one__less__exp__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ one_one_real @ ( exp_real @ X3 ) )
      = ( ord_less_real @ zero_zero_real @ X3 ) ) ).

% one_less_exp_iff
thf(fact_8685_exp__le__one__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X3 ) @ one_one_real )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% exp_le_one_iff
thf(fact_8686_one__le__exp__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X3 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% one_le_exp_iff
thf(fact_8687_exp__ln,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( exp_real @ ( ln_ln_real @ X3 ) )
        = X3 ) ) ).

% exp_ln
thf(fact_8688_exp__ln__iff,axiom,
    ! [X3: real] :
      ( ( ( exp_real @ ( ln_ln_real @ X3 ) )
        = X3 )
      = ( ord_less_real @ zero_zero_real @ X3 ) ) ).

% exp_ln_iff
thf(fact_8689_exp__less__cancel,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( exp_real @ X3 ) @ ( exp_real @ Y3 ) )
     => ( ord_less_real @ X3 @ Y3 ) ) ).

% exp_less_cancel
thf(fact_8690_not__exp__less__zero,axiom,
    ! [X3: real] :
      ~ ( ord_less_real @ ( exp_real @ X3 ) @ zero_zero_real ) ).

% not_exp_less_zero
thf(fact_8691_exp__gt__zero,axiom,
    ! [X3: real] : ( ord_less_real @ zero_zero_real @ ( exp_real @ X3 ) ) ).

% exp_gt_zero
thf(fact_8692_exp__total,axiom,
    ! [Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ? [X4: real] :
          ( ( exp_real @ X4 )
          = Y3 ) ) ).

% exp_total
thf(fact_8693_not__exp__le__zero,axiom,
    ! [X3: real] :
      ~ ( ord_less_eq_real @ ( exp_real @ X3 ) @ zero_zero_real ) ).

% not_exp_le_zero
thf(fact_8694_exp__ge__zero,axiom,
    ! [X3: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X3 ) ) ).

% exp_ge_zero
thf(fact_8695_exp__gt__one,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_real @ one_one_real @ ( exp_real @ X3 ) ) ) ).

% exp_gt_one
thf(fact_8696_exp__ge__add__one__self,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X3 ) @ ( exp_real @ X3 ) ) ).

% exp_ge_add_one_self
thf(fact_8697_exp__ge__add__one__self__aux,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X3 ) @ ( exp_real @ X3 ) ) ) ).

% exp_ge_add_one_self_aux
thf(fact_8698_lemma__exp__total,axiom,
    ! [Y3: real] :
      ( ( ord_less_eq_real @ one_one_real @ Y3 )
     => ? [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
          & ( ord_less_eq_real @ X4 @ ( minus_minus_real @ Y3 @ one_one_real ) )
          & ( ( exp_real @ X4 )
            = Y3 ) ) ) ).

% lemma_exp_total
thf(fact_8699_ln__ge__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ Y3 @ ( ln_ln_real @ X3 ) )
        = ( ord_less_eq_real @ ( exp_real @ Y3 ) @ X3 ) ) ) ).

% ln_ge_iff
thf(fact_8700_ln__x__over__x__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X3 )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
       => ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y3 ) @ Y3 ) @ ( divide_divide_real @ ( ln_ln_real @ X3 ) @ X3 ) ) ) ) ).

% ln_x_over_x_mono
thf(fact_8701_exp__le,axiom,
    ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).

% exp_le
thf(fact_8702_exp__half__le2,axiom,
    ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% exp_half_le2
thf(fact_8703_power__half__series,axiom,
    ( sums_real
    @ ^ [N3: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N3 ) )
    @ one_one_real ) ).

% power_half_series
thf(fact_8704_sums__if_H,axiom,
    ! [G: nat > real,X3: real] :
      ( ( sums_real @ G @ X3 )
     => ( sums_real
        @ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        @ X3 ) ) ).

% sums_if'
thf(fact_8705_sums__if,axiom,
    ! [G: nat > real,X3: real,F: nat > real,Y3: real] :
      ( ( sums_real @ G @ X3 )
     => ( ( sums_real @ F @ Y3 )
       => ( sums_real
          @ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( F @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( plus_plus_real @ X3 @ Y3 ) ) ) ) ).

% sums_if
thf(fact_8706_exp__bound,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( ord_less_eq_real @ ( exp_real @ X3 ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X3 ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% exp_bound
thf(fact_8707_real__exp__bound__lemma,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( exp_real @ X3 ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) ) ) ) ).

% real_exp_bound_lemma
thf(fact_8708_exp__ge__one__plus__x__over__n__power__n,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ X3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X3 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ X3 ) ) ) ) ).

% exp_ge_one_plus_x_over_n_power_n
thf(fact_8709_exp__ge__one__minus__x__over__n__power__n,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_eq_real @ X3 @ ( semiri5074537144036343181t_real @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X3 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ).

% exp_ge_one_minus_x_over_n_power_n
thf(fact_8710_Maclaurin__exp__le,axiom,
    ! [X3: real,N: nat] :
    ? [T3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
      & ( ( exp_real @ X3 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X3 @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ).

% Maclaurin_exp_le
thf(fact_8711_exp__lower__Taylor__quadratic,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X3 ) @ ( divide_divide_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X3 ) ) ) ).

% exp_lower_Taylor_quadratic
thf(fact_8712_log__base__10__eq2,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X3 )
        = ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X3 ) ) ) ) ).

% log_base_10_eq2
thf(fact_8713_tanh__real__altdef,axiom,
    ( tanh_real
    = ( ^ [X: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ) ) ).

% tanh_real_altdef
thf(fact_8714_cos__paired,axiom,
    ! [X3: real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_real @ X3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
      @ ( cos_real @ X3 ) ) ).

% cos_paired
thf(fact_8715_log__base__10__eq1,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X3 )
        = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X3 ) ) ) ) ).

% log_base_10_eq1
thf(fact_8716_Maclaurin__sin__bound,axiom,
    ! [X3: real,N: nat] :
      ( ord_less_eq_real
      @ ( abs_abs_real
        @ ( minus_minus_real @ ( sin_real @ X3 )
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X3 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) )
      @ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( abs_abs_real @ X3 ) @ N ) ) ) ).

% Maclaurin_sin_bound
thf(fact_8717_divmod__BitM__2__eq,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
      = ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).

% divmod_BitM_2_eq
thf(fact_8718_pred__numeral__simps_I2_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit0 @ K ) )
      = ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).

% pred_numeral_simps(2)
thf(fact_8719_real__sqrt__inverse,axiom,
    ! [X3: real] :
      ( ( sqrt @ ( inverse_inverse_real @ X3 ) )
      = ( inverse_inverse_real @ ( sqrt @ X3 ) ) ) ).

% real_sqrt_inverse
thf(fact_8720_semiring__norm_I26_J,axiom,
    ( ( bitM @ one )
    = one ) ).

% semiring_norm(26)
thf(fact_8721_divide__real__def,axiom,
    ( divide_divide_real
    = ( ^ [X: real,Y: real] : ( times_times_real @ X @ ( inverse_inverse_real @ Y ) ) ) ) ).

% divide_real_def
thf(fact_8722_semiring__norm_I28_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit1 @ N ) )
      = ( bit1 @ ( bit0 @ N ) ) ) ).

% semiring_norm(28)
thf(fact_8723_semiring__norm_I27_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit0 @ N ) )
      = ( bit1 @ ( bitM @ N ) ) ) ).

% semiring_norm(27)
thf(fact_8724_inc__BitM__eq,axiom,
    ! [N: num] :
      ( ( inc @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% inc_BitM_eq
thf(fact_8725_BitM__inc__eq,axiom,
    ! [N: num] :
      ( ( bitM @ ( inc @ N ) )
      = ( bit1 @ N ) ) ).

% BitM_inc_eq
thf(fact_8726_inverse__powr,axiom,
    ! [Y3: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
     => ( ( powr_real @ ( inverse_inverse_real @ Y3 ) @ A )
        = ( inverse_inverse_real @ ( powr_real @ Y3 @ A ) ) ) ) ).

% inverse_powr
thf(fact_8727_eval__nat__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bitM @ N ) ) ) ) ).

% eval_nat_numeral(2)
thf(fact_8728_BitM__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ ( bitM @ N ) @ one )
      = ( bit0 @ N ) ) ).

% BitM_plus_one
thf(fact_8729_one__plus__BitM,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% one_plus_BitM
thf(fact_8730_forall__pos__mono__1,axiom,
    ! [P: real > $o,E2: real] :
      ( ! [D6: real,E: real] :
          ( ( ord_less_real @ D6 @ E )
         => ( ( P @ D6 )
           => ( P @ E ) ) )
     => ( ! [N2: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( P @ E2 ) ) ) ) ).

% forall_pos_mono_1
thf(fact_8731_forall__pos__mono,axiom,
    ! [P: real > $o,E2: real] :
      ( ! [D6: real,E: real] :
          ( ( ord_less_real @ D6 @ E )
         => ( ( P @ D6 )
           => ( P @ E ) ) )
     => ( ! [N2: nat] :
            ( ( N2 != zero_zero_nat )
           => ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( P @ E2 ) ) ) ) ).

% forall_pos_mono
thf(fact_8732_real__arch__inverse,axiom,
    ! [E2: real] :
      ( ( ord_less_real @ zero_zero_real @ E2 )
      = ( ? [N3: nat] :
            ( ( N3 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ E2 ) ) ) ) ).

% real_arch_inverse
thf(fact_8733_sqrt__divide__self__eq,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( divide_divide_real @ ( sqrt @ X3 ) @ X3 )
        = ( inverse_inverse_real @ ( sqrt @ X3 ) ) ) ) ).

% sqrt_divide_self_eq
thf(fact_8734_ln__inverse,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ln_ln_real @ ( inverse_inverse_real @ X3 ) )
        = ( uminus_uminus_real @ ( ln_ln_real @ X3 ) ) ) ) ).

% ln_inverse
thf(fact_8735_log__inverse,axiom,
    ! [A: real,X3: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( log @ A @ ( inverse_inverse_real @ X3 ) )
            = ( uminus_uminus_real @ ( log @ A @ X3 ) ) ) ) ) ) ).

% log_inverse
thf(fact_8736_exp__plus__inverse__exp,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X3 ) @ ( inverse_inverse_real @ ( exp_real @ X3 ) ) ) ) ).

% exp_plus_inverse_exp
thf(fact_8737_plus__inverse__ge__2,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X3 @ ( inverse_inverse_real @ X3 ) ) ) ) ).

% plus_inverse_ge_2
thf(fact_8738_real__inv__sqrt__pow2,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( inverse_inverse_real @ X3 ) ) ) ).

% real_inv_sqrt_pow2
thf(fact_8739_tan__cot,axiom,
    ! [X3: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) )
      = ( inverse_inverse_real @ ( tan_real @ X3 ) ) ) ).

% tan_cot
thf(fact_8740_real__le__x__sinh,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ X3 @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X3 ) @ ( inverse_inverse_real @ ( exp_real @ X3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_x_sinh
thf(fact_8741_real__le__abs__sinh,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X3 ) @ ( inverse_inverse_real @ ( exp_real @ X3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_abs_sinh
thf(fact_8742_powr__real__of__int,axiom,
    ! [X3: real,N: int] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X3 @ ( ring_1_of_int_real @ N ) )
            = ( power_power_real @ X3 @ ( nat2 @ N ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X3 @ ( ring_1_of_int_real @ N ) )
            = ( inverse_inverse_real @ ( power_power_real @ X3 @ ( nat2 @ ( uminus_uminus_int @ N ) ) ) ) ) ) ) ) ).

% powr_real_of_int
thf(fact_8743_or__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(5)
thf(fact_8744_or__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(1)
thf(fact_8745_sinh__real__zero__iff,axiom,
    ! [X3: real] :
      ( ( ( sinh_real @ X3 )
        = zero_zero_real )
      = ( X3 = zero_zero_real ) ) ).

% sinh_real_zero_iff
thf(fact_8746_sinh__real__less__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ ( sinh_real @ X3 ) @ ( sinh_real @ Y3 ) )
      = ( ord_less_real @ X3 @ Y3 ) ) ).

% sinh_real_less_iff
thf(fact_8747_sinh__real__le__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X3 ) @ ( sinh_real @ Y3 ) )
      = ( ord_less_eq_real @ X3 @ Y3 ) ) ).

% sinh_real_le_iff
thf(fact_8748_sinh__real__pos__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sinh_real @ X3 ) )
      = ( ord_less_real @ zero_zero_real @ X3 ) ) ).

% sinh_real_pos_iff
thf(fact_8749_sinh__real__neg__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( sinh_real @ X3 ) @ zero_zero_real )
      = ( ord_less_real @ X3 @ zero_zero_real ) ) ).

% sinh_real_neg_iff
thf(fact_8750_sinh__real__nonpos__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X3 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% sinh_real_nonpos_iff
thf(fact_8751_sinh__real__nonneg__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X3 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% sinh_real_nonneg_iff
thf(fact_8752_or__minus__numerals_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(8)
thf(fact_8753_or__minus__numerals_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(4)
thf(fact_8754_or__minus__numerals_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(3)
thf(fact_8755_or__minus__numerals_I7_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(7)
thf(fact_8756_or__not__num__neg_Osimps_I1_J,axiom,
    ( ( bit_or_not_num_neg @ one @ one )
    = one ) ).

% or_not_num_neg.simps(1)
thf(fact_8757_sinh__le__cosh__real,axiom,
    ! [X3: real] : ( ord_less_eq_real @ ( sinh_real @ X3 ) @ ( cosh_real @ X3 ) ) ).

% sinh_le_cosh_real
thf(fact_8758_sinh__less__cosh__real,axiom,
    ! [X3: real] : ( ord_less_real @ ( sinh_real @ X3 ) @ ( cosh_real @ X3 ) ) ).

% sinh_less_cosh_real
thf(fact_8759_cosh__real__nonzero,axiom,
    ! [X3: real] :
      ( ( cosh_real @ X3 )
     != zero_zero_real ) ).

% cosh_real_nonzero
thf(fact_8760_cosh__real__pos,axiom,
    ! [X3: real] : ( ord_less_real @ zero_zero_real @ ( cosh_real @ X3 ) ) ).

% cosh_real_pos
thf(fact_8761_cosh__real__nonpos__le__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y3 ) )
          = ( ord_less_eq_real @ Y3 @ X3 ) ) ) ) ).

% cosh_real_nonpos_le_iff
thf(fact_8762_cosh__real__nonneg__le__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_eq_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y3 ) )
          = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ) ).

% cosh_real_nonneg_le_iff
thf(fact_8763_cosh__real__nonneg,axiom,
    ! [X3: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X3 ) ) ).

% cosh_real_nonneg
thf(fact_8764_cosh__real__ge__1,axiom,
    ! [X3: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X3 ) ) ).

% cosh_real_ge_1
thf(fact_8765_or__not__num__neg_Osimps_I4_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one )
      = ( bit0 @ one ) ) ).

% or_not_num_neg.simps(4)
thf(fact_8766_or__not__num__neg_Osimps_I6_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
      = ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(6)
thf(fact_8767_or__not__num__neg_Osimps_I3_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(3)
thf(fact_8768_or__not__num__neg_Osimps_I7_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one )
      = one ) ).

% or_not_num_neg.simps(7)
thf(fact_8769_or__not__num__neg_Osimps_I5_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(5)
thf(fact_8770_or__not__num__neg_Osimps_I9_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(9)
thf(fact_8771_cosh__real__strict__mono,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ Y3 )
       => ( ord_less_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y3 ) ) ) ) ).

% cosh_real_strict_mono
thf(fact_8772_cosh__real__nonneg__less__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ord_less_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y3 ) )
          = ( ord_less_real @ X3 @ Y3 ) ) ) ) ).

% cosh_real_nonneg_less_iff
thf(fact_8773_cosh__real__nonpos__less__iff,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y3 @ zero_zero_real )
       => ( ( ord_less_real @ ( cosh_real @ X3 ) @ ( cosh_real @ Y3 ) )
          = ( ord_less_real @ Y3 @ X3 ) ) ) ) ).

% cosh_real_nonpos_less_iff
thf(fact_8774_arcosh__cosh__real,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( arcosh_real @ ( cosh_real @ X3 ) )
        = X3 ) ) ).

% arcosh_cosh_real
thf(fact_8775_or__not__num__neg_Osimps_I2_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(2)
thf(fact_8776_or__not__num__neg_Osimps_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(8)
thf(fact_8777_or__not__num__neg_Oelims,axiom,
    ! [X3: num,Xa: num,Y3: num] :
      ( ( ( bit_or_not_num_neg @ X3 @ Xa )
        = Y3 )
     => ( ( ( X3 = one )
         => ( ( Xa = one )
           => ( Y3 != one ) ) )
       => ( ( ( X3 = one )
           => ! [M4: num] :
                ( ( Xa
                  = ( bit0 @ M4 ) )
               => ( Y3
                 != ( bit1 @ M4 ) ) ) )
         => ( ( ( X3 = one )
             => ! [M4: num] :
                  ( ( Xa
                    = ( bit1 @ M4 ) )
                 => ( Y3
                   != ( bit1 @ M4 ) ) ) )
           => ( ( ? [N2: num] :
                    ( X3
                    = ( bit0 @ N2 ) )
               => ( ( Xa = one )
                 => ( Y3
                   != ( bit0 @ one ) ) ) )
             => ( ! [N2: num] :
                    ( ( X3
                      = ( bit0 @ N2 ) )
                   => ! [M4: num] :
                        ( ( Xa
                          = ( bit0 @ M4 ) )
                       => ( Y3
                         != ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) )
               => ( ! [N2: num] :
                      ( ( X3
                        = ( bit0 @ N2 ) )
                     => ! [M4: num] :
                          ( ( Xa
                            = ( bit1 @ M4 ) )
                         => ( Y3
                           != ( bit0 @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) )
                 => ( ( ? [N2: num] :
                          ( X3
                          = ( bit1 @ N2 ) )
                     => ( ( Xa = one )
                       => ( Y3 != one ) ) )
                   => ( ! [N2: num] :
                          ( ( X3
                            = ( bit1 @ N2 ) )
                         => ! [M4: num] :
                              ( ( Xa
                                = ( bit0 @ M4 ) )
                             => ( Y3
                               != ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) )
                     => ~ ! [N2: num] :
                            ( ( X3
                              = ( bit1 @ N2 ) )
                           => ! [M4: num] :
                                ( ( Xa
                                  = ( bit1 @ M4 ) )
                               => ( Y3
                                 != ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.elims
thf(fact_8778_numeral__or__not__num__eq,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) )
      = ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% numeral_or_not_num_eq
thf(fact_8779_int__numeral__not__or__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).

% int_numeral_not_or_num_neg
thf(fact_8780_int__numeral__or__not__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).

% int_numeral_or_not_num_neg
thf(fact_8781_complex__inverse,axiom,
    ! [A: real,B: real] :
      ( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_inverse
thf(fact_8782_cosh__ln__real,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( cosh_real @ ( ln_ln_real @ X3 ) )
        = ( divide_divide_real @ ( plus_plus_real @ X3 @ ( inverse_inverse_real @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_ln_real
thf(fact_8783_sinh__ln__real,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( sinh_real @ ( ln_ln_real @ X3 ) )
        = ( divide_divide_real @ ( minus_minus_real @ X3 @ ( inverse_inverse_real @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_ln_real
thf(fact_8784_concat__bit__Suc,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_concat_bit @ ( suc @ N ) @ K @ L )
      = ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L ) ) ) ) ).

% concat_bit_Suc
thf(fact_8785_cot__less__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 )
     => ( ( ord_less_real @ X3 @ zero_zero_real )
       => ( ord_less_real @ ( cot_real @ X3 ) @ zero_zero_real ) ) ) ).

% cot_less_zero
thf(fact_8786_i__even__power,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) ) ).

% i_even_power
thf(fact_8787_concat__bit__0,axiom,
    ! [K: int,L: int] :
      ( ( bit_concat_bit @ zero_zero_nat @ K @ L )
      = L ) ).

% concat_bit_0
thf(fact_8788_concat__bit__nonnegative__iff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N @ K @ L ) )
      = ( ord_less_eq_int @ zero_zero_int @ L ) ) ).

% concat_bit_nonnegative_iff
thf(fact_8789_concat__bit__negative__iff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( ord_less_int @ ( bit_concat_bit @ N @ K @ L ) @ zero_zero_int )
      = ( ord_less_int @ L @ zero_zero_int ) ) ).

% concat_bit_negative_iff
thf(fact_8790_concat__bit__of__zero__2,axiom,
    ! [N: nat,K: int] :
      ( ( bit_concat_bit @ N @ K @ zero_zero_int )
      = ( bit_se2923211474154528505it_int @ N @ K ) ) ).

% concat_bit_of_zero_2
thf(fact_8791_cot__pi,axiom,
    ( ( cot_real @ pi )
    = zero_zero_real ) ).

% cot_pi
thf(fact_8792_cot__npi,axiom,
    ! [N: nat] :
      ( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% cot_npi
thf(fact_8793_cot__periodic,axiom,
    ! [X3: real] :
      ( ( cot_real @ ( plus_plus_real @ X3 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cot_real @ X3 ) ) ).

% cot_periodic
thf(fact_8794_power2__i,axiom,
    ( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power2_i
thf(fact_8795_exp__two__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
    = one_one_complex ) ).

% exp_two_pi_i
thf(fact_8796_exp__two__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
    = one_one_complex ) ).

% exp_two_pi_i'
thf(fact_8797_complex__i__not__zero,axiom,
    imaginary_unit != zero_zero_complex ).

% complex_i_not_zero
thf(fact_8798_concat__bit__assoc,axiom,
    ! [N: nat,K: int,M: nat,L: int,R2: int] :
      ( ( bit_concat_bit @ N @ K @ ( bit_concat_bit @ M @ L @ R2 ) )
      = ( bit_concat_bit @ ( plus_plus_nat @ M @ N ) @ ( bit_concat_bit @ N @ K @ L ) @ R2 ) ) ).

% concat_bit_assoc
thf(fact_8799_concat__bit__eq__iff,axiom,
    ! [N: nat,K: int,L: int,R2: int,S: int] :
      ( ( ( bit_concat_bit @ N @ K @ L )
        = ( bit_concat_bit @ N @ R2 @ S ) )
      = ( ( ( bit_se2923211474154528505it_int @ N @ K )
          = ( bit_se2923211474154528505it_int @ N @ R2 ) )
        & ( L = S ) ) ) ).

% concat_bit_eq_iff
thf(fact_8800_concat__bit__take__bit__eq,axiom,
    ! [N: nat,B: int] :
      ( ( bit_concat_bit @ N @ ( bit_se2923211474154528505it_int @ N @ B ) )
      = ( bit_concat_bit @ N @ B ) ) ).

% concat_bit_take_bit_eq
thf(fact_8801_imaginary__unit_Ocode,axiom,
    ( imaginary_unit
    = ( complex2 @ zero_zero_real @ one_one_real ) ) ).

% imaginary_unit.code
thf(fact_8802_Complex__eq__i,axiom,
    ! [X3: real,Y3: real] :
      ( ( ( complex2 @ X3 @ Y3 )
        = imaginary_unit )
      = ( ( X3 = zero_zero_real )
        & ( Y3 = one_one_real ) ) ) ).

% Complex_eq_i
thf(fact_8803_i__complex__of__real,axiom,
    ! [R2: real] :
      ( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R2 ) )
      = ( complex2 @ zero_zero_real @ R2 ) ) ).

% i_complex_of_real
thf(fact_8804_complex__of__real__i,axiom,
    ! [R2: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ imaginary_unit )
      = ( complex2 @ zero_zero_real @ R2 ) ) ).

% complex_of_real_i
thf(fact_8805_divmod__step__nat__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L2: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q5: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_nat_def
thf(fact_8806_divmod__step__int__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L2: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q5: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L2 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_int_def
thf(fact_8807_cot__gt__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cot_real @ X3 ) ) ) ) ).

% cot_gt_zero
thf(fact_8808_tan__cot_H,axiom,
    ! [X3: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) )
      = ( cot_real @ X3 ) ) ).

% tan_cot'
thf(fact_8809_Arg__minus__ii,axiom,
    ( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
    = ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_minus_ii
thf(fact_8810_csqrt__ii,axiom,
    ( ( csqrt @ imaginary_unit )
    = ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt_ii
thf(fact_8811_Arg__ii,axiom,
    ( ( arg @ imaginary_unit )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_ii
thf(fact_8812_cis__minus__pi__half,axiom,
    ( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
    = ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).

% cis_minus_pi_half
thf(fact_8813_csqrt__eq__0,axiom,
    ! [Z: complex] :
      ( ( ( csqrt @ Z )
        = zero_zero_complex )
      = ( Z = zero_zero_complex ) ) ).

% csqrt_eq_0
thf(fact_8814_csqrt__0,axiom,
    ( ( csqrt @ zero_zero_complex )
    = zero_zero_complex ) ).

% csqrt_0
thf(fact_8815_cis__zero,axiom,
    ( ( cis @ zero_zero_real )
    = one_one_complex ) ).

% cis_zero
thf(fact_8816_power2__csqrt,axiom,
    ! [Z: complex] :
      ( ( power_power_complex @ ( csqrt @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = Z ) ).

% power2_csqrt
thf(fact_8817_cis__pi__half,axiom,
    ( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = imaginary_unit ) ).

% cis_pi_half
thf(fact_8818_cis__2pi,axiom,
    ( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_complex ) ).

% cis_2pi
thf(fact_8819_cis__neq__zero,axiom,
    ! [A: real] :
      ( ( cis @ A )
     != zero_zero_complex ) ).

% cis_neq_zero
thf(fact_8820_Arg__zero,axiom,
    ( ( arg @ zero_zero_complex )
    = zero_zero_real ) ).

% Arg_zero
thf(fact_8821_DeMoivre,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_complex @ ( cis @ A ) @ N )
      = ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).

% DeMoivre
thf(fact_8822_of__real__sqrt,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( real_V4546457046886955230omplex @ ( sqrt @ X3 ) )
        = ( csqrt @ ( real_V4546457046886955230omplex @ X3 ) ) ) ) ).

% of_real_sqrt
thf(fact_8823_Arg__bounded,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
      & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ).

% Arg_bounded
thf(fact_8824_divmod__nat__if,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_Pro6206227464963214023at_nat
          @ ( ( N3 = zero_zero_nat )
            | ( ord_less_nat @ M3 @ N3 ) )
          @ ( product_Pair_nat_nat @ zero_zero_nat @ M3 )
          @ ( produc2626176000494625587at_nat
            @ ^ [Q5: nat] : ( product_Pair_nat_nat @ ( suc @ Q5 ) )
            @ ( divmod_nat @ ( minus_minus_nat @ M3 @ N3 ) @ N3 ) ) ) ) ) ).

% divmod_nat_if
thf(fact_8825_bij__betw__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( bij_betw_nat_complex
        @ ^ [K3: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K3 ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        @ ( set_ord_lessThan_nat @ N )
        @ ( collect_complex
          @ ^ [Z6: complex] :
              ( ( power_power_complex @ Z6 @ N )
              = one_one_complex ) ) ) ) ).

% bij_betw_roots_unity
thf(fact_8826_nat__of__bool,axiom,
    ! [P: $o] :
      ( ( nat2 @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2687167440665602831ol_nat @ P ) ) ).

% nat_of_bool
thf(fact_8827_Suc__0__mod__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( zero_n2687167440665602831ol_nat
        @ ( N
         != ( suc @ zero_zero_nat ) ) ) ) ).

% Suc_0_mod_eq
thf(fact_8828_take__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_Suc_0
thf(fact_8829_Divides_Oadjust__div__eq,axiom,
    ! [Q3: int,R2: int] :
      ( ( adjust_div @ ( product_Pair_int_int @ Q3 @ R2 ) )
      = ( plus_plus_int @ Q3 @ ( zero_n2684676970156552555ol_int @ ( R2 != zero_zero_int ) ) ) ) ).

% Divides.adjust_div_eq
thf(fact_8830_Divides_Oadjust__div__def,axiom,
    ( adjust_div
    = ( produc8211389475949308722nt_int
      @ ^ [Q5: int,R5: int] : ( plus_plus_int @ Q5 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).

% Divides.adjust_div_def
thf(fact_8831_not__int__rec,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K3: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% not_int_rec
thf(fact_8832_or__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% or_Suc_0_eq
thf(fact_8833_Suc__0__or__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_or_eq
thf(fact_8834_or__int__rec,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
              | ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_int_rec
thf(fact_8835_xor__nat__rec,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
             != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_nat_rec
thf(fact_8836_or__nat__rec,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              | ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_nat_rec
thf(fact_8837_xor__int__rec,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) )
             != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_int_rec
thf(fact_8838_xor__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% xor_Suc_0_eq
thf(fact_8839_Suc__0__xor__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_xor_eq
thf(fact_8840_and__int_Osimps,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L2: int] :
          ( if_int
          @ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
          @ ( uminus_uminus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
          @ ( plus_plus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
            @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_int.simps
thf(fact_8841_and__int_Oelims,axiom,
    ! [X3: int,Xa: int,Y3: int] :
      ( ( ( bit_se725231765392027082nd_int @ X3 @ Xa )
        = Y3 )
     => ( ( ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y3
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
        & ( ~ ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y3
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.elims
thf(fact_8842_int__ge__less__than2__def,axiom,
    ( int_ge_less_than2
    = ( ^ [D4: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z7: int,Z6: int] :
                ( ( ord_less_eq_int @ D4 @ Z6 )
                & ( ord_less_int @ Z7 @ Z6 ) ) ) ) ) ) ).

% int_ge_less_than2_def
thf(fact_8843_int__ge__less__than__def,axiom,
    ( int_ge_less_than
    = ( ^ [D4: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z7: int,Z6: int] :
                ( ( ord_less_eq_int @ D4 @ Z7 )
                & ( ord_less_int @ Z7 @ Z6 ) ) ) ) ) ) ).

% int_ge_less_than_def
thf(fact_8844_and__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        | ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% and_nonnegative_int_iff
thf(fact_8845_and__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        & ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% and_negative_int_iff
thf(fact_8846_and__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = one_one_int ) ).

% and_minus_numerals(2)
thf(fact_8847_and__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = one_one_int ) ).

% and_minus_numerals(6)
thf(fact_8848_and__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = zero_zero_int ) ).

% and_minus_numerals(1)
thf(fact_8849_and__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_minus_numerals(5)
thf(fact_8850_and__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% and_minus_minus_numerals
thf(fact_8851_or__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% or_minus_minus_numerals
thf(fact_8852_AND__upper2_H,axiom,
    ! [Y3: int,Z: int,X3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X3 @ Y3 ) @ Z ) ) ) ).

% AND_upper2'
thf(fact_8853_AND__upper1_H,axiom,
    ! [Y3: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y3 @ Ya ) @ Z ) ) ) ).

% AND_upper1'
thf(fact_8854_AND__upper2,axiom,
    ! [Y3: int,X3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X3 @ Y3 ) @ Y3 ) ) ).

% AND_upper2
thf(fact_8855_AND__upper1,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X3 @ Y3 ) @ X3 ) ) ).

% AND_upper1
thf(fact_8856_AND__lower,axiom,
    ! [X3: int,Y3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X3 )
     => ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X3 @ Y3 ) ) ) ).

% AND_lower
thf(fact_8857_plus__and__or,axiom,
    ! [X3: int,Y3: int] :
      ( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X3 @ Y3 ) @ ( bit_se1409905431419307370or_int @ X3 @ Y3 ) )
      = ( plus_plus_int @ X3 @ Y3 ) ) ).

% plus_and_or
thf(fact_8858_or__int__def,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ ( bit_ri7919022796975470100ot_int @ L2 ) ) ) ) ) ).

% or_int_def
thf(fact_8859_and__less__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ K ) ) ).

% and_less_eq
thf(fact_8860_AND__upper1_H_H,axiom,
    ! [Y3: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
     => ( ( ord_less_int @ Y3 @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y3 @ Ya ) @ Z ) ) ) ).

% AND_upper1''
thf(fact_8861_AND__upper2_H_H,axiom,
    ! [Y3: int,Z: int,X3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
     => ( ( ord_less_int @ Y3 @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ X3 @ Y3 ) @ Z ) ) ) ).

% AND_upper2''
thf(fact_8862_and__not__numerals_I1_J,axiom,
    ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = zero_zero_int ) ).

% and_not_numerals(1)
thf(fact_8863_xor__int__def,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ L2 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ L2 ) ) ) ) ).

% xor_int_def
thf(fact_8864_even__and__iff__int,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ).

% even_and_iff_int
thf(fact_8865_and__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = one_one_int ) ).

% and_not_numerals(2)
thf(fact_8866_and__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(4)
thf(fact_8867_and__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(5)
thf(fact_8868_and__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(7)
thf(fact_8869_and__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = zero_zero_int ) ).

% and_not_numerals(3)
thf(fact_8870_and__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(9)
thf(fact_8871_and__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(6)
thf(fact_8872_and__int__rec,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
              & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_int_rec
thf(fact_8873_and__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% and_not_numerals(8)
thf(fact_8874_and__int__unfold,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L2: int] :
          ( if_int
          @ ( ( K3 = zero_zero_int )
            | ( L2 = zero_zero_int ) )
          @ zero_zero_int
          @ ( if_int
            @ ( K3
              = ( uminus_uminus_int @ one_one_int ) )
            @ L2
            @ ( if_int
              @ ( L2
                = ( uminus_uminus_int @ one_one_int ) )
              @ K3
              @ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% and_int_unfold
thf(fact_8875_bij__betw__nth__root__unity,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = one_one_complex ) )
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = C ) ) ) ) ) ).

% bij_betw_nth_root_unity
thf(fact_8876_and__int_Opsimps,axiom,
    ! [K: int,L: int] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L ) )
     => ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L )
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ) ) )
        & ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L )
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.psimps
thf(fact_8877_and__int_Opelims,axiom,
    ! [X3: int,Xa: int,Y3: int] :
      ( ( ( bit_se725231765392027082nd_int @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X3 @ Xa ) )
       => ~ ( ( ( ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                  & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y3
                  = ( uminus_uminus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) ) ) ) )
              & ( ~ ( ( member_int @ X3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ Xa @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y3
                  = ( plus_plus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa ) ) )
                    @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X3 @ Xa ) ) ) ) ) ).

% and_int.pelims
thf(fact_8878_vebt__buildup_Opelims,axiom,
    ! [X3: nat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X3 )
        = Y3 )
     => ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X3 )
       => ( ( ( X3 = zero_zero_nat )
           => ( ( Y3
                = ( vEBT_Leaf @ $false @ $false ) )
             => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
         => ( ( ( X3
                = ( suc @ zero_zero_nat ) )
             => ( ( Y3
                  = ( vEBT_Leaf @ $false @ $false ) )
               => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
           => ~ ! [Va: nat] :
                  ( ( X3
                    = ( suc @ ( suc @ Va ) ) )
                 => ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                       => ( Y3
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
                       => ( Y3
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                   => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.pelims
thf(fact_8879_real__root__zero,axiom,
    ! [N: nat] :
      ( ( root @ N @ zero_zero_real )
      = zero_zero_real ) ).

% real_root_zero
thf(fact_8880_real__root__Suc__0,axiom,
    ! [X3: real] :
      ( ( root @ ( suc @ zero_zero_nat ) @ X3 )
      = X3 ) ).

% real_root_Suc_0
thf(fact_8881_real__root__eq__iff,axiom,
    ! [N: nat,X3: real,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X3 )
          = ( root @ N @ Y3 ) )
        = ( X3 = Y3 ) ) ) ).

% real_root_eq_iff
thf(fact_8882_root__0,axiom,
    ! [X3: real] :
      ( ( root @ zero_zero_nat @ X3 )
      = zero_zero_real ) ).

% root_0
thf(fact_8883_real__root__eq__0__iff,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X3 )
          = zero_zero_real )
        = ( X3 = zero_zero_real ) ) ) ).

% real_root_eq_0_iff
thf(fact_8884_real__root__less__iff,axiom,
    ! [N: nat,X3: real,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X3 ) @ ( root @ N @ Y3 ) )
        = ( ord_less_real @ X3 @ Y3 ) ) ) ).

% real_root_less_iff
thf(fact_8885_real__root__le__iff,axiom,
    ! [N: nat,X3: real,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X3 ) @ ( root @ N @ Y3 ) )
        = ( ord_less_eq_real @ X3 @ Y3 ) ) ) ).

% real_root_le_iff
thf(fact_8886_real__root__eq__1__iff,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X3 )
          = one_one_real )
        = ( X3 = one_one_real ) ) ) ).

% real_root_eq_1_iff
thf(fact_8887_real__root__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ one_one_real )
        = one_one_real ) ) ).

% real_root_one
thf(fact_8888_real__root__lt__0__iff,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X3 ) @ zero_zero_real )
        = ( ord_less_real @ X3 @ zero_zero_real ) ) ) ).

% real_root_lt_0_iff
thf(fact_8889_real__root__gt__0__iff,axiom,
    ! [N: nat,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y3 ) )
        = ( ord_less_real @ zero_zero_real @ Y3 ) ) ) ).

% real_root_gt_0_iff
thf(fact_8890_real__root__le__0__iff,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X3 ) @ zero_zero_real )
        = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ) ).

% real_root_le_0_iff
thf(fact_8891_real__root__ge__0__iff,axiom,
    ! [N: nat,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y3 ) )
        = ( ord_less_eq_real @ zero_zero_real @ Y3 ) ) ) ).

% real_root_ge_0_iff
thf(fact_8892_real__root__lt__1__iff,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X3 ) @ one_one_real )
        = ( ord_less_real @ X3 @ one_one_real ) ) ) ).

% real_root_lt_1_iff
thf(fact_8893_real__root__gt__1__iff,axiom,
    ! [N: nat,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ one_one_real @ ( root @ N @ Y3 ) )
        = ( ord_less_real @ one_one_real @ Y3 ) ) ) ).

% real_root_gt_1_iff
thf(fact_8894_real__root__le__1__iff,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X3 ) @ one_one_real )
        = ( ord_less_eq_real @ X3 @ one_one_real ) ) ) ).

% real_root_le_1_iff
thf(fact_8895_real__root__ge__1__iff,axiom,
    ! [N: nat,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y3 ) )
        = ( ord_less_eq_real @ one_one_real @ Y3 ) ) ) ).

% real_root_ge_1_iff
thf(fact_8896_and__nat__numerals_I3_J,axiom,
    ! [X3: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% and_nat_numerals(3)
thf(fact_8897_and__nat__numerals_I1_J,axiom,
    ! [Y3: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y3 ) ) )
      = zero_zero_nat ) ).

% and_nat_numerals(1)
thf(fact_8898_real__root__pow__pos2,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( power_power_real @ ( root @ N @ X3 ) @ N )
          = X3 ) ) ) ).

% real_root_pow_pos2
thf(fact_8899_and__nat__numerals_I4_J,axiom,
    ! [X3: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X3 ) ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% and_nat_numerals(4)
thf(fact_8900_and__nat__numerals_I2_J,axiom,
    ! [Y3: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y3 ) ) )
      = one_one_nat ) ).

% and_nat_numerals(2)
thf(fact_8901_Suc__0__and__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Suc_0_and_eq
thf(fact_8902_and__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_Suc_0_eq
thf(fact_8903_real__root__mult,axiom,
    ! [N: nat,X3: real,Y3: real] :
      ( ( root @ N @ ( times_times_real @ X3 @ Y3 ) )
      = ( times_times_real @ ( root @ N @ X3 ) @ ( root @ N @ Y3 ) ) ) ).

% real_root_mult
thf(fact_8904_real__root__divide,axiom,
    ! [N: nat,X3: real,Y3: real] :
      ( ( root @ N @ ( divide_divide_real @ X3 @ Y3 ) )
      = ( divide_divide_real @ ( root @ N @ X3 ) @ ( root @ N @ Y3 ) ) ) ).

% real_root_divide
thf(fact_8905_real__root__mult__exp,axiom,
    ! [M: nat,N: nat,X3: real] :
      ( ( root @ ( times_times_nat @ M @ N ) @ X3 )
      = ( root @ M @ ( root @ N @ X3 ) ) ) ).

% real_root_mult_exp
thf(fact_8906_real__root__minus,axiom,
    ! [N: nat,X3: real] :
      ( ( root @ N @ ( uminus_uminus_real @ X3 ) )
      = ( uminus_uminus_real @ ( root @ N @ X3 ) ) ) ).

% real_root_minus
thf(fact_8907_real__root__commute,axiom,
    ! [M: nat,N: nat,X3: real] :
      ( ( root @ M @ ( root @ N @ X3 ) )
      = ( root @ N @ ( root @ M @ X3 ) ) ) ).

% real_root_commute
thf(fact_8908_real__root__inverse,axiom,
    ! [N: nat,X3: real] :
      ( ( root @ N @ ( inverse_inverse_real @ X3 ) )
      = ( inverse_inverse_real @ ( root @ N @ X3 ) ) ) ).

% real_root_inverse
thf(fact_8909_real__root__pos__pos__le,axiom,
    ! [X3: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X3 ) ) ) ).

% real_root_pos_pos_le
thf(fact_8910_real__root__less__mono,axiom,
    ! [N: nat,X3: real,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X3 @ Y3 )
       => ( ord_less_real @ ( root @ N @ X3 ) @ ( root @ N @ Y3 ) ) ) ) ).

% real_root_less_mono
thf(fact_8911_real__root__le__mono,axiom,
    ! [N: nat,X3: real,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ X3 @ Y3 )
       => ( ord_less_eq_real @ ( root @ N @ X3 ) @ ( root @ N @ Y3 ) ) ) ) ).

% real_root_le_mono
thf(fact_8912_real__root__power,axiom,
    ! [N: nat,X3: real,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( power_power_real @ X3 @ K ) )
        = ( power_power_real @ ( root @ N @ X3 ) @ K ) ) ) ).

% real_root_power
thf(fact_8913_real__root__abs,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( abs_abs_real @ X3 ) )
        = ( abs_abs_real @ ( root @ N @ X3 ) ) ) ) ).

% real_root_abs
thf(fact_8914_and__nat__def,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N3: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% and_nat_def
thf(fact_8915_real__root__gt__zero,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ord_less_real @ zero_zero_real @ ( root @ N @ X3 ) ) ) ) ).

% real_root_gt_zero
thf(fact_8916_real__root__strict__decreasing,axiom,
    ! [N: nat,N4: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ one_one_real @ X3 )
         => ( ord_less_real @ ( root @ N4 @ X3 ) @ ( root @ N @ X3 ) ) ) ) ) ).

% real_root_strict_decreasing
thf(fact_8917_sqrt__def,axiom,
    ( sqrt
    = ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% sqrt_def
thf(fact_8918_root__abs__power,axiom,
    ! [N: nat,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( abs_abs_real @ ( root @ N @ ( power_power_real @ Y3 @ N ) ) )
        = ( abs_abs_real @ Y3 ) ) ) ).

% root_abs_power
thf(fact_8919_real__root__pos__pos,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X3 ) ) ) ) ).

% real_root_pos_pos
thf(fact_8920_real__root__strict__increasing,axiom,
    ! [N: nat,N4: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( ( ord_less_real @ X3 @ one_one_real )
           => ( ord_less_real @ ( root @ N @ X3 ) @ ( root @ N4 @ X3 ) ) ) ) ) ) ).

% real_root_strict_increasing
thf(fact_8921_real__root__decreasing,axiom,
    ! [N: nat,N4: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ one_one_real @ X3 )
         => ( ord_less_eq_real @ ( root @ N4 @ X3 ) @ ( root @ N @ X3 ) ) ) ) ) ).

% real_root_decreasing
thf(fact_8922_real__root__pow__pos,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( power_power_real @ ( root @ N @ X3 ) @ N )
          = X3 ) ) ) ).

% real_root_pow_pos
thf(fact_8923_odd__real__root__pow,axiom,
    ! [N: nat,X3: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( root @ N @ X3 ) @ N )
        = X3 ) ) ).

% odd_real_root_pow
thf(fact_8924_odd__real__root__unique,axiom,
    ! [N: nat,Y3: real,X3: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ( power_power_real @ Y3 @ N )
          = X3 )
       => ( ( root @ N @ X3 )
          = Y3 ) ) ) ).

% odd_real_root_unique
thf(fact_8925_odd__real__root__power__cancel,axiom,
    ! [N: nat,X3: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( root @ N @ ( power_power_real @ X3 @ N ) )
        = X3 ) ) ).

% odd_real_root_power_cancel
thf(fact_8926_real__root__power__cancel,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
       => ( ( root @ N @ ( power_power_real @ X3 @ N ) )
          = X3 ) ) ) ).

% real_root_power_cancel
thf(fact_8927_real__root__pos__unique,axiom,
    ! [N: nat,Y3: real,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
       => ( ( ( power_power_real @ Y3 @ N )
            = X3 )
         => ( ( root @ N @ X3 )
            = Y3 ) ) ) ) ).

% real_root_pos_unique
thf(fact_8928_real__root__increasing,axiom,
    ! [N: nat,N4: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ X3 )
         => ( ( ord_less_eq_real @ X3 @ one_one_real )
           => ( ord_less_eq_real @ ( root @ N @ X3 ) @ ( root @ N4 @ X3 ) ) ) ) ) ) ).

% real_root_increasing
thf(fact_8929_log__root,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( log @ B @ ( root @ N @ A ) )
          = ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_root
thf(fact_8930_log__base__root,axiom,
    ! [N: nat,B: real,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( log @ ( root @ N @ B ) @ X3 )
          = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X3 ) ) ) ) ) ).

% log_base_root
thf(fact_8931_ln__root,axiom,
    ! [N: nat,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ln_ln_real @ ( root @ N @ B ) )
          = ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% ln_root
thf(fact_8932_and__nat__unfold,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_nat
          @ ( ( M3 = zero_zero_nat )
            | ( N3 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_nat_unfold
thf(fact_8933_root__powr__inverse,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( ( root @ N @ X3 )
          = ( powr_real @ X3 @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).

% root_powr_inverse
thf(fact_8934_and__nat__rec,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_nat_rec
thf(fact_8935_and__int_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [K2: int,L4: int] :
            ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K2 @ L4 ) )
           => ( ( ~ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ L4 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( P @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
             => ( P @ K2 @ L4 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% and_int.pinduct
thf(fact_8936_upto_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [I3: int,J2: int] :
            ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I3 @ J2 ) )
           => ( ( ( ord_less_eq_int @ I3 @ J2 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) @ J2 ) )
             => ( P @ I3 @ J2 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% upto.pinduct
thf(fact_8937_set__decode__0,axiom,
    ! [X3: nat] :
      ( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X3 ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X3 ) ) ) ).

% set_decode_0
thf(fact_8938_set__decode__Suc,axiom,
    ! [N: nat,X3: nat] :
      ( ( member_nat @ ( suc @ N ) @ ( nat_set_decode @ X3 ) )
      = ( member_nat @ N @ ( nat_set_decode @ ( divide_divide_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_decode_Suc
thf(fact_8939_set__decode__zero,axiom,
    ( ( nat_set_decode @ zero_zero_nat )
    = bot_bot_set_nat ) ).

% set_decode_zero
thf(fact_8940_subset__decode__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% subset_decode_imp_le
thf(fact_8941_set__decode__plus__power__2,axiom,
    ! [N: nat,Z: nat] :
      ( ~ ( member_nat @ N @ ( nat_set_decode @ Z ) )
     => ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Z ) )
        = ( insert_nat @ N @ ( nat_set_decode @ Z ) ) ) ) ).

% set_decode_plus_power_2
thf(fact_8942_set__decode__def,axiom,
    ( nat_set_decode
    = ( ^ [X: nat] :
          ( collect_nat
          @ ^ [N3: nat] :
              ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ) ).

% set_decode_def
thf(fact_8943_arctan__def,axiom,
    ( arctan
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
              & ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( tan_real @ X )
                = Y ) ) ) ) ) ).

% arctan_def
thf(fact_8944_arcsin__def,axiom,
    ( arcsin
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
              & ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( sin_real @ X )
                = Y ) ) ) ) ) ).

% arcsin_def
thf(fact_8945_ln__neg__is__const,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ X3 @ zero_zero_real )
     => ( ( ln_ln_real @ X3 )
        = ( the_real
          @ ^ [X: real] : $false ) ) ) ).

% ln_neg_is_const
thf(fact_8946_arccos__def,axiom,
    ( arccos
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ X )
              & ( ord_less_eq_real @ X @ pi )
              & ( ( cos_real @ X )
                = Y ) ) ) ) ) ).

% arccos_def
thf(fact_8947_pi__half,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
    = ( the_real
      @ ^ [X: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X )
          & ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
          & ( ( cos_real @ X )
            = zero_zero_real ) ) ) ) ).

% pi_half
thf(fact_8948_pi__def,axiom,
    ( pi
    = ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
      @ ( the_real
        @ ^ [X: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X )
            & ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ X )
              = zero_zero_real ) ) ) ) ) ).

% pi_def
thf(fact_8949_modulo__int__def,axiom,
    ( modulo_modulo_int
    = ( ^ [K3: int,L2: int] :
          ( if_int @ ( L2 = zero_zero_int ) @ K3
          @ ( if_int
            @ ( ( sgn_sgn_int @ K3 )
              = ( sgn_sgn_int @ L2 ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L2 )
              @ ( minus_minus_int
                @ ( times_times_int @ ( abs_abs_int @ L2 )
                  @ ( zero_n2684676970156552555ol_int
                    @ ~ ( dvd_dvd_int @ L2 @ K3 ) ) )
                @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ) ) ) ) ) ).

% modulo_int_def
thf(fact_8950_signed__take__bit__eq__take__bit__minus,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ K3 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N3 ) ) ) ) ) ) ).

% signed_take_bit_eq_take_bit_minus
thf(fact_8951_divide__int__def,axiom,
    ( divide_divide_int
    = ( ^ [K3: int,L2: int] :
          ( if_int @ ( L2 = zero_zero_int ) @ zero_zero_int
          @ ( if_int
            @ ( ( sgn_sgn_int @ K3 )
              = ( sgn_sgn_int @ L2 ) )
            @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) )
            @ ( uminus_uminus_int
              @ ( semiri1314217659103216013at_int
                @ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) )
                  @ ( zero_n2687167440665602831ol_nat
                    @ ~ ( dvd_dvd_int @ L2 @ K3 ) ) ) ) ) ) ) ) ) ).

% divide_int_def
thf(fact_8952_modulo__int__unfold,axiom,
    ! [L: int,K: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L )
                @ ( minus_minus_int
                  @ ( semiri1314217659103216013at_int
                    @ ( times_times_nat @ N
                      @ ( zero_n2687167440665602831ol_nat
                        @ ~ ( dvd_dvd_nat @ N @ M ) ) ) )
                  @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ) ) ) ) ).

% modulo_int_unfold
thf(fact_8953_dvd__mult__sgn__iff,axiom,
    ! [L: int,K: int,R2: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ K @ ( sgn_sgn_int @ R2 ) ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( R2 = zero_zero_int ) ) ) ).

% dvd_mult_sgn_iff
thf(fact_8954_dvd__sgn__mult__iff,axiom,
    ! [L: int,R2: int,K: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ K ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( R2 = zero_zero_int ) ) ) ).

% dvd_sgn_mult_iff
thf(fact_8955_mult__sgn__dvd__iff,axiom,
    ! [L: int,R2: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ L @ ( sgn_sgn_int @ R2 ) ) @ K )
      = ( ( dvd_dvd_int @ L @ K )
        & ( ( R2 = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% mult_sgn_dvd_iff
thf(fact_8956_sgn__mult__dvd__iff,axiom,
    ! [R2: int,L: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ L ) @ K )
      = ( ( dvd_dvd_int @ L @ K )
        & ( ( R2 = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% sgn_mult_dvd_iff
thf(fact_8957_signed__take__bit__nonnegative__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% signed_take_bit_nonnegative_iff
thf(fact_8958_signed__take__bit__negative__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ zero_zero_int )
      = ( bit_se1146084159140164899it_int @ K @ N ) ) ).

% signed_take_bit_negative_iff
thf(fact_8959_bit__minus__numeral__Bit0__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N ) ) ).

% bit_minus_numeral_Bit0_Suc_iff
thf(fact_8960_bit__minus__numeral__Bit1__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N ) ) ) ).

% bit_minus_numeral_Bit1_Suc_iff
thf(fact_8961_bit__minus__numeral__int_I1_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N ) ) ) ).

% bit_minus_numeral_int(1)
thf(fact_8962_bit__minus__numeral__int_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ) ).

% bit_minus_numeral_int(2)
thf(fact_8963_bit__and__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
        & ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_and_int_iff
thf(fact_8964_bit__xor__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
       != ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_xor_int_iff
thf(fact_8965_bit__not__int__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_not_int_iff
thf(fact_8966_bit__or__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
        | ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_or_int_iff
thf(fact_8967_int__sgnE,axiom,
    ! [K: int] :
      ~ ! [N2: nat,L4: int] :
          ( K
         != ( times_times_int @ ( sgn_sgn_int @ L4 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% int_sgnE
thf(fact_8968_bit__not__int__iff_H,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_not_int_iff'
thf(fact_8969_sgn__mod,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ~ ( dvd_dvd_int @ L @ K )
       => ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L ) )
          = ( sgn_sgn_int @ L ) ) ) ) ).

% sgn_mod
thf(fact_8970_zsgn__def,axiom,
    ( sgn_sgn_int
    = ( ^ [I4: int] : ( if_int @ ( I4 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I4 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zsgn_def
thf(fact_8971_div__sgn__abs__cancel,axiom,
    ! [V: int,K: int,L: int] :
      ( ( V != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L ) ) )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).

% div_sgn_abs_cancel
thf(fact_8972_bit__imp__take__bit__positive,axiom,
    ! [N: nat,M: nat,K: int] :
      ( ( ord_less_nat @ N @ M )
     => ( ( bit_se1146084159140164899it_int @ K @ N )
       => ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).

% bit_imp_take_bit_positive
thf(fact_8973_bit__concat__bit__iff,axiom,
    ! [M: nat,K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L ) @ N )
      = ( ( ( ord_less_nat @ N @ M )
          & ( bit_se1146084159140164899it_int @ K @ N ) )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( bit_se1146084159140164899it_int @ L @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% bit_concat_bit_iff
thf(fact_8974_bit__minus__int__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N )
      = ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N ) ) ).

% bit_minus_int_iff
thf(fact_8975_signed__take__bit__eq__concat__bit,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K3: int] : ( bit_concat_bit @ N3 @ K3 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N3 ) ) ) ) ) ) ).

% signed_take_bit_eq_concat_bit
thf(fact_8976_int__bit__bound,axiom,
    ! [K: int] :
      ~ ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ N2 @ M2 )
             => ( ( bit_se1146084159140164899it_int @ K @ M2 )
                = ( bit_se1146084159140164899it_int @ K @ N2 ) ) )
         => ~ ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N2 @ one_one_nat ) )
                = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ) ) ).

% int_bit_bound
thf(fact_8977_bit__int__def,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [K3: int,N3: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_int_def
thf(fact_8978_eucl__rel__int__remainderI,axiom,
    ! [R2: int,L: int,K: int,Q3: int] :
      ( ( ( sgn_sgn_int @ R2 )
        = ( sgn_sgn_int @ L ) )
     => ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ L ) )
       => ( ( K
            = ( plus_plus_int @ ( times_times_int @ Q3 @ L ) @ R2 ) )
         => ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q3 @ R2 ) ) ) ) ) ).

% eucl_rel_int_remainderI
thf(fact_8979_eucl__rel__int_Osimps,axiom,
    ( eucl_rel_int
    = ( ^ [A12: int,A23: int,A32: product_prod_int_int] :
          ( ? [K3: int] :
              ( ( A12 = K3 )
              & ( A23 = zero_zero_int )
              & ( A32
                = ( product_Pair_int_int @ zero_zero_int @ K3 ) ) )
          | ? [L2: int,K3: int,Q5: int] :
              ( ( A12 = K3 )
              & ( A23 = L2 )
              & ( A32
                = ( product_Pair_int_int @ Q5 @ zero_zero_int ) )
              & ( L2 != zero_zero_int )
              & ( K3
                = ( times_times_int @ Q5 @ L2 ) ) )
          | ? [R5: int,L2: int,K3: int,Q5: int] :
              ( ( A12 = K3 )
              & ( A23 = L2 )
              & ( A32
                = ( product_Pair_int_int @ Q5 @ R5 ) )
              & ( ( sgn_sgn_int @ R5 )
                = ( sgn_sgn_int @ L2 ) )
              & ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L2 ) )
              & ( K3
                = ( plus_plus_int @ ( times_times_int @ Q5 @ L2 ) @ R5 ) ) ) ) ) ) ).

% eucl_rel_int.simps
thf(fact_8980_eucl__rel__int_Ocases,axiom,
    ! [A1: int,A22: int,A33: product_prod_int_int] :
      ( ( eucl_rel_int @ A1 @ A22 @ A33 )
     => ( ( ( A22 = zero_zero_int )
         => ( A33
           != ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
       => ( ! [Q4: int] :
              ( ( A33
                = ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
             => ( ( A22 != zero_zero_int )
               => ( A1
                 != ( times_times_int @ Q4 @ A22 ) ) ) )
         => ~ ! [R: int,Q4: int] :
                ( ( A33
                  = ( product_Pair_int_int @ Q4 @ R ) )
               => ( ( ( sgn_sgn_int @ R )
                    = ( sgn_sgn_int @ A22 ) )
                 => ( ( ord_less_int @ ( abs_abs_int @ R ) @ ( abs_abs_int @ A22 ) )
                   => ( A1
                     != ( plus_plus_int @ ( times_times_int @ Q4 @ A22 ) @ R ) ) ) ) ) ) ) ) ).

% eucl_rel_int.cases
thf(fact_8981_div__noneq__sgn__abs,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ( ( sgn_sgn_int @ K )
         != ( sgn_sgn_int @ L ) )
       => ( ( divide_divide_int @ K @ L )
          = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) )
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( dvd_dvd_int @ L @ K ) ) ) ) ) ) ).

% div_noneq_sgn_abs
thf(fact_8982_set__bit__eq,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N3: nat,K3: int] :
          ( plus_plus_int @ K3
          @ ( times_times_int
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( bit_se1146084159140164899it_int @ K3 @ N3 ) )
            @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% set_bit_eq
thf(fact_8983_unset__bit__eq,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N3: nat,K3: int] : ( minus_minus_int @ K3 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N3 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% unset_bit_eq
thf(fact_8984_take__bit__Suc__from__most,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K )
      = ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N ) ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_Suc_from_most
thf(fact_8985_divide__int__unfold,axiom,
    ! [L: int,K: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = zero_zero_int ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( uminus_uminus_int
                @ ( semiri1314217659103216013at_int
                  @ ( plus_plus_nat @ ( divide_divide_nat @ M @ N )
                    @ ( zero_n2687167440665602831ol_nat
                      @ ~ ( dvd_dvd_nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).

% divide_int_unfold
thf(fact_8986_num_Osize__gen_I3_J,axiom,
    ! [X32: num] :
      ( ( size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(3)
thf(fact_8987_num_Osize__gen_I2_J,axiom,
    ! [X2: num] :
      ( ( size_num @ ( bit0 @ X2 ) )
      = ( plus_plus_nat @ ( size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_8988_arctan__inverse,axiom,
    ! [X3: real] :
      ( ( X3 != zero_zero_real )
     => ( ( arctan @ ( divide_divide_real @ one_one_real @ X3 ) )
        = ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X3 ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X3 ) ) ) ) ).

% arctan_inverse
thf(fact_8989_mask__nat__positive__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% mask_nat_positive_iff
thf(fact_8990_sgn__le__0__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( sgn_sgn_real @ X3 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X3 @ zero_zero_real ) ) ).

% sgn_le_0_iff
thf(fact_8991_zero__le__sgn__iff,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X3 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X3 ) ) ).

% zero_le_sgn_iff
thf(fact_8992_nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% nat_mask_eq
thf(fact_8993_less__eq__mask,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).

% less_eq_mask
thf(fact_8994_not__bit__Suc__0__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N ) ) ).

% not_bit_Suc_0_Suc
thf(fact_8995_bit__Suc__0__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_Suc_0_iff
thf(fact_8996_mask__nonnegative__int,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).

% mask_nonnegative_int
thf(fact_8997_not__mask__negative__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_8998_not__bit__Suc__0__numeral,axiom,
    ! [N: num] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N ) ) ).

% not_bit_Suc_0_numeral
thf(fact_8999_sgn__root,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( sgn_sgn_real @ ( root @ N @ X3 ) )
        = ( sgn_sgn_real @ X3 ) ) ) ).

% sgn_root
thf(fact_9000_less__mask,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% less_mask
thf(fact_9001_cis__Arg,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( cis @ ( arg @ Z ) )
        = ( sgn_sgn_complex @ Z ) ) ) ).

% cis_Arg
thf(fact_9002_sgn__real__def,axiom,
    ( sgn_sgn_real
    = ( ^ [A4: real] : ( if_real @ ( A4 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A4 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).

% sgn_real_def
thf(fact_9003_bit__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_nat_iff
thf(fact_9004_sgn__power__injE,axiom,
    ! [A: real,N: nat,X3: real,B: real] :
      ( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
        = X3 )
     => ( ( X3
          = ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N ) ) )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( A = B ) ) ) ) ).

% sgn_power_injE
thf(fact_9005_take__bit__eq__mask__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
        = zero_zero_int ) ) ).

% take_bit_eq_mask_iff
thf(fact_9006_num_Osize__gen_I1_J,axiom,
    ( ( size_num @ one )
    = zero_zero_nat ) ).

% num.size_gen(1)
thf(fact_9007_Suc__mask__eq__exp,axiom,
    ! [N: nat] :
      ( ( suc @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_mask_eq_exp
thf(fact_9008_mask__nat__less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% mask_nat_less_exp
thf(fact_9009_bit__nat__def,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [M3: nat,N3: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_nat_def
thf(fact_9010_sgn__power__root,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N @ X3 ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N @ X3 ) ) @ N ) )
        = X3 ) ) ).

% sgn_power_root
thf(fact_9011_root__sgn__power,axiom,
    ! [N: nat,Y3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( times_times_real @ ( sgn_sgn_real @ Y3 ) @ ( power_power_real @ ( abs_abs_real @ Y3 ) @ N ) ) )
        = Y3 ) ) ).

% root_sgn_power
thf(fact_9012_cis__Arg__unique,axiom,
    ! [Z: complex,X3: real] :
      ( ( ( sgn_sgn_complex @ Z )
        = ( cis @ X3 ) )
     => ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X3 )
       => ( ( ord_less_eq_real @ X3 @ pi )
         => ( ( arg @ Z )
            = X3 ) ) ) ) ).

% cis_Arg_unique
thf(fact_9013_split__root,axiom,
    ! [P: real > $o,N: nat,X3: real] :
      ( ( P @ ( root @ N @ X3 ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_real ) )
        & ( ( ord_less_nat @ zero_zero_nat @ N )
         => ! [Y: real] :
              ( ( ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) )
                = X3 )
             => ( P @ Y ) ) ) ) ) ).

% split_root
thf(fact_9014_mask__nat__def,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N3: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) ).

% mask_nat_def
thf(fact_9015_mask__half__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% mask_half_int
thf(fact_9016_mask__int__def,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N3: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) @ one_one_int ) ) ) ).

% mask_int_def
thf(fact_9017_Arg__correct,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( ( sgn_sgn_complex @ Z )
          = ( cis @ ( arg @ Z ) ) )
        & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
        & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ) ).

% Arg_correct
thf(fact_9018_take__bit__eq__mask__iff__exp__dvd,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).

% take_bit_eq_mask_iff_exp_dvd
thf(fact_9019_Arg__def,axiom,
    ( arg
    = ( ^ [Z6: complex] :
          ( if_real @ ( Z6 = zero_zero_complex ) @ zero_zero_real
          @ ( fChoice_real
            @ ^ [A4: real] :
                ( ( ( sgn_sgn_complex @ Z6 )
                  = ( cis @ A4 ) )
                & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A4 )
                & ( ord_less_eq_real @ A4 @ pi ) ) ) ) ) ) ).

% Arg_def
thf(fact_9020_cis__multiple__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_complex ) ) ).

% cis_multiple_2pi
thf(fact_9021_horner__sum__of__bool__2__less,axiom,
    ! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).

% horner_sum_of_bool_2_less
thf(fact_9022_push__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% push_bit_nonnegative_int_iff
thf(fact_9023_push__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% push_bit_negative_int_iff
thf(fact_9024_concat__bit__of__zero__1,axiom,
    ! [N: nat,L: int] :
      ( ( bit_concat_bit @ N @ zero_zero_int @ L )
      = ( bit_se545348938243370406it_int @ N @ L ) ) ).

% concat_bit_of_zero_1
thf(fact_9025_push__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_Suc_0
thf(fact_9026_push__bit__nat__eq,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se547839408752420682it_nat @ N @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).

% push_bit_nat_eq
thf(fact_9027_set__bit__nat__def,axiom,
    ( bit_se7882103937844011126it_nat
    = ( ^ [M3: nat,N3: nat] : ( bit_se1412395901928357646or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% set_bit_nat_def
thf(fact_9028_flip__bit__nat__def,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [M3: nat,N3: nat] : ( bit_se6528837805403552850or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% flip_bit_nat_def
thf(fact_9029_bit__push__bit__iff__int,axiom,
    ! [M: nat,K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_int
thf(fact_9030_bit__push__bit__iff__nat,axiom,
    ! [M: nat,Q3: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q3 ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1148574629649215175it_nat @ Q3 @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_nat
thf(fact_9031_concat__bit__eq,axiom,
    ( bit_concat_bit
    = ( ^ [N3: nat,K3: int,L2: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N3 @ K3 ) @ ( bit_se545348938243370406it_int @ N3 @ L2 ) ) ) ) ).

% concat_bit_eq
thf(fact_9032_concat__bit__def,axiom,
    ( bit_concat_bit
    = ( ^ [N3: nat,K3: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N3 @ K3 ) @ ( bit_se545348938243370406it_int @ N3 @ L2 ) ) ) ) ).

% concat_bit_def
thf(fact_9033_set__bit__int__def,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N3: nat,K3: int] : ( bit_se1409905431419307370or_int @ K3 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% set_bit_int_def
thf(fact_9034_flip__bit__int__def,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N3: nat,K3: int] : ( bit_se6526347334894502574or_int @ K3 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% flip_bit_int_def
thf(fact_9035_sin__times__pi__eq__0,axiom,
    ! [X3: real] :
      ( ( ( sin_real @ ( times_times_real @ X3 @ pi ) )
        = zero_zero_real )
      = ( member_real @ X3 @ ring_1_Ints_real ) ) ).

% sin_times_pi_eq_0
thf(fact_9036_unset__bit__int__def,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N3: nat,K3: int] : ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ) ).

% unset_bit_int_def
thf(fact_9037_push__bit__nat__def,axiom,
    ( bit_se547839408752420682it_nat
    = ( ^ [N3: nat,M3: nat] : ( times_times_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_nat_def
thf(fact_9038_push__bit__int__def,axiom,
    ( bit_se545348938243370406it_int
    = ( ^ [N3: nat,K3: int] : ( times_times_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_int_def
thf(fact_9039_push__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% push_bit_minus_one
thf(fact_9040_sin__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = zero_zero_real ) ) ).

% sin_integer_2pi
thf(fact_9041_cos__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_real ) ) ).

% cos_integer_2pi
thf(fact_9042_int__of__nat__def,axiom,
    code_T6385005292777649522of_nat = semiri1314217659103216013at_int ).

% int_of_nat_def
thf(fact_9043_Cauchy__iff2,axiom,
    ( topolo4055970368930404560y_real
    = ( ^ [X8: nat > real] :
        ! [J3: nat] :
        ? [M9: nat] :
        ! [M3: nat] :
          ( ( ord_less_eq_nat @ M9 @ M3 )
         => ! [N3: nat] :
              ( ( ord_less_eq_nat @ M9 @ N3 )
             => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X8 @ M3 ) @ ( X8 @ N3 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).

% Cauchy_iff2
thf(fact_9044_Sum__Ico__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or4665077453230672383an_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Ico_nat
thf(fact_9045_ex__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
            & ( P @ M3 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
            & ( P @ X ) ) ) ) ).

% ex_nat_less_eq
thf(fact_9046_all__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
           => ( P @ M3 ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
           => ( P @ X ) ) ) ) ).

% all_nat_less_eq
thf(fact_9047_lessThan__atLeast0,axiom,
    ( set_ord_lessThan_nat
    = ( set_or4665077453230672383an_nat @ zero_zero_nat ) ) ).

% lessThan_atLeast0
thf(fact_9048_atLeastLessThan0,axiom,
    ! [M: nat] :
      ( ( set_or4665077453230672383an_nat @ M @ zero_zero_nat )
      = bot_bot_set_nat ) ).

% atLeastLessThan0
thf(fact_9049_atLeast0__lessThan__Suc,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).

% atLeast0_lessThan_Suc
thf(fact_9050_subset__eq__atLeast0__lessThan__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_lessThan_finite
thf(fact_9051_atLeastLessThanSuc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThanSuc
thf(fact_9052_prod__Suc__fact,axiom,
    ! [N: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
      = ( semiri1408675320244567234ct_nat @ N ) ) ).

% prod_Suc_fact
thf(fact_9053_prod__Suc__Suc__fact,axiom,
    ! [N: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( semiri1408675320244567234ct_nat @ N ) ) ).

% prod_Suc_Suc_fact
thf(fact_9054_atLeastLessThan__nat__numeral,axiom,
    ! [M: nat,K: num] :
      ( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThan_nat_numeral
thf(fact_9055_atLeast1__lessThan__eq__remove0,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_lessThan_eq_remove0
thf(fact_9056_sum__power2,axiom,
    ! [K: nat] :
      ( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
      = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).

% sum_power2
thf(fact_9057_Chebyshev__sum__upper__nat,axiom,
    ! [N: nat,A: nat > nat,B: nat > nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_eq_nat @ I3 @ J2 )
         => ( ( ord_less_nat @ J2 @ N )
           => ( ord_less_eq_nat @ ( A @ I3 ) @ ( A @ J2 ) ) ) )
     => ( ! [I3: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ N )
             => ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I3 ) ) ) )
       => ( ord_less_eq_nat
          @ ( times_times_nat @ N
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( B @ I4 ) )
              @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
          @ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).

% Chebyshev_sum_upper_nat
thf(fact_9058_finite__atLeastZeroLessThan__int,axiom,
    ! [U: int] : ( finite_finite_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) ) ).

% finite_atLeastZeroLessThan_int
thf(fact_9059_VEBT_Osize_I3_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size(3)
thf(fact_9060_valid__eq,axiom,
    vEBT_VEBT_valid = vEBT_invar_vebt ).

% valid_eq
thf(fact_9061_valid__eq1,axiom,
    ! [T: vEBT_VEBT,D3: nat] :
      ( ( vEBT_invar_vebt @ T @ D3 )
     => ( vEBT_VEBT_valid @ T @ D3 ) ) ).

% valid_eq1
thf(fact_9062_valid__eq2,axiom,
    ! [T: vEBT_VEBT,D3: nat] :
      ( ( vEBT_VEBT_valid @ T @ D3 )
     => ( vEBT_invar_vebt @ T @ D3 ) ) ).

% valid_eq2
thf(fact_9063_VEBT_Osize__gen_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size_gen(1)
thf(fact_9064_Code__Target__Int_Opositive__def,axiom,
    code_Target_positive = numeral_numeral_int ).

% Code_Target_Int.positive_def
thf(fact_9065_VEBT_Osize__gen_I2_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size_gen(2)
thf(fact_9066_csqrt_Osimps_I1_J,axiom,
    ! [Z: complex] :
      ( ( re @ ( csqrt @ Z ) )
      = ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% csqrt.simps(1)
thf(fact_9067_divmod__step__integer__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L2: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q5: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L2 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q5 ) @ R5 ) ) ) ) ) ).

% divmod_step_integer_def
thf(fact_9068_complex__Re__of__nat,axiom,
    ! [N: nat] :
      ( ( re @ ( semiri8010041392384452111omplex @ N ) )
      = ( semiri5074537144036343181t_real @ N ) ) ).

% complex_Re_of_nat
thf(fact_9069_complex__Re__numeral,axiom,
    ! [V: num] :
      ( ( re @ ( numera6690914467698888265omplex @ V ) )
      = ( numeral_numeral_real @ V ) ) ).

% complex_Re_numeral
thf(fact_9070_Re__divide__of__nat,axiom,
    ! [Z: complex,N: nat] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% Re_divide_of_nat
thf(fact_9071_Re__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Re_divide_numeral
thf(fact_9072_cos__Arg__i__mult__zero,axiom,
    ! [Y3: complex] :
      ( ( Y3 != zero_zero_complex )
     => ( ( ( re @ Y3 )
          = zero_zero_real )
       => ( ( cos_real @ ( arg @ Y3 ) )
          = zero_zero_real ) ) ) ).

% cos_Arg_i_mult_zero
thf(fact_9073_sgn__integer__code,axiom,
    ( sgn_sgn_Code_integer
    = ( ^ [K3: code_integer] : ( if_Code_integer @ ( K3 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).

% sgn_integer_code
thf(fact_9074_times__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(2)
thf(fact_9075_times__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(1)
thf(fact_9076_minus__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ L )
      = ( uminus1351360451143612070nteger @ L ) ) ).

% minus_integer_code(2)
thf(fact_9077_minus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( minus_8373710615458151222nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% minus_integer_code(1)
thf(fact_9078_less__eq__integer__code_I1_J,axiom,
    ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ).

% less_eq_integer_code(1)
thf(fact_9079_plus__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L )
      = L ) ).

% plus_integer_code(2)
thf(fact_9080_plus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% plus_integer_code(1)
thf(fact_9081_imaginary__unit_Osimps_I1_J,axiom,
    ( ( re @ imaginary_unit )
    = zero_zero_real ) ).

% imaginary_unit.simps(1)
thf(fact_9082_complex__Re__le__cmod,axiom,
    ! [X3: complex] : ( ord_less_eq_real @ ( re @ X3 ) @ ( real_V1022390504157884413omplex @ X3 ) ) ).

% complex_Re_le_cmod
thf(fact_9083_zero__complex_Osimps_I1_J,axiom,
    ( ( re @ zero_zero_complex )
    = zero_zero_real ) ).

% zero_complex.simps(1)
thf(fact_9084_abs__Re__le__cmod,axiom,
    ! [X3: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X3 ) ) @ ( real_V1022390504157884413omplex @ X3 ) ) ).

% abs_Re_le_cmod
thf(fact_9085_Re__csqrt,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) ) ).

% Re_csqrt
thf(fact_9086_zero__natural_Orsp,axiom,
    zero_zero_nat = zero_zero_nat ).

% zero_natural.rsp
thf(fact_9087_zero__integer_Orsp,axiom,
    zero_zero_int = zero_zero_int ).

% zero_integer.rsp
thf(fact_9088_cmod__plus__Re__le__0__iff,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ zero_zero_real )
      = ( ( re @ Z )
        = ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ).

% cmod_plus_Re_le_0_iff
thf(fact_9089_cos__n__Re__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( re @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% cos_n_Re_cis_pow_n
thf(fact_9090_csqrt_Ocode,axiom,
    ( csqrt
    = ( ^ [Z6: complex] :
          ( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z6 ) @ ( re @ Z6 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          @ ( times_times_real
            @ ( if_real
              @ ( ( im @ Z6 )
                = zero_zero_real )
              @ one_one_real
              @ ( sgn_sgn_real @ ( im @ Z6 ) ) )
            @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z6 ) @ ( re @ Z6 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% csqrt.code
thf(fact_9091_csqrt_Osimps_I2_J,axiom,
    ! [Z: complex] :
      ( ( im @ ( csqrt @ Z ) )
      = ( times_times_real
        @ ( if_real
          @ ( ( im @ Z )
            = zero_zero_real )
          @ one_one_real
          @ ( sgn_sgn_real @ ( im @ Z ) ) )
        @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt.simps(2)
thf(fact_9092_integer__of__int__code,axiom,
    ( code_integer_of_int
    = ( ^ [K3: int] :
          ( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K3 ) ) )
          @ ( if_Code_integer @ ( K3 = zero_zero_int ) @ zero_z3403309356797280102nteger
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% integer_of_int_code
thf(fact_9093_complex__Im__fact,axiom,
    ! [N: nat] :
      ( ( im @ ( semiri5044797733671781792omplex @ N ) )
      = zero_zero_real ) ).

% complex_Im_fact
thf(fact_9094_complex__Im__of__int,axiom,
    ! [Z: int] :
      ( ( im @ ( ring_17405671764205052669omplex @ Z ) )
      = zero_zero_real ) ).

% complex_Im_of_int
thf(fact_9095_Im__complex__of__real,axiom,
    ! [Z: real] :
      ( ( im @ ( real_V4546457046886955230omplex @ Z ) )
      = zero_zero_real ) ).

% Im_complex_of_real
thf(fact_9096_Im__power__real,axiom,
    ! [X3: complex,N: nat] :
      ( ( ( im @ X3 )
        = zero_zero_real )
     => ( ( im @ ( power_power_complex @ X3 @ N ) )
        = zero_zero_real ) ) ).

% Im_power_real
thf(fact_9097_complex__Im__numeral,axiom,
    ! [V: num] :
      ( ( im @ ( numera6690914467698888265omplex @ V ) )
      = zero_zero_real ) ).

% complex_Im_numeral
thf(fact_9098_complex__Im__of__nat,axiom,
    ! [N: nat] :
      ( ( im @ ( semiri8010041392384452111omplex @ N ) )
      = zero_zero_real ) ).

% complex_Im_of_nat
thf(fact_9099_Re__power__real,axiom,
    ! [X3: complex,N: nat] :
      ( ( ( im @ X3 )
        = zero_zero_real )
     => ( ( re @ ( power_power_complex @ X3 @ N ) )
        = ( power_power_real @ ( re @ X3 ) @ N ) ) ) ).

% Re_power_real
thf(fact_9100_Im__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Im_divide_numeral
thf(fact_9101_Im__divide__of__nat,axiom,
    ! [Z: complex,N: nat] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% Im_divide_of_nat
thf(fact_9102_csqrt__of__real__nonneg,axiom,
    ! [X3: complex] :
      ( ( ( im @ X3 )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( re @ X3 ) )
       => ( ( csqrt @ X3 )
          = ( real_V4546457046886955230omplex @ ( sqrt @ ( re @ X3 ) ) ) ) ) ) ).

% csqrt_of_real_nonneg
thf(fact_9103_csqrt__minus,axiom,
    ! [X3: complex] :
      ( ( ( ord_less_real @ ( im @ X3 ) @ zero_zero_real )
        | ( ( ( im @ X3 )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( re @ X3 ) ) ) )
     => ( ( csqrt @ ( uminus1482373934393186551omplex @ X3 ) )
        = ( times_times_complex @ imaginary_unit @ ( csqrt @ X3 ) ) ) ) ).

% csqrt_minus
thf(fact_9104_csqrt__of__real__nonpos,axiom,
    ! [X3: complex] :
      ( ( ( im @ X3 )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ ( re @ X3 ) @ zero_zero_real )
       => ( ( csqrt @ X3 )
          = ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X3 ) ) ) ) ) ) ) ) ).

% csqrt_of_real_nonpos
thf(fact_9105_zero__integer__def,axiom,
    ( zero_z3403309356797280102nteger
    = ( code_integer_of_int @ zero_zero_int ) ) ).

% zero_integer_def
thf(fact_9106_uminus__integer__code_I1_J,axiom,
    ( ( uminus1351360451143612070nteger @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% uminus_integer_code(1)
thf(fact_9107_abs__integer__code,axiom,
    ( abs_abs_Code_integer
    = ( ^ [K3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ K3 ) @ K3 ) ) ) ).

% abs_integer_code
thf(fact_9108_less__integer__code_I1_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ).

% less_integer_code(1)
thf(fact_9109_less__integer_Oabs__eq,axiom,
    ! [Xa: int,X3: int] :
      ( ( ord_le6747313008572928689nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X3 ) )
      = ( ord_less_int @ Xa @ X3 ) ) ).

% less_integer.abs_eq
thf(fact_9110_zero__complex_Osimps_I2_J,axiom,
    ( ( im @ zero_zero_complex )
    = zero_zero_real ) ).

% zero_complex.simps(2)
thf(fact_9111_one__complex_Osimps_I2_J,axiom,
    ( ( im @ one_one_complex )
    = zero_zero_real ) ).

% one_complex.simps(2)
thf(fact_9112_less__eq__integer_Oabs__eq,axiom,
    ! [Xa: int,X3: int] :
      ( ( ord_le3102999989581377725nteger @ ( code_integer_of_int @ Xa ) @ ( code_integer_of_int @ X3 ) )
      = ( ord_less_eq_int @ Xa @ X3 ) ) ).

% less_eq_integer.abs_eq
thf(fact_9113_complex__is__Int__iff,axiom,
    ! [Z: complex] :
      ( ( member_complex @ Z @ ring_1_Ints_complex )
      = ( ( ( im @ Z )
          = zero_zero_real )
        & ? [I4: int] :
            ( ( re @ Z )
            = ( ring_1_of_int_real @ I4 ) ) ) ) ).

% complex_is_Int_iff
thf(fact_9114_abs__Im__le__cmod,axiom,
    ! [X3: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X3 ) ) @ ( real_V1022390504157884413omplex @ X3 ) ) ).

% abs_Im_le_cmod
thf(fact_9115_Im__eq__0,axiom,
    ! [Z: complex] :
      ( ( ( abs_abs_real @ ( re @ Z ) )
        = ( real_V1022390504157884413omplex @ Z ) )
     => ( ( im @ Z )
        = zero_zero_real ) ) ).

% Im_eq_0
thf(fact_9116_cmod__eq__Im,axiom,
    ! [Z: complex] :
      ( ( ( re @ Z )
        = zero_zero_real )
     => ( ( real_V1022390504157884413omplex @ Z )
        = ( abs_abs_real @ ( im @ Z ) ) ) ) ).

% cmod_eq_Im
thf(fact_9117_cmod__eq__Re,axiom,
    ! [Z: complex] :
      ( ( ( im @ Z )
        = zero_zero_real )
     => ( ( real_V1022390504157884413omplex @ Z )
        = ( abs_abs_real @ ( re @ Z ) ) ) ) ).

% cmod_eq_Re
thf(fact_9118_cmod__Re__le__iff,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( ( im @ X3 )
        = ( im @ Y3 ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y3 ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X3 ) ) @ ( abs_abs_real @ ( re @ Y3 ) ) ) ) ) ).

% cmod_Re_le_iff
thf(fact_9119_cmod__Im__le__iff,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( ( re @ X3 )
        = ( re @ Y3 ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X3 ) @ ( real_V1022390504157884413omplex @ Y3 ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X3 ) ) @ ( abs_abs_real @ ( im @ Y3 ) ) ) ) ) ).

% cmod_Im_le_iff
thf(fact_9120_csqrt__principal,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) )
      | ( ( ( re @ ( csqrt @ Z ) )
          = zero_zero_real )
        & ( ord_less_eq_real @ zero_zero_real @ ( im @ ( csqrt @ Z ) ) ) ) ) ).

% csqrt_principal
thf(fact_9121_cmod__le,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) ) ).

% cmod_le
thf(fact_9122_sin__n__Im__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( im @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% sin_n_Im_cis_pow_n
thf(fact_9123_cmod__power2,axiom,
    ! [Z: complex] :
      ( ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cmod_power2
thf(fact_9124_Im__power2,axiom,
    ! [X3: complex] :
      ( ( im @ ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X3 ) ) @ ( im @ X3 ) ) ) ).

% Im_power2
thf(fact_9125_Re__power2,axiom,
    ! [X3: complex] :
      ( ( re @ ( power_power_complex @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Re_power2
thf(fact_9126_complex__eq__0,axiom,
    ! [Z: complex] :
      ( ( Z = zero_zero_complex )
      = ( ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real ) ) ).

% complex_eq_0
thf(fact_9127_norm__complex__def,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z6: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z6 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% norm_complex_def
thf(fact_9128_inverse__complex_Osimps_I1_J,axiom,
    ! [X3: complex] :
      ( ( re @ ( invers8013647133539491842omplex @ X3 ) )
      = ( divide_divide_real @ ( re @ X3 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(1)
thf(fact_9129_complex__neq__0,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
      = ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_neq_0
thf(fact_9130_Re__divide,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( re @ ( divide1717551699836669952omplex @ X3 @ Y3 ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X3 ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( im @ Y3 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_divide
thf(fact_9131_csqrt__unique,axiom,
    ! [W: complex,Z: complex] :
      ( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = Z )
     => ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
          | ( ( ( re @ W )
              = zero_zero_real )
            & ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
       => ( ( csqrt @ Z )
          = W ) ) ) ).

% csqrt_unique
thf(fact_9132_csqrt__square,axiom,
    ! [B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
        | ( ( ( re @ B )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
     => ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = B ) ) ).

% csqrt_square
thf(fact_9133_inverse__complex_Osimps_I2_J,axiom,
    ! [X3: complex] :
      ( ( im @ ( invers8013647133539491842omplex @ X3 ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X3 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(2)
thf(fact_9134_Im__divide,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( im @ ( divide1717551699836669952omplex @ X3 @ Y3 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X3 ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( re @ X3 ) @ ( im @ Y3 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_divide
thf(fact_9135_complex__abs__le__norm,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% complex_abs_le_norm
thf(fact_9136_complex__unit__circle,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real ) ) ).

% complex_unit_circle
thf(fact_9137_inverse__complex_Ocode,axiom,
    ( invers8013647133539491842omplex
    = ( ^ [X: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% inverse_complex.code
thf(fact_9138_Complex__divide,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X: complex,Y: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% Complex_divide
thf(fact_9139_Im__Reals__divide,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ R2 @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R2 ) ) @ ( im @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_Reals_divide
thf(fact_9140_Re__Reals__divide,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ R2 @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( re @ R2 ) @ ( re @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_Reals_divide
thf(fact_9141_complex__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_mult_cnj
thf(fact_9142_complex__cnj__zero,axiom,
    ( ( cnj @ zero_zero_complex )
    = zero_zero_complex ) ).

% complex_cnj_zero
thf(fact_9143_complex__cnj__zero__iff,axiom,
    ! [Z: complex] :
      ( ( ( cnj @ Z )
        = zero_zero_complex )
      = ( Z = zero_zero_complex ) ) ).

% complex_cnj_zero_iff
thf(fact_9144_complex__cnj__power,axiom,
    ! [X3: complex,N: nat] :
      ( ( cnj @ ( power_power_complex @ X3 @ N ) )
      = ( power_power_complex @ ( cnj @ X3 ) @ N ) ) ).

% complex_cnj_power
thf(fact_9145_complex__In__mult__cnj__zero,axiom,
    ! [Z: complex] :
      ( ( im @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = zero_zero_real ) ).

% complex_In_mult_cnj_zero
thf(fact_9146_imaginary__eq__real__iff,axiom,
    ! [Y3: complex,X3: complex] :
      ( ( member_complex @ Y3 @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X3 @ real_V2521375963428798218omplex )
       => ( ( ( times_times_complex @ imaginary_unit @ Y3 )
            = X3 )
          = ( ( X3 = zero_zero_complex )
            & ( Y3 = zero_zero_complex ) ) ) ) ) ).

% imaginary_eq_real_iff
thf(fact_9147_real__eq__imaginary__iff,axiom,
    ! [Y3: complex,X3: complex] :
      ( ( member_complex @ Y3 @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X3 @ real_V2521375963428798218omplex )
       => ( ( X3
            = ( times_times_complex @ imaginary_unit @ Y3 ) )
          = ( ( X3 = zero_zero_complex )
            & ( Y3 = zero_zero_complex ) ) ) ) ) ).

% real_eq_imaginary_iff
thf(fact_9148_complex__is__Real__iff,axiom,
    ! [Z: complex] :
      ( ( member_complex @ Z @ real_V2521375963428798218omplex )
      = ( ( im @ Z )
        = zero_zero_real ) ) ).

% complex_is_Real_iff
thf(fact_9149_Complex__in__Reals,axiom,
    ! [X3: real] : ( member_complex @ ( complex2 @ X3 @ zero_zero_real ) @ real_V2521375963428798218omplex ) ).

% Complex_in_Reals
thf(fact_9150_Re__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Re_complex_div_eq_0
thf(fact_9151_Im__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Im_complex_div_eq_0
thf(fact_9152_Re__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_lt_0
thf(fact_9153_Re__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_gt_0
thf(fact_9154_Re__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_ge_0
thf(fact_9155_Re__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_le_0
thf(fact_9156_Im__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_lt_0
thf(fact_9157_Im__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_gt_0
thf(fact_9158_Im__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_ge_0
thf(fact_9159_Im__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_le_0
thf(fact_9160_complex__mod__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% complex_mod_mult_cnj
thf(fact_9161_complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
      & ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).

% complex_div_gt_0
thf(fact_9162_complex__norm__square,axiom,
    ! [Z: complex] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ Z @ ( cnj @ Z ) ) ) ).

% complex_norm_square
thf(fact_9163_complex__add__cnj,axiom,
    ! [Z: complex] :
      ( ( plus_plus_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z ) ) ) ) ).

% complex_add_cnj
thf(fact_9164_complex__diff__cnj,axiom,
    ! [Z: complex] :
      ( ( minus_minus_complex @ Z @ ( cnj @ Z ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z ) ) ) @ imaginary_unit ) ) ).

% complex_diff_cnj
thf(fact_9165_complex__div__cnj,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A4: complex,B3: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A4 @ ( cnj @ B3 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_div_cnj
thf(fact_9166_cnj__add__mult__eq__Re,axiom,
    ! [Z: complex,W: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ Z @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z ) @ W ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z @ ( cnj @ W ) ) ) ) ) ) ).

% cnj_add_mult_eq_Re
thf(fact_9167_int__of__integer__code,axiom,
    ( code_int_of_integer
    = ( ^ [K3: code_integer] :
          ( if_int @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K3 ) ) )
          @ ( if_int @ ( K3 = zero_z3403309356797280102nteger ) @ zero_zero_int
            @ ( produc1553301316500091796er_int
              @ ^ [L2: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ one_one_int ) )
              @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% int_of_integer_code
thf(fact_9168_num__of__integer__code,axiom,
    ( code_num_of_integer
    = ( ^ [K3: code_integer] :
          ( if_num @ ( ord_le3102999989581377725nteger @ K3 @ one_one_Code_integer ) @ one
          @ ( produc7336495610019696514er_num
            @ ^ [L2: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ one ) )
            @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% num_of_integer_code
thf(fact_9169_setceilmax,axiom,
    ! [S: vEBT_VEBT,M: nat,Listy: list_VEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ S @ M )
     => ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Listy ) )
           => ( vEBT_invar_vebt @ X4 @ N ) )
       => ( ( M
            = ( suc @ N ) )
         => ( ! [X4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Listy ) )
               => ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ X4 ) )
                  = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
           => ( ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ S ) )
                = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) )
             => ( ( semiri1314217659103216013at_int @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ S @ ( set_VEBT_VEBT2 @ Listy ) ) ) ) )
                = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ) ) ) ) ).

% setceilmax
thf(fact_9170_height__compose__list,axiom,
    ! [T: vEBT_VEBT,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ T @ ( set_VEBT_VEBT2 @ TreeList2 ) )
     => ( ord_less_eq_nat @ ( vEBT_VEBT_height @ T ) @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary @ ( set_VEBT_VEBT2 @ TreeList2 ) ) ) ) ) ) ).

% height_compose_list
thf(fact_9171_int__of__integer__of__nat,axiom,
    ! [N: nat] :
      ( ( code_int_of_integer @ ( semiri4939895301339042750nteger @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% int_of_integer_of_nat
thf(fact_9172_max__ins__scaled,axiom,
    ! [N: nat,X14: vEBT_VEBT,M: nat,X13: list_VEBT_VEBT] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( vEBT_VEBT_height @ X14 ) ) @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ ( lattic8265883725875713057ax_nat @ ( insert_nat @ ( vEBT_VEBT_height @ X14 ) @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ) ).

% max_ins_scaled
thf(fact_9173_height__i__max,axiom,
    ! [I: nat,X13: list_VEBT_VEBT,Foo: nat] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ X13 ) )
     => ( ord_less_eq_nat @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ X13 @ I ) ) @ ( ord_max_nat @ Foo @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ).

% height_i_max
thf(fact_9174_max__idx__list,axiom,
    ! [I: nat,X13: list_VEBT_VEBT,N: nat,X14: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ X13 ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ N @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ X13 @ I ) ) ) @ ( suc @ ( suc @ ( times_times_nat @ N @ ( ord_max_nat @ ( vEBT_VEBT_height @ X14 ) @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ) ) ) ).

% max_idx_list
thf(fact_9175_zero__integer_Orep__eq,axiom,
    ( ( code_int_of_integer @ zero_z3403309356797280102nteger )
    = zero_zero_int ) ).

% zero_integer.rep_eq
thf(fact_9176_int__of__integer__numeral,axiom,
    ! [K: num] :
      ( ( code_int_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% int_of_integer_numeral
thf(fact_9177_Max__divisors__self__nat,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ N ) ) )
        = N ) ) ).

% Max_divisors_self_nat
thf(fact_9178_integer__less__iff,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [K3: code_integer,L2: code_integer] : ( ord_less_int @ ( code_int_of_integer @ K3 ) @ ( code_int_of_integer @ L2 ) ) ) ) ).

% integer_less_iff
thf(fact_9179_less__integer_Orep__eq,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [X: code_integer,Xa4: code_integer] : ( ord_less_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).

% less_integer.rep_eq
thf(fact_9180_integer__less__eq__iff,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [K3: code_integer,L2: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ K3 ) @ ( code_int_of_integer @ L2 ) ) ) ) ).

% integer_less_eq_iff
thf(fact_9181_less__eq__integer_Orep__eq,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [X: code_integer,Xa4: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).

% less_eq_integer.rep_eq
thf(fact_9182_VEBT__internal_Oheight_Oelims,axiom,
    ! [X3: vEBT_VEBT,Y3: nat] :
      ( ( ( vEBT_VEBT_height @ X3 )
        = Y3 )
     => ( ( ? [A5: $o,B4: $o] :
              ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
         => ( Y3 != zero_zero_nat ) )
       => ~ ! [Uu: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X3
                = ( vEBT_Node @ Uu @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( Y3
               != ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary2 @ ( set_VEBT_VEBT2 @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.height.elims
thf(fact_9183_divide__nat__def,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N3: nat] :
          ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat
          @ ( lattic8265883725875713057ax_nat
            @ ( collect_nat
              @ ^ [K3: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K3 @ N3 ) @ M3 ) ) ) ) ) ) ).

% divide_nat_def
thf(fact_9184_nat__of__integer__code,axiom,
    ( code_nat_of_integer
    = ( ^ [K3: code_integer] :
          ( if_nat @ ( ord_le3102999989581377725nteger @ K3 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
          @ ( produc1555791787009142072er_nat
            @ ^ [L2: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ one_one_nat ) )
            @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% nat_of_integer_code
thf(fact_9185_VEBT__internal_Oheight_Opelims,axiom,
    ! [X3: vEBT_VEBT,Y3: nat] :
      ( ( ( vEBT_VEBT_height @ X3 )
        = Y3 )
     => ( ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ X3 )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3 = zero_zero_nat )
               => ~ ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ ( vEBT_Leaf @ A5 @ B4 ) ) ) )
         => ~ ! [Uu: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Uu @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( Y3
                    = ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary2 @ ( set_VEBT_VEBT2 @ TreeList3 ) ) ) ) ) )
                 => ~ ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ ( vEBT_Node @ Uu @ Deg2 @ TreeList3 @ Summary2 ) ) ) ) ) ) ) ).

% VEBT_internal.height.pelims
thf(fact_9186_bij__betw__Suc,axiom,
    ! [M7: set_nat,N4: set_nat] :
      ( ( bij_betw_nat_nat @ suc @ M7 @ N4 )
      = ( ( image_nat_nat @ suc @ M7 )
        = N4 ) ) ).

% bij_betw_Suc
thf(fact_9187_Max__divisors__self__int,axiom,
    ! [N: int] :
      ( ( N != zero_zero_int )
     => ( ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D4: int] : ( dvd_dvd_int @ D4 @ N ) ) )
        = ( abs_abs_int @ N ) ) ) ).

% Max_divisors_self_int
thf(fact_9188_of__nat__of__integer,axiom,
    ! [K: code_integer] :
      ( ( semiri4939895301339042750nteger @ ( code_nat_of_integer @ K ) )
      = ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ K ) ) ).

% of_nat_of_integer
thf(fact_9189_nat__of__integer__non__positive,axiom,
    ! [K: code_integer] :
      ( ( ord_le3102999989581377725nteger @ K @ zero_z3403309356797280102nteger )
     => ( ( code_nat_of_integer @ K )
        = zero_zero_nat ) ) ).

% nat_of_integer_non_positive
thf(fact_9190_zero__notin__Suc__image,axiom,
    ! [A3: set_nat] :
      ~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A3 ) ) ).

% zero_notin_Suc_image
thf(fact_9191_image__int__atLeastAtMost,axiom,
    ! [A: nat,B: nat] :
      ( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% image_int_atLeastAtMost
thf(fact_9192_image__int__atLeastLessThan,axiom,
    ! [A: nat,B: nat] :
      ( ( image_nat_int @ semiri1314217659103216013at_int @ ( set_or4665077453230672383an_nat @ A @ B ) )
      = ( set_or4662586982721622107an_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% image_int_atLeastLessThan
thf(fact_9193_nat__of__integer__code__post_I1_J,axiom,
    ( ( code_nat_of_integer @ zero_z3403309356797280102nteger )
    = zero_zero_nat ) ).

% nat_of_integer_code_post(1)
thf(fact_9194_nat__of__integer_Orep__eq,axiom,
    ( code_nat_of_integer
    = ( ^ [X: code_integer] : ( nat2 @ ( code_int_of_integer @ X ) ) ) ) ).

% nat_of_integer.rep_eq
thf(fact_9195_nat__of__integer_Oabs__eq,axiom,
    ! [X3: int] :
      ( ( code_nat_of_integer @ ( code_integer_of_int @ X3 ) )
      = ( nat2 @ X3 ) ) ).

% nat_of_integer.abs_eq
thf(fact_9196_nat__of__integer__code__post_I3_J,axiom,
    ! [K: num] :
      ( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_of_integer_code_post(3)
thf(fact_9197_atLeast0__atMost__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ) ).

% atLeast0_atMost_Suc_eq_insert_0
thf(fact_9198_atLeast0__lessThan__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ).

% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9199_lessThan__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% lessThan_Suc_eq_insert_0
thf(fact_9200_atMost__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_ord_atMost_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% atMost_Suc_eq_insert_0
thf(fact_9201_image__add__int__atLeastLessThan,axiom,
    ! [L: int,U: int] :
      ( ( image_int_int
        @ ^ [X: int] : ( plus_plus_int @ X @ L )
        @ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L ) ) )
      = ( set_or4662586982721622107an_int @ L @ U ) ) ).

% image_add_int_atLeastLessThan
thf(fact_9202_image__atLeastZeroLessThan__int,axiom,
    ! [U: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ U )
     => ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
        = ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).

% image_atLeastZeroLessThan_int
thf(fact_9203_image__minus__const__atLeastLessThan__nat,axiom,
    ! [C: nat,Y3: nat,X3: nat] :
      ( ( ( ord_less_nat @ C @ Y3 )
       => ( ( image_nat_nat
            @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
            @ ( set_or4665077453230672383an_nat @ X3 @ Y3 ) )
          = ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X3 @ C ) @ ( minus_minus_nat @ Y3 @ C ) ) ) )
      & ( ~ ( ord_less_nat @ C @ Y3 )
       => ( ( ( ord_less_nat @ X3 @ Y3 )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X3 @ Y3 ) )
              = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
          & ( ~ ( ord_less_nat @ X3 @ Y3 )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X3 @ Y3 ) )
              = bot_bot_set_nat ) ) ) ) ) ).

% image_minus_const_atLeastLessThan_nat
thf(fact_9204_vebt__maxt_Opelims,axiom,
    ! [X3: vEBT_VEBT,Y3: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X3 )
        = Y3 )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ X3 )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( ( B4
                   => ( Y3
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B4
                   => ( ( A5
                       => ( Y3
                          = ( some_nat @ zero_zero_nat ) ) )
                      & ( ~ A5
                       => ( Y3 = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A5 @ B4 ) ) ) )
         => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
               => ( ( Y3 = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y3
                      = ( some_nat @ Ma2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_maxt.pelims
thf(fact_9205_vebt__mint_Opelims,axiom,
    ! [X3: vEBT_VEBT,Y3: option_nat] :
      ( ( ( vEBT_vebt_mint @ X3 )
        = Y3 )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ X3 )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( ( A5
                   => ( Y3
                      = ( some_nat @ zero_zero_nat ) ) )
                  & ( ~ A5
                   => ( ( B4
                       => ( Y3
                          = ( some_nat @ one_one_nat ) ) )
                      & ( ~ B4
                       => ( Y3 = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A5 @ B4 ) ) ) )
         => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
               => ( ( Y3 = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y3
                      = ( some_nat @ Mi2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_mint.pelims
thf(fact_9206_T_092_060_094sub_062m_092_060_094sub_062i_092_060_094sub_062n_092_060_094sub_062t_Opelims,axiom,
    ! [X3: vEBT_VEBT,Y3: nat] :
      ( ( ( vEBT_T_m_i_n_t @ X3 )
        = Y3 )
     => ( ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ X3 )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3
                  = ( plus_plus_nat @ one_one_nat @ ( if_nat @ A5 @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ ( vEBT_Leaf @ A5 @ B4 ) ) ) )
         => ( ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
               => ( ( Y3 = one_one_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y3 = one_one_nat )
                   => ~ ( accp_VEBT_VEBT @ vEBT_T_m_i_n_t_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>i\<^sub>n\<^sub>t.pelims
thf(fact_9207_card__Collect__less__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N ) ) )
      = N ) ).

% card_Collect_less_nat
thf(fact_9208_card__Collect__le__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I4: nat] : ( ord_less_eq_nat @ I4 @ N ) ) )
      = ( suc @ N ) ) ).

% card_Collect_le_nat
thf(fact_9209_card__atLeastLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or4662586982721622107an_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).

% card_atLeastLessThan_int
thf(fact_9210_card__atLeastAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or1266510415728281911st_int @ L @ U ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L ) @ one_one_int ) ) ) ).

% card_atLeastAtMost_int
thf(fact_9211_nat_Odisc__eq__case_I2_J,axiom,
    ! [Nat: nat] :
      ( ( Nat != zero_zero_nat )
      = ( case_nat_o @ $false
        @ ^ [Uu3: nat] : $true
        @ Nat ) ) ).

% nat.disc_eq_case(2)
thf(fact_9212_nat_Odisc__eq__case_I1_J,axiom,
    ! [Nat: nat] :
      ( ( Nat = zero_zero_nat )
      = ( case_nat_o @ $true
        @ ^ [Uu3: nat] : $false
        @ Nat ) ) ).

% nat.disc_eq_case(1)
thf(fact_9213_card__less__Suc2,axiom,
    ! [M7: set_nat,I: nat] :
      ( ~ ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ ( suc @ K3 ) @ M7 )
                & ( ord_less_nat @ K3 @ I ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc2
thf(fact_9214_card__less__Suc,axiom,
    ! [M7: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( suc
          @ ( finite_card_nat
            @ ( collect_nat
              @ ^ [K3: nat] :
                  ( ( member_nat @ ( suc @ K3 ) @ M7 )
                  & ( ord_less_nat @ K3 @ I ) ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc
thf(fact_9215_card__less,axiom,
    ! [M7: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I ) ) ) ) )
       != zero_zero_nat ) ) ).

% card_less
thf(fact_9216_card__atLeastZeroLessThan__int,axiom,
    ! [U: int] :
      ( ( finite_card_int @ ( set_or4662586982721622107an_int @ zero_zero_int @ U ) )
      = ( nat2 @ U ) ) ).

% card_atLeastZeroLessThan_int
thf(fact_9217_less__eq__nat_Osimps_I2_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).

% less_eq_nat.simps(2)
thf(fact_9218_max__Suc2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ M5 @ N ) )
        @ M ) ) ).

% max_Suc2
thf(fact_9219_max__Suc1,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_max_nat @ ( suc @ N ) @ M )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ N @ M5 ) )
        @ M ) ) ).

% max_Suc1
thf(fact_9220_card__le__Suc__Max,axiom,
    ! [S2: set_nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ S2 ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S2 ) ) ) ) ).

% card_le_Suc_Max
thf(fact_9221_subset__eq__atLeast0__lessThan__card,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( ord_less_eq_nat @ ( finite_card_nat @ N4 ) @ N ) ) ).

% subset_eq_atLeast0_lessThan_card
thf(fact_9222_card__sum__le__nat__sum,axiom,
    ! [S2: set_nat] :
      ( ord_less_eq_nat
      @ ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S2 ) ) )
      @ ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ S2 ) ) ).

% card_sum_le_nat_sum
thf(fact_9223_card__nth__roots,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( finite_card_complex
            @ ( collect_complex
              @ ^ [Z6: complex] :
                  ( ( power_power_complex @ Z6 @ N )
                  = C ) ) )
          = N ) ) ) ).

% card_nth_roots
thf(fact_9224_card__roots__unity__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( finite_card_complex
          @ ( collect_complex
            @ ^ [Z6: complex] :
                ( ( power_power_complex @ Z6 @ N )
                = one_one_complex ) ) )
        = N ) ) ).

% card_roots_unity_eq
thf(fact_9225_diff__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [K3: nat] : K3
        @ ( minus_minus_nat @ M @ N ) ) ) ).

% diff_Suc
thf(fact_9226_floor__real__def,axiom,
    ( archim6058952711729229775r_real
    = ( ^ [X: real] :
          ( the_int
          @ ^ [Z6: int] :
              ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z6 ) @ X )
              & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z6 @ one_one_int ) ) ) ) ) ) ) ).

% floor_real_def
thf(fact_9227_pred__def,axiom,
    ( pred
    = ( case_nat_nat @ zero_zero_nat
      @ ^ [X23: nat] : X23 ) ) ).

% pred_def
thf(fact_9228_bezw__0,axiom,
    ! [X3: nat] :
      ( ( bezw @ X3 @ zero_zero_nat )
      = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) ).

% bezw_0
thf(fact_9229_drop__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_numeral_minus_bit1
thf(fact_9230_drop__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% drop_bit_nonnegative_int_iff
thf(fact_9231_drop__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% drop_bit_negative_int_iff
thf(fact_9232_drop__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% drop_bit_minus_one
thf(fact_9233_drop__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_Suc_minus_bit0
thf(fact_9234_drop__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_numeral_minus_bit0
thf(fact_9235_drop__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_Suc_minus_bit1
thf(fact_9236_drop__bit__push__bit__int,axiom,
    ! [M: nat,N: nat,K: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N @ K ) )
      = ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N @ M ) @ K ) ) ) ).

% drop_bit_push_bit_int
thf(fact_9237_drop__bit__int__def,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N3: nat,K3: int] : ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_int_def
thf(fact_9238_Suc__0__mod__numeral,axiom,
    ! [K: num] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_mod_numeral
thf(fact_9239_Suc__0__div__numeral,axiom,
    ! [K: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_div_numeral
thf(fact_9240_prod__decode__aux_Osimps,axiom,
    ( nat_prod_decode_aux
    = ( ^ [K3: nat,M3: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M3 @ K3 ) @ ( product_Pair_nat_nat @ M3 @ ( minus_minus_nat @ K3 @ M3 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus_nat @ M3 @ ( suc @ K3 ) ) ) ) ) ) ).

% prod_decode_aux.simps
thf(fact_9241_drop__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% drop_bit_of_Suc_0
thf(fact_9242_drop__bit__nat__eq,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se8568078237143864401it_int @ N @ K ) ) ) ).

% drop_bit_nat_eq
thf(fact_9243_drop__bit__nat__def,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N3: nat,M3: nat] : ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_nat_def
thf(fact_9244_prod__decode__aux_Oelims,axiom,
    ! [X3: nat,Xa: nat,Y3: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X3 @ Xa )
        = Y3 )
     => ( ( ( ord_less_eq_nat @ Xa @ X3 )
         => ( Y3
            = ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X3 @ Xa ) ) ) )
        & ( ~ ( ord_less_eq_nat @ Xa @ X3 )
         => ( Y3
            = ( nat_prod_decode_aux @ ( suc @ X3 ) @ ( minus_minus_nat @ Xa @ ( suc @ X3 ) ) ) ) ) ) ) ).

% prod_decode_aux.elims
thf(fact_9245_finite__enumerate,axiom,
    ! [S2: set_nat] :
      ( ( finite_finite_nat @ S2 )
     => ? [R: nat > nat] :
          ( ( strict1292158309912662752at_nat @ R @ ( set_ord_lessThan_nat @ ( finite_card_nat @ S2 ) ) )
          & ! [N8: nat] :
              ( ( ord_less_nat @ N8 @ ( finite_card_nat @ S2 ) )
             => ( member_nat @ ( R @ N8 ) @ S2 ) ) ) ) ).

% finite_enumerate
thf(fact_9246_bezw__non__0,axiom,
    ! [Y3: nat,X3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Y3 )
     => ( ( bezw @ X3 @ Y3 )
        = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X3 @ Y3 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X3 @ Y3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X3 @ Y3 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X3 @ Y3 ) ) ) ) ) ) ) ).

% bezw_non_0
thf(fact_9247_bezw_Oelims,axiom,
    ! [X3: nat,Xa: nat,Y3: product_prod_int_int] :
      ( ( ( bezw @ X3 @ Xa )
        = Y3 )
     => ( ( ( Xa = zero_zero_nat )
         => ( Y3
            = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
        & ( ( Xa != zero_zero_nat )
         => ( Y3
            = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X3 @ Xa ) ) ) ) ) ) ) ) ) ).

% bezw.elims
thf(fact_9248_bezw_Osimps,axiom,
    ( bezw
    = ( ^ [X: nat,Y: nat] : ( if_Pro3027730157355071871nt_int @ ( Y = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y ) ) ) ) ) ) ) ) ).

% bezw.simps
thf(fact_9249_one__mod__minus__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ) ).

% one_mod_minus_numeral
thf(fact_9250_minus__one__mod__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_mod_numeral
thf(fact_9251_numeral__mod__minus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ) ).

% numeral_mod_minus_numeral
thf(fact_9252_minus__numeral__mod__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% minus_numeral_mod_numeral
thf(fact_9253_Divides_Oadjust__mod__def,axiom,
    ( adjust_mod
    = ( ^ [L2: int,R5: int] : ( if_int @ ( R5 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ L2 @ R5 ) ) ) ) ).

% Divides.adjust_mod_def
thf(fact_9254_bezw_Opelims,axiom,
    ! [X3: nat,Xa: nat,Y3: product_prod_int_int] :
      ( ( ( bezw @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X3 @ Xa ) )
       => ~ ( ( ( ( Xa = zero_zero_nat )
               => ( Y3
                  = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
              & ( ( Xa != zero_zero_nat )
               => ( Y3
                  = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X3 @ Xa ) ) ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X3 @ Xa ) ) ) ) ) ).

% bezw.pelims
thf(fact_9255_prod__decode__aux_Opelims,axiom,
    ! [X3: nat,Xa: nat,Y3: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X3 @ Xa ) )
       => ~ ( ( ( ( ord_less_eq_nat @ Xa @ X3 )
               => ( Y3
                  = ( product_Pair_nat_nat @ Xa @ ( minus_minus_nat @ X3 @ Xa ) ) ) )
              & ( ~ ( ord_less_eq_nat @ Xa @ X3 )
               => ( Y3
                  = ( nat_prod_decode_aux @ ( suc @ X3 ) @ ( minus_minus_nat @ Xa @ ( suc @ X3 ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X3 @ Xa ) ) ) ) ) ).

% prod_decode_aux.pelims
thf(fact_9256_bit__cut__integer__code,axiom,
    ( code_bit_cut_integer
    = ( ^ [K3: code_integer] :
          ( if_Pro5737122678794959658eger_o @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
          @ ( produc9125791028180074456eger_o
            @ ^ [R5: code_integer,S6: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S6 ) ) @ ( S6 = one_one_Code_integer ) )
            @ ( code_divmod_abs @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_cut_integer_code
thf(fact_9257_divmod__abs__code_I6_J,axiom,
    ! [J: code_integer] :
      ( ( code_divmod_abs @ zero_z3403309356797280102nteger @ J )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ) ).

% divmod_abs_code(6)
thf(fact_9258_divmod__abs__code_I5_J,axiom,
    ! [J: code_integer] :
      ( ( code_divmod_abs @ J @ zero_z3403309356797280102nteger )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ J ) ) ) ).

% divmod_abs_code(5)
thf(fact_9259_bit__cut__integer__def,axiom,
    ( code_bit_cut_integer
    = ( ^ [K3: code_integer] :
          ( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K3 ) ) ) ) ).

% bit_cut_integer_def
thf(fact_9260_divmod__integer__code,axiom,
    ( code_divmod_integer
    = ( ^ [K3: code_integer,L2: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L2 )
            @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ ( code_divmod_abs @ K3 @ L2 )
              @ ( produc6916734918728496179nteger
                @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L2 @ S6 ) ) )
                @ ( code_divmod_abs @ K3 @ L2 ) ) )
            @ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
              @ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
                @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K3 @ L2 )
                  @ ( produc6916734918728496179nteger
                    @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L2 ) @ S6 ) ) )
                    @ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ) ).

% divmod_integer_code
thf(fact_9261_card__greaterThanLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or5832277885323065728an_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L @ one_one_int ) ) ) ) ).

% card_greaterThanLessThan_int
thf(fact_9262_xor__minus__numerals_I1_J,axiom,
    ! [N: num,K: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ K )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N @ one ) @ K ) ) ) ).

% xor_minus_numerals(1)
thf(fact_9263_xor__minus__numerals_I2_J,axiom,
    ! [K: int,N: num] :
      ( ( bit_se6526347334894502574or_int @ K @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K @ ( neg_numeral_sub_int @ N @ one ) ) ) ) ).

% xor_minus_numerals(2)
thf(fact_9264_sub__BitM__One__eq,axiom,
    ! [N: num] :
      ( ( neg_numeral_sub_int @ ( bitM @ N ) @ one )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N @ one ) ) ) ).

% sub_BitM_One_eq
thf(fact_9265_divmod__integer__eq__cases,axiom,
    ( code_divmod_integer
    = ( ^ [K3: code_integer,L2: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
            @ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L2
              @ ( if_Pro6119634080678213985nteger
                @ ( ( sgn_sgn_Code_integer @ K3 )
                  = ( sgn_sgn_Code_integer @ L2 ) )
                @ ( code_divmod_abs @ K3 @ L2 )
                @ ( produc6916734918728496179nteger
                  @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L2 ) @ S6 ) ) )
                  @ ( code_divmod_abs @ K3 @ L2 ) ) ) ) ) ) ) ) ).

% divmod_integer_eq_cases
thf(fact_9266_max__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
    @ ^ [X: nat,Y: nat] : ( ord_less_eq_nat @ Y @ X )
    @ ^ [X: nat,Y: nat] : ( ord_less_nat @ Y @ X ) ) ).

% max_nat.semilattice_neutr_order_axioms
thf(fact_9267_Suc__funpow,axiom,
    ! [N: nat] :
      ( ( compow_nat_nat @ N @ suc )
      = ( plus_plus_nat @ N ) ) ).

% Suc_funpow
thf(fact_9268_infinite__int__iff__infinite__nat__abs,axiom,
    ! [S2: set_int] :
      ( ( ~ ( finite_finite_int @ S2 ) )
      = ( ~ ( finite_finite_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ S2 ) ) ) ) ).

% infinite_int_iff_infinite_nat_abs
thf(fact_9269_Code__Target__Int_Onegative__def,axiom,
    ( code_Target_negative
    = ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).

% Code_Target_Int.negative_def
thf(fact_9270_measure__function__int,axiom,
    fun_is_measure_int @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) ).

% measure_function_int
thf(fact_9271_times__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X3: product_prod_nat_nat] :
      ( ( times_times_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X3 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) )
          @ Xa
          @ X3 ) ) ) ).

% times_int.abs_eq
thf(fact_9272_int_Oabs__induct,axiom,
    ! [P: int > $o,X3: int] :
      ( ! [Y4: product_prod_nat_nat] : ( P @ ( abs_Integ @ Y4 ) )
     => ( P @ X3 ) ) ).

% int.abs_induct
thf(fact_9273_eq__Abs__Integ,axiom,
    ! [Z: int] :
      ~ ! [X4: nat,Y4: nat] :
          ( Z
         != ( abs_Integ @ ( product_Pair_nat_nat @ X4 @ Y4 ) ) ) ).

% eq_Abs_Integ
thf(fact_9274_nat_Oabs__eq,axiom,
    ! [X3: product_prod_nat_nat] :
      ( ( nat2 @ ( abs_Integ @ X3 ) )
      = ( produc6842872674320459806at_nat @ minus_minus_nat @ X3 ) ) ).

% nat.abs_eq
thf(fact_9275_zero__int__def,axiom,
    ( zero_zero_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) ) ).

% zero_int_def
thf(fact_9276_int__def,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N3: nat] : ( abs_Integ @ ( product_Pair_nat_nat @ N3 @ zero_zero_nat ) ) ) ) ).

% int_def
thf(fact_9277_uminus__int_Oabs__eq,axiom,
    ! [X3: product_prod_nat_nat] :
      ( ( uminus_uminus_int @ ( abs_Integ @ X3 ) )
      = ( abs_Integ
        @ ( produc2626176000494625587at_nat
          @ ^ [X: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X )
          @ X3 ) ) ) ).

% uminus_int.abs_eq
thf(fact_9278_one__int__def,axiom,
    ( one_one_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).

% one_int_def
thf(fact_9279_less__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X3: product_prod_nat_nat] :
      ( ( ord_less_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X3 ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) )
        @ Xa
        @ X3 ) ) ).

% less_int.abs_eq
thf(fact_9280_less__eq__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X3: product_prod_nat_nat] :
      ( ( ord_less_eq_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X3 ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) )
        @ Xa
        @ X3 ) ) ).

% less_eq_int.abs_eq
thf(fact_9281_plus__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X3: product_prod_nat_nat] :
      ( ( plus_plus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X3 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) )
          @ Xa
          @ X3 ) ) ) ).

% plus_int.abs_eq
thf(fact_9282_minus__int_Oabs__eq,axiom,
    ! [Xa: product_prod_nat_nat,X3: product_prod_nat_nat] :
      ( ( minus_minus_int @ ( abs_Integ @ Xa ) @ ( abs_Integ @ X3 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) )
          @ Xa
          @ X3 ) ) ) ).

% minus_int.abs_eq
thf(fact_9283_num__of__nat_Osimps_I2_J,axiom,
    ! [N: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( suc @ N ) )
          = ( inc @ ( num_of_nat @ N ) ) ) )
      & ( ~ ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( suc @ N ) )
          = one ) ) ) ).

% num_of_nat.simps(2)
thf(fact_9284_Gcd__remove0__nat,axiom,
    ! [M7: set_nat] :
      ( ( finite_finite_nat @ M7 )
     => ( ( gcd_Gcd_nat @ M7 )
        = ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M7 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).

% Gcd_remove0_nat
thf(fact_9285_pow_Osimps_I3_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( pow @ X3 @ ( bit1 @ Y3 ) )
      = ( times_times_num @ ( sqr @ ( pow @ X3 @ Y3 ) ) @ X3 ) ) ).

% pow.simps(3)
thf(fact_9286_num__of__nat__numeral__eq,axiom,
    ! [Q3: num] :
      ( ( num_of_nat @ ( numeral_numeral_nat @ Q3 ) )
      = Q3 ) ).

% num_of_nat_numeral_eq
thf(fact_9287_sqr_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( sqr @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( sqr @ N ) ) ) ) ).

% sqr.simps(2)
thf(fact_9288_sqr_Osimps_I1_J,axiom,
    ( ( sqr @ one )
    = one ) ).

% sqr.simps(1)
thf(fact_9289_sqr__conv__mult,axiom,
    ( sqr
    = ( ^ [X: num] : ( times_times_num @ X @ X ) ) ) ).

% sqr_conv_mult
thf(fact_9290_num__of__nat_Osimps_I1_J,axiom,
    ( ( num_of_nat @ zero_zero_nat )
    = one ) ).

% num_of_nat.simps(1)
thf(fact_9291_numeral__num__of__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( numeral_numeral_nat @ ( num_of_nat @ N ) )
        = N ) ) ).

% numeral_num_of_nat
thf(fact_9292_num__of__nat__One,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ one_one_nat )
     => ( ( num_of_nat @ N )
        = one ) ) ).

% num_of_nat_One
thf(fact_9293_pow_Osimps_I2_J,axiom,
    ! [X3: num,Y3: num] :
      ( ( pow @ X3 @ ( bit0 @ Y3 ) )
      = ( sqr @ ( pow @ X3 @ Y3 ) ) ) ).

% pow.simps(2)
thf(fact_9294_num__of__integer_Orep__eq,axiom,
    ( code_num_of_integer
    = ( ^ [X: code_integer] : ( num_of_nat @ ( nat2 @ ( code_int_of_integer @ X ) ) ) ) ) ).

% num_of_integer.rep_eq
thf(fact_9295_num__of__integer_Oabs__eq,axiom,
    ! [X3: int] :
      ( ( code_num_of_integer @ ( code_integer_of_int @ X3 ) )
      = ( num_of_nat @ ( nat2 @ X3 ) ) ) ).

% num_of_integer.abs_eq
thf(fact_9296_num__of__nat__double,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( num_of_nat @ ( plus_plus_nat @ N @ N ) )
        = ( bit0 @ ( num_of_nat @ N ) ) ) ) ).

% num_of_nat_double
thf(fact_9297_num__of__nat__plus__distrib,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( num_of_nat @ ( plus_plus_nat @ M @ N ) )
          = ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N ) ) ) ) ) ).

% num_of_nat_plus_distrib
thf(fact_9298_sqr_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( sqr @ ( bit1 @ N ) )
      = ( bit1 @ ( bit0 @ ( plus_plus_num @ ( sqr @ N ) @ N ) ) ) ) ).

% sqr.simps(3)
thf(fact_9299_Gcd__int__def,axiom,
    ( gcd_Gcd_int
    = ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).

% Gcd_int_def
thf(fact_9300_less__eq__int_Orep__eq,axiom,
    ( ord_less_eq_int
    = ( ^ [X: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y: nat,Z6: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y @ V4 ) @ ( plus_plus_nat @ U2 @ Z6 ) ) )
          @ ( rep_Integ @ X )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_eq_int.rep_eq
thf(fact_9301_less__int_Orep__eq,axiom,
    ( ord_less_int
    = ( ^ [X: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y: nat,Z6: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y @ V4 ) @ ( plus_plus_nat @ U2 @ Z6 ) ) )
          @ ( rep_Integ @ X )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_int.rep_eq
thf(fact_9302_Gcd__int__eq,axiom,
    ! [N4: set_nat] :
      ( ( gcd_Gcd_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N4 ) )
      = ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ N4 ) ) ) ).

% Gcd_int_eq
thf(fact_9303_Gcd__nat__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Gcd_nat
        @ ( image_int_nat
          @ ^ [K3: int] : ( nat2 @ ( abs_abs_int @ K3 ) )
          @ K5 ) )
      = ( nat2 @ ( gcd_Gcd_int @ K5 ) ) ) ).

% Gcd_nat_abs_eq
thf(fact_9304_Gcd__int__greater__eq__0,axiom,
    ! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Gcd_int @ K5 ) ) ).

% Gcd_int_greater_eq_0
thf(fact_9305_nat_Orep__eq,axiom,
    ( nat2
    = ( ^ [X: int] : ( produc6842872674320459806at_nat @ minus_minus_nat @ ( rep_Integ @ X ) ) ) ) ).

% nat.rep_eq
thf(fact_9306_Gcd__eq__Max,axiom,
    ! [M7: set_nat] :
      ( ( finite_finite_nat @ M7 )
     => ( ( M7 != bot_bot_set_nat )
       => ( ~ ( member_nat @ zero_zero_nat @ M7 )
         => ( ( gcd_Gcd_nat @ M7 )
            = ( lattic8265883725875713057ax_nat
              @ ( comple7806235888213564991et_nat
                @ ( image_nat_set_nat
                  @ ^ [M3: nat] :
                      ( collect_nat
                      @ ^ [D4: nat] : ( dvd_dvd_nat @ D4 @ M3 ) )
                  @ M7 ) ) ) ) ) ) ) ).

% Gcd_eq_Max
thf(fact_9307_uminus__int__def,axiom,
    ( uminus_uminus_int
    = ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
      @ ( produc2626176000494625587at_nat
        @ ^ [X: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X ) ) ) ) ).

% uminus_int_def
thf(fact_9308_Inf__nat__def1,axiom,
    ! [K5: set_nat] :
      ( ( K5 != bot_bot_set_nat )
     => ( member_nat @ ( complete_Inf_Inf_nat @ K5 ) @ K5 ) ) ).

% Inf_nat_def1
thf(fact_9309_times__int__def,axiom,
    ( times_times_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X: nat,Y: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) ) ) ) ) ).

% times_int_def
thf(fact_9310_minus__int__def,axiom,
    ( minus_minus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X: nat,Y: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) ) ) ) ) ).

% minus_int_def
thf(fact_9311_plus__int__def,axiom,
    ( plus_plus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X: nat,Y: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) ) ) ) ) ).

% plus_int_def
thf(fact_9312_Sup__nat__empty,axiom,
    ( ( complete_Sup_Sup_nat @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% Sup_nat_empty
thf(fact_9313_Inf__real__def,axiom,
    ( comple4887499456419720421f_real
    = ( ^ [X8: set_real] : ( uminus_uminus_real @ ( comple1385675409528146559p_real @ ( image_real_real @ uminus_uminus_real @ X8 ) ) ) ) ) ).

% Inf_real_def
thf(fact_9314_Inf__int__def,axiom,
    ( complete_Inf_Inf_int
    = ( ^ [X8: set_int] : ( uminus_uminus_int @ ( complete_Sup_Sup_int @ ( image_int_int @ uminus_uminus_int @ X8 ) ) ) ) ) ).

% Inf_int_def
thf(fact_9315_suminf__eq__SUP__real,axiom,
    ! [X9: nat > real] :
      ( ( summable_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( X9 @ I3 ) )
       => ( ( suminf_real @ X9 )
          = ( comple1385675409528146559p_real
            @ ( image_nat_real
              @ ^ [I4: nat] : ( groups6591440286371151544t_real @ X9 @ ( set_ord_lessThan_nat @ I4 ) )
              @ top_top_set_nat ) ) ) ) ) ).

% suminf_eq_SUP_real
thf(fact_9316_Sup__nat__def,axiom,
    ( complete_Sup_Sup_nat
    = ( ^ [X8: set_nat] : ( if_nat @ ( X8 = bot_bot_set_nat ) @ zero_zero_nat @ ( lattic8265883725875713057ax_nat @ X8 ) ) ) ) ).

% Sup_nat_def
thf(fact_9317_binomial__def,axiom,
    ( binomial
    = ( ^ [N3: nat,K3: nat] :
          ( finite_card_set_nat
          @ ( collect_set_nat
            @ ^ [K7: set_nat] :
                ( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N3 ) ) )
                & ( ( finite_card_nat @ K7 )
                  = K3 ) ) ) ) ) ) ).

% binomial_def
thf(fact_9318_range__mod,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( image_nat_nat
          @ ^ [M3: nat] : ( modulo_modulo_nat @ M3 @ N )
          @ top_top_set_nat )
        = ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).

% range_mod
thf(fact_9319_UNIV__nat__eq,axiom,
    ( top_top_set_nat
    = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).

% UNIV_nat_eq
thf(fact_9320_card__UNIV__bool,axiom,
    ( ( finite_card_o @ top_top_set_o )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% card_UNIV_bool
thf(fact_9321_range__mult,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
      & ( ( A != zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = top_top_set_real ) ) ) ).

% range_mult
thf(fact_9322_infinite__UNIV__int,axiom,
    ~ ( finite_finite_int @ top_top_set_int ) ).

% infinite_UNIV_int
thf(fact_9323_int__in__range__abs,axiom,
    ! [N: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N ) @ ( image_int_int @ abs_abs_int @ top_top_set_int ) ) ).

% int_in_range_abs
thf(fact_9324_root__def,axiom,
    ( root
    = ( ^ [N3: nat,X: real] :
          ( if_real @ ( N3 = zero_zero_nat ) @ zero_zero_real
          @ ( the_in5290026491893676941l_real @ top_top_set_real
            @ ^ [Y: real] : ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N3 ) )
            @ X ) ) ) ) ).

% root_def
thf(fact_9325_card__UNIV__char,axiom,
    ( ( finite_card_char @ top_top_set_char )
    = ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% card_UNIV_char
thf(fact_9326_UNIV__char__of__nat,axiom,
    ( top_top_set_char
    = ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% UNIV_char_of_nat
thf(fact_9327_char_Osize_I2_J,axiom,
    ! [X15: $o,X2: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
      ( ( size_size_char @ ( char2 @ X15 @ X2 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
      = zero_zero_nat ) ).

% char.size(2)
thf(fact_9328_nat__of__char__less__256,axiom,
    ! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% nat_of_char_less_256
thf(fact_9329_range__nat__of__char,axiom,
    ( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
    = ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% range_nat_of_char
thf(fact_9330_integer__of__char__code,axiom,
    ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B7: $o] :
      ( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B7 ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B7 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).

% integer_of_char_code
thf(fact_9331_char_Osize__gen,axiom,
    ! [X15: $o,X2: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
      ( ( size_char @ ( char2 @ X15 @ X2 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
      = zero_zero_nat ) ).

% char.size_gen
thf(fact_9332_String_Ochar__of__ascii__of,axiom,
    ! [C: char] :
      ( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
      = ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).

% String.char_of_ascii_of
thf(fact_9333_DERIV__even__real__root,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( ord_less_real @ X3 @ zero_zero_real )
         => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ ( power_power_real @ ( root @ N @ X3 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ).

% DERIV_even_real_root
thf(fact_9334_DERIV__real__root__generic,axiom,
    ! [N: nat,X3: real,D5: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( X3 != zero_zero_real )
       => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
           => ( ( ord_less_real @ zero_zero_real @ X3 )
             => ( D5
                = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X3 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
         => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
             => ( ( ord_less_real @ X3 @ zero_zero_real )
               => ( D5
                  = ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X3 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
           => ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
               => ( D5
                  = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X3 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
             => ( has_fi5821293074295781190e_real @ ( root @ N ) @ D5 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ) ) ).

% DERIV_real_root_generic
thf(fact_9335_DERIV__arctan__series,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( has_fi5821293074295781190e_real
        @ ^ [X10: real] :
            ( suminf_real
            @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X10 @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
        @ ( suminf_real
          @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( power_power_real @ X3 @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).

% DERIV_arctan_series
thf(fact_9336_has__real__derivative__neg__dec__left,axiom,
    ! [F: real > real,L: real,X3: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X3 @ H4 ) @ S2 )
                 => ( ( ord_less_real @ H4 @ D6 )
                   => ( ord_less_real @ ( F @ X3 ) @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_left
thf(fact_9337_has__real__derivative__pos__inc__left,axiom,
    ! [F: real > real,L: real,X3: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X3 @ H4 ) @ S2 )
                 => ( ( ord_less_real @ H4 @ D6 )
                   => ( ord_less_real @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_left
thf(fact_9338_has__real__derivative__pos__inc__right,axiom,
    ! [F: real > real,L: real,X3: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X3 @ H4 ) @ S2 )
                 => ( ( ord_less_real @ H4 @ D6 )
                   => ( ord_less_real @ ( F @ X3 ) @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_right
thf(fact_9339_has__real__derivative__neg__dec__right,axiom,
    ! [F: real > real,L: real,X3: real,S2: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ S2 ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X3 @ H4 ) @ S2 )
                 => ( ( ord_less_real @ H4 @ D6 )
                   => ( ord_less_real @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_right
thf(fact_9340_DERIV__isconst3,axiom,
    ! [A: real,B: real,X3: real,Y3: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
       => ( ( member_real @ Y3 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
           => ( ( F @ X3 )
              = ( F @ Y3 ) ) ) ) ) ) ).

% DERIV_isconst3
thf(fact_9341_DERIV__isconst__all,axiom,
    ! [F: real > real,X3: real,Y3: real] :
      ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
     => ( ( F @ X3 )
        = ( F @ Y3 ) ) ) ).

% DERIV_isconst_all
thf(fact_9342_DERIV__neg__dec__right,axiom,
    ! [F: real > real,L: real,X3: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D6 )
                 => ( ord_less_real @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ).

% DERIV_neg_dec_right
thf(fact_9343_DERIV__pos__inc__right,axiom,
    ! [F: real > real,L: real,X3: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D6 )
                 => ( ord_less_real @ ( F @ X3 ) @ ( F @ ( plus_plus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_pos_inc_right
thf(fact_9344_DERIV__pos__inc__left,axiom,
    ! [F: real > real,L: real,X3: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D6 )
                 => ( ord_less_real @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) @ ( F @ X3 ) ) ) ) ) ) ) ).

% DERIV_pos_inc_left
thf(fact_9345_DERIV__neg__dec__left,axiom,
    ! [F: real > real,L: real,X3: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D6: real] :
            ( ( ord_less_real @ zero_zero_real @ D6 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D6 )
                 => ( ord_less_real @ ( F @ X3 ) @ ( F @ ( minus_minus_real @ X3 @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_neg_dec_left
thf(fact_9346_DERIV__nonneg__imp__nondecreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ zero_zero_real @ Y6 ) ) ) )
       => ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_nonneg_imp_nondecreasing
thf(fact_9347_DERIV__nonpos__imp__nonincreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ Y6 @ zero_zero_real ) ) ) )
       => ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_nonpos_imp_nonincreasing
thf(fact_9348_deriv__nonneg__imp__mono,axiom,
    ! [A: real,B: real,G: real > real,G2: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_or1222579329274155063t_real @ A @ B ) )
         => ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_or1222579329274155063t_real @ A @ B ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X4 ) ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).

% deriv_nonneg_imp_mono
thf(fact_9349_DERIV__neg__imp__decreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ Y6 @ zero_zero_real ) ) ) )
       => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_neg_imp_decreasing
thf(fact_9350_DERIV__pos__imp__increasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y6 ) ) ) )
       => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing
thf(fact_9351_MVT2,axiom,
    ! [A: real,B: real,F: real > real,F5: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
       => ? [Z3: real] :
            ( ( ord_less_real @ A @ Z3 )
            & ( ord_less_real @ Z3 @ B )
            & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
              = ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F5 @ Z3 ) ) ) ) ) ) ).

% MVT2
thf(fact_9352_DERIV__local__const,axiom,
    ! [F: real > real,L: real,X3: real,D3: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D3 )
       => ( ! [Y4: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y4 ) ) @ D3 )
             => ( ( F @ X3 )
                = ( F @ Y4 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_const
thf(fact_9353_DERIV__ln,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( inverse_inverse_real @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).

% DERIV_ln
thf(fact_9354_DERIV__const__average,axiom,
    ! [A: real,B: real,V: real > real,K: real] :
      ( ( A != B )
     => ( ! [X4: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% DERIV_const_average
thf(fact_9355_DERIV__local__max,axiom,
    ! [F: real > real,L: real,X3: real,D3: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D3 )
       => ( ! [Y4: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y4 ) ) @ D3 )
             => ( ord_less_eq_real @ ( F @ Y4 ) @ ( F @ X3 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_max
thf(fact_9356_DERIV__local__min,axiom,
    ! [F: real > real,L: real,X3: real,D3: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D3 )
       => ( ! [Y4: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X3 @ Y4 ) ) @ D3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_min
thf(fact_9357_DERIV__ln__divide,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).

% DERIV_ln_divide
thf(fact_9358_DERIV__pow,axiom,
    ! [N: nat,X3: real,S: set_real] :
      ( has_fi5821293074295781190e_real
      @ ^ [X: real] : ( power_power_real @ X @ N )
      @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ X3 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
      @ ( topolo2177554685111907308n_real @ X3 @ S ) ) ).

% DERIV_pow
thf(fact_9359_DERIV__fun__pow,axiom,
    ! [G: real > real,M: real,X3: real,N: nat] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( has_fi5821293074295781190e_real
        @ ^ [X: real] : ( power_power_real @ ( G @ X ) @ N )
        @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( G @ X3 ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ M )
        @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).

% DERIV_fun_pow
thf(fact_9360_has__real__derivative__powr,axiom,
    ! [Z: real,R2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( has_fi5821293074295781190e_real
        @ ^ [Z6: real] : ( powr_real @ Z6 @ R2 )
        @ ( times_times_real @ R2 @ ( powr_real @ Z @ ( minus_minus_real @ R2 @ one_one_real ) ) )
        @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) ).

% has_real_derivative_powr
thf(fact_9361_DERIV__series_H,axiom,
    ! [F: real > nat > real,F5: real > nat > real,X0: real,A: real,B: real,L5: nat > real] :
      ( ! [N2: nat] :
          ( has_fi5821293074295781190e_real
          @ ^ [X: real] : ( F @ X @ N2 )
          @ ( F5 @ X0 @ N2 )
          @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
           => ( summable_real @ ( F @ X4 ) ) )
       => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ( summable_real @ ( F5 @ X0 ) )
           => ( ( summable_real @ L5 )
             => ( ! [N2: nat,X4: real,Y4: real] :
                    ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
                   => ( ( member_real @ Y4 @ ( set_or1633881224788618240n_real @ A @ B ) )
                     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X4 @ N2 ) @ ( F @ Y4 @ N2 ) ) ) @ ( times_times_real @ ( L5 @ N2 ) @ ( abs_abs_real @ ( minus_minus_real @ X4 @ Y4 ) ) ) ) ) )
               => ( has_fi5821293074295781190e_real
                  @ ^ [X: real] : ( suminf_real @ ( F @ X ) )
                  @ ( suminf_real @ ( F5 @ X0 ) )
                  @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_series'
thf(fact_9362_DERIV__fun__powr,axiom,
    ! [G: real > real,M: real,X3: real,R2: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X3 ) )
       => ( has_fi5821293074295781190e_real
          @ ^ [X: real] : ( powr_real @ ( G @ X ) @ R2 )
          @ ( times_times_real @ ( times_times_real @ R2 @ ( powr_real @ ( G @ X3 ) @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
          @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).

% DERIV_fun_powr
thf(fact_9363_DERIV__log,axiom,
    ! [X3: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X3 ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).

% DERIV_log
thf(fact_9364_DERIV__powr,axiom,
    ! [G: real > real,M: real,X3: real,F: real > real,R2: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X3 ) )
       => ( ( has_fi5821293074295781190e_real @ F @ R2 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
         => ( has_fi5821293074295781190e_real
            @ ^ [X: real] : ( powr_real @ ( G @ X ) @ ( F @ X ) )
            @ ( times_times_real @ ( powr_real @ ( G @ X3 ) @ ( F @ X3 ) ) @ ( plus_plus_real @ ( times_times_real @ R2 @ ( ln_ln_real @ ( G @ X3 ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X3 ) ) @ ( G @ X3 ) ) ) )
            @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ).

% DERIV_powr
thf(fact_9365_DERIV__real__sqrt,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ zero_zero_real @ X3 )
     => ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ).

% DERIV_real_sqrt
thf(fact_9366_DERIV__arctan,axiom,
    ! [X3: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ).

% DERIV_arctan
thf(fact_9367_arsinh__real__has__field__derivative,axiom,
    ! [X3: real,A3: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ A3 ) ) ).

% arsinh_real_has_field_derivative
thf(fact_9368_DERIV__real__sqrt__generic,axiom,
    ! [X3: real,D5: real] :
      ( ( X3 != zero_zero_real )
     => ( ( ( ord_less_real @ zero_zero_real @ X3 )
         => ( D5
            = ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( ( ord_less_real @ X3 @ zero_zero_real )
           => ( D5
              = ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
         => ( has_fi5821293074295781190e_real @ sqrt @ D5 @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ).

% DERIV_real_sqrt_generic
thf(fact_9369_arcosh__real__has__field__derivative,axiom,
    ! [X3: real,A3: set_real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ A3 ) ) ) ).

% arcosh_real_has_field_derivative
thf(fact_9370_artanh__real__has__field__derivative,axiom,
    ! [X3: real,A3: set_real] :
      ( ( ord_less_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ A3 ) ) ) ).

% artanh_real_has_field_derivative
thf(fact_9371_DERIV__power__series_H,axiom,
    ! [R3: real,F: nat > real,X0: real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R3 ) @ R3 ) )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X4 @ N3 ) ) ) )
     => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R3 ) @ R3 ) )
       => ( ( ord_less_real @ zero_zero_real @ R3 )
         => ( has_fi5821293074295781190e_real
            @ ^ [X: real] :
                ( suminf_real
                @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X @ ( suc @ N3 ) ) ) )
            @ ( suminf_real
              @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X0 @ N3 ) ) )
            @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).

% DERIV_power_series'
thf(fact_9372_DERIV__real__root,axiom,
    ! [N: nat,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X3 )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X3 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).

% DERIV_real_root
thf(fact_9373_DERIV__arccos,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).

% DERIV_arccos
thf(fact_9374_DERIV__arcsin,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).

% DERIV_arcsin
thf(fact_9375_Maclaurin__all__le__objl,axiom,
    ! [Diff: nat > real > real,F: real > real,X3: real,N: nat] :
      ( ( ( ( Diff @ zero_zero_nat )
          = F )
        & ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
     => ? [T3: real] :
          ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
          & ( ( F @ X3 )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ).

% Maclaurin_all_le_objl
thf(fact_9376_Maclaurin__all__le,axiom,
    ! [Diff: nat > real > real,F: real > real,X3: real,N: nat] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
            & ( ( F @ X3 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ) ).

% Maclaurin_all_le
thf(fact_9377_DERIV__odd__real__root,axiom,
    ! [N: nat,X3: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( X3 != zero_zero_real )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X3 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ).

% DERIV_odd_real_root
thf(fact_9378_Maclaurin,axiom,
    ! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T3: real] :
                ( ( ( ord_less_nat @ M4 @ N )
                  & ( ord_less_eq_real @ zero_zero_real @ T3 )
                  & ( ord_less_eq_real @ T3 @ H2 ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
           => ? [T3: real] :
                ( ( ord_less_real @ zero_zero_real @ T3 )
                & ( ord_less_real @ T3 @ H2 )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin
thf(fact_9379_Maclaurin2,axiom,
    ! [H2: real,Diff: nat > real > real,F: real > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ zero_zero_real @ T3 )
                & ( ord_less_eq_real @ T3 @ H2 ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ? [T3: real] :
              ( ( ord_less_real @ zero_zero_real @ T3 )
              & ( ord_less_eq_real @ T3 @ H2 )
              & ( ( F @ H2 )
                = ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                    @ ( set_ord_lessThan_nat @ N ) )
                  @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ).

% Maclaurin2
thf(fact_9380_Maclaurin__minus,axiom,
    ! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ H2 @ zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T3: real] :
                ( ( ( ord_less_nat @ M4 @ N )
                  & ( ord_less_eq_real @ H2 @ T3 )
                  & ( ord_less_eq_real @ T3 @ zero_zero_real ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
           => ? [T3: real] :
                ( ( ord_less_real @ H2 @ T3 )
                & ( ord_less_real @ T3 @ zero_zero_real )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_minus
thf(fact_9381_Maclaurin__all__lt,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X3: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( X3 != zero_zero_real )
         => ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
           => ? [T3: real] :
                ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T3 ) )
                & ( ord_less_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
                & ( ( F @ X3 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_all_lt
thf(fact_9382_Maclaurin__bi__le,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X3: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,T3: real] :
            ( ( ( ord_less_nat @ M4 @ N )
              & ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) ) )
           => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
       => ? [T3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T3 ) @ ( abs_abs_real @ X3 ) )
            & ( ( F @ X3 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X3 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X3 @ N ) ) ) ) ) ) ) ).

% Maclaurin_bi_le
thf(fact_9383_Taylor__down,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ? [T3: real] :
                  ( ( ord_less_real @ A @ T3 )
                  & ( ord_less_real @ T3 @ C )
                  & ( ( F @ A )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_down
thf(fact_9384_Taylor__up,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_real @ C @ B )
             => ? [T3: real] :
                  ( ( ord_less_real @ C @ T3 )
                  & ( ord_less_real @ T3 @ B )
                  & ( ( F @ B )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_up
thf(fact_9385_Taylor,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T3: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T3 )
                & ( ord_less_eq_real @ T3 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ( ( ord_less_eq_real @ A @ X3 )
               => ( ( ord_less_eq_real @ X3 @ B )
                 => ( ( X3 != C )
                   => ? [T3: real] :
                        ( ( ( ord_less_real @ X3 @ C )
                         => ( ( ord_less_real @ X3 @ T3 )
                            & ( ord_less_real @ T3 @ C ) ) )
                        & ( ~ ( ord_less_real @ X3 @ C )
                         => ( ( ord_less_real @ C @ T3 )
                            & ( ord_less_real @ T3 @ X3 ) ) )
                        & ( ( F @ X3 )
                          = ( plus_plus_real
                            @ ( groups6591440286371151544t_real
                              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ X3 @ C ) @ M3 ) )
                              @ ( set_ord_lessThan_nat @ N ) )
                            @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T3 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ X3 @ C ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% Taylor
thf(fact_9386_Maclaurin__lemma2,axiom,
    ! [N: nat,H2: real,Diff: nat > real > real,K: nat,B5: real] :
      ( ! [M4: nat,T3: real] :
          ( ( ( ord_less_nat @ M4 @ N )
            & ( ord_less_eq_real @ zero_zero_real @ T3 )
            & ( ord_less_eq_real @ T3 @ H2 ) )
         => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T3 ) @ ( topolo2177554685111907308n_real @ T3 @ top_top_set_real ) ) )
     => ( ( N
          = ( suc @ K ) )
       => ! [M2: nat,T6: real] :
            ( ( ( ord_less_nat @ M2 @ N )
              & ( ord_less_eq_real @ zero_zero_real @ T6 )
              & ( ord_less_eq_real @ T6 @ H2 ) )
           => ( has_fi5821293074295781190e_real
              @ ^ [U2: real] :
                  ( minus_minus_real @ ( Diff @ M2 @ U2 )
                  @ ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M2 @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ U2 @ P5 ) )
                      @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ M2 ) ) )
                    @ ( times_times_real @ B5 @ ( divide_divide_real @ ( power_power_real @ U2 @ ( minus_minus_nat @ N @ M2 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ M2 ) ) ) ) ) )
              @ ( minus_minus_real @ ( Diff @ ( suc @ M2 ) @ T6 )
                @ ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M2 ) @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ T6 @ P5 ) )
                    @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) )
                  @ ( times_times_real @ B5 @ ( divide_divide_real @ ( power_power_real @ T6 @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) ) ) ) )
              @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) ) ) ) ).

% Maclaurin_lemma2
thf(fact_9387_isCont__Lb__Ub,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ( ord_less_eq_real @ A @ X4 )
              & ( ord_less_eq_real @ X4 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
       => ? [L6: real,M8: real] :
            ( ! [X6: real] :
                ( ( ( ord_less_eq_real @ A @ X6 )
                  & ( ord_less_eq_real @ X6 @ B ) )
               => ( ( ord_less_eq_real @ L6 @ ( F @ X6 ) )
                  & ( ord_less_eq_real @ ( F @ X6 ) @ M8 ) ) )
            & ! [Y6: real] :
                ( ( ( ord_less_eq_real @ L6 @ Y6 )
                  & ( ord_less_eq_real @ Y6 @ M8 ) )
               => ? [X4: real] :
                    ( ( ord_less_eq_real @ A @ X4 )
                    & ( ord_less_eq_real @ X4 @ B )
                    & ( ( F @ X4 )
                      = Y6 ) ) ) ) ) ) ).

% isCont_Lb_Ub
thf(fact_9388_LIM__fun__gt__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [R: real] :
            ( ( ord_less_real @ zero_zero_real @ R )
            & ! [X6: real] :
                ( ( ( X6 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X6 ) ) @ R ) )
               => ( ord_less_real @ zero_zero_real @ ( F @ X6 ) ) ) ) ) ) ).

% LIM_fun_gt_zero
thf(fact_9389_LIM__fun__not__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( L != zero_zero_real )
       => ? [R: real] :
            ( ( ord_less_real @ zero_zero_real @ R )
            & ! [X6: real] :
                ( ( ( X6 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X6 ) ) @ R ) )
               => ( ( F @ X6 )
                 != zero_zero_real ) ) ) ) ) ).

% LIM_fun_not_zero
thf(fact_9390_LIM__fun__less__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [R: real] :
            ( ( ord_less_real @ zero_zero_real @ R )
            & ! [X6: real] :
                ( ( ( X6 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X6 ) ) @ R ) )
               => ( ord_less_real @ ( F @ X6 ) @ zero_zero_real ) ) ) ) ) ).

% LIM_fun_less_zero
thf(fact_9391_isCont__real__sqrt,axiom,
    ! [X3: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ sqrt ) ).

% isCont_real_sqrt
thf(fact_9392_isCont__real__root,axiom,
    ! [X3: real,N: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ ( root @ N ) ) ).

% isCont_real_root
thf(fact_9393_isCont__inverse__function2,axiom,
    ! [A: real,X3: real,B: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ A @ X3 )
     => ( ( ord_less_real @ X3 @ B )
       => ( ! [Z3: real] :
              ( ( ord_less_eq_real @ A @ Z3 )
             => ( ( ord_less_eq_real @ Z3 @ B )
               => ( ( G @ ( F @ Z3 ) )
                  = Z3 ) ) )
         => ( ! [Z3: real] :
                ( ( ord_less_eq_real @ A @ Z3 )
               => ( ( ord_less_eq_real @ Z3 @ B )
                 => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X3 ) @ top_top_set_real ) @ G ) ) ) ) ) ).

% isCont_inverse_function2
thf(fact_9394_isCont__ln,axiom,
    ! [X3: real] :
      ( ( X3 != zero_zero_real )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ ln_ln_real ) ) ).

% isCont_ln
thf(fact_9395_isCont__arcosh,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ arcosh_real ) ) ).

% isCont_arcosh
thf(fact_9396_LIM__cos__div__sin,axiom,
    ( filterlim_real_real
    @ ^ [X: real] : ( divide_divide_real @ ( cos_real @ X ) @ ( sin_real @ X ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).

% LIM_cos_div_sin
thf(fact_9397_DERIV__inverse__function,axiom,
    ! [F: real > real,D5: real,G: real > real,X3: real,A: real,B: real] :
      ( ( has_fi5821293074295781190e_real @ F @ D5 @ ( topolo2177554685111907308n_real @ ( G @ X3 ) @ top_top_set_real ) )
     => ( ( D5 != zero_zero_real )
       => ( ( ord_less_real @ A @ X3 )
         => ( ( ord_less_real @ X3 @ B )
           => ( ! [Y4: real] :
                  ( ( ord_less_real @ A @ Y4 )
                 => ( ( ord_less_real @ Y4 @ B )
                   => ( ( F @ ( G @ Y4 ) )
                      = Y4 ) ) )
             => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ G )
               => ( has_fi5821293074295781190e_real @ G @ ( inverse_inverse_real @ D5 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_inverse_function
thf(fact_9398_isCont__arccos,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ arccos ) ) ) ).

% isCont_arccos
thf(fact_9399_isCont__arcsin,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ arcsin ) ) ) ).

% isCont_arcsin
thf(fact_9400_LIM__less__bound,axiom,
    ! [B: real,X3: real,F: real > real] :
      ( ( ord_less_real @ B @ X3 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ B @ X3 ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ F )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) ) ) ) ).

% LIM_less_bound
thf(fact_9401_isCont__artanh,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) @ artanh_real ) ) ) ).

% isCont_artanh
thf(fact_9402_isCont__inverse__function,axiom,
    ! [D3: real,X3: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ D3 )
     => ( ! [Z3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X3 ) ) @ D3 )
           => ( ( G @ ( F @ Z3 ) )
              = Z3 ) )
       => ( ! [Z3: real] :
              ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X3 ) ) @ D3 )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) )
         => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X3 ) @ top_top_set_real ) @ G ) ) ) ) ).

% isCont_inverse_function
thf(fact_9403_GMVT_H,axiom,
    ! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F5: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [Z3: real] :
            ( ( ord_less_eq_real @ A @ Z3 )
           => ( ( ord_less_eq_real @ Z3 @ B )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
       => ( ! [Z3: real] :
              ( ( ord_less_eq_real @ A @ Z3 )
             => ( ( ord_less_eq_real @ Z3 @ B )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ G ) ) )
         => ( ! [Z3: real] :
                ( ( ord_less_real @ A @ Z3 )
               => ( ( ord_less_real @ Z3 @ B )
                 => ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
           => ( ! [Z3: real] :
                  ( ( ord_less_real @ A @ Z3 )
                 => ( ( ord_less_real @ Z3 @ B )
                   => ( has_fi5821293074295781190e_real @ F @ ( F5 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
             => ? [C2: real] :
                  ( ( ord_less_real @ A @ C2 )
                  & ( ord_less_real @ C2 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C2 ) )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F5 @ C2 ) ) ) ) ) ) ) ) ) ).

% GMVT'
thf(fact_9404_summable__Leibniz_I2_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
         => ! [N8: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) @ one_one_nat ) ) ) ) ) ) ) ) ).

% summable_Leibniz(2)
thf(fact_9405_summable__Leibniz_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
         => ! [N8: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) @ one_one_nat ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) ) ) ) ) ) ) ) ).

% summable_Leibniz(3)
thf(fact_9406_summable__Leibniz_H_I4_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( ord_less_eq_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ) ) ).

% summable_Leibniz'(4)
thf(fact_9407_mult__nat__left__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).

% mult_nat_left_at_top
thf(fact_9408_mult__nat__right__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat
        @ ^ [X: nat] : ( times_times_nat @ X @ C )
        @ at_top_nat
        @ at_top_nat ) ) ).

% mult_nat_right_at_top
thf(fact_9409_monoseq__convergent,axiom,
    ! [X9: nat > real,B5: real] :
      ( ( topolo6980174941875973593q_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X9 @ I3 ) ) @ B5 )
       => ~ ! [L6: real] :
              ~ ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat ) ) ) ).

% monoseq_convergent
thf(fact_9410_LIMSEQ__root,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( root @ N3 @ ( semiri5074537144036343181t_real @ N3 ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_root
thf(fact_9411_nested__sequence__unique,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N2 ) ) @ ( G @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( G @ N2 ) )
         => ( ( filterlim_nat_real
              @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
              @ ( topolo2815343760600316023s_real @ zero_zero_real )
              @ at_top_nat )
           => ? [L4: real] :
                ( ! [N8: nat] : ( ord_less_eq_real @ ( F @ N8 ) @ L4 )
                & ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat )
                & ! [N8: nat] : ( ord_less_eq_real @ L4 @ ( G @ N8 ) )
                & ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat ) ) ) ) ) ) ).

% nested_sequence_unique
thf(fact_9412_LIMSEQ__inverse__zero,axiom,
    ! [X9: nat > real] :
      ( ! [R: real] :
        ? [N6: nat] :
        ! [N2: nat] :
          ( ( ord_less_eq_nat @ N6 @ N2 )
         => ( ord_less_real @ R @ ( X9 @ N2 ) ) )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( inverse_inverse_real @ ( X9 @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_zero
thf(fact_9413_lim__inverse__n_H,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N3 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_inverse_n'
thf(fact_9414_LIMSEQ__root__const,axiom,
    ! [C: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( root @ N3 @ C )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat ) ) ).

% LIMSEQ_root_const
thf(fact_9415_LIMSEQ__inverse__real__of__nat,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat
thf(fact_9416_LIMSEQ__inverse__real__of__nat__add,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( plus_plus_real @ R2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add
thf(fact_9417_increasing__LIMSEQ,axiom,
    ! [F: nat > real,L: real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ L )
       => ( ! [E: real] :
              ( ( ord_less_real @ zero_zero_real @ E )
             => ? [N8: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F @ N8 ) @ E ) ) )
         => ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).

% increasing_LIMSEQ
thf(fact_9418_LIMSEQ__realpow__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_real @ X3 @ one_one_real )
       => ( filterlim_nat_real @ ( power_power_real @ X3 ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% LIMSEQ_realpow_zero
thf(fact_9419_LIMSEQ__divide__realpow__zero,axiom,
    ! [X3: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( divide_divide_real @ A @ ( power_power_real @ X3 @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_divide_realpow_zero
thf(fact_9420_LIMSEQ__abs__realpow__zero2,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero2
thf(fact_9421_LIMSEQ__abs__realpow__zero,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero
thf(fact_9422_LIMSEQ__inverse__realpow__zero,axiom,
    ! [X3: real] :
      ( ( ord_less_real @ one_one_real @ X3 )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( inverse_inverse_real @ ( power_power_real @ X3 @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_realpow_zero
thf(fact_9423_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( plus_plus_real @ R2 @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_9424_tendsto__exp__limit__sequentially,axiom,
    ! [X3: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X3 @ ( semiri5074537144036343181t_real @ N3 ) ) ) @ N3 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X3 ) )
      @ at_top_nat ) ).

% tendsto_exp_limit_sequentially
thf(fact_9425_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( times_times_real @ R2 @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_9426_summable__Leibniz_I1_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( summable_real
          @ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ).

% summable_Leibniz(1)
thf(fact_9427_summable,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ) ).

% summable
thf(fact_9428_cos__diff__limit__1,axiom,
    ! [Theta: nat > real,Theta2: real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ~ ! [K2: nat > int] :
            ~ ( filterlim_nat_real
              @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
              @ ( topolo2815343760600316023s_real @ Theta2 )
              @ at_top_nat ) ) ).

% cos_diff_limit_1
thf(fact_9429_cos__limit__1,axiom,
    ! [Theta: nat > real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ? [K2: nat > int] :
          ( filterlim_nat_real
          @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ at_top_nat ) ) ).

% cos_limit_1
thf(fact_9430_summable__Leibniz_I4_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(4)
thf(fact_9431_zeroseq__arctan__series,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X3 ) @ one_one_real )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X3 @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% zeroseq_arctan_series
thf(fact_9432_summable__Leibniz_H_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( filterlim_nat_real
            @ ^ [N3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(3)
thf(fact_9433_summable__Leibniz_H_I2_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( ord_less_eq_real
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) ) ) ) ) ).

% summable_Leibniz'(2)
thf(fact_9434_sums__alternating__upper__lower,axiom,
    ! [A: nat > real] :
      ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
         => ? [L4: real] :
              ( ! [N8: nat] :
                  ( ord_less_eq_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) ) )
                  @ L4 )
              & ( filterlim_nat_real
                @ ^ [N3: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat )
              & ! [N8: nat] :
                  ( ord_less_eq_real @ L4
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N8 ) @ one_one_nat ) ) ) )
              & ( filterlim_nat_real
                @ ^ [N3: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat ) ) ) ) ) ).

% sums_alternating_upper_lower
thf(fact_9435_summable__Leibniz_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(5)
thf(fact_9436_summable__Leibniz_H_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N2 ) )
       => ( ! [N2: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N2 ) ) @ ( A @ N2 ) )
         => ( filterlim_nat_real
            @ ^ [N3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(5)
thf(fact_9437_tendsto__exp__limit__at__right,axiom,
    ! [X3: real] :
      ( filterlim_real_real
      @ ^ [Y: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X3 @ Y ) ) @ ( divide_divide_real @ one_one_real @ Y ) )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X3 ) )
      @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% tendsto_exp_limit_at_right
thf(fact_9438_tendsto__arcosh__at__left__1,axiom,
    filterlim_real_real @ arcosh_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5849166863359141190n_real @ one_one_real ) ) ).

% tendsto_arcosh_at_left_1
thf(fact_9439_filterlim__tan__at__right,axiom,
    filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% filterlim_tan_at_right
thf(fact_9440_greaterThan__0,axiom,
    ( ( set_or1210151606488870762an_nat @ zero_zero_nat )
    = ( image_nat_nat @ suc @ top_top_set_nat ) ) ).

% greaterThan_0
thf(fact_9441_exp__at__bot,axiom,
    filterlim_real_real @ exp_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_bot_real ).

% exp_at_bot
thf(fact_9442_filterlim__inverse__at__bot__neg,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5984915006950818249n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_bot_neg
thf(fact_9443_ln__at__0,axiom,
    filterlim_real_real @ ln_ln_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% ln_at_0
thf(fact_9444_DERIV__pos__imp__increasing__at__bot,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X4: real] :
          ( ( ord_less_eq_real @ X4 @ B )
         => ? [Y6: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              & ( ord_less_real @ zero_zero_real @ Y6 ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing_at_bot
thf(fact_9445_filterlim__pow__at__bot__odd,axiom,
    ! [N: nat,F: real > real,F4: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F4 )
       => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N )
            @ at_bot_real
            @ F4 ) ) ) ) ).

% filterlim_pow_at_bot_odd
thf(fact_9446_tendsto__arctan__at__bot,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).

% tendsto_arctan_at_bot
thf(fact_9447_filterlim__pow__at__bot__even,axiom,
    ! [N: nat,F: real > real,F4: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F4 )
       => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N )
            @ at_top_real
            @ F4 ) ) ) ) ).

% filterlim_pow_at_bot_even
thf(fact_9448_rat__inverse__code,axiom,
    ! [P6: rat] :
      ( ( quotient_of @ ( inverse_inverse_rat @ P6 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,B3: int] : ( if_Pro3027730157355071871nt_int @ ( A4 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A4 ) @ B3 ) @ ( abs_abs_int @ A4 ) ) )
        @ ( quotient_of @ P6 ) ) ) ).

% rat_inverse_code
thf(fact_9449_rat__zero__code,axiom,
    ( ( quotient_of @ zero_zero_rat )
    = ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).

% rat_zero_code
thf(fact_9450_quotient__of__number_I3_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( numeral_numeral_rat @ K ) )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).

% quotient_of_number(3)
thf(fact_9451_quotient__of__number_I5_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% quotient_of_number(5)
thf(fact_9452_sqrt__at__top,axiom,
    filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).

% sqrt_at_top
thf(fact_9453_quotient__of__denom__pos,axiom,
    ! [R2: rat,P6: int,Q3: int] :
      ( ( ( quotient_of @ R2 )
        = ( product_Pair_int_int @ P6 @ Q3 ) )
     => ( ord_less_int @ zero_zero_int @ Q3 ) ) ).

% quotient_of_denom_pos
thf(fact_9454_filterlim__real__sequentially,axiom,
    filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).

% filterlim_real_sequentially
thf(fact_9455_quotient__of__denom__pos_H,axiom,
    ! [R2: rat] : ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ ( quotient_of @ R2 ) ) ) ).

% quotient_of_denom_pos'
thf(fact_9456_filterlim__real__at__infinity__sequentially,axiom,
    filterlim_nat_real @ semiri5074537144036343181t_real @ at_infinity_real @ at_top_nat ).

% filterlim_real_at_infinity_sequentially
thf(fact_9457_rat__less__eq__code,axiom,
    ( ord_less_eq_rat
    = ( ^ [P5: rat,Q5: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A4: int,C3: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B3: int,D4: int] : ( ord_less_eq_int @ ( times_times_int @ A4 @ D4 ) @ ( times_times_int @ C3 @ B3 ) )
              @ ( quotient_of @ Q5 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_eq_code
thf(fact_9458_rat__less__code,axiom,
    ( ord_less_rat
    = ( ^ [P5: rat,Q5: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A4: int,C3: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B3: int,D4: int] : ( ord_less_int @ ( times_times_int @ A4 @ D4 ) @ ( times_times_int @ C3 @ B3 ) )
              @ ( quotient_of @ Q5 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_code
thf(fact_9459_ln__x__over__x__tendsto__0,axiom,
    ( filterlim_real_real
    @ ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ X ) @ X )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_real ) ).

% ln_x_over_x_tendsto_0
thf(fact_9460_filterlim__inverse__at__top__right,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_top_right
thf(fact_9461_filterlim__inverse__at__right__top,axiom,
    filterlim_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) @ at_top_real ).

% filterlim_inverse_at_right_top
thf(fact_9462_tendsto__power__div__exp__0,axiom,
    ! [K: nat] :
      ( filterlim_real_real
      @ ^ [X: real] : ( divide_divide_real @ ( power_power_real @ X @ K ) @ ( exp_real @ X ) )
      @ ( topolo2815343760600316023s_real @ zero_zero_real )
      @ at_top_real ) ).

% tendsto_power_div_exp_0
thf(fact_9463_filterlim__tan__at__left,axiom,
    filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% filterlim_tan_at_left
thf(fact_9464_tendsto__arctan__at__top,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).

% tendsto_arctan_at_top
thf(fact_9465_DERIV__neg__imp__decreasing__at__top,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X4: real] :
          ( ( ord_less_eq_real @ B @ X4 )
         => ? [Y6: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              & ( ord_less_real @ Y6 @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_neg_imp_decreasing_at_top
thf(fact_9466_lhopital__left__at__top,axiom,
    ! [G: real > real,X3: real,G2: real > real,F: real > real,F5: real > real,Y3: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y3 )
                @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y3 )
                @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top
thf(fact_9467_lhopital__right__at__top,axiom,
    ! [G: real > real,X3: real,G2: real > real,F: real > real,F5: real > real,Y3: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y3 )
                @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y3 )
                @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top
thf(fact_9468_obtain__pos__sum,axiom,
    ! [R2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ R2 )
     => ~ ! [S3: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ S3 )
           => ! [T3: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ T3 )
               => ( R2
                 != ( plus_plus_rat @ S3 @ T3 ) ) ) ) ) ).

% obtain_pos_sum
thf(fact_9469_sgn__rat__def,axiom,
    ( sgn_sgn_rat
    = ( ^ [A4: rat] : ( if_rat @ ( A4 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A4 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).

% sgn_rat_def
thf(fact_9470_abs__rat__def,axiom,
    ( abs_abs_rat
    = ( ^ [A4: rat] : ( if_rat @ ( ord_less_rat @ A4 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A4 ) @ A4 ) ) ) ).

% abs_rat_def
thf(fact_9471_eventually__at__right__to__0,axiom,
    ! [P: real > $o,A: real] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( plus_plus_real @ X @ A ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_right_to_0
thf(fact_9472_eventually__at__right__real,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( eventually_real
        @ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ A @ B ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).

% eventually_at_right_real
thf(fact_9473_eventually__at__left__real,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( eventually_real
        @ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ B @ A ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).

% eventually_at_left_real
thf(fact_9474_eventually__at__top__to__right,axiom,
    ! [P: real > $o] :
      ( ( eventually_real @ P @ at_top_real )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( inverse_inverse_real @ X ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_top_to_right
thf(fact_9475_eventually__at__right__to__top,axiom,
    ! [P: real > $o] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( inverse_inverse_real @ X ) )
        @ at_top_real ) ) ).

% eventually_at_right_to_top
thf(fact_9476_lhopital,axiom,
    ! [F: real > real,X3: real,G: real > real,G2: real > real,F5: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ) ) ) ) ).

% lhopital
thf(fact_9477_lhopital__at__top,axiom,
    ! [G: real > real,X3: real,G2: real > real,F: real > real,F5: real > real,Y3: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y3 )
                @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y3 )
                @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top
thf(fact_9478_lhospital__at__top__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F5: real > real,X3: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ at_top_real )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ at_top_real )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ at_top_real )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ X3 )
                @ at_top_real )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ X3 )
                @ at_top_real ) ) ) ) ) ) ).

% lhospital_at_top_at_top
thf(fact_9479_lhopital__right,axiom,
    ! [F: real > real,X3: real,G: real > real,G2: real > real,F5: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5849166863359141190n_real @ X3 ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right
thf(fact_9480_lhopital__right__0,axiom,
    ! [F0: real > real,G0: real > real,G2: real > real,F5: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G0 @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F0 @ X ) @ ( G0 @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right_0
thf(fact_9481_lhopital__left,axiom,
    ! [F: real > real,X3: real,G: real > real,G2: real > real,F5: real > real,F4: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F4
                    @ ( topolo2177554685111907308n_real @ X3 @ ( set_or5984915006950818249n_real @ X3 ) ) ) ) ) ) ) ) ) ) ).

% lhopital_left
thf(fact_9482_lhopital__right__0__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F5: real > real,X3: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F5 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ X3 )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ X3 )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).

% lhopital_right_0_at_top
thf(fact_9483_filterlim__int__sequentially,axiom,
    filterlim_nat_int @ semiri1314217659103216013at_int @ at_top_int @ at_top_nat ).

% filterlim_int_sequentially
thf(fact_9484_filterlim__nat__sequentially,axiom,
    filterlim_int_nat @ nat2 @ at_top_nat @ at_top_int ).

% filterlim_nat_sequentially
thf(fact_9485_eventually__sequentiallyI,axiom,
    ! [C: nat,P: nat > $o] :
      ( ! [X4: nat] :
          ( ( ord_less_eq_nat @ C @ X4 )
         => ( P @ X4 ) )
     => ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentiallyI
thf(fact_9486_eventually__sequentially,axiom,
    ! [P: nat > $o] :
      ( ( eventually_nat @ P @ at_top_nat )
      = ( ? [N9: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ N9 @ N3 )
           => ( P @ N3 ) ) ) ) ).

% eventually_sequentially
thf(fact_9487_le__sequentially,axiom,
    ! [F4: filter_nat] :
      ( ( ord_le2510731241096832064er_nat @ F4 @ at_top_nat )
      = ( ! [N9: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N9 ) @ F4 ) ) ) ).

% le_sequentially
thf(fact_9488_decseq__bounded,axiom,
    ! [X9: nat > real,B5: real] :
      ( ( order_9091379641038594480t_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B5 @ ( X9 @ I3 ) )
       => ( bfun_nat_real @ X9 @ at_top_nat ) ) ) ).

% decseq_bounded
thf(fact_9489_decseq__convergent,axiom,
    ! [X9: nat > real,B5: real] :
      ( ( order_9091379641038594480t_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B5 @ ( X9 @ I3 ) )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I2: nat] : ( ord_less_eq_real @ L6 @ ( X9 @ I2 ) ) ) ) ) ).

% decseq_convergent
thf(fact_9490_Bseq__realpow,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( bfun_nat_real @ ( power_power_real @ X3 ) @ at_top_nat ) ) ) ).

% Bseq_realpow
thf(fact_9491_Frct__code__post_I5_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% Frct_code_post(5)
thf(fact_9492_GreatestI__ex__nat,axiom,
    ! [P: nat > $o,B: nat] :
      ( ? [X_12: nat] : ( P @ X_12 )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_9493_Greatest__le__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).

% Greatest_le_nat
thf(fact_9494_GreatestI__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_nat
thf(fact_9495_Frct__code__post_I2_J,axiom,
    ! [A: int] :
      ( ( frct @ ( product_Pair_int_int @ A @ zero_zero_int ) )
      = zero_zero_rat ) ).

% Frct_code_post(2)
thf(fact_9496_Frct__code__post_I1_J,axiom,
    ! [A: int] :
      ( ( frct @ ( product_Pair_int_int @ zero_zero_int @ A ) )
      = zero_zero_rat ) ).

% Frct_code_post(1)
thf(fact_9497_Frct__code__post_I6_J,axiom,
    ! [K: num,L: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L ) ) )
      = ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L ) ) ) ).

% Frct_code_post(6)
thf(fact_9498_Frct__code__post_I4_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
      = ( numeral_numeral_rat @ K ) ) ).

% Frct_code_post(4)
thf(fact_9499_GMVT,axiom,
    ! [A: real,B: real,F: real > real,G: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ( ord_less_eq_real @ A @ X4 )
              & ( ord_less_eq_real @ X4 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
       => ( ! [X4: real] :
              ( ( ( ord_less_real @ A @ X4 )
                & ( ord_less_real @ X4 @ B ) )
             => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
         => ( ! [X4: real] :
                ( ( ( ord_less_eq_real @ A @ X4 )
                  & ( ord_less_eq_real @ X4 @ B ) )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ G ) )
           => ( ! [X4: real] :
                  ( ( ( ord_less_real @ A @ X4 )
                    & ( ord_less_real @ X4 @ B ) )
                 => ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
             => ? [G_c: real,F_c: real,C2: real] :
                  ( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C2 @ top_top_set_real ) )
                  & ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C2 @ top_top_set_real ) )
                  & ( ord_less_real @ A @ C2 )
                  & ( ord_less_real @ C2 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).

% GMVT
thf(fact_9500_atLeast__0,axiom,
    ( ( set_ord_atLeast_nat @ zero_zero_nat )
    = top_top_set_nat ) ).

% atLeast_0
thf(fact_9501_card__greaterThanAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or6656581121297822940st_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L ) ) ) ).

% card_greaterThanAtMost_int
thf(fact_9502_normalize__negative,axiom,
    ! [Q3: int,P6: int] :
      ( ( ord_less_int @ Q3 @ zero_zero_int )
     => ( ( normalize @ ( product_Pair_int_int @ P6 @ Q3 ) )
        = ( normalize @ ( product_Pair_int_int @ ( uminus_uminus_int @ P6 ) @ ( uminus_uminus_int @ Q3 ) ) ) ) ) ).

% normalize_negative
thf(fact_9503_MVT,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ? [L4: real,Z3: real] :
              ( ( ord_less_real @ A @ Z3 )
              & ( ord_less_real @ Z3 @ B )
              & ( has_fi5821293074295781190e_real @ F @ L4 @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) )
              & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                = ( times_times_real @ ( minus_minus_real @ B @ A ) @ L4 ) ) ) ) ) ) ).

% MVT
thf(fact_9504_normalize__denom__zero,axiom,
    ! [P6: int] :
      ( ( normalize @ ( product_Pair_int_int @ P6 @ zero_zero_int ) )
      = ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ).

% normalize_denom_zero
thf(fact_9505_continuous__on__arcosh_H,axiom,
    ! [A3: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A3 @ F )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A3 )
           => ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
       => ( topolo5044208981011980120l_real @ A3
          @ ^ [X: real] : ( arcosh_real @ ( F @ X ) ) ) ) ) ).

% continuous_on_arcosh'
thf(fact_9506_continuous__image__closed__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ? [C2: real,D6: real] :
            ( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ C2 @ D6 ) )
            & ( ord_less_eq_real @ C2 @ D6 ) ) ) ) ).

% continuous_image_closed_interval
thf(fact_9507_Rolle__deriv,axiom,
    ! [A: real,B: real,F: real > real,F5: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ A )
          = ( F @ B ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ! [X4: real] :
                ( ( ord_less_real @ A @ X4 )
               => ( ( ord_less_real @ X4 @ B )
                 => ( has_de1759254742604945161l_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
           => ? [Z3: real] :
                ( ( ord_less_real @ A @ Z3 )
                & ( ord_less_real @ Z3 @ B )
                & ( ( F5 @ Z3 )
                  = ( ^ [V4: real] : zero_zero_real ) ) ) ) ) ) ) ).

% Rolle_deriv
thf(fact_9508_mvt,axiom,
    ! [A: real,B: real,F: real > real,F5: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( has_de1759254742604945161l_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ~ ! [Xi: real] :
                ( ( ord_less_real @ A @ Xi )
               => ( ( ord_less_real @ Xi @ B )
                 => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                   != ( F5 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).

% mvt
thf(fact_9509_normalize__denom__pos,axiom,
    ! [R2: product_prod_int_int,P6: int,Q3: int] :
      ( ( ( normalize @ R2 )
        = ( product_Pair_int_int @ P6 @ Q3 ) )
     => ( ord_less_int @ zero_zero_int @ Q3 ) ) ).

% normalize_denom_pos
thf(fact_9510_normalize__crossproduct,axiom,
    ! [Q3: int,S: int,P6: int,R2: int] :
      ( ( Q3 != zero_zero_int )
     => ( ( S != zero_zero_int )
       => ( ( ( normalize @ ( product_Pair_int_int @ P6 @ Q3 ) )
            = ( normalize @ ( product_Pair_int_int @ R2 @ S ) ) )
         => ( ( times_times_int @ P6 @ S )
            = ( times_times_int @ R2 @ Q3 ) ) ) ) ) ).

% normalize_crossproduct
thf(fact_9511_DERIV__pos__imp__increasing__open,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_real @ A @ X4 )
           => ( ( ord_less_real @ X4 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y6 ) ) ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ) ).

% DERIV_pos_imp_increasing_open
thf(fact_9512_DERIV__neg__imp__decreasing__open,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_real @ A @ X4 )
           => ( ( ord_less_real @ X4 @ B )
             => ? [Y6: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y6 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ Y6 @ zero_zero_real ) ) ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ) ).

% DERIV_neg_imp_decreasing_open
thf(fact_9513_DERIV__isconst__end,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ( ( F @ B )
            = ( F @ A ) ) ) ) ) ).

% DERIV_isconst_end
thf(fact_9514_DERIV__isconst2,axiom,
    ! [A: real,B: real,F: real > real,X3: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ( ( ord_less_eq_real @ A @ X3 )
           => ( ( ord_less_eq_real @ X3 @ B )
             => ( ( F @ X3 )
                = ( F @ A ) ) ) ) ) ) ) ).

% DERIV_isconst2
thf(fact_9515_Rolle,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ A )
          = ( F @ B ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ! [X4: real] :
                ( ( ord_less_real @ A @ X4 )
               => ( ( ord_less_real @ X4 @ B )
                 => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
           => ? [Z3: real] :
                ( ( ord_less_real @ A @ Z3 )
                & ( ord_less_real @ Z3 @ B )
                & ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) ) ) ) ) ).

% Rolle
thf(fact_9516_normalize__def,axiom,
    ( normalize
    = ( ^ [P5: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P5 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) )
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_snd_int_int @ P5 )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) ) ) ) ) ) ).

% normalize_def
thf(fact_9517_gcd__pos__int,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ ( gcd_gcd_int @ M @ N ) )
      = ( ( M != zero_zero_int )
        | ( N != zero_zero_int ) ) ) ).

% gcd_pos_int
thf(fact_9518_gcd__neg__numeral__2__int,axiom,
    ! [X3: int,N: num] :
      ( ( gcd_gcd_int @ X3 @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( gcd_gcd_int @ X3 @ ( numeral_numeral_int @ N ) ) ) ).

% gcd_neg_numeral_2_int
thf(fact_9519_gcd__neg__numeral__1__int,axiom,
    ! [N: num,X3: int] :
      ( ( gcd_gcd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ X3 )
      = ( gcd_gcd_int @ ( numeral_numeral_int @ N ) @ X3 ) ) ).

% gcd_neg_numeral_1_int
thf(fact_9520_gcd__0__int,axiom,
    ! [X3: int] :
      ( ( gcd_gcd_int @ X3 @ zero_zero_int )
      = ( abs_abs_int @ X3 ) ) ).

% gcd_0_int
thf(fact_9521_gcd__0__left__int,axiom,
    ! [X3: int] :
      ( ( gcd_gcd_int @ zero_zero_int @ X3 )
      = ( abs_abs_int @ X3 ) ) ).

% gcd_0_left_int
thf(fact_9522_gcd__ge__0__int,axiom,
    ! [X3: int,Y3: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_gcd_int @ X3 @ Y3 ) ) ).

% gcd_ge_0_int
thf(fact_9523_gcd__le1__int,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).

% gcd_le1_int
thf(fact_9524_gcd__le2__int,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).

% gcd_le2_int
thf(fact_9525_gcd__cases__int,axiom,
    ! [X3: int,Y3: int,P: int > $o] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ X3 )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
         => ( P @ ( gcd_gcd_int @ X3 @ Y3 ) ) ) )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X3 )
         => ( ( ord_less_eq_int @ Y3 @ zero_zero_int )
           => ( P @ ( gcd_gcd_int @ X3 @ ( uminus_uminus_int @ Y3 ) ) ) ) )
       => ( ( ( ord_less_eq_int @ X3 @ zero_zero_int )
           => ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
             => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X3 ) @ Y3 ) ) ) )
         => ( ( ( ord_less_eq_int @ X3 @ zero_zero_int )
             => ( ( ord_less_eq_int @ Y3 @ zero_zero_int )
               => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X3 ) @ ( uminus_uminus_int @ Y3 ) ) ) ) )
           => ( P @ ( gcd_gcd_int @ X3 @ Y3 ) ) ) ) ) ) ).

% gcd_cases_int
thf(fact_9526_gcd__unique__int,axiom,
    ! [D3: int,A: int,B: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ D3 )
        & ( dvd_dvd_int @ D3 @ A )
        & ( dvd_dvd_int @ D3 @ B )
        & ! [E3: int] :
            ( ( ( dvd_dvd_int @ E3 @ A )
              & ( dvd_dvd_int @ E3 @ B ) )
           => ( dvd_dvd_int @ E3 @ D3 ) ) )
      = ( D3
        = ( gcd_gcd_int @ A @ B ) ) ) ).

% gcd_unique_int
thf(fact_9527_gcd__non__0__int,axiom,
    ! [Y3: int,X3: int] :
      ( ( ord_less_int @ zero_zero_int @ Y3 )
     => ( ( gcd_gcd_int @ X3 @ Y3 )
        = ( gcd_gcd_int @ Y3 @ ( modulo_modulo_int @ X3 @ Y3 ) ) ) ) ).

% gcd_non_0_int
thf(fact_9528_gcd__code__int,axiom,
    ( gcd_gcd_int
    = ( ^ [K3: int,L2: int] : ( abs_abs_int @ ( if_int @ ( L2 = zero_zero_int ) @ K3 @ ( gcd_gcd_int @ L2 @ ( modulo_modulo_int @ ( abs_abs_int @ K3 ) @ ( abs_abs_int @ L2 ) ) ) ) ) ) ) ).

% gcd_code_int
thf(fact_9529_gcd__is__Max__divisors__int,axiom,
    ! [N: int,M: int] :
      ( ( N != zero_zero_int )
     => ( ( gcd_gcd_int @ M @ N )
        = ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D4: int] :
                ( ( dvd_dvd_int @ D4 @ M )
                & ( dvd_dvd_int @ D4 @ N ) ) ) ) ) ) ).

% gcd_is_Max_divisors_int
thf(fact_9530_range__abs__Nats,axiom,
    ( ( image_int_int @ abs_abs_int @ top_top_set_int )
    = semiring_1_Nats_int ) ).

% range_abs_Nats
thf(fact_9531_gcd__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( gcd_gcd_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% gcd_nat.eq_neutr_iff
thf(fact_9532_gcd__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( gcd_gcd_nat @ zero_zero_nat @ A )
      = A ) ).

% gcd_nat.left_neutral
thf(fact_9533_gcd__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( gcd_gcd_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% gcd_nat.neutr_eq_iff
thf(fact_9534_gcd__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( gcd_gcd_nat @ A @ zero_zero_nat )
      = A ) ).

% gcd_nat.right_neutral
thf(fact_9535_gcd__0__nat,axiom,
    ! [X3: nat] :
      ( ( gcd_gcd_nat @ X3 @ zero_zero_nat )
      = X3 ) ).

% gcd_0_nat
thf(fact_9536_gcd__0__left__nat,axiom,
    ! [X3: nat] :
      ( ( gcd_gcd_nat @ zero_zero_nat @ X3 )
      = X3 ) ).

% gcd_0_left_nat
thf(fact_9537_gcd__Suc__0,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( suc @ zero_zero_nat ) ) ).

% gcd_Suc_0
thf(fact_9538_gcd__pos__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N ) )
      = ( ( M != zero_zero_nat )
        | ( N != zero_zero_nat ) ) ) ).

% gcd_pos_nat
thf(fact_9539_gcd__int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( gcd_gcd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_int_int_eq
thf(fact_9540_gcd__nat__abs__right__eq,axiom,
    ! [N: nat,K: int] :
      ( ( gcd_gcd_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
      = ( nat2 @ ( gcd_gcd_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% gcd_nat_abs_right_eq
thf(fact_9541_gcd__nat__abs__left__eq,axiom,
    ! [K: int,N: nat] :
      ( ( gcd_gcd_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( nat2 @ ( gcd_gcd_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% gcd_nat_abs_left_eq
thf(fact_9542_gcd__non__0__nat,axiom,
    ! [Y3: nat,X3: nat] :
      ( ( Y3 != zero_zero_nat )
     => ( ( gcd_gcd_nat @ X3 @ Y3 )
        = ( gcd_gcd_nat @ Y3 @ ( modulo_modulo_nat @ X3 @ Y3 ) ) ) ) ).

% gcd_non_0_nat
thf(fact_9543_gcd__nat_Osimps,axiom,
    ( gcd_gcd_nat
    = ( ^ [X: nat,Y: nat] : ( if_nat @ ( Y = zero_zero_nat ) @ X @ ( gcd_gcd_nat @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) ) ) ).

% gcd_nat.simps
thf(fact_9544_gcd__nat_Oelims,axiom,
    ! [X3: nat,Xa: nat,Y3: nat] :
      ( ( ( gcd_gcd_nat @ X3 @ Xa )
        = Y3 )
     => ( ( ( Xa = zero_zero_nat )
         => ( Y3 = X3 ) )
        & ( ( Xa != zero_zero_nat )
         => ( Y3
            = ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) ) ) ) ).

% gcd_nat.elims
thf(fact_9545_gcd__diff1__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff1_nat
thf(fact_9546_gcd__diff2__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ N @ M ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff2_nat
thf(fact_9547_gcd__le2__nat,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).

% gcd_le2_nat
thf(fact_9548_gcd__le1__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).

% gcd_le1_nat
thf(fact_9549_mono__Suc,axiom,
    order_mono_nat_nat @ suc ).

% mono_Suc
thf(fact_9550_gcd__code__integer,axiom,
    ( gcd_gcd_Code_integer
    = ( ^ [K3: code_integer,L2: code_integer] : ( abs_abs_Code_integer @ ( if_Code_integer @ ( L2 = zero_z3403309356797280102nteger ) @ K3 @ ( gcd_gcd_Code_integer @ L2 @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K3 ) @ ( abs_abs_Code_integer @ L2 ) ) ) ) ) ) ) ).

% gcd_code_integer
thf(fact_9551_mono__times__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( order_mono_nat_nat @ ( times_times_nat @ N ) ) ) ).

% mono_times_nat
thf(fact_9552_bezout__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [X4: nat,Y4: nat] :
          ( ( times_times_nat @ A @ X4 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_nat
thf(fact_9553_bezout__gcd__nat_H,axiom,
    ! [B: nat,A: nat] :
    ? [X4: nat,Y4: nat] :
      ( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y4 ) @ ( times_times_nat @ A @ X4 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y4 ) )
          = ( gcd_gcd_nat @ A @ B ) ) )
      | ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y4 ) @ ( times_times_nat @ B @ X4 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y4 ) )
          = ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_gcd_nat'
thf(fact_9554_incseq__bounded,axiom,
    ! [X9: nat > real,B5: real] :
      ( ( order_mono_nat_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X9 @ I3 ) @ B5 )
       => ( bfun_nat_real @ X9 @ at_top_nat ) ) ) ).

% incseq_bounded
thf(fact_9555_incseq__convergent,axiom,
    ! [X9: nat > real,B5: real] :
      ( ( order_mono_nat_real @ X9 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X9 @ I3 ) @ B5 )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X9 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I2: nat] : ( ord_less_eq_real @ ( X9 @ I2 ) @ L6 ) ) ) ) ).

% incseq_convergent
thf(fact_9556_gcd__int__def,axiom,
    ( gcd_gcd_int
    = ( ^ [X: int,Y: int] : ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ ( nat2 @ ( abs_abs_int @ X ) ) @ ( nat2 @ ( abs_abs_int @ Y ) ) ) ) ) ) ).

% gcd_int_def
thf(fact_9557_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ gcd_gcd_nat @ zero_zero_nat @ dvd_dvd_nat
    @ ^ [M3: nat,N3: nat] :
        ( ( dvd_dvd_nat @ M3 @ N3 )
        & ( M3 != N3 ) ) ) ).

% gcd_nat.semilattice_neutr_order_axioms
thf(fact_9558_gcd__is__Max__divisors__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( gcd_gcd_nat @ M @ N )
        = ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D4: nat] :
                ( ( dvd_dvd_nat @ D4 @ M )
                & ( dvd_dvd_nat @ D4 @ N ) ) ) ) ) ) ).

% gcd_is_Max_divisors_nat
thf(fact_9559_mono__ge2__power__minus__self,axiom,
    ! [K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( order_mono_nat_nat
        @ ^ [M3: nat] : ( minus_minus_nat @ ( power_power_nat @ K @ M3 ) @ M3 ) ) ) ).

% mono_ge2_power_minus_self
thf(fact_9560_bezw__aux,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X3 @ Y3 ) )
      = ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X3 @ Y3 ) ) @ ( semiri1314217659103216013at_int @ X3 ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X3 @ Y3 ) ) @ ( semiri1314217659103216013at_int @ Y3 ) ) ) ) ).

% bezw_aux
thf(fact_9561_gcd__nat_Opelims,axiom,
    ! [X3: nat,Xa: nat,Y3: nat] :
      ( ( ( gcd_gcd_nat @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X3 @ Xa ) )
       => ~ ( ( ( ( Xa = zero_zero_nat )
               => ( Y3 = X3 ) )
              & ( ( Xa != zero_zero_nat )
               => ( Y3
                  = ( gcd_gcd_nat @ Xa @ ( modulo_modulo_nat @ X3 @ Xa ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X3 @ Xa ) ) ) ) ) ).

% gcd_nat.pelims
thf(fact_9562_complex__is__Nat__iff,axiom,
    ! [Z: complex] :
      ( ( member_complex @ Z @ semiri3842193898606819883omplex )
      = ( ( ( im @ Z )
          = zero_zero_real )
        & ? [I4: nat] :
            ( ( re @ Z )
            = ( semiri5074537144036343181t_real @ I4 ) ) ) ) ).

% complex_is_Nat_iff
thf(fact_9563_tendsto__at__topI__sequentially__real,axiom,
    ! [F: real > real,Y3: real] :
      ( ( order_mono_real_real @ F )
     => ( ( filterlim_nat_real
          @ ^ [N3: nat] : ( F @ ( semiri5074537144036343181t_real @ N3 ) )
          @ ( topolo2815343760600316023s_real @ Y3 )
          @ at_top_nat )
       => ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Y3 ) @ at_top_real ) ) ) ).

% tendsto_at_topI_sequentially_real
thf(fact_9564_nonneg__incseq__Bseq__subseq__iff,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
     => ( ( order_mono_nat_real @ F )
       => ( ( order_5726023648592871131at_nat @ G )
         => ( ( bfun_nat_real
              @ ^ [X: nat] : ( F @ ( G @ X ) )
              @ at_top_nat )
            = ( bfun_nat_real @ F @ at_top_nat ) ) ) ) ) ).

% nonneg_incseq_Bseq_subseq_iff
thf(fact_9565_inj__sgn__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( inj_on_real_real
        @ ^ [Y: real] : ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) )
        @ top_top_set_real ) ) ).

% inj_sgn_power
thf(fact_9566_strict__mono__imp__increasing,axiom,
    ! [F: nat > nat,N: nat] :
      ( ( order_5726023648592871131at_nat @ F )
     => ( ord_less_eq_nat @ N @ ( F @ N ) ) ) ).

% strict_mono_imp_increasing
thf(fact_9567_log__inj,axiom,
    ! [B: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( inj_on_real_real @ ( log @ B ) @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% log_inj
thf(fact_9568_inj__on__diff__nat,axiom,
    ! [N4: set_nat,K: nat] :
      ( ! [N2: nat] :
          ( ( member_nat @ N2 @ N4 )
         => ( ord_less_eq_nat @ K @ N2 ) )
     => ( inj_on_nat_nat
        @ ^ [N3: nat] : ( minus_minus_nat @ N3 @ K )
        @ N4 ) ) ).

% inj_on_diff_nat
thf(fact_9569_inj__Suc,axiom,
    ! [N4: set_nat] : ( inj_on_nat_nat @ suc @ N4 ) ).

% inj_Suc
thf(fact_9570_summable__reindex,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
         => ( summable_real @ ( comp_nat_real_nat @ F @ G ) ) ) ) ) ).

% summable_reindex
thf(fact_9571_suminf__reindex__mono,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
         => ( ord_less_eq_real @ ( suminf_real @ ( comp_nat_real_nat @ F @ G ) ) @ ( suminf_real @ F ) ) ) ) ) ).

% suminf_reindex_mono
thf(fact_9572_powr__real__of__int_H,axiom,
    ! [X3: real,N: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ( X3 != zero_zero_real )
          | ( ord_less_int @ zero_zero_int @ N ) )
       => ( ( powr_real @ X3 @ ( ring_1_of_int_real @ N ) )
          = ( power_int_real @ X3 @ N ) ) ) ) ).

% powr_real_of_int'
thf(fact_9573_inj__on__char__of__nat,axiom,
    inj_on_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% inj_on_char_of_nat
thf(fact_9574_suminf__reindex,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
         => ( ! [X4: nat] :
                ( ~ ( member_nat @ X4 @ ( image_nat_nat @ G @ top_top_set_nat ) )
               => ( ( F @ X4 )
                  = zero_zero_real ) )
           => ( ( suminf_real @ ( comp_nat_real_nat @ F @ G ) )
              = ( suminf_real @ F ) ) ) ) ) ) ).

% suminf_reindex
thf(fact_9575_pos__deriv__imp__strict__mono,axiom,
    ! [F: real > real,F5: real > real] :
      ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F5 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
     => ( ! [X4: real] : ( ord_less_real @ zero_zero_real @ ( F5 @ X4 ) )
       => ( order_7092887310737990675l_real @ F ) ) ) ).

% pos_deriv_imp_strict_mono
thf(fact_9576_integer__of__num__triv_I2_J,axiom,
    ( ( code_integer_of_num @ ( bit0 @ one ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% integer_of_num_triv(2)
thf(fact_9577_integer__of__num__triv_I1_J,axiom,
    ( ( code_integer_of_num @ one )
    = one_one_Code_integer ) ).

% integer_of_num_triv(1)
thf(fact_9578_integer__of__num_I2_J,axiom,
    ! [N: num] :
      ( ( code_integer_of_num @ ( bit0 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) ) ).

% integer_of_num(2)
thf(fact_9579_atLeastLessThan__add__Un,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( set_or4665077453230672383an_nat @ I @ ( plus_plus_nat @ J @ K ) )
        = ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).

% atLeastLessThan_add_Un
thf(fact_9580_sup__nat__def,axiom,
    sup_sup_nat = ord_max_nat ).

% sup_nat_def
thf(fact_9581_sup__enat__def,axiom,
    sup_su3973961784419623482d_enat = ord_ma741700101516333627d_enat ).

% sup_enat_def
thf(fact_9582_sup__int__def,axiom,
    sup_sup_int = ord_max_int ).

% sup_int_def
thf(fact_9583_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_VEBT_valid @ X3 @ Xa )
        = Y3 )
     => ( ( ? [Uu: $o,Uv: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ Uv ) )
         => ( Y3
            = ( Xa != one_one_nat ) ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X3
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( Y3
                = ( ~ ( ( Deg2 = Xa )
                      & ! [X: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
                          & ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X: nat] :
                                      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                       => ( ( ord_less_nat @ Mi3 @ X )
                                          & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.elims(1)
thf(fact_9584_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_valid @ X3 @ Xa )
     => ( ( ? [Uu: $o,Uv: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ Uv ) )
         => ( Xa != one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X3
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
             => ~ ( ( Deg2 = Xa )
                  & ! [X6: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                     => ( vEBT_VEBT_valid @ X6 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( case_o184042715313410164at_nat
                    @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
                      & ! [X: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                    @ ( produc6081775807080527818_nat_o
                      @ ^ [Mi3: nat,Ma3: nat] :
                          ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                          & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                          & ! [I4: nat] :
                              ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                             => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                          & ( ( Mi3 = Ma3 )
                           => ! [X: vEBT_VEBT] :
                                ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                               => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                          & ( ( Mi3 != Ma3 )
                           => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                              & ! [X: nat] :
                                  ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                   => ( ( ord_less_nat @ Mi3 @ X )
                                      & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                    @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(2)
thf(fact_9585_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
    ! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg3: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList2 @ Summary ) @ Deg3 )
      = ( ( Deg = Deg3 )
        & ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
           => ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( case_o184042715313410164at_nat
          @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X8 )
            & ! [X: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
               => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
          @ ( produc6081775807080527818_nat_o
            @ ^ [Mi3: nat,Ma3: nat] :
                ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                & ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                   => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X8 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I4 ) ) )
                & ( ( Mi3 = Ma3 )
                 => ! [X: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                & ( ( Mi3 != Ma3 )
                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                    & ! [X: nat] :
                        ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                       => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
          @ Mima2 ) ) ) ).

% VEBT_internal.valid'.simps(2)
thf(fact_9586_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_valid @ X3 @ Xa )
     => ( ( ? [Uu: $o,Uv: $o] :
              ( X3
              = ( vEBT_Leaf @ Uu @ Uv ) )
         => ( Xa = one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X3
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( ( Deg2 = Xa )
                & ! [X4: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                   => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                  = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                & ( case_o184042715313410164at_nat
                  @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
                    & ! [X: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                  @ ( produc6081775807080527818_nat_o
                    @ ^ [Mi3: nat,Ma3: nat] :
                        ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                        & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                        & ! [I4: nat] :
                            ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                           => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                              = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                        & ( ( Mi3 = Ma3 )
                         => ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                        & ( ( Mi3 != Ma3 )
                         => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                            & ! [X: nat] :
                                ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                 => ( ( ord_less_nat @ Mi3 @ X )
                                    & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                  @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(3)
thf(fact_9587_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat,Y3: $o] :
      ( ( ( vEBT_VEBT_valid @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ( ( Y3
                  = ( Xa = one_one_nat ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ Xa ) ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( Y3
                    = ( ( Deg2 = Xa )
                      & ! [X: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
                          & ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X: nat] :
                                      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                       => ( ( ord_less_nat @ Mi3 @ X )
                                          & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(1)
thf(fact_9588_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ( vEBT_VEBT_valid @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ Xa ) )
               => ( Xa != one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa ) )
                 => ~ ( ( Deg2 = Xa )
                      & ! [X6: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X6 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_VEBT_valid @ X6 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
                          & ! [X: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                             => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I4: nat] :
                                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                  & ! [X: nat] :
                                      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                       => ( ( ord_less_nat @ Mi3 @ X )
                                          & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(2)
thf(fact_9589_Sup__int__def,axiom,
    ( complete_Sup_Sup_int
    = ( ^ [X8: set_int] :
          ( the_int
          @ ^ [X: int] :
              ( ( member_int @ X @ X8 )
              & ! [Y: int] :
                  ( ( member_int @ Y @ X8 )
                 => ( ord_less_eq_int @ Y @ X ) ) ) ) ) ) ).

% Sup_int_def
thf(fact_9590_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
    ! [X3: vEBT_VEBT,Xa: nat] :
      ( ~ ( vEBT_VEBT_valid @ X3 @ Xa )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X3 @ Xa ) )
       => ( ! [Uu: $o,Uv: $o] :
              ( ( X3
                = ( vEBT_Leaf @ Uu @ Uv ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu @ Uv ) @ Xa ) )
               => ( Xa = one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Xa ) )
                 => ( ( Deg2 = Xa )
                    & ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ( vEBT_VEBT_valid @ X4 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( case_o184042715313410164at_nat
                      @ ( ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X8 )
                        & ! [X: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                           => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                      @ ( produc6081775807080527818_nat_o
                        @ ^ [Mi3: nat,Ma3: nat] :
                            ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                            & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                            & ! [I4: nat] :
                                ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                               => ( ( ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I4 ) @ X8 ) )
                                  = ( vEBT_V8194947554948674370ptions @ Summary2 @ I4 ) ) )
                            & ( ( Mi3 = Ma3 )
                             => ! [X: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                 => ~ ? [X8: nat] : ( vEBT_V8194947554948674370ptions @ X @ X8 ) ) )
                            & ( ( Mi3 != Ma3 )
                             => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ Ma3 )
                                & ! [X: nat] :
                                    ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                   => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList3 @ X )
                                     => ( ( ord_less_nat @ Mi3 @ X )
                                        & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) )
                      @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(3)
thf(fact_9591_take__bit__numeral__minus__numeral__int,axiom,
    ! [M: num,N: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( case_option_int_num @ zero_zero_int
        @ ^ [Q5: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q5 ) ) )
        @ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N ) ) ) ).

% take_bit_numeral_minus_numeral_int
thf(fact_9592_take__bit__num__simps_I1_J,axiom,
    ! [M: num] :
      ( ( bit_take_bit_num @ zero_zero_nat @ M )
      = none_num ) ).

% take_bit_num_simps(1)
thf(fact_9593_take__bit__num__simps_I2_J,axiom,
    ! [N: nat] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(2)
thf(fact_9594_take__bit__num__simps_I5_J,axiom,
    ! [R2: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(5)
thf(fact_9595_take__bit__num__simps_I3_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
        @ ( bit_take_bit_num @ N @ M ) ) ) ).

% take_bit_num_simps(3)
thf(fact_9596_take__bit__num__simps_I4_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N @ M ) ) ) ) ).

% take_bit_num_simps(4)
thf(fact_9597_take__bit__num__simps_I6_J,axiom,
    ! [R2: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
        @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ).

% take_bit_num_simps(6)
thf(fact_9598_take__bit__num__simps_I7_J,axiom,
    ! [R2: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ) ).

% take_bit_num_simps(7)
thf(fact_9599_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ N @ ( bit0 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] :
            ( case_o6005452278849405969um_num @ none_num
            @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
            @ ( bit_take_bit_num @ N3 @ M ) )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_9600_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
    ! [N: nat] :
      ( ( bit_take_bit_num @ N @ one )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] : ( some_num @ one )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_9601_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
    ! [N: nat,M: num] :
      ( ( bit_take_bit_num @ N @ ( bit1 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N3 @ M ) ) )
        @ N ) ) ).

% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_9602_take__bit__num__def,axiom,
    ( bit_take_bit_num
    = ( ^ [N3: nat,M3: num] :
          ( if_option_num
          @ ( ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M3 ) )
            = zero_zero_nat )
          @ none_num
          @ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M3 ) ) ) ) ) ) ) ).

% take_bit_num_def
thf(fact_9603_and__minus__numerals_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).

% and_minus_numerals(3)
thf(fact_9604_and__minus__numerals_I7_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N ) ) ) ) ).

% and_minus_numerals(7)
thf(fact_9605_and__minus__numerals_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).

% and_minus_numerals(4)
thf(fact_9606_and__minus__numerals_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N ) ) ) ) ).

% and_minus_numerals(8)
thf(fact_9607_and__not__num_Osimps_I1_J,axiom,
    ( ( bit_and_not_num @ one @ one )
    = none_num ) ).

% and_not_num.simps(1)
thf(fact_9608_and__not__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(4)
thf(fact_9609_and__not__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_and_not_num @ one @ ( bit0 @ N ) )
      = ( some_num @ one ) ) ).

% and_not_num.simps(2)
thf(fact_9610_and__not__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_and_not_num @ one @ ( bit1 @ N ) )
      = none_num ) ).

% and_not_num.simps(3)
thf(fact_9611_and__not__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(7)
thf(fact_9612_and__not__num__eq__Some__iff,axiom,
    ! [M: num,N: num,Q3: num] :
      ( ( ( bit_and_not_num @ M @ N )
        = ( some_num @ Q3 ) )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
        = ( numeral_numeral_int @ Q3 ) ) ) ).

% and_not_num_eq_Some_iff
thf(fact_9613_and__not__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
        @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(8)
thf(fact_9614_and__not__num__eq__None__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( bit_and_not_num @ M @ N )
        = none_num )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
        = zero_zero_int ) ) ).

% and_not_num_eq_None_iff
thf(fact_9615_int__numeral__not__and__num,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N @ M ) ) ) ).

% int_numeral_not_and_num
thf(fact_9616_int__numeral__and__not__num,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N ) ) ) ).

% int_numeral_and_not_num
thf(fact_9617_Bit__Operations_Otake__bit__num__code,axiom,
    ( bit_take_bit_num
    = ( ^ [N3: nat,M3: num] :
          ( produc478579273971653890on_num
          @ ^ [A4: nat,X: num] :
              ( case_nat_option_num @ none_num
              @ ^ [O: nat] :
                  ( case_num_option_num @ ( some_num @ one )
                  @ ^ [P5: num] :
                      ( case_o6005452278849405969um_num @ none_num
                      @ ^ [Q5: num] : ( some_num @ ( bit0 @ Q5 ) )
                      @ ( bit_take_bit_num @ O @ P5 ) )
                  @ ^ [P5: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P5 ) ) )
                  @ X )
              @ A4 )
          @ ( product_Pair_nat_num @ N3 @ M3 ) ) ) ) ).

% Bit_Operations.take_bit_num_code
thf(fact_9618_Rats__eq__int__div__nat,axiom,
    ( field_5140801741446780682s_real
    = ( collect_real
      @ ^ [Uu3: real] :
        ? [I4: int,N3: nat] :
          ( ( Uu3
            = ( divide_divide_real @ ( ring_1_of_int_real @ I4 ) @ ( semiri5074537144036343181t_real @ N3 ) ) )
          & ( N3 != zero_zero_nat ) ) ) ) ).

% Rats_eq_int_div_nat
thf(fact_9619_Rats__abs__iff,axiom,
    ! [X3: real] :
      ( ( member_real @ ( abs_abs_real @ X3 ) @ field_5140801741446780682s_real )
      = ( member_real @ X3 @ field_5140801741446780682s_real ) ) ).

% Rats_abs_iff
thf(fact_9620_Rats__dense__in__real,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ? [X4: real] :
          ( ( member_real @ X4 @ field_5140801741446780682s_real )
          & ( ord_less_real @ X3 @ X4 )
          & ( ord_less_real @ X4 @ Y3 ) ) ) ).

% Rats_dense_in_real
thf(fact_9621_Rats__no__bot__less,axiom,
    ! [X3: real] :
    ? [X4: real] :
      ( ( member_real @ X4 @ field_5140801741446780682s_real )
      & ( ord_less_real @ X4 @ X3 ) ) ).

% Rats_no_bot_less
thf(fact_9622_Rats__no__top__le,axiom,
    ! [X3: real] :
    ? [X4: real] :
      ( ( member_real @ X4 @ field_5140801741446780682s_real )
      & ( ord_less_eq_real @ X3 @ X4 ) ) ).

% Rats_no_top_le
thf(fact_9623_Rats__eq__int__div__int,axiom,
    ( field_5140801741446780682s_real
    = ( collect_real
      @ ^ [Uu3: real] :
        ? [I4: int,J3: int] :
          ( ( Uu3
            = ( divide_divide_real @ ( ring_1_of_int_real @ I4 ) @ ( ring_1_of_int_real @ J3 ) ) )
          & ( J3 != zero_zero_int ) ) ) ) ).

% Rats_eq_int_div_int
thf(fact_9624_and__not__num_Oelims,axiom,
    ! [X3: num,Xa: num,Y3: option_num] :
      ( ( ( bit_and_not_num @ X3 @ Xa )
        = Y3 )
     => ( ( ( X3 = one )
         => ( ( Xa = one )
           => ( Y3 != none_num ) ) )
       => ( ( ( X3 = one )
           => ( ? [N2: num] :
                  ( Xa
                  = ( bit0 @ N2 ) )
             => ( Y3
               != ( some_num @ one ) ) ) )
         => ( ( ( X3 = one )
             => ( ? [N2: num] :
                    ( Xa
                    = ( bit1 @ N2 ) )
               => ( Y3 != none_num ) ) )
           => ( ! [M4: num] :
                  ( ( X3
                    = ( bit0 @ M4 ) )
                 => ( ( Xa = one )
                   => ( Y3
                     != ( some_num @ ( bit0 @ M4 ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y3
                         != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y3
                           != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X3
                          = ( bit1 @ M4 ) )
                       => ( ( Xa = one )
                         => ( Y3
                           != ( some_num @ ( bit0 @ M4 ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y3
                               != ( case_o6005452278849405969um_num @ ( some_num @ one )
                                  @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
                                  @ ( bit_and_not_num @ M4 @ N2 ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y3
                                 != ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_not_num.elims
thf(fact_9625_xor__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).

% xor_num.simps(6)
thf(fact_9626_xor__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).

% xor_num.simps(9)
thf(fact_9627_xor__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ).

% xor_num.simps(5)
thf(fact_9628_and__not__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(5)
thf(fact_9629_and__not__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(6)
thf(fact_9630_and__not__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M @ N ) ) ) ).

% and_not_num.simps(9)
thf(fact_9631_xor__num_Osimps_I1_J,axiom,
    ( ( bit_un2480387367778600638or_num @ one @ one )
    = none_num ) ).

% xor_num.simps(1)
thf(fact_9632_xor__num_Oelims,axiom,
    ! [X3: num,Xa: num,Y3: option_num] :
      ( ( ( bit_un2480387367778600638or_num @ X3 @ Xa )
        = Y3 )
     => ( ( ( X3 = one )
         => ( ( Xa = one )
           => ( Y3 != none_num ) ) )
       => ( ( ( X3 = one )
           => ! [N2: num] :
                ( ( Xa
                  = ( bit0 @ N2 ) )
               => ( Y3
                 != ( some_num @ ( bit1 @ N2 ) ) ) ) )
         => ( ( ( X3 = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit1 @ N2 ) )
                 => ( Y3
                   != ( some_num @ ( bit0 @ N2 ) ) ) ) )
           => ( ! [M4: num] :
                  ( ( X3
                    = ( bit0 @ M4 ) )
                 => ( ( Xa = one )
                   => ( Y3
                     != ( some_num @ ( bit1 @ M4 ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y3
                         != ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y3
                           != ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X3
                          = ( bit1 @ M4 ) )
                       => ( ( Xa = one )
                         => ( Y3
                           != ( some_num @ ( bit0 @ M4 ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y3
                               != ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y3
                                 != ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.elims
thf(fact_9633_xor__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% xor_num.simps(7)
thf(fact_9634_xor__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit1 @ M ) ) ) ).

% xor_num.simps(4)
thf(fact_9635_xor__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_un2480387367778600638or_num @ one @ ( bit1 @ N ) )
      = ( some_num @ ( bit0 @ N ) ) ) ).

% xor_num.simps(3)
thf(fact_9636_xor__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_un2480387367778600638or_num @ one @ ( bit0 @ N ) )
      = ( some_num @ ( bit1 @ N ) ) ) ).

% xor_num.simps(2)
thf(fact_9637_xor__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un2480387367778600638or_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M @ N ) ) ) ) ).

% xor_num.simps(8)
thf(fact_9638_and__num_Oelims,axiom,
    ! [X3: num,Xa: num,Y3: option_num] :
      ( ( ( bit_un7362597486090784418nd_num @ X3 @ Xa )
        = Y3 )
     => ( ( ( X3 = one )
         => ( ( Xa = one )
           => ( Y3
             != ( some_num @ one ) ) ) )
       => ( ( ( X3 = one )
           => ( ? [N2: num] :
                  ( Xa
                  = ( bit0 @ N2 ) )
             => ( Y3 != none_num ) ) )
         => ( ( ( X3 = one )
             => ( ? [N2: num] :
                    ( Xa
                    = ( bit1 @ N2 ) )
               => ( Y3
                 != ( some_num @ one ) ) ) )
           => ( ( ? [M4: num] :
                    ( X3
                    = ( bit0 @ M4 ) )
               => ( ( Xa = one )
                 => ( Y3 != none_num ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y3
                         != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y3
                           != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) )
                 => ( ( ? [M4: num] :
                          ( X3
                          = ( bit1 @ M4 ) )
                     => ( ( Xa = one )
                       => ( Y3
                         != ( some_num @ one ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y3
                               != ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y3
                                 != ( case_o6005452278849405969um_num @ ( some_num @ one )
                                    @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
                                    @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_num.elims
thf(fact_9639_xor__num__dict,axiom,
    bit_un2480387367778600638or_num = bit_un6178654185764691216or_num ).

% xor_num_dict
thf(fact_9640_and__num_Osimps_I1_J,axiom,
    ( ( bit_un7362597486090784418nd_num @ one @ one )
    = ( some_num @ one ) ) ).

% and_num.simps(1)
thf(fact_9641_and__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(5)
thf(fact_9642_and__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ one )
      = ( some_num @ one ) ) ).

% and_num.simps(7)
thf(fact_9643_and__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_un7362597486090784418nd_num @ one @ ( bit1 @ N ) )
      = ( some_num @ one ) ) ).

% and_num.simps(3)
thf(fact_9644_and__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_un7362597486090784418nd_num @ one @ ( bit0 @ N ) )
      = none_num ) ).

% and_num.simps(2)
thf(fact_9645_and__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ one )
      = none_num ) ).

% and_num.simps(4)
thf(fact_9646_and__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(8)
thf(fact_9647_and__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(6)
thf(fact_9648_and__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un7362597486090784418nd_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
        @ ( bit_un7362597486090784418nd_num @ M @ N ) ) ) ).

% and_num.simps(9)
thf(fact_9649_and__num__dict,axiom,
    bit_un7362597486090784418nd_num = bit_un1837492267222099188nd_num ).

% and_num_dict
thf(fact_9650_of__nat__eq__id,axiom,
    semiri1316708129612266289at_nat = id_nat ).

% of_nat_eq_id
thf(fact_9651_less__eq__int__def,axiom,
    ( ord_less_eq_int
    = ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
      @ ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) ) ) ) ).

% less_eq_int_def
thf(fact_9652_less__int__def,axiom,
    ( ord_less_int
    = ( map_fu434086159418415080_int_o @ rep_Integ @ ( map_fu4826362097070443709at_o_o @ rep_Integ @ id_o )
      @ ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) ) ) ) ).

% less_int_def
thf(fact_9653_nat__def,axiom,
    ( nat2
    = ( map_fu2345160673673942751at_nat @ rep_Integ @ id_nat @ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ) ).

% nat_def
thf(fact_9654_min__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_min_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( suc @ ( ord_min_nat @ M @ N ) ) ) ).

% min_Suc_Suc
thf(fact_9655_min__0L,axiom,
    ! [N: nat] :
      ( ( ord_min_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% min_0L
thf(fact_9656_min__0R,axiom,
    ! [N: nat] :
      ( ( ord_min_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% min_0R
thf(fact_9657_min__enat__simps_I3_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_mi8085742599997312461d_enat @ zero_z5237406670263579293d_enat @ Q3 )
      = zero_z5237406670263579293d_enat ) ).

% min_enat_simps(3)
thf(fact_9658_min__enat__simps_I2_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_mi8085742599997312461d_enat @ Q3 @ zero_z5237406670263579293d_enat )
      = zero_z5237406670263579293d_enat ) ).

% min_enat_simps(2)
thf(fact_9659_min__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_min_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( suc @ ( ord_min_nat @ ( pred_numeral @ K ) @ N ) ) ) ).

% min_numeral_Suc
thf(fact_9660_min__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_min_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_min_nat @ N @ ( pred_numeral @ K ) ) ) ) ).

% min_Suc_numeral
thf(fact_9661_concat__bit__assoc__sym,axiom,
    ! [M: nat,N: nat,K: int,L: int,R2: int] :
      ( ( bit_concat_bit @ M @ ( bit_concat_bit @ N @ K @ L ) @ R2 )
      = ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_concat_bit @ ( minus_minus_nat @ M @ N ) @ L @ R2 ) ) ) ).

% concat_bit_assoc_sym
thf(fact_9662_min__diff,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_min_nat @ ( minus_minus_nat @ M @ I ) @ ( minus_minus_nat @ N @ I ) )
      = ( minus_minus_nat @ ( ord_min_nat @ M @ N ) @ I ) ) ).

% min_diff
thf(fact_9663_nat__mult__min__right,axiom,
    ! [M: nat,N: nat,Q3: nat] :
      ( ( times_times_nat @ M @ ( ord_min_nat @ N @ Q3 ) )
      = ( ord_min_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q3 ) ) ) ).

% nat_mult_min_right
thf(fact_9664_nat__mult__min__left,axiom,
    ! [M: nat,N: nat,Q3: nat] :
      ( ( times_times_nat @ ( ord_min_nat @ M @ N ) @ Q3 )
      = ( ord_min_nat @ ( times_times_nat @ M @ Q3 ) @ ( times_times_nat @ N @ Q3 ) ) ) ).

% nat_mult_min_left
thf(fact_9665_take__bit__concat__bit__eq,axiom,
    ! [M: nat,N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ M @ ( bit_concat_bit @ N @ K @ L ) )
      = ( bit_concat_bit @ ( ord_min_nat @ M @ N ) @ K @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ M @ N ) @ L ) ) ) ).

% take_bit_concat_bit_eq
thf(fact_9666_min__Suc2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_min_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [M5: nat] : ( suc @ ( ord_min_nat @ M5 @ N ) )
        @ M ) ) ).

% min_Suc2
thf(fact_9667_min__Suc1,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_min_nat @ ( suc @ N ) @ M )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [M5: nat] : ( suc @ ( ord_min_nat @ N @ M5 ) )
        @ M ) ) ).

% min_Suc1
thf(fact_9668_inf__int__def,axiom,
    inf_inf_int = ord_min_int ).

% inf_int_def
thf(fact_9669_inf__nat__def,axiom,
    inf_inf_nat = ord_min_nat ).

% inf_nat_def
thf(fact_9670_inf__enat__def,axiom,
    inf_in1870772243966228564d_enat = ord_mi8085742599997312461d_enat ).

% inf_enat_def
thf(fact_9671_nth__sorted__list__of__set__greaterThanAtMost,axiom,
    ! [N: nat,J: nat,I: nat] :
      ( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ I ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) ) @ N )
        = ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9672_and__not__num_Opelims,axiom,
    ! [X3: num,Xa: num,Y3: option_num] :
      ( ( ( bit_and_not_num @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ X3 @ Xa ) )
       => ( ( ( X3 = one )
           => ( ( Xa = one )
             => ( ( Y3 = none_num )
               => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X3 = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y3
                      = ( some_num @ one ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X3 = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y3 = none_num )
                     => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ( ( Xa = one )
                     => ( ( Y3
                          = ( some_num @ ( bit0 @ M4 ) ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y3
                              = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X3
                          = ( bit0 @ M4 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y3
                                = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ( ( Xa = one )
                           => ( ( Y3
                                = ( some_num @ ( bit0 @ M4 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) ) ) ) )
                     => ( ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y3
                                    = ( case_o6005452278849405969um_num @ ( some_num @ one )
                                      @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
                                      @ ( bit_and_not_num @ M4 @ N2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M4: num] :
                              ( ( X3
                                = ( bit1 @ M4 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y3
                                      = ( map_option_num_num @ bit0 @ ( bit_and_not_num @ M4 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_and_not_num_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_not_num.pelims
thf(fact_9673_nth__sorted__list__of__set__greaterThanLessThan,axiom,
    ! [N: nat,J: nat,I: nat] :
      ( ( ord_less_nat @ N @ ( minus_minus_nat @ J @ ( suc @ I ) ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) ) @ N )
        = ( suc @ ( plus_plus_nat @ I @ N ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9674_and__num_Opelims,axiom,
    ! [X3: num,Xa: num,Y3: option_num] :
      ( ( ( bit_un7362597486090784418nd_num @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ X3 @ Xa ) )
       => ( ( ( X3 = one )
           => ( ( Xa = one )
             => ( ( Y3
                  = ( some_num @ one ) )
               => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X3 = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y3 = none_num )
                   => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X3 = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y3
                        = ( some_num @ one ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ( ( Xa = one )
                     => ( ( Y3 = none_num )
                       => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y3
                              = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X3
                          = ( bit0 @ M4 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y3
                                = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ( ( Xa = one )
                           => ( ( Y3
                                = ( some_num @ one ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) ) ) ) )
                     => ( ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y3
                                    = ( map_option_num_num @ bit0 @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M4: num] :
                              ( ( X3
                                = ( bit1 @ M4 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y3
                                      = ( case_o6005452278849405969um_num @ ( some_num @ one )
                                        @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
                                        @ ( bit_un7362597486090784418nd_num @ M4 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_un4731106466462545111um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% and_num.pelims
thf(fact_9675_xor__num_Opelims,axiom,
    ! [X3: num,Xa: num,Y3: option_num] :
      ( ( ( bit_un2480387367778600638or_num @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ X3 @ Xa ) )
       => ( ( ( X3 = one )
           => ( ( Xa = one )
             => ( ( Y3 = none_num )
               => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X3 = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y3
                      = ( some_num @ ( bit1 @ N2 ) ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X3 = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y3
                        = ( some_num @ ( bit0 @ N2 ) ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ( ( Xa = one )
                     => ( ( Y3
                          = ( some_num @ ( bit1 @ M4 ) ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y3
                              = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X3
                          = ( bit0 @ M4 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y3
                                = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ( ( Xa = one )
                           => ( ( Y3
                                = ( some_num @ ( bit0 @ M4 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) ) ) ) )
                     => ( ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y3
                                    = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M4: num] :
                              ( ( X3
                                = ( bit1 @ M4 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y3
                                      = ( map_option_num_num @ bit0 @ ( bit_un2480387367778600638or_num @ M4 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_un2901131394128224187um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.pelims
thf(fact_9676_or__not__num__neg_Opelims,axiom,
    ! [X3: num,Xa: num,Y3: num] :
      ( ( ( bit_or_not_num_neg @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ X3 @ Xa ) )
       => ( ( ( X3 = one )
           => ( ( Xa = one )
             => ( ( Y3 = one )
               => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X3 = one )
             => ! [M4: num] :
                  ( ( Xa
                    = ( bit0 @ M4 ) )
                 => ( ( Y3
                      = ( bit1 @ M4 ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit0 @ M4 ) ) ) ) ) )
           => ( ( ( X3 = one )
               => ! [M4: num] :
                    ( ( Xa
                      = ( bit1 @ M4 ) )
                   => ( ( Y3
                        = ( bit1 @ M4 ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit1 @ M4 ) ) ) ) ) )
             => ( ! [N2: num] :
                    ( ( X3
                      = ( bit0 @ N2 ) )
                   => ( ( Xa = one )
                     => ( ( Y3
                          = ( bit0 @ one ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ one ) ) ) ) )
               => ( ! [N2: num] :
                      ( ( X3
                        = ( bit0 @ N2 ) )
                     => ! [M4: num] :
                          ( ( Xa
                            = ( bit0 @ M4 ) )
                         => ( ( Y3
                              = ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ ( bit0 @ M4 ) ) ) ) ) )
                 => ( ! [N2: num] :
                        ( ( X3
                          = ( bit0 @ N2 ) )
                       => ! [M4: num] :
                            ( ( Xa
                              = ( bit1 @ M4 ) )
                           => ( ( Y3
                                = ( bit0 @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N2 ) @ ( bit1 @ M4 ) ) ) ) ) )
                   => ( ! [N2: num] :
                          ( ( X3
                            = ( bit1 @ N2 ) )
                         => ( ( Xa = one )
                           => ( ( Y3 = one )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ one ) ) ) ) )
                     => ( ! [N2: num] :
                            ( ( X3
                              = ( bit1 @ N2 ) )
                           => ! [M4: num] :
                                ( ( Xa
                                  = ( bit0 @ M4 ) )
                               => ( ( Y3
                                    = ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ ( bit0 @ M4 ) ) ) ) ) )
                       => ~ ! [N2: num] :
                              ( ( X3
                                = ( bit1 @ N2 ) )
                             => ! [M4: num] :
                                  ( ( Xa
                                    = ( bit1 @ M4 ) )
                                 => ( ( Y3
                                      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M4 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N2 ) @ ( bit1 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.pelims
thf(fact_9677_xor__num__rel__dict,axiom,
    bit_un2901131394128224187um_rel = bit_un3595099601533988841um_rel ).

% xor_num_rel_dict
thf(fact_9678_and__num__rel__dict,axiom,
    bit_un4731106466462545111um_rel = bit_un5425074673868309765um_rel ).

% and_num_rel_dict
thf(fact_9679_card__length__sum__list__rec,axiom,
    ! [M: nat,N4: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( finite_card_list_nat
          @ ( collect_list_nat
            @ ^ [L2: list_nat] :
                ( ( ( size_size_list_nat @ L2 )
                  = M )
                & ( ( groups4561878855575611511st_nat @ L2 )
                  = N4 ) ) ) )
        = ( plus_plus_nat
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L2: list_nat] :
                  ( ( ( size_size_list_nat @ L2 )
                    = ( minus_minus_nat @ M @ one_one_nat ) )
                  & ( ( groups4561878855575611511st_nat @ L2 )
                    = N4 ) ) ) )
          @ ( finite_card_list_nat
            @ ( collect_list_nat
              @ ^ [L2: list_nat] :
                  ( ( ( size_size_list_nat @ L2 )
                    = M )
                  & ( ( plus_plus_nat @ ( groups4561878855575611511st_nat @ L2 ) @ one_one_nat )
                    = N4 ) ) ) ) ) ) ) ).

% card_length_sum_list_rec
thf(fact_9680_Code__Target__Nat_ONat_Oabs__eq,axiom,
    ! [X3: int] :
      ( ( code_Target_Nat @ ( code_integer_of_int @ X3 ) )
      = ( nat2 @ X3 ) ) ).

% Code_Target_Nat.Nat.abs_eq
thf(fact_9681_Code__Target__Nat_ONat_Orep__eq,axiom,
    ( code_Target_Nat
    = ( ^ [X: code_integer] : ( nat2 @ ( code_int_of_integer @ X ) ) ) ) ).

% Code_Target_Nat.Nat.rep_eq
thf(fact_9682_sorted__list__of__set__greaterThanAtMost,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( suc @ I ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I @ J ) )
        = ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanAtMost
thf(fact_9683_sorted__list__of__set__greaterThanLessThan,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I @ J ) )
        = ( cons_nat @ ( suc @ I ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanLessThan
thf(fact_9684_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I4: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I4 ) @ Js @ ( upto_aux @ I4 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_9685_upto_Opsimps,axiom,
    ! [I: int,J: int] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I @ J ) )
     => ( ( ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) )
        & ( ~ ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = nil_int ) ) ) ) ).

% upto.psimps
thf(fact_9686_upto_Opelims,axiom,
    ! [X3: int,Xa: int,Y3: list_int] :
      ( ( ( upto @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X3 @ Xa ) )
       => ~ ( ( ( ( ord_less_eq_int @ X3 @ Xa )
               => ( Y3
                  = ( cons_int @ X3 @ ( upto @ ( plus_plus_int @ X3 @ one_one_int ) @ Xa ) ) ) )
              & ( ~ ( ord_less_eq_int @ X3 @ Xa )
               => ( Y3 = nil_int ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X3 @ Xa ) ) ) ) ) ).

% upto.pelims
thf(fact_9687_upto__Nil,axiom,
    ! [I: int,J: int] :
      ( ( ( upto @ I @ J )
        = nil_int )
      = ( ord_less_int @ J @ I ) ) ).

% upto_Nil
thf(fact_9688_upto__Nil2,axiom,
    ! [I: int,J: int] :
      ( ( nil_int
        = ( upto @ I @ J ) )
      = ( ord_less_int @ J @ I ) ) ).

% upto_Nil2
thf(fact_9689_upto__empty,axiom,
    ! [J: int,I: int] :
      ( ( ord_less_int @ J @ I )
     => ( ( upto @ I @ J )
        = nil_int ) ) ).

% upto_empty
thf(fact_9690_nth__upto,axiom,
    ! [I: int,K: nat,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) @ J )
     => ( ( nth_int @ ( upto @ I @ J ) @ K )
        = ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).

% nth_upto
thf(fact_9691_length__upto,axiom,
    ! [I: int,J: int] :
      ( ( size_size_list_int @ ( upto @ I @ J ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I ) @ one_one_int ) ) ) ).

% length_upto
thf(fact_9692_upto__rec__numeral_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(1)
thf(fact_9693_upto__rec__numeral_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(2)
thf(fact_9694_upto__rec__numeral_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(3)
thf(fact_9695_upto__rec__numeral_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(4)
thf(fact_9696_upto__split2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).

% upto_split2
thf(fact_9697_upto__split1,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).

% upto_split1
thf(fact_9698_upto_Oelims,axiom,
    ! [X3: int,Xa: int,Y3: list_int] :
      ( ( ( upto @ X3 @ Xa )
        = Y3 )
     => ( ( ( ord_less_eq_int @ X3 @ Xa )
         => ( Y3
            = ( cons_int @ X3 @ ( upto @ ( plus_plus_int @ X3 @ one_one_int ) @ Xa ) ) ) )
        & ( ~ ( ord_less_eq_int @ X3 @ Xa )
         => ( Y3 = nil_int ) ) ) ) ).

% upto.elims
thf(fact_9699_upto_Osimps,axiom,
    ( upto
    = ( ^ [I4: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I4 @ J3 ) @ ( cons_int @ I4 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).

% upto.simps
thf(fact_9700_upto__rec1,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) ) ).

% upto_rec1
thf(fact_9701_upto__rec2,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).

% upto_rec2
thf(fact_9702_upto__split3,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).

% upto_split3
thf(fact_9703_le__enumerate,axiom,
    ! [S2: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ S2 )
     => ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S2 @ N ) ) ) ).

% le_enumerate
thf(fact_9704_finite__le__enumerate,axiom,
    ! [S2: set_nat,N: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( ord_less_nat @ N @ ( finite_card_nat @ S2 ) )
       => ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S2 @ N ) ) ) ) ).

% finite_le_enumerate
thf(fact_9705_DeMoivre2,axiom,
    ! [R2: real,A: real,N: nat] :
      ( ( power_power_complex @ ( rcis @ R2 @ A ) @ N )
      = ( rcis @ ( power_power_real @ R2 @ N ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).

% DeMoivre2
thf(fact_9706_Least__eq__0,axiom,
    ! [P: nat > $o] :
      ( ( P @ zero_zero_nat )
     => ( ( ord_Least_nat @ P )
        = zero_zero_nat ) ) ).

% Least_eq_0
thf(fact_9707_rcis__zero__arg,axiom,
    ! [R2: real] :
      ( ( rcis @ R2 @ zero_zero_real )
      = ( real_V4546457046886955230omplex @ R2 ) ) ).

% rcis_zero_arg
thf(fact_9708_rcis__zero__mod,axiom,
    ! [A: real] :
      ( ( rcis @ zero_zero_real @ A )
      = zero_zero_complex ) ).

% rcis_zero_mod
thf(fact_9709_rcis__eq__zero__iff,axiom,
    ! [R2: real,A: real] :
      ( ( ( rcis @ R2 @ A )
        = zero_zero_complex )
      = ( R2 = zero_zero_real ) ) ).

% rcis_eq_zero_iff
thf(fact_9710_Least__Suc2,axiom,
    ! [P: nat > $o,N: nat,Q: nat > $o,M: nat] :
      ( ( P @ N )
     => ( ( Q @ M )
       => ( ~ ( P @ zero_zero_nat )
         => ( ! [K2: nat] :
                ( ( P @ ( suc @ K2 ) )
                = ( Q @ K2 ) )
           => ( ( ord_Least_nat @ P )
              = ( suc @ ( ord_Least_nat @ Q ) ) ) ) ) ) ) ).

% Least_Suc2
thf(fact_9711_Least__Suc,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ( ( ord_Least_nat @ P )
          = ( suc
            @ ( ord_Least_nat
              @ ^ [M3: nat] : ( P @ ( suc @ M3 ) ) ) ) ) ) ) ).

% Least_Suc
thf(fact_9712_Inf__nat__def,axiom,
    ( complete_Inf_Inf_nat
    = ( ^ [X8: set_nat] :
          ( ord_Least_nat
          @ ^ [N3: nat] : ( member_nat @ N3 @ X8 ) ) ) ) ).

% Inf_nat_def
thf(fact_9713_Sup__real__def,axiom,
    ( comple1385675409528146559p_real
    = ( ^ [X8: set_real] :
          ( ord_Least_real
          @ ^ [Z6: real] :
            ! [X: real] :
              ( ( member_real @ X @ X8 )
             => ( ord_less_eq_real @ X @ Z6 ) ) ) ) ) ).

% Sup_real_def
thf(fact_9714_Code__Target__Nat_ONat__def,axiom,
    ( code_Target_Nat
    = ( map_fu6539832666145259331at_nat @ code_int_of_integer @ id_nat @ nat2 ) ) ).

% Code_Target_Nat.Nat_def
thf(fact_9715_sum__list__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups4561878855575611511st_nat @ ( upt @ M @ N ) )
        = ( groups3542108847815614940at_nat
          @ ^ [X: nat] : X
          @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) ) ).

% sum_list_upt
thf(fact_9716_hd__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( hd_nat @ ( upt @ I @ J ) )
        = I ) ) ).

% hd_upt
thf(fact_9717_upt__conv__Nil,axiom,
    ! [J: nat,I: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( upt @ I @ J )
        = nil_nat ) ) ).

% upt_conv_Nil
thf(fact_9718_upt__eq__Nil__conv,axiom,
    ! [I: nat,J: nat] :
      ( ( ( upt @ I @ J )
        = nil_nat )
      = ( ( J = zero_zero_nat )
        | ( ord_less_eq_nat @ J @ I ) ) ) ).

% upt_eq_Nil_conv
thf(fact_9719_take__upt,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ M ) @ N )
     => ( ( take_nat @ M @ ( upt @ I @ N ) )
        = ( upt @ I @ ( plus_plus_nat @ I @ M ) ) ) ) ).

% take_upt
thf(fact_9720_nth__upt,axiom,
    ! [I: nat,K: nat,J: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J )
     => ( ( nth_nat @ ( upt @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ K ) ) ) ).

% nth_upt
thf(fact_9721_upt__rec__numeral,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = ( cons_nat @ ( numeral_numeral_nat @ M ) @ ( upt @ ( suc @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) ) ) ) )
      & ( ~ ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
       => ( ( upt @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
          = nil_nat ) ) ) ).

% upt_rec_numeral
thf(fact_9722_upt__add__eq__append,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( upt @ I @ ( plus_plus_nat @ J @ K ) )
        = ( append_nat @ ( upt @ I @ J ) @ ( upt @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).

% upt_add_eq_append
thf(fact_9723_atLeast__upt,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [N3: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ N3 ) ) ) ) ).

% atLeast_upt
thf(fact_9724_upt__0,axiom,
    ! [I: nat] :
      ( ( upt @ I @ zero_zero_nat )
      = nil_nat ) ).

% upt_0
thf(fact_9725_atMost__upto,axiom,
    ( set_ord_atMost_nat
    = ( ^ [N3: nat] : ( set_nat2 @ ( upt @ zero_zero_nat @ ( suc @ N3 ) ) ) ) ) ).

% atMost_upto
thf(fact_9726_upt__rec,axiom,
    ( upt
    = ( ^ [I4: nat,J3: nat] : ( if_list_nat @ ( ord_less_nat @ I4 @ J3 ) @ ( cons_nat @ I4 @ ( upt @ ( suc @ I4 ) @ J3 ) ) @ nil_nat ) ) ) ).

% upt_rec
thf(fact_9727_upt__conv__Cons,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( upt @ I @ J )
        = ( cons_nat @ I @ ( upt @ ( suc @ I ) @ J ) ) ) ) ).

% upt_conv_Cons
thf(fact_9728_upt__Suc,axiom,
    ! [I: nat,J: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) )
      & ( ~ ( ord_less_eq_nat @ I @ J )
       => ( ( upt @ I @ ( suc @ J ) )
          = nil_nat ) ) ) ).

% upt_Suc
thf(fact_9729_upt__Suc__append,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( upt @ I @ ( suc @ J ) )
        = ( append_nat @ ( upt @ I @ J ) @ ( cons_nat @ J @ nil_nat ) ) ) ) ).

% upt_Suc_append
thf(fact_9730_upt__eq__Cons__conv,axiom,
    ! [I: nat,J: nat,X3: nat,Xs2: list_nat] :
      ( ( ( upt @ I @ J )
        = ( cons_nat @ X3 @ Xs2 ) )
      = ( ( ord_less_nat @ I @ J )
        & ( I = X3 )
        & ( ( upt @ ( plus_plus_nat @ I @ one_one_nat ) @ J )
          = Xs2 ) ) ) ).

% upt_eq_Cons_conv
thf(fact_9731_nat__of__integer__def,axiom,
    ( code_nat_of_integer
    = ( map_fu6539832666145259331at_nat @ code_int_of_integer @ id_nat @ nat2 ) ) ).

% nat_of_integer_def
thf(fact_9732_sorted__upt,axiom,
    ! [M: nat,N: nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( upt @ M @ N ) ) ).

% sorted_upt
thf(fact_9733_sorted__wrt__upt,axiom,
    ! [M: nat,N: nat] : ( sorted_wrt_nat @ ord_less_nat @ ( upt @ M @ N ) ) ).

% sorted_wrt_upt
thf(fact_9734_map__add__upt,axiom,
    ! [N: nat,M: nat] :
      ( ( map_nat_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ I4 @ N )
        @ ( upt @ zero_zero_nat @ M ) )
      = ( upt @ N @ ( plus_plus_nat @ M @ N ) ) ) ).

% map_add_upt
thf(fact_9735_map__decr__upt,axiom,
    ! [M: nat,N: nat] :
      ( ( map_nat_nat
        @ ^ [N3: nat] : ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) )
        @ ( upt @ ( suc @ M ) @ ( suc @ N ) ) )
      = ( upt @ M @ N ) ) ).

% map_decr_upt
thf(fact_9736_sorted__wrt__less__idx,axiom,
    ! [Ns: list_nat,I: nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Ns )
     => ( ( ord_less_nat @ I @ ( size_size_list_nat @ Ns ) )
       => ( ord_less_eq_nat @ I @ ( nth_nat @ Ns @ I ) ) ) ) ).

% sorted_wrt_less_idx
thf(fact_9737_sorted__upto,axiom,
    ! [M: int,N: int] : ( sorted_wrt_int @ ord_less_eq_int @ ( upto @ M @ N ) ) ).

% sorted_upto
thf(fact_9738_sorted__wrt__upto,axiom,
    ! [I: int,J: int] : ( sorted_wrt_int @ ord_less_int @ ( upto @ I @ J ) ) ).

% sorted_wrt_upto
thf(fact_9739_num__of__integer__def,axiom,
    ( code_num_of_integer
    = ( map_fu1227494855608507351um_num @ code_int_of_integer @ id_num @ ( comp_nat_num_int @ num_of_nat @ nat2 ) ) ) ).

% num_of_integer_def
thf(fact_9740_last__upt,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( last_nat @ ( upt @ I @ J ) )
        = ( minus_minus_nat @ J @ one_one_nat ) ) ) ).

% last_upt
thf(fact_9741_uniformity__real__def,axiom,
    ( topolo1511823702728130853y_real
    = ( comple2936214249959783750l_real
      @ ( image_2178119161166701260l_real
        @ ^ [E3: real] :
            ( princi6114159922880469582l_real
            @ ( collec3799799289383736868l_real
              @ ( produc5414030515140494994real_o
                @ ^ [X: real,Y: real] : ( ord_less_real @ ( real_V975177566351809787t_real @ X @ Y ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_real_def
thf(fact_9742_uniformity__complex__def,axiom,
    ( topolo896644834953643431omplex
    = ( comple8358262395181532106omplex
      @ ( image_5971271580939081552omplex
        @ ^ [E3: real] :
            ( princi3496590319149328850omplex
            @ ( collec8663557070575231912omplex
              @ ( produc6771430404735790350plex_o
                @ ^ [X: complex,Y: complex] : ( ord_less_real @ ( real_V3694042436643373181omplex @ X @ Y ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_complex_def
thf(fact_9743_zero__rat__def,axiom,
    ( zero_zero_rat
    = ( abs_Rat @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ) ) ).

% zero_rat_def
thf(fact_9744_inverse__rat_Oabs__eq,axiom,
    ! [X3: product_prod_int_int] :
      ( ( ratrel @ X3 @ X3 )
     => ( ( inverse_inverse_rat @ ( abs_Rat @ X3 ) )
        = ( abs_Rat
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_fst_int_int @ X3 )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( product_snd_int_int @ X3 ) @ ( product_fst_int_int @ X3 ) ) ) ) ) ) ).

% inverse_rat.abs_eq
thf(fact_9745_ratrel__iff,axiom,
    ( ratrel
    = ( ^ [X: product_prod_int_int,Y: product_prod_int_int] :
          ( ( ( product_snd_int_int @ X )
           != zero_zero_int )
          & ( ( product_snd_int_int @ Y )
           != zero_zero_int )
          & ( ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ Y ) )
            = ( times_times_int @ ( product_fst_int_int @ Y ) @ ( product_snd_int_int @ X ) ) ) ) ) ) ).

% ratrel_iff
thf(fact_9746_zero__rat_Orsp,axiom,
    ratrel @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) ).

% zero_rat.rsp
thf(fact_9747_ratrel__def,axiom,
    ( ratrel
    = ( ^ [X: product_prod_int_int,Y: product_prod_int_int] :
          ( ( ( product_snd_int_int @ X )
           != zero_zero_int )
          & ( ( product_snd_int_int @ Y )
           != zero_zero_int )
          & ( ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ Y ) )
            = ( times_times_int @ ( product_fst_int_int @ Y ) @ ( product_snd_int_int @ X ) ) ) ) ) ) ).

% ratrel_def
thf(fact_9748_Rat_Opositive_Oabs__eq,axiom,
    ! [X3: product_prod_int_int] :
      ( ( ratrel @ X3 @ X3 )
     => ( ( positive @ ( abs_Rat @ X3 ) )
        = ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X3 ) @ ( product_snd_int_int @ X3 ) ) ) ) ) ).

% Rat.positive.abs_eq
thf(fact_9749_Rat_Opositive__zero,axiom,
    ~ ( positive @ zero_zero_rat ) ).

% Rat.positive_zero
thf(fact_9750_Rat_Opositive__minus,axiom,
    ! [X3: rat] :
      ( ~ ( positive @ X3 )
     => ( ( X3 != zero_zero_rat )
       => ( positive @ ( uminus_uminus_rat @ X3 ) ) ) ) ).

% Rat.positive_minus
thf(fact_9751_Rat_Opositive_Orep__eq,axiom,
    ( positive
    = ( ^ [X: rat] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ ( rep_Rat @ X ) ) @ ( product_snd_int_int @ ( rep_Rat @ X ) ) ) ) ) ) ).

% Rat.positive.rep_eq
thf(fact_9752_Rat_Opositive__def,axiom,
    ( positive
    = ( map_fu898904425404107465nt_o_o @ rep_Rat @ id_o
      @ ^ [X: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ X ) ) ) ) ) ).

% Rat.positive_def
thf(fact_9753_inverse__rat__def,axiom,
    ( inverse_inverse_rat
    = ( map_fu5673905371560938248nt_rat @ rep_Rat @ abs_Rat
      @ ^ [X: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int
          @ ( ( product_fst_int_int @ X )
            = zero_zero_int )
          @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
          @ ( product_Pair_int_int @ ( product_snd_int_int @ X ) @ ( product_fst_int_int @ X ) ) ) ) ) ).

% inverse_rat_def
thf(fact_9754_of__rat__dense,axiom,
    ! [X3: real,Y3: real] :
      ( ( ord_less_real @ X3 @ Y3 )
     => ? [Q4: rat] :
          ( ( ord_less_real @ X3 @ ( field_7254667332652039916t_real @ Q4 ) )
          & ( ord_less_real @ ( field_7254667332652039916t_real @ Q4 ) @ Y3 ) ) ) ).

% of_rat_dense
thf(fact_9755_Rat_Opositive_Orsp,axiom,
    ( bNF_re8699439704749558557nt_o_o @ ratrel
    @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 )
    @ ^ [X: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ X ) ) )
    @ ^ [X: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ X ) ) ) ) ).

% Rat.positive.rsp
thf(fact_9756_inverse__rat_Orsp,axiom,
    ( bNF_re7145576690424134365nt_int @ ratrel @ ratrel
    @ ^ [X: product_prod_int_int] :
        ( if_Pro3027730157355071871nt_int
        @ ( ( product_fst_int_int @ X )
          = zero_zero_int )
        @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
        @ ( product_Pair_int_int @ ( product_snd_int_int @ X ) @ ( product_fst_int_int @ X ) ) )
    @ ^ [X: product_prod_int_int] :
        ( if_Pro3027730157355071871nt_int
        @ ( ( product_fst_int_int @ X )
          = zero_zero_int )
        @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
        @ ( product_Pair_int_int @ ( product_snd_int_int @ X ) @ ( product_fst_int_int @ X ) ) ) ) ).

% inverse_rat.rsp
thf(fact_9757_Fract_Orsp,axiom,
    ( bNF_re157797125943740599nt_int
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
    @ ( bNF_re6250860962936578807nt_int
      @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
      @ ratrel )
    @ ^ [A4: int,B3: int] : ( if_Pro3027730157355071871nt_int @ ( B3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A4 @ B3 ) )
    @ ^ [A4: int,B3: int] : ( if_Pro3027730157355071871nt_int @ ( B3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A4 @ B3 ) ) ) ).

% Fract.rsp
thf(fact_9758_integer__of__natural_Orsp,axiom,
    ( bNF_re6650684261131312217nt_int
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
    @ semiri1314217659103216013at_int
    @ semiri1314217659103216013at_int ) ).

% integer_of_natural.rsp
thf(fact_9759_natural__of__integer_Orsp,axiom,
    ( bNF_re3715656647883201625at_nat
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ nat2
    @ nat2 ) ).

% natural_of_integer.rsp
thf(fact_9760_sub_Orsp,axiom,
    ( bNF_re8402795839162346335um_int
    @ ^ [Y5: num,Z2: num] : ( Y5 = Z2 )
    @ ( bNF_re1822329894187522285nt_int
      @ ^ [Y5: num,Z2: num] : ( Y5 = Z2 )
      @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) )
    @ ^ [M3: num,N3: num] : ( minus_minus_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) )
    @ ^ [M3: num,N3: num] : ( minus_minus_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) ) ) ).

% sub.rsp
thf(fact_9761_less__integer_Orsp,axiom,
    ( bNF_re3403563459893282935_int_o
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
    @ ( bNF_re5089333283451836215nt_o_o
      @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ord_less_int
    @ ord_less_int ) ).

% less_integer.rsp
thf(fact_9762_less__natural_Orsp,axiom,
    ( bNF_re578469030762574527_nat_o
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ ( bNF_re4705727531993890431at_o_o
      @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ord_less_nat
    @ ord_less_nat ) ).

% less_natural.rsp
thf(fact_9763_less__eq__integer_Orsp,axiom,
    ( bNF_re3403563459893282935_int_o
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
    @ ( bNF_re5089333283451836215nt_o_o
      @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ord_less_eq_int
    @ ord_less_eq_int ) ).

% less_eq_integer.rsp
thf(fact_9764_less__eq__natural_Orsp,axiom,
    ( bNF_re578469030762574527_nat_o
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ ( bNF_re4705727531993890431at_o_o
      @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ord_less_eq_nat
    @ ord_less_eq_nat ) ).

% less_eq_natural.rsp
thf(fact_9765_num__of__integer_Orsp,axiom,
    ( bNF_re7626690874201225453um_num
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
    @ ^ [Y5: num,Z2: num] : ( Y5 = Z2 )
    @ ( comp_nat_num_int @ num_of_nat @ nat2 )
    @ ( comp_nat_num_int @ num_of_nat @ nat2 ) ) ).

% num_of_integer.rsp
thf(fact_9766_inverse__rat_Otransfer,axiom,
    ( bNF_re8279943556446156061nt_rat @ pcr_rat @ pcr_rat
    @ ^ [X: product_prod_int_int] :
        ( if_Pro3027730157355071871nt_int
        @ ( ( product_fst_int_int @ X )
          = zero_zero_int )
        @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
        @ ( product_Pair_int_int @ ( product_snd_int_int @ X ) @ ( product_fst_int_int @ X ) ) )
    @ inverse_inverse_rat ) ).

% inverse_rat.transfer
thf(fact_9767_Rat_Opositive_Otransfer,axiom,
    ( bNF_re1494630372529172596at_o_o @ pcr_rat
    @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 )
    @ ^ [X: product_prod_int_int] : ( ord_less_int @ zero_zero_int @ ( times_times_int @ ( product_fst_int_int @ X ) @ ( product_snd_int_int @ X ) ) )
    @ positive ) ).

% Rat.positive.transfer
thf(fact_9768_zero__rat_Otransfer,axiom,
    pcr_rat @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ zero_zero_rat ).

% zero_rat.transfer
thf(fact_9769_times__int_Otransfer,axiom,
    ( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) ) )
    @ times_times_int ) ).

% times_int.transfer
thf(fact_9770_zero__int_Otransfer,axiom,
    pcr_int @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) @ zero_zero_int ).

% zero_int.transfer
thf(fact_9771_int__transfer,axiom,
    ( bNF_re6830278522597306478at_int
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ pcr_int
    @ ^ [N3: nat] : ( product_Pair_nat_nat @ N3 @ zero_zero_nat )
    @ semiri1314217659103216013at_int ) ).

% int_transfer
thf(fact_9772_uminus__int_Otransfer,axiom,
    ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int
    @ ( produc2626176000494625587at_nat
      @ ^ [X: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X ) )
    @ uminus_uminus_int ) ).

% uminus_int.transfer
thf(fact_9773_nat_Otransfer,axiom,
    ( bNF_re4555766996558763186at_nat @ pcr_int
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ ( produc6842872674320459806at_nat @ minus_minus_nat )
    @ nat2 ) ).

% nat.transfer
thf(fact_9774_one__int_Otransfer,axiom,
    pcr_int @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) @ one_one_int ).

% one_int.transfer
thf(fact_9775_less__int_Otransfer,axiom,
    ( bNF_re717283939379294677_int_o @ pcr_int
    @ ( bNF_re6644619430987730960nt_o_o @ pcr_int
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X: nat,Y: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) )
    @ ord_less_int ) ).

% less_int.transfer
thf(fact_9776_less__eq__int_Otransfer,axiom,
    ( bNF_re717283939379294677_int_o @ pcr_int
    @ ( bNF_re6644619430987730960nt_o_o @ pcr_int
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X: nat,Y: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) )
    @ ord_less_eq_int ) ).

% less_eq_int.transfer
thf(fact_9777_plus__int_Otransfer,axiom,
    ( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) ) )
    @ plus_plus_int ) ).

% plus_int.transfer
thf(fact_9778_minus__int_Otransfer,axiom,
    ( bNF_re7408651293131936558nt_int @ pcr_int @ ( bNF_re7400052026677387805at_int @ pcr_int @ pcr_int )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) ) )
    @ minus_minus_int ) ).

% minus_int.transfer
thf(fact_9779_times__int_Orsp,axiom,
    ( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) ) )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) ) ) ) ).

% times_int.rsp
thf(fact_9780_Real_Opositive_Orsp,axiom,
    ( bNF_re728719798268516973at_o_o @ realrel
    @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 )
    @ ^ [X8: nat > rat] :
      ? [R5: rat] :
        ( ( ord_less_rat @ zero_zero_rat @ R5 )
        & ? [K3: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N3 )
           => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) )
    @ ^ [X8: nat > rat] :
      ? [R5: rat] :
        ( ( ord_less_rat @ zero_zero_rat @ R5 )
        & ? [K3: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N3 )
           => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) ) ) ).

% Real.positive.rsp
thf(fact_9781_intrel__iff,axiom,
    ! [X3: nat,Y3: nat,U: nat,V: nat] :
      ( ( intrel @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ ( product_Pair_nat_nat @ U @ V ) )
      = ( ( plus_plus_nat @ X3 @ V )
        = ( plus_plus_nat @ U @ Y3 ) ) ) ).

% intrel_iff
thf(fact_9782_plus__real_Orsp,axiom,
    ( bNF_re1962705104956426057at_rat @ realrel @ ( bNF_re895249473297799549at_rat @ realrel @ realrel )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ).

% plus_real.rsp
thf(fact_9783_int_Orel__eq__transfer,axiom,
    ( bNF_re717283939379294677_int_o @ pcr_int
    @ ( bNF_re6644619430987730960nt_o_o @ pcr_int
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ intrel
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 ) ) ).

% int.rel_eq_transfer
thf(fact_9784_times__real_Orsp,axiom,
    ( bNF_re1962705104956426057at_rat @ realrel @ ( bNF_re895249473297799549at_rat @ realrel @ realrel )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ).

% times_real.rsp
thf(fact_9785_uminus__real_Orsp,axiom,
    ( bNF_re895249473297799549at_rat @ realrel @ realrel
    @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) )
    @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) ) ) ).

% uminus_real.rsp
thf(fact_9786_one__real_Orsp,axiom,
    ( realrel
    @ ^ [N3: nat] : one_one_rat
    @ ^ [N3: nat] : one_one_rat ) ).

% one_real.rsp
thf(fact_9787_int_Oabs__eq__iff,axiom,
    ! [X3: product_prod_nat_nat,Y3: product_prod_nat_nat] :
      ( ( ( abs_Integ @ X3 )
        = ( abs_Integ @ Y3 ) )
      = ( intrel @ X3 @ Y3 ) ) ).

% int.abs_eq_iff
thf(fact_9788_zero__real_Orsp,axiom,
    ( realrel
    @ ^ [N3: nat] : zero_zero_rat
    @ ^ [N3: nat] : zero_zero_rat ) ).

% zero_real.rsp
thf(fact_9789_zero__int_Orsp,axiom,
    intrel @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ).

% zero_int.rsp
thf(fact_9790_uminus__int_Orsp,axiom,
    ( bNF_re2241393799969408733at_nat @ intrel @ intrel
    @ ( produc2626176000494625587at_nat
      @ ^ [X: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X ) )
    @ ( produc2626176000494625587at_nat
      @ ^ [X: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X ) ) ) ).

% uminus_int.rsp
thf(fact_9791_nat_Orsp,axiom,
    ( bNF_re8246922863344978751at_nat @ intrel
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ ( produc6842872674320459806at_nat @ minus_minus_nat )
    @ ( produc6842872674320459806at_nat @ minus_minus_nat ) ) ).

% nat.rsp
thf(fact_9792_one__int_Orsp,axiom,
    intrel @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ).

% one_int.rsp
thf(fact_9793_intrel__def,axiom,
    ( intrel
    = ( produc8739625826339149834_nat_o
      @ ^ [X: nat,Y: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U2: nat,V4: nat] :
              ( ( plus_plus_nat @ X @ V4 )
              = ( plus_plus_nat @ U2 @ Y ) ) ) ) ) ).

% intrel_def
thf(fact_9794_less__int_Orsp,axiom,
    ( bNF_re4202695980764964119_nat_o @ intrel
    @ ( bNF_re3666534408544137501at_o_o @ intrel
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X: nat,Y: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X: nat,Y: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) ) ) ).

% less_int.rsp
thf(fact_9795_less__eq__int_Orsp,axiom,
    ( bNF_re4202695980764964119_nat_o @ intrel
    @ ( bNF_re3666534408544137501at_o_o @ intrel
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X: nat,Y: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) )
    @ ( produc8739625826339149834_nat_o
      @ ^ [X: nat,Y: nat] :
          ( produc6081775807080527818_nat_o
          @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) ) ) ) ).

% less_eq_int.rsp
thf(fact_9796_plus__int_Orsp,axiom,
    ( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) ) )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) ) ) ) ).

% plus_int.rsp
thf(fact_9797_minus__int_Orsp,axiom,
    ( bNF_re3099431351363272937at_nat @ intrel @ ( bNF_re2241393799969408733at_nat @ intrel @ intrel )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) ) )
    @ ( produc27273713700761075at_nat
      @ ^ [X: nat,Y: nat] :
          ( produc2626176000494625587at_nat
          @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) ) ) ) ).

% minus_int.rsp
thf(fact_9798_int_Obi__total,axiom,
    bi_tot896582865486249351at_int @ pcr_int ).

% int.bi_total
thf(fact_9799_inverse__real_Orsp,axiom,
    ( bNF_re895249473297799549at_rat @ realrel @ realrel
    @ ^ [X8: nat > rat] :
        ( if_nat_rat @ ( vanishes @ X8 )
        @ ^ [N3: nat] : zero_zero_rat
        @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) )
    @ ^ [X8: nat > rat] :
        ( if_nat_rat @ ( vanishes @ X8 )
        @ ^ [N3: nat] : zero_zero_rat
        @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) ) ) ).

% inverse_real.rsp
thf(fact_9800_vanishes__mult__bounded,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ? [A7: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ A7 )
          & ! [N2: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N2 ) ) @ A7 ) )
     => ( ( vanishes @ Y8 )
       => ( vanishes
          @ ^ [N3: nat] : ( times_times_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% vanishes_mult_bounded
thf(fact_9801_vanishes__const,axiom,
    ! [C: rat] :
      ( ( vanishes
        @ ^ [N3: nat] : C )
      = ( C = zero_zero_rat ) ) ).

% vanishes_const
thf(fact_9802_vanishes__add,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( vanishes @ X9 )
     => ( ( vanishes @ Y8 )
       => ( vanishes
          @ ^ [N3: nat] : ( plus_plus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% vanishes_add
thf(fact_9803_vanishes__diff,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( vanishes @ X9 )
     => ( ( vanishes @ Y8 )
       => ( vanishes
          @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% vanishes_diff
thf(fact_9804_vanishes__minus,axiom,
    ! [X9: nat > rat] :
      ( ( vanishes @ X9 )
     => ( vanishes
        @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X9 @ N3 ) ) ) ) ).

% vanishes_minus
thf(fact_9805_vanishes__def,axiom,
    ( vanishes
    = ( ^ [X8: nat > rat] :
        ! [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
         => ? [K3: nat] :
            ! [N3: nat] :
              ( ( ord_less_eq_nat @ K3 @ N3 )
             => ( ord_less_rat @ ( abs_abs_rat @ ( X8 @ N3 ) ) @ R5 ) ) ) ) ) ).

% vanishes_def
thf(fact_9806_vanishesI,axiom,
    ! [X9: nat > rat] :
      ( ! [R: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R )
         => ? [K4: nat] :
            ! [N2: nat] :
              ( ( ord_less_eq_nat @ K4 @ N2 )
             => ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N2 ) ) @ R ) ) )
     => ( vanishes @ X9 ) ) ).

% vanishesI
thf(fact_9807_vanishesD,axiom,
    ! [X9: nat > rat,R2: rat] :
      ( ( vanishes @ X9 )
     => ( ( ord_less_rat @ zero_zero_rat @ R2 )
       => ? [K2: nat] :
          ! [N8: nat] :
            ( ( ord_less_eq_nat @ K2 @ N8 )
           => ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N8 ) ) @ R2 ) ) ) ) ).

% vanishesD
thf(fact_9808_inverse__real_Otransfer,axiom,
    ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real
    @ ^ [X8: nat > rat] :
        ( if_nat_rat @ ( vanishes @ X8 )
        @ ^ [N3: nat] : zero_zero_rat
        @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) )
    @ inverse_inverse_real ) ).

% inverse_real.transfer
thf(fact_9809_inverse__real_Oabs__eq,axiom,
    ! [X3: nat > rat] :
      ( ( realrel @ X3 @ X3 )
     => ( ( inverse_inverse_real @ ( real2 @ X3 ) )
        = ( real2
          @ ( if_nat_rat @ ( vanishes @ X3 )
            @ ^ [N3: nat] : zero_zero_rat
            @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X3 @ N3 ) ) ) ) ) ) ).

% inverse_real.abs_eq
thf(fact_9810_real_Oabs__induct,axiom,
    ! [P: real > $o,X3: real] :
      ( ! [Y4: nat > rat] :
          ( ( realrel @ Y4 @ Y4 )
         => ( P @ ( real2 @ Y4 ) ) )
     => ( P @ X3 ) ) ).

% real.abs_induct
thf(fact_9811_of__rat__Real,axiom,
    ( field_7254667332652039916t_real
    = ( ^ [X: rat] :
          ( real2
          @ ^ [N3: nat] : X ) ) ) ).

% of_rat_Real
thf(fact_9812_zero__real__def,axiom,
    ( zero_zero_real
    = ( real2
      @ ^ [N3: nat] : zero_zero_rat ) ) ).

% zero_real_def
thf(fact_9813_one__real__def,axiom,
    ( one_one_real
    = ( real2
      @ ^ [N3: nat] : one_one_rat ) ) ).

% one_real_def
thf(fact_9814_real_Orel__eq__transfer,axiom,
    ( bNF_re4521903465945308077real_o @ pcr_real
    @ ( bNF_re4297313714947099218al_o_o @ pcr_real
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ realrel
    @ ^ [Y5: real,Z2: real] : ( Y5 = Z2 ) ) ).

% real.rel_eq_transfer
thf(fact_9815_of__int__Real,axiom,
    ( ring_1_of_int_real
    = ( ^ [X: int] :
          ( real2
          @ ^ [N3: nat] : ( ring_1_of_int_rat @ X ) ) ) ) ).

% of_int_Real
thf(fact_9816_zero__real_Otransfer,axiom,
    ( pcr_real
    @ ^ [N3: nat] : zero_zero_rat
    @ zero_zero_real ) ).

% zero_real.transfer
thf(fact_9817_one__real_Otransfer,axiom,
    ( pcr_real
    @ ^ [N3: nat] : one_one_rat
    @ one_one_real ) ).

% one_real.transfer
thf(fact_9818_of__nat__Real,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [X: nat] :
          ( real2
          @ ^ [N3: nat] : ( semiri681578069525770553at_rat @ X ) ) ) ) ).

% of_nat_Real
thf(fact_9819_uminus__real_Otransfer,axiom,
    ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real
    @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) )
    @ uminus_uminus_real ) ).

% uminus_real.transfer
thf(fact_9820_plus__real_Otransfer,axiom,
    ( bNF_re4695409256820837752l_real @ pcr_real @ ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ plus_plus_real ) ).

% plus_real.transfer
thf(fact_9821_uminus__real_Oabs__eq,axiom,
    ! [X3: nat > rat] :
      ( ( realrel @ X3 @ X3 )
     => ( ( uminus_uminus_real @ ( real2 @ X3 ) )
        = ( real2
          @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X3 @ N3 ) ) ) ) ) ).

% uminus_real.abs_eq
thf(fact_9822_times__real_Otransfer,axiom,
    ( bNF_re4695409256820837752l_real @ pcr_real @ ( bNF_re3023117138289059399t_real @ pcr_real @ pcr_real )
    @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) )
    @ times_times_real ) ).

% times_real.transfer
thf(fact_9823_plus__real_Oabs__eq,axiom,
    ! [Xa: nat > rat,X3: nat > rat] :
      ( ( realrel @ Xa @ Xa )
     => ( ( realrel @ X3 @ X3 )
       => ( ( plus_plus_real @ ( real2 @ Xa ) @ ( real2 @ X3 ) )
          = ( real2
            @ ^ [N3: nat] : ( plus_plus_rat @ ( Xa @ N3 ) @ ( X3 @ N3 ) ) ) ) ) ) ).

% plus_real.abs_eq
thf(fact_9824_times__real_Oabs__eq,axiom,
    ! [Xa: nat > rat,X3: nat > rat] :
      ( ( realrel @ Xa @ Xa )
     => ( ( realrel @ X3 @ X3 )
       => ( ( times_times_real @ ( real2 @ Xa ) @ ( real2 @ X3 ) )
          = ( real2
            @ ^ [N3: nat] : ( times_times_rat @ ( Xa @ N3 ) @ ( X3 @ N3 ) ) ) ) ) ) ).

% times_real.abs_eq
thf(fact_9825_Real_Opositive_Otransfer,axiom,
    ( bNF_re4297313714947099218al_o_o @ pcr_real
    @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 )
    @ ^ [X8: nat > rat] :
      ? [R5: rat] :
        ( ( ord_less_rat @ zero_zero_rat @ R5 )
        & ? [K3: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N3 )
           => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) )
    @ positive2 ) ).

% Real.positive.transfer
thf(fact_9826_Real_Opositive_Oabs__eq,axiom,
    ! [X3: nat > rat] :
      ( ( realrel @ X3 @ X3 )
     => ( ( positive2 @ ( real2 @ X3 ) )
        = ( ? [R5: rat] :
              ( ( ord_less_rat @ zero_zero_rat @ R5 )
              & ? [K3: nat] :
                ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K3 @ N3 )
                 => ( ord_less_rat @ R5 @ ( X3 @ N3 ) ) ) ) ) ) ) ).

% Real.positive.abs_eq
thf(fact_9827_Real_Opositive__mult,axiom,
    ! [X3: real,Y3: real] :
      ( ( positive2 @ X3 )
     => ( ( positive2 @ Y3 )
       => ( positive2 @ ( times_times_real @ X3 @ Y3 ) ) ) ) ).

% Real.positive_mult
thf(fact_9828_Real_Opositive__add,axiom,
    ! [X3: real,Y3: real] :
      ( ( positive2 @ X3 )
     => ( ( positive2 @ Y3 )
       => ( positive2 @ ( plus_plus_real @ X3 @ Y3 ) ) ) ) ).

% Real.positive_add
thf(fact_9829_Real_Opositive__zero,axiom,
    ~ ( positive2 @ zero_zero_real ) ).

% Real.positive_zero
thf(fact_9830_Real_Opositive__minus,axiom,
    ! [X3: real] :
      ( ~ ( positive2 @ X3 )
     => ( ( X3 != zero_zero_real )
       => ( positive2 @ ( uminus_uminus_real @ X3 ) ) ) ) ).

% Real.positive_minus
thf(fact_9831_less__real__def,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y: real] : ( positive2 @ ( minus_minus_real @ Y @ X ) ) ) ) ).

% less_real_def
thf(fact_9832_le__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( ord_less_eq_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( ! [R5: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ R5 )
               => ? [K3: nat] :
                  ! [N3: nat] :
                    ( ( ord_less_eq_nat @ K3 @ N3 )
                   => ( ord_less_eq_rat @ ( X9 @ N3 ) @ ( plus_plus_rat @ ( Y8 @ N3 ) @ R5 ) ) ) ) ) ) ) ) ).

% le_Real
thf(fact_9833_Real_Opositive_Orep__eq,axiom,
    ( positive2
    = ( ^ [X: real] :
        ? [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
          & ? [K3: nat] :
            ! [N3: nat] :
              ( ( ord_less_eq_nat @ K3 @ N3 )
             => ( ord_less_rat @ R5 @ ( rep_real @ X @ N3 ) ) ) ) ) ) ).

% Real.positive.rep_eq
thf(fact_9834_realrel__refl,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( realrel @ X9 @ X9 ) ) ).

% realrel_refl
thf(fact_9835_cauchy__minus,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( cauchy
        @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X9 @ N3 ) ) ) ) ).

% cauchy_minus
thf(fact_9836_cauchy__const,axiom,
    ! [X3: rat] :
      ( cauchy
      @ ^ [N3: nat] : X3 ) ).

% cauchy_const
thf(fact_9837_cauchy__add,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( cauchy
          @ ^ [N3: nat] : ( plus_plus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% cauchy_add
thf(fact_9838_cauchy__mult,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( cauchy
          @ ^ [N3: nat] : ( times_times_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% cauchy_mult
thf(fact_9839_Real__induct,axiom,
    ! [P: real > $o,X3: real] :
      ( ! [X16: nat > rat] :
          ( ( cauchy @ X16 )
         => ( P @ ( real2 @ X16 ) ) )
     => ( P @ X3 ) ) ).

% Real_induct
thf(fact_9840_cauchy__diff,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( cauchy
          @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ).

% cauchy_diff
thf(fact_9841_cr__real__eq,axiom,
    ( pcr_real
    = ( ^ [X: nat > rat,Y: real] :
          ( ( cauchy @ X )
          & ( ( real2 @ X )
            = Y ) ) ) ) ).

% cr_real_eq
thf(fact_9842_cauchy__inverse,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ( cauchy
          @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X9 @ N3 ) ) ) ) ) ).

% cauchy_inverse
thf(fact_9843_cauchy__imp__bounded,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ? [B4: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ B4 )
          & ! [N8: nat] : ( ord_less_rat @ ( abs_abs_rat @ ( X9 @ N8 ) ) @ B4 ) ) ) ).

% cauchy_imp_bounded
thf(fact_9844_less__RealD,axiom,
    ! [Y8: nat > rat,X3: real] :
      ( ( cauchy @ Y8 )
     => ( ( ord_less_real @ X3 @ ( real2 @ Y8 ) )
       => ? [N2: nat] : ( ord_less_real @ X3 @ ( field_7254667332652039916t_real @ ( Y8 @ N2 ) ) ) ) ) ).

% less_RealD
thf(fact_9845_le__RealI,axiom,
    ! [Y8: nat > rat,X3: real] :
      ( ( cauchy @ Y8 )
     => ( ! [N2: nat] : ( ord_less_eq_real @ X3 @ ( field_7254667332652039916t_real @ ( Y8 @ N2 ) ) )
       => ( ord_less_eq_real @ X3 @ ( real2 @ Y8 ) ) ) ) ).

% le_RealI
thf(fact_9846_Real__leI,axiom,
    ! [X9: nat > rat,Y3: real] :
      ( ( cauchy @ X9 )
     => ( ! [N2: nat] : ( ord_less_eq_real @ ( field_7254667332652039916t_real @ ( X9 @ N2 ) ) @ Y3 )
       => ( ord_less_eq_real @ ( real2 @ X9 ) @ Y3 ) ) ) ).

% Real_leI
thf(fact_9847_minus__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( uminus_uminus_real @ ( real2 @ X9 ) )
        = ( real2
          @ ^ [N3: nat] : ( uminus_uminus_rat @ ( X9 @ N3 ) ) ) ) ) ).

% minus_Real
thf(fact_9848_add__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( plus_plus_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( real2
            @ ^ [N3: nat] : ( plus_plus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% add_Real
thf(fact_9849_mult__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( times_times_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( real2
            @ ^ [N3: nat] : ( times_times_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% mult_Real
thf(fact_9850_diff__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( minus_minus_real @ ( real2 @ X9 ) @ ( real2 @ Y8 ) )
          = ( real2
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% diff_Real
thf(fact_9851_realrelI,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( vanishes
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) )
         => ( realrel @ X9 @ Y8 ) ) ) ) ).

% realrelI
thf(fact_9852_eq__Real,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( cauchy @ Y8 )
       => ( ( ( real2 @ X9 )
            = ( real2 @ Y8 ) )
          = ( vanishes
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) ) ) ) ) ).

% eq_Real
thf(fact_9853_vanishes__diff__inverse,axiom,
    ! [X9: nat > rat,Y8: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ( ( cauchy @ Y8 )
         => ( ~ ( vanishes @ Y8 )
           => ( ( vanishes
                @ ^ [N3: nat] : ( minus_minus_rat @ ( X9 @ N3 ) @ ( Y8 @ N3 ) ) )
             => ( vanishes
                @ ^ [N3: nat] : ( minus_minus_rat @ ( inverse_inverse_rat @ ( X9 @ N3 ) ) @ ( inverse_inverse_rat @ ( Y8 @ N3 ) ) ) ) ) ) ) ) ) ).

% vanishes_diff_inverse
thf(fact_9854_realrel__def,axiom,
    ( realrel
    = ( ^ [X8: nat > rat,Y7: nat > rat] :
          ( ( cauchy @ X8 )
          & ( cauchy @ Y7 )
          & ( vanishes
            @ ^ [N3: nat] : ( minus_minus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ) ) ) ).

% realrel_def
thf(fact_9855_cauchy__not__vanishes__cases,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ? [B4: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ B4 )
            & ? [K2: nat] :
                ( ! [N8: nat] :
                    ( ( ord_less_eq_nat @ K2 @ N8 )
                   => ( ord_less_rat @ B4 @ ( uminus_uminus_rat @ ( X9 @ N8 ) ) ) )
                | ! [N8: nat] :
                    ( ( ord_less_eq_nat @ K2 @ N8 )
                   => ( ord_less_rat @ B4 @ ( X9 @ N8 ) ) ) ) ) ) ) ).

% cauchy_not_vanishes_cases
thf(fact_9856_positive__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( positive2 @ ( real2 @ X9 ) )
        = ( ? [R5: rat] :
              ( ( ord_less_rat @ zero_zero_rat @ R5 )
              & ? [K3: nat] :
                ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K3 @ N3 )
                 => ( ord_less_rat @ R5 @ ( X9 @ N3 ) ) ) ) ) ) ) ).

% positive_Real
thf(fact_9857_cauchy__not__vanishes,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ~ ( vanishes @ X9 )
       => ? [B4: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ B4 )
            & ? [K2: nat] :
              ! [N8: nat] :
                ( ( ord_less_eq_nat @ K2 @ N8 )
               => ( ord_less_rat @ B4 @ ( abs_abs_rat @ ( X9 @ N8 ) ) ) ) ) ) ) ).

% cauchy_not_vanishes
thf(fact_9858_cauchy__def,axiom,
    ( cauchy
    = ( ^ [X8: nat > rat] :
        ! [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
         => ? [K3: nat] :
            ! [M3: nat] :
              ( ( ord_less_eq_nat @ K3 @ M3 )
             => ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K3 @ N3 )
                 => ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X8 @ M3 ) @ ( X8 @ N3 ) ) ) @ R5 ) ) ) ) ) ) ).

% cauchy_def
thf(fact_9859_cauchyI,axiom,
    ! [X9: nat > rat] :
      ( ! [R: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R )
         => ? [K4: nat] :
            ! [M4: nat] :
              ( ( ord_less_eq_nat @ K4 @ M4 )
             => ! [N2: nat] :
                  ( ( ord_less_eq_nat @ K4 @ N2 )
                 => ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X9 @ M4 ) @ ( X9 @ N2 ) ) ) @ R ) ) ) )
     => ( cauchy @ X9 ) ) ).

% cauchyI
thf(fact_9860_cauchyD,axiom,
    ! [X9: nat > rat,R2: rat] :
      ( ( cauchy @ X9 )
     => ( ( ord_less_rat @ zero_zero_rat @ R2 )
       => ? [K2: nat] :
          ! [M2: nat] :
            ( ( ord_less_eq_nat @ K2 @ M2 )
           => ! [N8: nat] :
                ( ( ord_less_eq_nat @ K2 @ N8 )
               => ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( X9 @ M2 ) @ ( X9 @ N8 ) ) ) @ R2 ) ) ) ) ) ).

% cauchyD
thf(fact_9861_inverse__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( ( vanishes @ X9 )
         => ( ( inverse_inverse_real @ ( real2 @ X9 ) )
            = zero_zero_real ) )
        & ( ~ ( vanishes @ X9 )
         => ( ( inverse_inverse_real @ ( real2 @ X9 ) )
            = ( real2
              @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X9 @ N3 ) ) ) ) ) ) ) ).

% inverse_Real
thf(fact_9862_not__positive__Real,axiom,
    ! [X9: nat > rat] :
      ( ( cauchy @ X9 )
     => ( ( ~ ( positive2 @ ( real2 @ X9 ) ) )
        = ( ! [R5: rat] :
              ( ( ord_less_rat @ zero_zero_rat @ R5 )
             => ? [K3: nat] :
                ! [N3: nat] :
                  ( ( ord_less_eq_nat @ K3 @ N3 )
                 => ( ord_less_eq_rat @ ( X9 @ N3 ) @ R5 ) ) ) ) ) ) ).

% not_positive_Real
thf(fact_9863_Real_Opositive__def,axiom,
    ( positive2
    = ( map_fu1856342031159181835at_o_o @ rep_real @ id_o
      @ ^ [X8: nat > rat] :
        ? [R5: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ R5 )
          & ? [K3: nat] :
            ! [N3: nat] :
              ( ( ord_less_eq_nat @ K3 @ N3 )
             => ( ord_less_rat @ R5 @ ( X8 @ N3 ) ) ) ) ) ) ).

% Real.positive_def
thf(fact_9864_inverse__real__def,axiom,
    ( inverse_inverse_real
    = ( map_fu7146612038024189824t_real @ rep_real @ real2
      @ ^ [X8: nat > rat] :
          ( if_nat_rat @ ( vanishes @ X8 )
          @ ^ [N3: nat] : zero_zero_rat
          @ ^ [N3: nat] : ( inverse_inverse_rat @ ( X8 @ N3 ) ) ) ) ) ).

% inverse_real_def
thf(fact_9865_uminus__real__def,axiom,
    ( uminus_uminus_real
    = ( map_fu7146612038024189824t_real @ rep_real @ real2
      @ ^ [X8: nat > rat,N3: nat] : ( uminus_uminus_rat @ ( X8 @ N3 ) ) ) ) ).

% uminus_real_def
thf(fact_9866_times__real__def,axiom,
    ( times_times_real
    = ( map_fu1532550112467129777l_real @ rep_real @ ( map_fu7146612038024189824t_real @ rep_real @ real2 )
      @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( times_times_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ) ).

% times_real_def
thf(fact_9867_plus__real__def,axiom,
    ( plus_plus_real
    = ( map_fu1532550112467129777l_real @ rep_real @ ( map_fu7146612038024189824t_real @ rep_real @ real2 )
      @ ^ [X8: nat > rat,Y7: nat > rat,N3: nat] : ( plus_plus_rat @ ( X8 @ N3 ) @ ( Y7 @ N3 ) ) ) ) ).

% plus_real_def
thf(fact_9868_cr__real__def,axiom,
    ( cr_real
    = ( ^ [X: nat > rat,Y: real] :
          ( ( realrel @ X @ X )
          & ( ( real2 @ X )
            = Y ) ) ) ) ).

% cr_real_def
thf(fact_9869_Bseq__monoseq__convergent_H__dec,axiom,
    ! [F: nat > real,M7: nat] :
      ( ( bfun_nat_real
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ M7 ) )
        @ at_top_nat )
     => ( ! [M4: nat,N2: nat] :
            ( ( ord_less_eq_nat @ M7 @ M4 )
           => ( ( ord_less_eq_nat @ M4 @ N2 )
             => ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ M4 ) ) ) )
       => ( topolo7531315842566124627t_real @ F ) ) ) ).

% Bseq_monoseq_convergent'_dec
thf(fact_9870_real_Opcr__cr__eq,axiom,
    pcr_real = cr_real ).

% real.pcr_cr_eq
thf(fact_9871_Bseq__mono__convergent,axiom,
    ! [X9: nat > real] :
      ( ( bfun_nat_real @ X9 @ at_top_nat )
     => ( ! [M4: nat,N2: nat] :
            ( ( ord_less_eq_nat @ M4 @ N2 )
           => ( ord_less_eq_real @ ( X9 @ M4 ) @ ( X9 @ N2 ) ) )
       => ( topolo7531315842566124627t_real @ X9 ) ) ) ).

% Bseq_mono_convergent
thf(fact_9872_convergent__realpow,axiom,
    ! [X3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X3 )
     => ( ( ord_less_eq_real @ X3 @ one_one_real )
       => ( topolo7531315842566124627t_real @ ( power_power_real @ X3 ) ) ) ) ).

% convergent_realpow
thf(fact_9873_Bseq__monoseq__convergent_H__inc,axiom,
    ! [F: nat > real,M7: nat] :
      ( ( bfun_nat_real
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ M7 ) )
        @ at_top_nat )
     => ( ! [M4: nat,N2: nat] :
            ( ( ord_less_eq_nat @ M7 @ M4 )
           => ( ( ord_less_eq_nat @ M4 @ N2 )
             => ( ord_less_eq_real @ ( F @ M4 ) @ ( F @ N2 ) ) ) )
       => ( topolo7531315842566124627t_real @ F ) ) ) ).

% Bseq_monoseq_convergent'_inc
thf(fact_9874_at__right__to__0,axiom,
    ! [A: real] :
      ( ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) )
      = ( filtermap_real_real
        @ ^ [X: real] : ( plus_plus_real @ X @ A )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% at_right_to_0
thf(fact_9875_at__right__to__top,axiom,
    ( ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) )
    = ( filtermap_real_real @ inverse_inverse_real @ at_top_real ) ) ).

% at_right_to_top
thf(fact_9876_at__top__to__right,axiom,
    ( at_top_real
    = ( filtermap_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% at_top_to_right
thf(fact_9877_filtermap__ln__at__right,axiom,
    ( ( filtermap_real_real @ ln_ln_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
    = at_bot_real ) ).

% filtermap_ln_at_right
thf(fact_9878_pair__lessI2,axiom,
    ! [A: nat,B: nat,S: nat,T: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ S @ T )
       => ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ ( product_Pair_nat_nat @ A @ S ) @ ( product_Pair_nat_nat @ B @ T ) ) @ fun_pair_less ) ) ) ).

% pair_lessI2
thf(fact_9879_pair__less__iff1,axiom,
    ! [X3: nat,Y3: nat,Z: nat] :
      ( ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ ( product_Pair_nat_nat @ X3 @ Z ) ) @ fun_pair_less )
      = ( ord_less_nat @ Y3 @ Z ) ) ).

% pair_less_iff1
thf(fact_9880_pair__lessI1,axiom,
    ! [A: nat,B: nat,S: nat,T: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ ( product_Pair_nat_nat @ A @ S ) @ ( product_Pair_nat_nat @ B @ T ) ) @ fun_pair_less ) ) ).

% pair_lessI1
thf(fact_9881_gcd__nat_Oordering__top__axioms,axiom,
    ( ordering_top_nat @ dvd_dvd_nat
    @ ^ [M3: nat,N3: nat] :
        ( ( dvd_dvd_nat @ M3 @ N3 )
        & ( M3 != N3 ) )
    @ zero_zero_nat ) ).

% gcd_nat.ordering_top_axioms
thf(fact_9882_bot__nat__0_Oordering__top__axioms,axiom,
    ( ordering_top_nat
    @ ^ [X: nat,Y: nat] : ( ord_less_eq_nat @ Y @ X )
    @ ^ [X: nat,Y: nat] : ( ord_less_nat @ Y @ X )
    @ zero_zero_nat ) ).

% bot_nat_0.ordering_top_axioms
thf(fact_9883_pair__leqI2,axiom,
    ! [A: nat,B: nat,S: nat,T: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ S @ T )
       => ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ ( product_Pair_nat_nat @ A @ S ) @ ( product_Pair_nat_nat @ B @ T ) ) @ fun_pair_leq ) ) ) ).

% pair_leqI2
thf(fact_9884_pair__leqI1,axiom,
    ! [A: nat,B: nat,S: nat,T: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ ( product_Pair_nat_nat @ A @ S ) @ ( product_Pair_nat_nat @ B @ T ) ) @ fun_pair_leq ) ) ).

% pair_leqI1
thf(fact_9885_wmax__insertI,axiom,
    ! [Y3: product_prod_nat_nat,YS: set_Pr1261947904930325089at_nat,X3: product_prod_nat_nat,XS: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ Y3 @ YS )
     => ( ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ X3 @ Y3 ) @ fun_pair_leq )
       => ( ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ XS @ YS ) @ fun_max_weak )
         => ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ ( insert8211810215607154385at_nat @ X3 @ XS ) @ YS ) @ fun_max_weak ) ) ) ) ).

% wmax_insertI
thf(fact_9886_wmin__insertI,axiom,
    ! [X3: product_prod_nat_nat,XS: set_Pr1261947904930325089at_nat,Y3: product_prod_nat_nat,YS: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ X3 @ XS )
     => ( ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ X3 @ Y3 ) @ fun_pair_leq )
       => ( ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ XS @ YS ) @ fun_min_weak )
         => ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ XS @ ( insert8211810215607154385at_nat @ Y3 @ YS ) ) @ fun_min_weak ) ) ) ) ).

% wmin_insertI
thf(fact_9887_wmin__emptyI,axiom,
    ! [X9: set_Pr1261947904930325089at_nat] : ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ X9 @ bot_bo2099793752762293965at_nat ) @ fun_min_weak ) ).

% wmin_emptyI
thf(fact_9888_wmax__emptyI,axiom,
    ! [X9: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ X9 )
     => ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ bot_bo2099793752762293965at_nat @ X9 ) @ fun_max_weak ) ) ).

% wmax_emptyI
thf(fact_9889_smax__insertI,axiom,
    ! [Y3: product_prod_nat_nat,Y8: set_Pr1261947904930325089at_nat,X3: product_prod_nat_nat,X9: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ Y3 @ Y8 )
     => ( ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ X3 @ Y3 ) @ fun_pair_less )
       => ( ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ X9 @ Y8 ) @ fun_max_strict )
         => ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ ( insert8211810215607154385at_nat @ X3 @ X9 ) @ Y8 ) @ fun_max_strict ) ) ) ) ).

% smax_insertI
thf(fact_9890_smin__insertI,axiom,
    ! [X3: product_prod_nat_nat,XS: set_Pr1261947904930325089at_nat,Y3: product_prod_nat_nat,YS: set_Pr1261947904930325089at_nat] :
      ( ( member8440522571783428010at_nat @ X3 @ XS )
     => ( ( member8206827879206165904at_nat @ ( produc6161850002892822231at_nat @ X3 @ Y3 ) @ fun_pair_less )
       => ( ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ XS @ YS ) @ fun_min_strict )
         => ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ XS @ ( insert8211810215607154385at_nat @ Y3 @ YS ) ) @ fun_min_strict ) ) ) ) ).

% smin_insertI
thf(fact_9891_smax__emptyI,axiom,
    ! [Y8: set_Pr1261947904930325089at_nat] :
      ( ( finite6177210948735845034at_nat @ Y8 )
     => ( ( Y8 != bot_bo2099793752762293965at_nat )
       => ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ bot_bo2099793752762293965at_nat @ Y8 ) @ fun_max_strict ) ) ) ).

% smax_emptyI
thf(fact_9892_smin__emptyI,axiom,
    ! [X9: set_Pr1261947904930325089at_nat] :
      ( ( X9 != bot_bo2099793752762293965at_nat )
     => ( member8757157785044589968at_nat @ ( produc2922128104949294807at_nat @ X9 @ bot_bo2099793752762293965at_nat ) @ fun_min_strict ) ) ).

% smin_emptyI
thf(fact_9893_min__weak__def,axiom,
    ( fun_min_weak
    = ( sup_su5525570899277871387at_nat @ ( min_ex6901939911449802026at_nat @ fun_pair_leq ) @ ( insert9069300056098147895at_nat @ ( produc2922128104949294807at_nat @ bot_bo2099793752762293965at_nat @ bot_bo2099793752762293965at_nat ) @ bot_bo228742789529271731at_nat ) ) ) ).

% min_weak_def
thf(fact_9894_max__weak__def,axiom,
    ( fun_max_weak
    = ( sup_su5525570899277871387at_nat @ ( max_ex8135407076693332796at_nat @ fun_pair_leq ) @ ( insert9069300056098147895at_nat @ ( produc2922128104949294807at_nat @ bot_bo2099793752762293965at_nat @ bot_bo2099793752762293965at_nat ) @ bot_bo228742789529271731at_nat ) ) ) ).

% max_weak_def
thf(fact_9895_max__strict__def,axiom,
    ( fun_max_strict
    = ( max_ex8135407076693332796at_nat @ fun_pair_less ) ) ).

% max_strict_def
thf(fact_9896_min__strict__def,axiom,
    ( fun_min_strict
    = ( min_ex6901939911449802026at_nat @ fun_pair_less ) ) ).

% min_strict_def
thf(fact_9897_min__rpair__set,axiom,
    fun_re2478310338295953701at_nat @ ( produc9060074326276436823at_nat @ fun_min_strict @ fun_min_weak ) ).

% min_rpair_set
thf(fact_9898_max__rpair__set,axiom,
    fun_re2478310338295953701at_nat @ ( produc9060074326276436823at_nat @ fun_max_strict @ fun_max_weak ) ).

% max_rpair_set
thf(fact_9899_pred__nat__trancl__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ M @ N ) @ ( transi2905341329935302413cl_nat @ pred_nat ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% pred_nat_trancl_eq_le
thf(fact_9900_less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ M @ N ) @ ( transi6264000038957366511cl_nat @ pred_nat ) )
      = ( ord_less_nat @ M @ N ) ) ).

% less_eq
thf(fact_9901_euclidean__size__int__def,axiom,
    ( euclid4774559944035922753ze_int
    = ( comp_int_nat_int @ nat2 @ abs_abs_int ) ) ).

% euclidean_size_int_def
thf(fact_9902_division__segment__eq__sgn,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ( euclid3395696857347342551nt_int @ K )
        = ( sgn_sgn_int @ K ) ) ) ).

% division_segment_eq_sgn
thf(fact_9903_division__segment__int__def,axiom,
    ( euclid3395696857347342551nt_int
    = ( ^ [K3: int] : ( if_int @ ( ord_less_eq_int @ zero_zero_int @ K3 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% division_segment_int_def
thf(fact_9904_rat__number__expand_I5_J,axiom,
    ! [K: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) )
      = ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% rat_number_expand(5)
thf(fact_9905_less__rat,axiom,
    ! [B: int,D3: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D3 != zero_zero_int )
       => ( ( ord_less_rat @ ( fract @ A @ B ) @ ( fract @ C @ D3 ) )
          = ( ord_less_int @ ( times_times_int @ ( times_times_int @ A @ D3 ) @ ( times_times_int @ B @ D3 ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% less_rat
thf(fact_9906_add__rat,axiom,
    ! [B: int,D3: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D3 != zero_zero_int )
       => ( ( plus_plus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D3 ) )
          = ( fract @ ( plus_plus_int @ ( times_times_int @ A @ D3 ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ).

% add_rat
thf(fact_9907_le__rat,axiom,
    ! [B: int,D3: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D3 != zero_zero_int )
       => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ ( fract @ C @ D3 ) )
          = ( ord_less_eq_int @ ( times_times_int @ ( times_times_int @ A @ D3 ) @ ( times_times_int @ B @ D3 ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ) ).

% le_rat
thf(fact_9908_diff__rat,axiom,
    ! [B: int,D3: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D3 != zero_zero_int )
       => ( ( minus_minus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D3 ) )
          = ( fract @ ( minus_minus_int @ ( times_times_int @ A @ D3 ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D3 ) ) ) ) ) ).

% diff_rat
thf(fact_9909_eq__rat_I1_J,axiom,
    ! [B: int,D3: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D3 != zero_zero_int )
       => ( ( ( fract @ A @ B )
            = ( fract @ C @ D3 ) )
          = ( ( times_times_int @ A @ D3 )
            = ( times_times_int @ C @ B ) ) ) ) ) ).

% eq_rat(1)
thf(fact_9910_mult__rat__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( fract @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( fract @ A @ B ) ) ) ).

% mult_rat_cancel
thf(fact_9911_eq__rat_I2_J,axiom,
    ! [A: int] :
      ( ( fract @ A @ zero_zero_int )
      = ( fract @ zero_zero_int @ one_one_int ) ) ).

% eq_rat(2)
thf(fact_9912_eq__rat_I3_J,axiom,
    ! [A: int,C: int] :
      ( ( fract @ zero_zero_int @ A )
      = ( fract @ zero_zero_int @ C ) ) ).

% eq_rat(3)
thf(fact_9913_rat__number__collapse_I6_J,axiom,
    ! [K: int] :
      ( ( fract @ K @ zero_zero_int )
      = zero_zero_rat ) ).

% rat_number_collapse(6)
thf(fact_9914_rat__number__collapse_I1_J,axiom,
    ! [K: int] :
      ( ( fract @ zero_zero_int @ K )
      = zero_zero_rat ) ).

% rat_number_collapse(1)
thf(fact_9915_Rat__induct__pos,axiom,
    ! [P: rat > $o,Q3: rat] :
      ( ! [A5: int,B4: int] :
          ( ( ord_less_int @ zero_zero_int @ B4 )
         => ( P @ ( fract @ A5 @ B4 ) ) )
     => ( P @ Q3 ) ) ).

% Rat_induct_pos
thf(fact_9916_Zero__rat__def,axiom,
    ( zero_zero_rat
    = ( fract @ zero_zero_int @ one_one_int ) ) ).

% Zero_rat_def
thf(fact_9917_rat__number__expand_I3_J,axiom,
    ( numeral_numeral_rat
    = ( ^ [K3: num] : ( fract @ ( numeral_numeral_int @ K3 ) @ one_one_int ) ) ) ).

% rat_number_expand(3)
thf(fact_9918_rat__number__collapse_I3_J,axiom,
    ! [W: num] :
      ( ( fract @ ( numeral_numeral_int @ W ) @ one_one_int )
      = ( numeral_numeral_rat @ W ) ) ).

% rat_number_collapse(3)
thf(fact_9919_Fract__of__nat__eq,axiom,
    ! [K: nat] :
      ( ( fract @ ( semiri1314217659103216013at_int @ K ) @ one_one_int )
      = ( semiri681578069525770553at_rat @ K ) ) ).

% Fract_of_nat_eq
thf(fact_9920_Fract__less__zero__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ ( fract @ A @ B ) @ zero_zero_rat )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% Fract_less_zero_iff
thf(fact_9921_zero__less__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ ( fract @ A @ B ) )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% zero_less_Fract_iff
thf(fact_9922_Fract_Oabs__eq,axiom,
    ( fract
    = ( ^ [Xa4: int,X: int] : ( abs_Rat @ ( if_Pro3027730157355071871nt_int @ ( X = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ Xa4 @ X ) ) ) ) ) ).

% Fract.abs_eq
thf(fact_9923_positive__rat,axiom,
    ! [A: int,B: int] :
      ( ( positive @ ( fract @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% positive_rat
thf(fact_9924_Fract__less__one__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ ( fract @ A @ B ) @ one_one_rat )
        = ( ord_less_int @ A @ B ) ) ) ).

% Fract_less_one_iff
thf(fact_9925_one__less__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_rat @ one_one_rat @ ( fract @ A @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% one_less_Fract_iff
thf(fact_9926_Fract__add__one,axiom,
    ! [N: int,M: int] :
      ( ( N != zero_zero_int )
     => ( ( fract @ ( plus_plus_int @ M @ N ) @ N )
        = ( plus_plus_rat @ ( fract @ M @ N ) @ one_one_rat ) ) ) ).

% Fract_add_one
thf(fact_9927_Fract_Otransfer,axiom,
    ( bNF_re3461391660133120880nt_rat
    @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
    @ ( bNF_re2214769303045360666nt_rat
      @ ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
      @ pcr_rat )
    @ ^ [A4: int,B3: int] : ( if_Pro3027730157355071871nt_int @ ( B3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ A4 @ B3 ) )
    @ fract ) ).

% Fract.transfer
thf(fact_9928_Fract__le__zero__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ zero_zero_rat )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% Fract_le_zero_iff
thf(fact_9929_zero__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_Fract_iff
thf(fact_9930_Fract__le__one__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ one_one_rat )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% Fract_le_one_iff
thf(fact_9931_one__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% one_le_Fract_iff
thf(fact_9932_rat__number__collapse_I4_J,axiom,
    ! [W: num] :
      ( ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ one_one_int )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ).

% rat_number_collapse(4)
thf(fact_9933_quotient__of__def,axiom,
    ( quotient_of
    = ( ^ [X: rat] :
          ( the_Pr4378521158711661632nt_int
          @ ^ [Pair: product_prod_int_int] :
              ( ( X
                = ( fract @ ( product_fst_int_int @ Pair ) @ ( product_snd_int_int @ Pair ) ) )
              & ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ Pair ) )
              & ( algebr932160517623751201me_int @ ( product_fst_int_int @ Pair ) @ ( product_snd_int_int @ Pair ) ) ) ) ) ) ).

% quotient_of_def
thf(fact_9934_less__eq__enat__def,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [M3: extended_enat] :
          ( extended_case_enat_o
          @ ^ [N1: nat] :
              ( extended_case_enat_o
              @ ^ [M1: nat] : ( ord_less_eq_nat @ M1 @ N1 )
              @ $false
              @ M3 )
          @ $true ) ) ) ).

% less_eq_enat_def
thf(fact_9935_normalize__stable,axiom,
    ! [Q3: int,P6: int] :
      ( ( ord_less_int @ zero_zero_int @ Q3 )
     => ( ( algebr932160517623751201me_int @ P6 @ Q3 )
       => ( ( normalize @ ( product_Pair_int_int @ P6 @ Q3 ) )
          = ( product_Pair_int_int @ P6 @ Q3 ) ) ) ) ).

% normalize_stable
thf(fact_9936_Rat__cases,axiom,
    ! [Q3: rat] :
      ~ ! [A5: int,B4: int] :
          ( ( Q3
            = ( fract @ A5 @ B4 ) )
         => ( ( ord_less_int @ zero_zero_int @ B4 )
           => ~ ( algebr932160517623751201me_int @ A5 @ B4 ) ) ) ).

% Rat_cases
thf(fact_9937_Rat__induct,axiom,
    ! [P: rat > $o,Q3: rat] :
      ( ! [A5: int,B4: int] :
          ( ( ord_less_int @ zero_zero_int @ B4 )
         => ( ( algebr932160517623751201me_int @ A5 @ B4 )
           => ( P @ ( fract @ A5 @ B4 ) ) ) )
     => ( P @ Q3 ) ) ).

% Rat_induct
thf(fact_9938_Rat__cases__nonzero,axiom,
    ! [Q3: rat] :
      ( ! [A5: int,B4: int] :
          ( ( Q3
            = ( fract @ A5 @ B4 ) )
         => ( ( ord_less_int @ zero_zero_int @ B4 )
           => ( ( A5 != zero_zero_int )
             => ~ ( algebr932160517623751201me_int @ A5 @ B4 ) ) ) )
     => ( Q3 = zero_zero_rat ) ) ).

% Rat_cases_nonzero
thf(fact_9939_quotient__of__unique,axiom,
    ! [R2: rat] :
    ? [X4: product_prod_int_int] :
      ( ( R2
        = ( fract @ ( product_fst_int_int @ X4 ) @ ( product_snd_int_int @ X4 ) ) )
      & ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ X4 ) )
      & ( algebr932160517623751201me_int @ ( product_fst_int_int @ X4 ) @ ( product_snd_int_int @ X4 ) )
      & ! [Y6: product_prod_int_int] :
          ( ( ( R2
              = ( fract @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ Y6 ) ) )
            & ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ Y6 ) )
            & ( algebr932160517623751201me_int @ ( product_fst_int_int @ Y6 ) @ ( product_snd_int_int @ Y6 ) ) )
         => ( Y6 = X4 ) ) ) ).

% quotient_of_unique
thf(fact_9940_less__enat__def,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [M3: extended_enat,N3: extended_enat] :
          ( extended_case_enat_o
          @ ^ [M1: nat] : ( extended_case_enat_o @ ( ord_less_nat @ M1 ) @ $true @ N3 )
          @ $false
          @ M3 ) ) ) ).

% less_enat_def
thf(fact_9941_set__encode__vimage__Suc,axiom,
    ! [A3: set_nat] :
      ( ( nat_set_encode @ ( vimage_nat_nat @ suc @ A3 ) )
      = ( divide_divide_nat @ ( nat_set_encode @ A3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% set_encode_vimage_Suc
thf(fact_9942_set__decode__div__2,axiom,
    ! [X3: nat] :
      ( ( nat_set_decode @ ( divide_divide_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( vimage_nat_nat @ suc @ ( nat_set_decode @ X3 ) ) ) ).

% set_decode_div_2
thf(fact_9943_coprime__int__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( algebr932160517623751201me_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( algebr934650988132801477me_nat @ M @ N ) ) ).

% coprime_int_iff
thf(fact_9944_coprime__nat__abs__right__iff,axiom,
    ! [N: nat,K: int] :
      ( ( algebr934650988132801477me_nat @ N @ ( nat2 @ ( abs_abs_int @ K ) ) )
      = ( algebr932160517623751201me_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ).

% coprime_nat_abs_right_iff
thf(fact_9945_coprime__nat__abs__left__iff,axiom,
    ! [K: int,N: nat] :
      ( ( algebr934650988132801477me_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( algebr932160517623751201me_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% coprime_nat_abs_left_iff
thf(fact_9946_coprime__Suc__0__left,axiom,
    ! [N: nat] : ( algebr934650988132801477me_nat @ ( suc @ zero_zero_nat ) @ N ) ).

% coprime_Suc_0_left
thf(fact_9947_coprime__Suc__0__right,axiom,
    ! [N: nat] : ( algebr934650988132801477me_nat @ N @ ( suc @ zero_zero_nat ) ) ).

% coprime_Suc_0_right
thf(fact_9948_vimage__Suc__insert__0,axiom,
    ! [A3: set_nat] :
      ( ( vimage_nat_nat @ suc @ ( insert_nat @ zero_zero_nat @ A3 ) )
      = ( vimage_nat_nat @ suc @ A3 ) ) ).

% vimage_Suc_insert_0
thf(fact_9949_coprime__diff__one__right__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( algebr934650988132801477me_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% coprime_diff_one_right_nat
thf(fact_9950_coprime__diff__one__left__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( algebr934650988132801477me_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ N ) ) ).

% coprime_diff_one_left_nat
thf(fact_9951_Rats__abs__nat__div__natE,axiom,
    ! [X3: real] :
      ( ( member_real @ X3 @ field_5140801741446780682s_real )
     => ~ ! [M4: nat,N2: nat] :
            ( ( N2 != zero_zero_nat )
           => ( ( ( abs_abs_real @ X3 )
                = ( divide_divide_real @ ( semiri5074537144036343181t_real @ M4 ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
             => ~ ( algebr934650988132801477me_nat @ M4 @ N2 ) ) ) ) ).

% Rats_abs_nat_div_natE
thf(fact_9952_transp__realrel,axiom,
    transp_nat_rat @ realrel ).

% transp_realrel
thf(fact_9953_bdd__above__nat,axiom,
    condit2214826472909112428ve_nat = finite_finite_nat ).

% bdd_above_nat
thf(fact_9954_num__of__integer_Otransfer,axiom,
    ( bNF_re6718328864250387230um_num @ code_pcr_integer
    @ ^ [Y5: num,Z2: num] : ( Y5 = Z2 )
    @ ( comp_nat_num_int @ num_of_nat @ nat2 )
    @ code_num_of_integer ) ).

% num_of_integer.transfer
thf(fact_9955_compute__powr__real,axiom,
    ( powr_real2
    = ( ^ [B3: real,I4: real] :
          ( if_real @ ( ord_less_eq_real @ B3 @ zero_zero_real )
          @ ( abort_real @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $true @ $false @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ zero_zero_literal ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
            @ ^ [Uu3: product_unit] : ( powr_real2 @ B3 @ I4 ) )
          @ ( if_real
            @ ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ I4 ) )
              = I4 )
            @ ( if_real @ ( ord_less_eq_real @ zero_zero_real @ I4 ) @ ( power_power_real @ B3 @ ( nat2 @ ( archim6058952711729229775r_real @ I4 ) ) ) @ ( divide_divide_real @ one_one_real @ ( power_power_real @ B3 @ ( nat2 @ ( archim6058952711729229775r_real @ ( uminus_uminus_real @ I4 ) ) ) ) ) )
            @ ( abort_real @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $true @ $false @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $true @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $true @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $false @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $false @ $true @ $false @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $true @ $true @ $true @ $true @ ( literal2 @ $false @ $false @ $false @ $false @ $true @ $true @ $true @ ( literal2 @ $true @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $true @ $false @ $true @ $false @ $false @ $true @ $true @ ( literal2 @ $false @ $true @ $true @ $true @ $false @ $true @ $true @ ( literal2 @ $false @ $false @ $true @ $false @ $true @ $true @ $true @ zero_zero_literal ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
              @ ^ [Uu3: product_unit] : ( powr_real2 @ B3 @ I4 ) ) ) ) ) ) ).

% compute_powr_real
thf(fact_9956_less__eq__integer_Otransfer,axiom,
    ( bNF_re6321650412969554871eger_o @ code_pcr_integer
    @ ( bNF_re6574881592172037608er_o_o @ code_pcr_integer
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ord_less_eq_int
    @ ord_le3102999989581377725nteger ) ).

% less_eq_integer.transfer
thf(fact_9957_Code__Target__Nat_ONat_Otransfer,axiom,
    ( bNF_re2807294637932363402at_nat @ code_pcr_integer
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ nat2
    @ code_Target_Nat ) ).

% Code_Target_Nat.Nat.transfer
thf(fact_9958_nat__of__integer_Otransfer,axiom,
    ( bNF_re2807294637932363402at_nat @ code_pcr_integer
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ nat2
    @ code_nat_of_integer ) ).

% nat_of_integer.transfer
thf(fact_9959_less__integer_Otransfer,axiom,
    ( bNF_re6321650412969554871eger_o @ code_pcr_integer
    @ ( bNF_re6574881592172037608er_o_o @ code_pcr_integer
      @ ^ [Y5: $o,Z2: $o] : ( Y5 = Z2 ) )
    @ ord_less_int
    @ ord_le6747313008572928689nteger ) ).

% less_integer.transfer
thf(fact_9960_zero__integer_Otransfer,axiom,
    code_pcr_integer @ zero_zero_int @ zero_z3403309356797280102nteger ).

% zero_integer.transfer
thf(fact_9961_String_Oempty__neq__Literal,axiom,
    ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,S: literal] :
      ( zero_zero_literal
     != ( literal2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ S ) ) ).

% String.empty_neq_Literal
thf(fact_9962_int__of__integer__integer__of__nat,axiom,
    ! [N: nat] :
      ( ( code_int_of_integer @ ( code_integer_of_nat @ N ) )
      = ( semiri1314217659103216013at_int @ N ) ) ).

% int_of_integer_integer_of_nat
thf(fact_9963_integer__of__nat_Orep__eq,axiom,
    ! [X3: nat] :
      ( ( code_int_of_integer @ ( code_integer_of_nat @ X3 ) )
      = ( semiri1314217659103216013at_int @ X3 ) ) ).

% integer_of_nat.rep_eq
thf(fact_9964_integer__of__nat__0,axiom,
    ( ( code_integer_of_nat @ zero_zero_nat )
    = zero_z3403309356797280102nteger ) ).

% integer_of_nat_0
thf(fact_9965_integer__of__nat_Oabs__eq,axiom,
    ( code_integer_of_nat
    = ( ^ [X: nat] : ( code_integer_of_int @ ( semiri1314217659103216013at_int @ X ) ) ) ) ).

% integer_of_nat.abs_eq
thf(fact_9966_integer__of__nat_Otransfer,axiom,
    ( bNF_re4153400068438556298nteger
    @ ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 )
    @ code_pcr_integer
    @ semiri1314217659103216013at_int
    @ code_integer_of_nat ) ).

% integer_of_nat.transfer
thf(fact_9967_integer__of__nat__numeral,axiom,
    ! [N: num] :
      ( ( code_integer_of_nat @ ( numeral_numeral_nat @ N ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% integer_of_nat_numeral
thf(fact_9968_divmod__nat__code,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N3: nat] :
          ( produc8678311845419106900er_nat @ code_nat_of_integer @ code_nat_of_integer
          @ ( if_Pro6119634080678213985nteger
            @ ( ( code_integer_of_nat @ M3 )
              = zero_z3403309356797280102nteger )
            @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
            @ ( if_Pro6119634080678213985nteger
              @ ( ( code_integer_of_nat @ N3 )
                = zero_z3403309356797280102nteger )
              @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( code_integer_of_nat @ M3 ) )
              @ ( code_divmod_abs @ ( code_integer_of_nat @ M3 ) @ ( code_integer_of_nat @ N3 ) ) ) ) ) ) ) ).

% divmod_nat_code
thf(fact_9969_integer__of__nat__def,axiom,
    ( code_integer_of_nat
    = ( map_fu6290471996055670595nteger @ id_nat @ code_integer_of_int @ semiri1314217659103216013at_int ) ) ).

% integer_of_nat_def
thf(fact_9970_pairs__le__eq__Sigma,axiom,
    ! [M: nat] :
      ( ( collec3392354462482085612at_nat
        @ ( produc6081775807080527818_nat_o
          @ ^ [I4: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I4 @ J3 ) @ M ) ) )
      = ( produc457027306803732586at_nat @ ( set_ord_atMost_nat @ M )
        @ ^ [R5: nat] : ( set_ord_atMost_nat @ ( minus_minus_nat @ M @ R5 ) ) ) ) ).

% pairs_le_eq_Sigma
thf(fact_9971_numeral__le__enat__iff,axiom,
    ! [M: num,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% numeral_le_enat_iff
thf(fact_9972_enat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( extended_enat2 @ Nat )
        = ( extended_enat2 @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% enat.inject
thf(fact_9973_enat__ord__simps_I2_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% enat_ord_simps(2)
thf(fact_9974_plus__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_p3455044024723400733d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( plus_plus_nat @ M @ N ) ) ) ).

% plus_enat_simps(1)
thf(fact_9975_enat__ord__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% enat_ord_simps(1)
thf(fact_9976_idiff__enat__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ ( extended_enat2 @ zero_zero_nat ) )
      = N ) ).

% idiff_enat_0_right
thf(fact_9977_idiff__enat__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ zero_zero_nat ) @ N )
      = ( extended_enat2 @ zero_zero_nat ) ) ).

% idiff_enat_0
thf(fact_9978_idiff__enat__enat,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ A ) @ ( extended_enat2 @ B ) )
      = ( extended_enat2 @ ( minus_minus_nat @ A @ B ) ) ) ).

% idiff_enat_enat
thf(fact_9979_times__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( times_times_nat @ M @ N ) ) ) ).

% times_enat_simps(1)
thf(fact_9980_max__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_ma741700101516333627d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( ord_max_nat @ M @ N ) ) ) ).

% max_enat_simps(1)
thf(fact_9981_min__enat__simps_I1_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_mi8085742599997312461d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( ord_min_nat @ M @ N ) ) ) ).

% min_enat_simps(1)
thf(fact_9982_numeral__less__enat__iff,axiom,
    ! [M: num,N: nat] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).

% numeral_less_enat_iff
thf(fact_9983_finite__enat__bounded,axiom,
    ! [A3: set_Extended_enat,N: nat] :
      ( ! [Y4: extended_enat] :
          ( ( member_Extended_enat @ Y4 @ A3 )
         => ( ord_le2932123472753598470d_enat @ Y4 @ ( extended_enat2 @ N ) ) )
     => ( finite4001608067531595151d_enat @ A3 ) ) ).

% finite_enat_bounded
thf(fact_9984_enat__ile,axiom,
    ! [N: extended_enat,M: nat] :
      ( ( ord_le2932123472753598470d_enat @ N @ ( extended_enat2 @ M ) )
     => ? [K2: nat] :
          ( N
          = ( extended_enat2 @ K2 ) ) ) ).

% enat_ile
thf(fact_9985_enat__iless,axiom,
    ! [N: extended_enat,M: nat] :
      ( ( ord_le72135733267957522d_enat @ N @ ( extended_enat2 @ M ) )
     => ? [K2: nat] :
          ( N
          = ( extended_enat2 @ K2 ) ) ) ).

% enat_iless
thf(fact_9986_less__enatE,axiom,
    ! [N: extended_enat,M: nat] :
      ( ( ord_le72135733267957522d_enat @ N @ ( extended_enat2 @ M ) )
     => ~ ! [K2: nat] :
            ( ( N
              = ( extended_enat2 @ K2 ) )
           => ~ ( ord_less_nat @ K2 @ M ) ) ) ).

% less_enatE
thf(fact_9987_numeral__eq__enat,axiom,
    ( numera1916890842035813515d_enat
    = ( ^ [K3: num] : ( extended_enat2 @ ( numeral_numeral_nat @ K3 ) ) ) ) ).

% numeral_eq_enat
thf(fact_9988_one__enat__def,axiom,
    ( one_on7984719198319812577d_enat
    = ( extended_enat2 @ one_one_nat ) ) ).

% one_enat_def
thf(fact_9989_enat__1__iff_I1_J,axiom,
    ! [X3: nat] :
      ( ( ( extended_enat2 @ X3 )
        = one_on7984719198319812577d_enat )
      = ( X3 = one_one_nat ) ) ).

% enat_1_iff(1)
thf(fact_9990_enat__1__iff_I2_J,axiom,
    ! [X3: nat] :
      ( ( one_on7984719198319812577d_enat
        = ( extended_enat2 @ X3 ) )
      = ( X3 = one_one_nat ) ) ).

% enat_1_iff(2)
thf(fact_9991_of__nat__eq__enat,axiom,
    semiri4216267220026989637d_enat = extended_enat2 ).

% of_nat_eq_enat
thf(fact_9992_zero__enat__def,axiom,
    ( zero_z5237406670263579293d_enat
    = ( extended_enat2 @ zero_zero_nat ) ) ).

% zero_enat_def
thf(fact_9993_enat__0__iff_I1_J,axiom,
    ! [X3: nat] :
      ( ( ( extended_enat2 @ X3 )
        = zero_z5237406670263579293d_enat )
      = ( X3 = zero_zero_nat ) ) ).

% enat_0_iff(1)
thf(fact_9994_enat__0__iff_I2_J,axiom,
    ! [X3: nat] :
      ( ( zero_z5237406670263579293d_enat
        = ( extended_enat2 @ X3 ) )
      = ( X3 = zero_zero_nat ) ) ).

% enat_0_iff(2)
thf(fact_9995_Suc__ile__eq,axiom,
    ! [M: nat,N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ ( suc @ M ) ) @ N )
      = ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ N ) ) ).

% Suc_ile_eq
thf(fact_9996_iadd__le__enat__iff,axiom,
    ! [X3: extended_enat,Y3: extended_enat,N: nat] :
      ( ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ X3 @ Y3 ) @ ( extended_enat2 @ N ) )
      = ( ? [Y9: nat,X10: nat] :
            ( ( X3
              = ( extended_enat2 @ X10 ) )
            & ( Y3
              = ( extended_enat2 @ Y9 ) )
            & ( ord_less_eq_nat @ ( plus_plus_nat @ X10 @ Y9 ) @ N ) ) ) ) ).

% iadd_le_enat_iff
thf(fact_9997_elimnum,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        = ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) ) ) ).

% elimnum
thf(fact_9998_VEBT__internal_Oelim__dead_Osimps_I3_J,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,L: nat] :
      ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ ( extended_enat2 @ L ) )
      = ( vEBT_Node @ Info @ Deg
        @ ( take_VEBT_VEBT @ ( divide_divide_nat @ L @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( map_VE8901447254227204932T_VEBT
            @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
            @ TreeList2 ) )
        @ ( vEBT_VEBT_elim_dead @ Summary @ ( extended_enat2 @ ( divide_divide_nat @ L @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.elim_dead.simps(3)
thf(fact_9999_VEBT__internal_Oelim__dead_Oelims,axiom,
    ! [X3: vEBT_VEBT,Xa: extended_enat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_VEBT_elim_dead @ X3 @ Xa )
        = Y3 )
     => ( ! [A5: $o,B4: $o] :
            ( ( X3
              = ( vEBT_Leaf @ A5 @ B4 ) )
           => ( Y3
             != ( vEBT_Leaf @ A5 @ B4 ) ) )
       => ( ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X3
                = ( vEBT_Node @ Info2 @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( ( Xa = extend5688581933313929465d_enat )
               => ( Y3
                 != ( vEBT_Node @ Info2 @ Deg2
                    @ ( map_VE8901447254227204932T_VEBT
                      @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      @ TreeList3 )
                    @ ( vEBT_VEBT_elim_dead @ Summary2 @ extend5688581933313929465d_enat ) ) ) ) )
         => ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Info2 @ Deg2 @ TreeList3 @ Summary2 ) )
               => ! [L4: nat] :
                    ( ( Xa
                      = ( extended_enat2 @ L4 ) )
                   => ( Y3
                     != ( vEBT_Node @ Info2 @ Deg2
                        @ ( take_VEBT_VEBT @ ( divide_divide_nat @ L4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                          @ ( map_VE8901447254227204932T_VEBT
                            @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            @ TreeList3 ) )
                        @ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extended_enat2 @ ( divide_divide_nat @ L4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.elim_dead.elims
thf(fact_10000_VEBT__internal_Oelim__dead_Osimps_I2_J,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ extend5688581933313929465d_enat )
      = ( vEBT_Node @ Info @ Deg
        @ ( map_VE8901447254227204932T_VEBT
          @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          @ TreeList2 )
        @ ( vEBT_VEBT_elim_dead @ Summary @ extend5688581933313929465d_enat ) ) ) ).

% VEBT_internal.elim_dead.simps(2)
thf(fact_10001_elimcomplete,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList2: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ N )
     => ( ( vEBT_VEBT_elim_dead @ ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) @ extend5688581933313929465d_enat )
        = ( vEBT_Node @ Info @ Deg @ TreeList2 @ Summary ) ) ) ).

% elimcomplete
thf(fact_10002_not__enat__eq,axiom,
    ! [X3: extended_enat] :
      ( ( ! [Y: nat] :
            ( X3
           != ( extended_enat2 @ Y ) ) )
      = ( X3 = extend5688581933313929465d_enat ) ) ).

% not_enat_eq
thf(fact_10003_not__infinity__eq,axiom,
    ! [X3: extended_enat] :
      ( ( X3 != extend5688581933313929465d_enat )
      = ( ? [I4: nat] :
            ( X3
            = ( extended_enat2 @ I4 ) ) ) ) ).

% not_infinity_eq
thf(fact_10004_enat__ord__simps_I6_J,axiom,
    ! [Q3: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ extend5688581933313929465d_enat @ Q3 ) ).

% enat_ord_simps(6)
thf(fact_10005_enat__ord__simps_I4_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ Q3 @ extend5688581933313929465d_enat )
      = ( Q3 != extend5688581933313929465d_enat ) ) ).

% enat_ord_simps(4)
thf(fact_10006_plus__enat__simps_I3_J,axiom,
    ! [Q3: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ Q3 @ extend5688581933313929465d_enat )
      = extend5688581933313929465d_enat ) ).

% plus_enat_simps(3)
thf(fact_10007_plus__enat__simps_I2_J,axiom,
    ! [Q3: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ extend5688581933313929465d_enat @ Q3 )
      = extend5688581933313929465d_enat ) ).

% plus_enat_simps(2)
thf(fact_10008_enat__ord__code_I3_J,axiom,
    ! [Q3: extended_enat] : ( ord_le2932123472753598470d_enat @ Q3 @ extend5688581933313929465d_enat ) ).

% enat_ord_code(3)
thf(fact_10009_enat__ord__simps_I5_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ extend5688581933313929465d_enat @ Q3 )
      = ( Q3 = extend5688581933313929465d_enat ) ) ).

% enat_ord_simps(5)
thf(fact_10010_idiff__infinity,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ extend5688581933313929465d_enat @ N )
      = extend5688581933313929465d_enat ) ).

% idiff_infinity
thf(fact_10011_times__enat__simps_I2_J,axiom,
    ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ extend5688581933313929465d_enat )
    = extend5688581933313929465d_enat ) ).

% times_enat_simps(2)
thf(fact_10012_max__enat__simps_I5_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ extend5688581933313929465d_enat @ Q3 )
      = extend5688581933313929465d_enat ) ).

% max_enat_simps(5)
thf(fact_10013_max__enat__simps_I4_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ Q3 @ extend5688581933313929465d_enat )
      = extend5688581933313929465d_enat ) ).

% max_enat_simps(4)
thf(fact_10014_min__enat__simps_I4_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_mi8085742599997312461d_enat @ Q3 @ extend5688581933313929465d_enat )
      = Q3 ) ).

% min_enat_simps(4)
thf(fact_10015_min__enat__simps_I5_J,axiom,
    ! [Q3: extended_enat] :
      ( ( ord_mi8085742599997312461d_enat @ extend5688581933313929465d_enat @ Q3 )
      = Q3 ) ).

% min_enat_simps(5)
thf(fact_10016_idiff__self,axiom,
    ! [N: extended_enat] :
      ( ( N != extend5688581933313929465d_enat )
     => ( ( minus_3235023915231533773d_enat @ N @ N )
        = zero_z5237406670263579293d_enat ) ) ).

% idiff_self
thf(fact_10017_add__diff__cancel__enat,axiom,
    ! [X3: extended_enat,Y3: extended_enat] :
      ( ( X3 != extend5688581933313929465d_enat )
     => ( ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X3 @ Y3 ) @ X3 )
        = Y3 ) ) ).

% add_diff_cancel_enat
thf(fact_10018_idiff__infinity__right,axiom,
    ! [A: nat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_enat2 @ A ) @ extend5688581933313929465d_enat )
      = zero_z5237406670263579293d_enat ) ).

% idiff_infinity_right
thf(fact_10019_times__enat__simps_I3_J,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) )
          = zero_z5237406670263579293d_enat ) )
      & ( ( N != zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) )
          = extend5688581933313929465d_enat ) ) ) ).

% times_enat_simps(3)
thf(fact_10020_times__enat__simps_I4_J,axiom,
    ! [M: nat] :
      ( ( ( M = zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat )
          = zero_z5237406670263579293d_enat ) )
      & ( ( M != zero_zero_nat )
       => ( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat )
          = extend5688581933313929465d_enat ) ) ) ).

% times_enat_simps(4)
thf(fact_10021_Sup__enat__def,axiom,
    ( comple4398354569131411667d_enat
    = ( ^ [A8: set_Extended_enat] : ( if_Extended_enat @ ( A8 = bot_bo7653980558646680370d_enat ) @ zero_z5237406670263579293d_enat @ ( if_Extended_enat @ ( finite4001608067531595151d_enat @ A8 ) @ ( lattic921264341876707157d_enat @ A8 ) @ extend5688581933313929465d_enat ) ) ) ) ).

% Sup_enat_def
thf(fact_10022_enat__add__left__cancel__le,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A = extend5688581933313929465d_enat )
        | ( ord_le2932123472753598470d_enat @ B @ C ) ) ) ).

% enat_add_left_cancel_le
thf(fact_10023_enat__ord__simps_I3_J,axiom,
    ! [Q3: extended_enat] : ( ord_le2932123472753598470d_enat @ Q3 @ extend5688581933313929465d_enat ) ).

% enat_ord_simps(3)
thf(fact_10024_enat__add__left__cancel__less,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A != extend5688581933313929465d_enat )
        & ( ord_le72135733267957522d_enat @ B @ C ) ) ) ).

% enat_add_left_cancel_less
thf(fact_10025_enat__add__left__cancel,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ A @ B )
        = ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( ( A = extend5688581933313929465d_enat )
        | ( B = C ) ) ) ).

% enat_add_left_cancel
thf(fact_10026_plus__eq__infty__iff__enat,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = extend5688581933313929465d_enat )
      = ( ( M = extend5688581933313929465d_enat )
        | ( N = extend5688581933313929465d_enat ) ) ) ).

% plus_eq_infty_iff_enat
thf(fact_10027_infinity__ne__i1,axiom,
    extend5688581933313929465d_enat != one_on7984719198319812577d_enat ).

% infinity_ne_i1
thf(fact_10028_top__enat__def,axiom,
    top_to3028658606643905974d_enat = extend5688581933313929465d_enat ).

% top_enat_def
thf(fact_10029_numeral__ne__infinity,axiom,
    ! [K: num] :
      ( ( numera1916890842035813515d_enat @ K )
     != extend5688581933313929465d_enat ) ).

% numeral_ne_infinity
thf(fact_10030_Inf__enat__def,axiom,
    ( comple2295165028678016749d_enat
    = ( ^ [A8: set_Extended_enat] :
          ( if_Extended_enat @ ( A8 = bot_bo7653980558646680370d_enat ) @ extend5688581933313929465d_enat
          @ ( ord_Le1955565732374568822d_enat
            @ ^ [X: extended_enat] : ( member_Extended_enat @ X @ A8 ) ) ) ) ) ).

% Inf_enat_def
thf(fact_10031_infinity__ne__i0,axiom,
    extend5688581933313929465d_enat != zero_z5237406670263579293d_enat ).

% infinity_ne_i0
thf(fact_10032_imult__is__infinity,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ A @ B )
        = extend5688581933313929465d_enat )
      = ( ( ( A = extend5688581933313929465d_enat )
          & ( B != zero_z5237406670263579293d_enat ) )
        | ( ( B = extend5688581933313929465d_enat )
          & ( A != zero_z5237406670263579293d_enat ) ) ) ) ).

% imult_is_infinity
thf(fact_10033_enat__ord__code_I4_J,axiom,
    ! [M: nat] : ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ extend5688581933313929465d_enat ) ).

% enat_ord_code(4)
thf(fact_10034_less__infinityE,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ N @ extend5688581933313929465d_enat )
     => ~ ! [K2: nat] :
            ( N
           != ( extended_enat2 @ K2 ) ) ) ).

% less_infinityE
thf(fact_10035_infinity__ilessE,axiom,
    ! [M: nat] :
      ~ ( ord_le72135733267957522d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ M ) ) ).

% infinity_ilessE
thf(fact_10036_enat_Odistinct_I2_J,axiom,
    ! [Nat: nat] :
      ( extend5688581933313929465d_enat
     != ( extended_enat2 @ Nat ) ) ).

% enat.distinct(2)
thf(fact_10037_enat_Odistinct_I1_J,axiom,
    ! [Nat: nat] :
      ( ( extended_enat2 @ Nat )
     != extend5688581933313929465d_enat ) ).

% enat.distinct(1)
thf(fact_10038_enat_Oexhaust,axiom,
    ! [Y3: extended_enat] :
      ( ! [Nat3: nat] :
          ( Y3
         != ( extended_enat2 @ Nat3 ) )
     => ( Y3 = extend5688581933313929465d_enat ) ) ).

% enat.exhaust
thf(fact_10039_enat2__cases,axiom,
    ! [Y3: extended_enat,Ya: extended_enat] :
      ( ( ? [Nat3: nat] :
            ( Y3
            = ( extended_enat2 @ Nat3 ) )
       => ! [Nata: nat] :
            ( Ya
           != ( extended_enat2 @ Nata ) ) )
     => ( ( ? [Nat3: nat] :
              ( Y3
              = ( extended_enat2 @ Nat3 ) )
         => ( Ya != extend5688581933313929465d_enat ) )
       => ( ( ( Y3 = extend5688581933313929465d_enat )
           => ! [Nat3: nat] :
                ( Ya
               != ( extended_enat2 @ Nat3 ) ) )
         => ~ ( ( Y3 = extend5688581933313929465d_enat )
             => ( Ya != extend5688581933313929465d_enat ) ) ) ) ) ).

% enat2_cases
thf(fact_10040_enat3__cases,axiom,
    ! [Y3: extended_enat,Ya: extended_enat,Yb: extended_enat] :
      ( ( ? [Nat3: nat] :
            ( Y3
            = ( extended_enat2 @ Nat3 ) )
       => ( ? [Nata: nat] :
              ( Ya
              = ( extended_enat2 @ Nata ) )
         => ! [Natb: nat] :
              ( Yb
             != ( extended_enat2 @ Natb ) ) ) )
     => ( ( ? [Nat3: nat] :
              ( Y3
              = ( extended_enat2 @ Nat3 ) )
         => ( ? [Nata: nat] :
                ( Ya
                = ( extended_enat2 @ Nata ) )
           => ( Yb != extend5688581933313929465d_enat ) ) )
       => ( ( ? [Nat3: nat] :
                ( Y3
                = ( extended_enat2 @ Nat3 ) )
           => ( ( Ya = extend5688581933313929465d_enat )
             => ! [Nata: nat] :
                  ( Yb
                 != ( extended_enat2 @ Nata ) ) ) )
         => ( ( ? [Nat3: nat] :
                  ( Y3
                  = ( extended_enat2 @ Nat3 ) )
             => ( ( Ya = extend5688581933313929465d_enat )
               => ( Yb != extend5688581933313929465d_enat ) ) )
           => ( ( ( Y3 = extend5688581933313929465d_enat )
               => ( ? [Nat3: nat] :
                      ( Ya
                      = ( extended_enat2 @ Nat3 ) )
                 => ! [Nata: nat] :
                      ( Yb
                     != ( extended_enat2 @ Nata ) ) ) )
             => ( ( ( Y3 = extend5688581933313929465d_enat )
                 => ( ? [Nat3: nat] :
                        ( Ya
                        = ( extended_enat2 @ Nat3 ) )
                   => ( Yb != extend5688581933313929465d_enat ) ) )
               => ( ( ( Y3 = extend5688581933313929465d_enat )
                   => ( ( Ya = extend5688581933313929465d_enat )
                     => ! [Nat3: nat] :
                          ( Yb
                         != ( extended_enat2 @ Nat3 ) ) ) )
                 => ~ ( ( Y3 = extend5688581933313929465d_enat )
                     => ( ( Ya = extend5688581933313929465d_enat )
                       => ( Yb != extend5688581933313929465d_enat ) ) ) ) ) ) ) ) ) ) ).

% enat3_cases
thf(fact_10041_enat__ex__split,axiom,
    ( ( ^ [P2: extended_enat > $o] :
        ? [X5: extended_enat] : ( P2 @ X5 ) )
    = ( ^ [P3: extended_enat > $o] :
          ( ( P3 @ extend5688581933313929465d_enat )
          | ? [X: nat] : ( P3 @ ( extended_enat2 @ X ) ) ) ) ) ).

% enat_ex_split
thf(fact_10042_infinity__ileE,axiom,
    ! [M: nat] :
      ~ ( ord_le2932123472753598470d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ M ) ) ).

% infinity_ileE
thf(fact_10043_enat__ord__code_I5_J,axiom,
    ! [N: nat] :
      ~ ( ord_le2932123472753598470d_enat @ extend5688581933313929465d_enat @ ( extended_enat2 @ N ) ) ).

% enat_ord_code(5)
thf(fact_10044_plus__enat__def,axiom,
    ( plus_p3455044024723400733d_enat
    = ( ^ [M3: extended_enat,N3: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [O: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [P5: nat] : ( extended_enat2 @ ( plus_plus_nat @ O @ P5 ) )
              @ extend5688581933313929465d_enat
              @ N3 )
          @ extend5688581933313929465d_enat
          @ M3 ) ) ) ).

% plus_enat_def
thf(fact_10045_imult__infinity__right,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
     => ( ( times_7803423173614009249d_enat @ N @ extend5688581933313929465d_enat )
        = extend5688581933313929465d_enat ) ) ).

% imult_infinity_right
thf(fact_10046_imult__infinity,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
     => ( ( times_7803423173614009249d_enat @ extend5688581933313929465d_enat @ N )
        = extend5688581933313929465d_enat ) ) ).

% imult_infinity
thf(fact_10047_diff__enat__def,axiom,
    ( minus_3235023915231533773d_enat
    = ( ^ [A4: extended_enat,B3: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [X: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [Y: nat] : ( extended_enat2 @ ( minus_minus_nat @ X @ Y ) )
              @ zero_z5237406670263579293d_enat
              @ B3 )
          @ extend5688581933313929465d_enat
          @ A4 ) ) ) ).

% diff_enat_def
thf(fact_10048_times__enat__def,axiom,
    ( times_7803423173614009249d_enat
    = ( ^ [M3: extended_enat,N3: extended_enat] :
          ( extend3600170679010898289d_enat
          @ ^ [O: nat] :
              ( extend3600170679010898289d_enat
              @ ^ [P5: nat] : ( extended_enat2 @ ( times_times_nat @ O @ P5 ) )
              @ ( if_Extended_enat @ ( O = zero_zero_nat ) @ zero_z5237406670263579293d_enat @ extend5688581933313929465d_enat )
              @ N3 )
          @ ( if_Extended_enat @ ( N3 = zero_z5237406670263579293d_enat ) @ zero_z5237406670263579293d_enat @ extend5688581933313929465d_enat )
          @ M3 ) ) ) ).

% times_enat_def
thf(fact_10049_VEBT__internal_Oelim__dead_Opelims,axiom,
    ! [X3: vEBT_VEBT,Xa: extended_enat,Y3: vEBT_VEBT] :
      ( ( ( vEBT_VEBT_elim_dead @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ X3 @ Xa ) )
       => ( ! [A5: $o,B4: $o] :
              ( ( X3
                = ( vEBT_Leaf @ A5 @ B4 ) )
             => ( ( Y3
                  = ( vEBT_Leaf @ A5 @ B4 ) )
               => ~ ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ ( vEBT_Leaf @ A5 @ B4 ) @ Xa ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X3
                  = ( vEBT_Node @ Info2 @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( Xa = extend5688581933313929465d_enat )
                 => ( ( Y3
                      = ( vEBT_Node @ Info2 @ Deg2
                        @ ( map_VE8901447254227204932T_VEBT
                          @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          @ TreeList3 )
                        @ ( vEBT_VEBT_elim_dead @ Summary2 @ extend5688581933313929465d_enat ) ) )
                   => ~ ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList3 @ Summary2 ) @ extend5688581933313929465d_enat ) ) ) ) )
           => ~ ! [Info2: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X3
                    = ( vEBT_Node @ Info2 @ Deg2 @ TreeList3 @ Summary2 ) )
                 => ! [L4: nat] :
                      ( ( Xa
                        = ( extended_enat2 @ L4 ) )
                     => ( ( Y3
                          = ( vEBT_Node @ Info2 @ Deg2
                            @ ( take_VEBT_VEBT @ ( divide_divide_nat @ L4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                              @ ( map_VE8901447254227204932T_VEBT
                                @ ^ [T2: vEBT_VEBT] : ( vEBT_VEBT_elim_dead @ T2 @ ( extended_enat2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                @ TreeList3 ) )
                            @ ( vEBT_VEBT_elim_dead @ Summary2 @ ( extended_enat2 @ ( divide_divide_nat @ L4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P6183159247885693666d_enat @ vEBT_V312737461966249ad_rel @ ( produc581526299967858633d_enat @ ( vEBT_Node @ Info2 @ Deg2 @ TreeList3 @ Summary2 ) @ ( extended_enat2 @ L4 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.elim_dead.pelims
thf(fact_10050_the__enat_Osimps,axiom,
    ! [N: nat] :
      ( ( extended_the_enat @ ( extended_enat2 @ N ) )
      = N ) ).

% the_enat.simps
thf(fact_10051_eSuc__Max,axiom,
    ! [A3: set_Extended_enat] :
      ( ( finite4001608067531595151d_enat @ A3 )
     => ( ( A3 != bot_bo7653980558646680370d_enat )
       => ( ( extended_eSuc @ ( lattic921264341876707157d_enat @ A3 ) )
          = ( lattic921264341876707157d_enat @ ( image_80655429650038917d_enat @ extended_eSuc @ A3 ) ) ) ) ) ).

% eSuc_Max
thf(fact_10052_eSuc__inject,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( extended_eSuc @ M )
        = ( extended_eSuc @ N ) )
      = ( M = N ) ) ).

% eSuc_inject
thf(fact_10053_eSuc__infinity,axiom,
    ( ( extended_eSuc @ extend5688581933313929465d_enat )
    = extend5688581933313929465d_enat ) ).

% eSuc_infinity
thf(fact_10054_eSuc__mono,axiom,
    ! [N: extended_enat,M: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( extended_eSuc @ N ) @ ( extended_eSuc @ M ) )
      = ( ord_le72135733267957522d_enat @ N @ M ) ) ).

% eSuc_mono
thf(fact_10055_eSuc__ile__mono,axiom,
    ! [N: extended_enat,M: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( extended_eSuc @ N ) @ ( extended_eSuc @ M ) )
      = ( ord_le2932123472753598470d_enat @ N @ M ) ) ).

% eSuc_ile_mono
thf(fact_10056_eSuc__minus__eSuc,axiom,
    ! [N: extended_enat,M: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_eSuc @ N ) @ ( extended_eSuc @ M ) )
      = ( minus_3235023915231533773d_enat @ N @ M ) ) ).

% eSuc_minus_eSuc
thf(fact_10057_iless__eSuc0,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ N @ ( extended_eSuc @ zero_z5237406670263579293d_enat ) )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% iless_eSuc0
thf(fact_10058_eSuc__minus__1,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ ( extended_eSuc @ N ) @ one_on7984719198319812577d_enat )
      = N ) ).

% eSuc_minus_1
thf(fact_10059_eSuc__numeral,axiom,
    ! [K: num] :
      ( ( extended_eSuc @ ( numera1916890842035813515d_enat @ K ) )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ K @ one ) ) ) ).

% eSuc_numeral
thf(fact_10060_iless__Suc__eq,axiom,
    ! [M: nat,N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ ( extended_eSuc @ N ) )
      = ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ M ) @ N ) ) ).

% iless_Suc_eq
thf(fact_10061_ile__eSuc,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ N @ ( extended_eSuc @ N ) ) ).

% ile_eSuc
thf(fact_10062_ileI1,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ M @ N )
     => ( ord_le2932123472753598470d_enat @ ( extended_eSuc @ M ) @ N ) ) ).

% ileI1
thf(fact_10063_eSuc__plus__1,axiom,
    ( extended_eSuc
    = ( ^ [N3: extended_enat] : ( plus_p3455044024723400733d_enat @ N3 @ one_on7984719198319812577d_enat ) ) ) ).

% eSuc_plus_1
thf(fact_10064_plus__1__eSuc_I1_J,axiom,
    ! [Q3: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ Q3 )
      = ( extended_eSuc @ Q3 ) ) ).

% plus_1_eSuc(1)
thf(fact_10065_plus__1__eSuc_I2_J,axiom,
    ! [Q3: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ Q3 @ one_on7984719198319812577d_enat )
      = ( extended_eSuc @ Q3 ) ) ).

% plus_1_eSuc(2)
thf(fact_10066_mono__eSuc,axiom,
    order_4130057895858720880d_enat @ extended_eSuc ).

% mono_eSuc
thf(fact_10067_iadd__Suc,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( extended_eSuc @ M ) @ N )
      = ( extended_eSuc @ ( plus_p3455044024723400733d_enat @ M @ N ) ) ) ).

% iadd_Suc
thf(fact_10068_iadd__Suc__right,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ M @ ( extended_eSuc @ N ) )
      = ( extended_eSuc @ ( plus_p3455044024723400733d_enat @ M @ N ) ) ) ).

% iadd_Suc_right
thf(fact_10069_eSuc__max,axiom,
    ! [X3: extended_enat,Y3: extended_enat] :
      ( ( extended_eSuc @ ( ord_ma741700101516333627d_enat @ X3 @ Y3 ) )
      = ( ord_ma741700101516333627d_enat @ ( extended_eSuc @ X3 ) @ ( extended_eSuc @ Y3 ) ) ) ).

% eSuc_max
thf(fact_10070_mult__eSuc__right,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( times_7803423173614009249d_enat @ M @ ( extended_eSuc @ N ) )
      = ( plus_p3455044024723400733d_enat @ M @ ( times_7803423173614009249d_enat @ M @ N ) ) ) ).

% mult_eSuc_right
thf(fact_10071_mult__eSuc,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( times_7803423173614009249d_enat @ ( extended_eSuc @ M ) @ N )
      = ( plus_p3455044024723400733d_enat @ N @ ( times_7803423173614009249d_enat @ M @ N ) ) ) ).

% mult_eSuc
thf(fact_10072_zero__ne__eSuc,axiom,
    ! [N: extended_enat] :
      ( zero_z5237406670263579293d_enat
     != ( extended_eSuc @ N ) ) ).

% zero_ne_eSuc
thf(fact_10073_i0__iless__eSuc,axiom,
    ! [N: extended_enat] : ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( extended_eSuc @ N ) ) ).

% i0_iless_eSuc
thf(fact_10074_one__eSuc,axiom,
    ( one_on7984719198319812577d_enat
    = ( extended_eSuc @ zero_z5237406670263579293d_enat ) ) ).

% one_eSuc
thf(fact_10075_not__eSuc__ilei0,axiom,
    ! [N: extended_enat] :
      ~ ( ord_le2932123472753598470d_enat @ ( extended_eSuc @ N ) @ zero_z5237406670263579293d_enat ) ).

% not_eSuc_ilei0
thf(fact_10076_enat__eSuc__iff,axiom,
    ! [Y3: nat,X3: extended_enat] :
      ( ( ( extended_enat2 @ Y3 )
        = ( extended_eSuc @ X3 ) )
      = ( ? [N3: nat] :
            ( ( Y3
              = ( suc @ N3 ) )
            & ( ( extended_enat2 @ N3 )
              = X3 ) ) ) ) ).

% enat_eSuc_iff
thf(fact_10077_eSuc__enat__iff,axiom,
    ! [X3: extended_enat,Y3: nat] :
      ( ( ( extended_eSuc @ X3 )
        = ( extended_enat2 @ Y3 ) )
      = ( ? [N3: nat] :
            ( ( Y3
              = ( suc @ N3 ) )
            & ( X3
              = ( extended_enat2 @ N3 ) ) ) ) ) ).

% eSuc_enat_iff
thf(fact_10078_eSuc__enat,axiom,
    ! [N: nat] :
      ( ( extended_eSuc @ ( extended_enat2 @ N ) )
      = ( extended_enat2 @ ( suc @ N ) ) ) ).

% eSuc_enat
thf(fact_10079_eSuc__Sup,axiom,
    ! [A3: set_Extended_enat] :
      ( ( A3 != bot_bo7653980558646680370d_enat )
     => ( ( extended_eSuc @ ( comple4398354569131411667d_enat @ A3 ) )
        = ( comple4398354569131411667d_enat @ ( image_80655429650038917d_enat @ extended_eSuc @ A3 ) ) ) ) ).

% eSuc_Sup
thf(fact_10080_eSuc__def,axiom,
    ( extended_eSuc
    = ( extend3600170679010898289d_enat
      @ ^ [N3: nat] : ( extended_enat2 @ ( suc @ N3 ) )
      @ extend5688581933313929465d_enat ) ) ).

% eSuc_def
thf(fact_10081_sub_Otransfer,axiom,
    ( bNF_re7876454716742015248nteger
    @ ^ [Y5: num,Z2: num] : ( Y5 = Z2 )
    @ ( bNF_re6501075790457514782nteger
      @ ^ [Y5: num,Z2: num] : ( Y5 = Z2 )
      @ code_pcr_integer )
    @ ^ [M3: num,N3: num] : ( minus_minus_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N3 ) )
    @ code_sub ) ).

% sub.transfer
thf(fact_10082_Code__Numeral_Osub__code_I1_J,axiom,
    ( ( code_sub @ one @ one )
    = zero_z3403309356797280102nteger ) ).

% Code_Numeral.sub_code(1)
thf(fact_10083_sub_Orep__eq,axiom,
    ! [X3: num,Xa: num] :
      ( ( code_int_of_integer @ ( code_sub @ X3 @ Xa ) )
      = ( minus_minus_int @ ( numeral_numeral_int @ X3 ) @ ( numeral_numeral_int @ Xa ) ) ) ).

% sub.rep_eq
thf(fact_10084_sub_Oabs__eq,axiom,
    ( code_sub
    = ( ^ [Xa4: num,X: num] : ( code_integer_of_int @ ( minus_minus_int @ ( numeral_numeral_int @ Xa4 ) @ ( numeral_numeral_int @ X ) ) ) ) ) ).

% sub.abs_eq
thf(fact_10085_Code__Numeral_Osub__code_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( code_sub @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( minus_8373710615458151222nteger @ ( code_dup @ ( code_sub @ M @ N ) ) @ one_one_Code_integer ) ) ).

% Code_Numeral.sub_code(9)
thf(fact_10086_Code__Numeral_Osub__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( code_sub @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( code_dup @ ( code_sub @ M @ N ) ) @ one_one_Code_integer ) ) ).

% Code_Numeral.sub_code(8)
thf(fact_10087_Code__Numeral_Odup__code_I1_J,axiom,
    ( ( code_dup @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% Code_Numeral.dup_code(1)
thf(fact_10088_Code__Numeral_Osub__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( code_sub @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( code_dup @ ( code_sub @ M @ N ) ) ) ).

% Code_Numeral.sub_code(6)
thf(fact_10089_Code__Numeral_Osub__code_I4_J,axiom,
    ! [N: num] :
      ( ( code_sub @ one @ ( bit0 @ N ) )
      = ( code_Neg @ ( bitM @ N ) ) ) ).

% Code_Numeral.sub_code(4)
thf(fact_10090_less__than__iff,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ less_than )
      = ( ord_less_nat @ X3 @ Y3 ) ) ).

% less_than_iff
thf(fact_10091_Code__Numeral_Odup__code_I3_J,axiom,
    ! [N: num] :
      ( ( code_dup @ ( code_Neg @ N ) )
      = ( code_Neg @ ( bit0 @ N ) ) ) ).

% Code_Numeral.dup_code(3)
thf(fact_10092_less__eq__integer__code_I7_J,axiom,
    ! [K: num] : ( ord_le3102999989581377725nteger @ ( code_Neg @ K ) @ zero_z3403309356797280102nteger ) ).

% less_eq_integer_code(7)
thf(fact_10093_less__eq__integer__code_I3_J,axiom,
    ! [L: num] :
      ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( code_Neg @ L ) ) ).

% less_eq_integer_code(3)
thf(fact_10094_less__integer__code_I3_J,axiom,
    ! [L: num] :
      ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( code_Neg @ L ) ) ).

% less_integer_code(3)
thf(fact_10095_less__integer__code_I7_J,axiom,
    ! [K: num] : ( ord_le6747313008572928689nteger @ ( code_Neg @ K ) @ zero_z3403309356797280102nteger ) ).

% less_integer_code(7)
thf(fact_10096_less__integer__code_I9_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_le6747313008572928689nteger @ ( code_Neg @ K ) @ ( code_Neg @ L ) )
      = ( ord_less_num @ L @ K ) ) ).

% less_integer_code(9)
thf(fact_10097_less__eq__integer__code_I9_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_le3102999989581377725nteger @ ( code_Neg @ K ) @ ( code_Neg @ L ) )
      = ( ord_less_eq_num @ L @ K ) ) ).

% less_eq_integer_code(9)
thf(fact_10098_Code__Numeral_Osub__code_I5_J,axiom,
    ! [N: num] :
      ( ( code_sub @ one @ ( bit1 @ N ) )
      = ( code_Neg @ ( bit0 @ N ) ) ) ).

% Code_Numeral.sub_code(5)
thf(fact_10099_pair__less__def,axiom,
    ( fun_pair_less
    = ( lex_prod_nat_nat @ less_than @ less_than ) ) ).

% pair_less_def
thf(fact_10100_Gcd__nat__set__eq__fold,axiom,
    ! [Xs2: list_nat] :
      ( ( gcd_Gcd_nat @ ( set_nat2 @ Xs2 ) )
      = ( fold_nat_nat @ gcd_gcd_nat @ Xs2 @ zero_zero_nat ) ) ).

% Gcd_nat_set_eq_fold
thf(fact_10101_Quotient__real,axiom,
    quotie3684837364556693515t_real @ realrel @ real2 @ rep_real @ cr_real ).

% Quotient_real
thf(fact_10102_Code__Numeral_Osub__code_I2_J,axiom,
    ! [M: num] :
      ( ( code_sub @ ( bit0 @ M ) @ one )
      = ( code_Pos @ ( bitM @ M ) ) ) ).

% Code_Numeral.sub_code(2)
thf(fact_10103_Code__Numeral_Odup__code_I2_J,axiom,
    ! [N: num] :
      ( ( code_dup @ ( code_Pos @ N ) )
      = ( code_Pos @ ( bit0 @ N ) ) ) ).

% Code_Numeral.dup_code(2)
thf(fact_10104_less__eq__integer__code_I4_J,axiom,
    ! [K: num] :
      ~ ( ord_le3102999989581377725nteger @ ( code_Pos @ K ) @ zero_z3403309356797280102nteger ) ).

% less_eq_integer_code(4)
thf(fact_10105_less__eq__integer__code_I2_J,axiom,
    ! [L: num] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( code_Pos @ L ) ) ).

% less_eq_integer_code(2)
thf(fact_10106_less__integer__code_I2_J,axiom,
    ! [L: num] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( code_Pos @ L ) ) ).

% less_integer_code(2)
thf(fact_10107_less__integer__code_I4_J,axiom,
    ! [K: num] :
      ~ ( ord_le6747313008572928689nteger @ ( code_Pos @ K ) @ zero_z3403309356797280102nteger ) ).

% less_integer_code(4)
thf(fact_10108_less__integer__code_I5_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_le6747313008572928689nteger @ ( code_Pos @ K ) @ ( code_Pos @ L ) )
      = ( ord_less_num @ K @ L ) ) ).

% less_integer_code(5)
thf(fact_10109_one__integer__code,axiom,
    ( one_one_Code_integer
    = ( code_Pos @ one ) ) ).

% one_integer_code
thf(fact_10110_Pos__fold_I2_J,axiom,
    ! [K: num] :
      ( ( numera6620942414471956472nteger @ ( bit0 @ K ) )
      = ( code_Pos @ ( bit0 @ K ) ) ) ).

% Pos_fold(2)
thf(fact_10111_Pos__fold_I1_J,axiom,
    ( ( numera6620942414471956472nteger @ one )
    = ( code_Pos @ one ) ) ).

% Pos_fold(1)
thf(fact_10112_less__eq__integer__code_I5_J,axiom,
    ! [K: num,L: num] :
      ( ( ord_le3102999989581377725nteger @ ( code_Pos @ K ) @ ( code_Pos @ L ) )
      = ( ord_less_eq_num @ K @ L ) ) ).

% less_eq_integer_code(5)
thf(fact_10113_Gcd__int__set__eq__fold,axiom,
    ! [Xs2: list_int] :
      ( ( gcd_Gcd_int @ ( set_int2 @ Xs2 ) )
      = ( fold_int_int @ gcd_gcd_int @ Xs2 @ zero_zero_int ) ) ).

% Gcd_int_set_eq_fold
thf(fact_10114_Code__Numeral_Osub__code_I3_J,axiom,
    ! [M: num] :
      ( ( code_sub @ ( bit1 @ M ) @ one )
      = ( code_Pos @ ( bit0 @ M ) ) ) ).

% Code_Numeral.sub_code(3)
thf(fact_10115_cr__int__def,axiom,
    ( cr_int
    = ( ^ [X: product_prod_nat_nat] :
          ( ^ [Y5: int,Z2: int] : ( Y5 = Z2 )
          @ ( abs_Integ @ X ) ) ) ) ).

% cr_int_def
thf(fact_10116_int_Opcr__cr__eq,axiom,
    pcr_int = cr_int ).

% int.pcr_cr_eq
thf(fact_10117_Quotient__int,axiom,
    quotie1194848508323700631at_int @ intrel @ abs_Integ @ rep_Integ @ cr_int ).

% Quotient_int
thf(fact_10118_gcd__nat_Osemilattice__neutr__axioms,axiom,
    semila9081495762789891438tr_nat @ gcd_gcd_nat @ zero_zero_nat ).

% gcd_nat.semilattice_neutr_axioms
thf(fact_10119_max__nat_Osemilattice__neutr__axioms,axiom,
    semila9081495762789891438tr_nat @ ord_max_nat @ zero_zero_nat ).

% max_nat.semilattice_neutr_axioms
thf(fact_10120_natLess__def,axiom,
    ( bNF_Ca8459412986667044542atLess
    = ( collec3392354462482085612at_nat @ ( produc6081775807080527818_nat_o @ ord_less_nat ) ) ) ).

% natLess_def
thf(fact_10121_Restr__natLeq,axiom,
    ! [N: nat] :
      ( ( inf_in2572325071724192079at_nat @ bNF_Ca8665028551170535155natLeq
        @ ( produc457027306803732586at_nat
          @ ( collect_nat
            @ ^ [X: nat] : ( ord_less_nat @ X @ N ) )
          @ ^ [Uu3: nat] :
              ( collect_nat
              @ ^ [X: nat] : ( ord_less_nat @ X @ N ) ) ) )
      = ( collec3392354462482085612at_nat
        @ ( produc6081775807080527818_nat_o
          @ ^ [X: nat,Y: nat] :
              ( ( ord_less_nat @ X @ N )
              & ( ord_less_nat @ Y @ N )
              & ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ).

% Restr_natLeq
thf(fact_10122_natLeq__def,axiom,
    ( bNF_Ca8665028551170535155natLeq
    = ( collec3392354462482085612at_nat @ ( produc6081775807080527818_nat_o @ ord_less_eq_nat ) ) ) ).

% natLeq_def
thf(fact_10123_Restr__natLeq2,axiom,
    ! [N: nat] :
      ( ( inf_in2572325071724192079at_nat @ bNF_Ca8665028551170535155natLeq
        @ ( produc457027306803732586at_nat @ ( order_underS_nat @ bNF_Ca8665028551170535155natLeq @ N )
          @ ^ [Uu3: nat] : ( order_underS_nat @ bNF_Ca8665028551170535155natLeq @ N ) ) )
      = ( collec3392354462482085612at_nat
        @ ( produc6081775807080527818_nat_o
          @ ^ [X: nat,Y: nat] :
              ( ( ord_less_nat @ X @ N )
              & ( ord_less_nat @ Y @ N )
              & ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ).

% Restr_natLeq2
thf(fact_10124_natLeq__underS__less,axiom,
    ! [N: nat] :
      ( ( order_underS_nat @ bNF_Ca8665028551170535155natLeq @ N )
      = ( collect_nat
        @ ^ [X: nat] : ( ord_less_nat @ X @ N ) ) ) ).

% natLeq_underS_less
thf(fact_10125_gcd__nat_Omonoid__axioms,axiom,
    monoid_nat @ gcd_gcd_nat @ zero_zero_nat ).

% gcd_nat.monoid_axioms
thf(fact_10126_max__nat_Omonoid__axioms,axiom,
    monoid_nat @ ord_max_nat @ zero_zero_nat ).

% max_nat.monoid_axioms
thf(fact_10127_infinity__enat__def,axiom,
    ( extend5688581933313929465d_enat
    = ( extended_Abs_enat @ none_nat ) ) ).

% infinity_enat_def
thf(fact_10128_Abs__enat__cases,axiom,
    ! [X3: extended_enat] :
      ~ ! [Y4: option_nat] :
          ( ( X3
            = ( extended_Abs_enat @ Y4 ) )
         => ~ ( member_option_nat @ Y4 @ top_to8920198386146353926on_nat ) ) ).

% Abs_enat_cases
thf(fact_10129_Abs__enat__induct,axiom,
    ! [P: extended_enat > $o,X3: extended_enat] :
      ( ! [Y4: option_nat] :
          ( ( member_option_nat @ Y4 @ top_to8920198386146353926on_nat )
         => ( P @ ( extended_Abs_enat @ Y4 ) ) )
     => ( P @ X3 ) ) ).

% Abs_enat_induct
thf(fact_10130_Abs__enat__inject,axiom,
    ! [X3: option_nat,Y3: option_nat] :
      ( ( member_option_nat @ X3 @ top_to8920198386146353926on_nat )
     => ( ( member_option_nat @ Y3 @ top_to8920198386146353926on_nat )
       => ( ( ( extended_Abs_enat @ X3 )
            = ( extended_Abs_enat @ Y3 ) )
          = ( X3 = Y3 ) ) ) ) ).

% Abs_enat_inject
thf(fact_10131_enat__def,axiom,
    ( extended_enat2
    = ( ^ [N3: nat] : ( extended_Abs_enat @ ( some_nat @ N3 ) ) ) ) ).

% enat_def
thf(fact_10132_Abs__enat__inverse,axiom,
    ! [Y3: option_nat] :
      ( ( member_option_nat @ Y3 @ top_to8920198386146353926on_nat )
     => ( ( extended_Rep_enat @ ( extended_Abs_enat @ Y3 ) )
        = Y3 ) ) ).

% Abs_enat_inverse
thf(fact_10133_Rep__enat__induct,axiom,
    ! [Y3: option_nat,P: option_nat > $o] :
      ( ( member_option_nat @ Y3 @ top_to8920198386146353926on_nat )
     => ( ! [X4: extended_enat] : ( P @ ( extended_Rep_enat @ X4 ) )
       => ( P @ Y3 ) ) ) ).

% Rep_enat_induct
thf(fact_10134_Rep__enat__cases,axiom,
    ! [Y3: option_nat] :
      ( ( member_option_nat @ Y3 @ top_to8920198386146353926on_nat )
     => ~ ! [X4: extended_enat] :
            ( Y3
           != ( extended_Rep_enat @ X4 ) ) ) ).

% Rep_enat_cases
thf(fact_10135_Rep__enat,axiom,
    ! [X3: extended_enat] : ( member_option_nat @ ( extended_Rep_enat @ X3 ) @ top_to8920198386146353926on_nat ) ).

% Rep_enat
thf(fact_10136_Rep__enat__inject,axiom,
    ! [X3: extended_enat,Y3: extended_enat] :
      ( ( ( extended_Rep_enat @ X3 )
        = ( extended_Rep_enat @ Y3 ) )
      = ( X3 = Y3 ) ) ).

% Rep_enat_inject
thf(fact_10137_Rep__enat__inverse,axiom,
    ! [X3: extended_enat] :
      ( ( extended_Abs_enat @ ( extended_Rep_enat @ X3 ) )
      = X3 ) ).

% Rep_enat_inverse
thf(fact_10138_type__definition__enat,axiom,
    type_d7649664348572268762on_nat @ extended_Rep_enat @ extended_Abs_enat @ top_to8920198386146353926on_nat ).

% type_definition_enat
thf(fact_10139_list__encode_Oelims,axiom,
    ! [X3: list_nat,Y3: nat] :
      ( ( ( nat_list_encode @ X3 )
        = Y3 )
     => ( ( ( X3 = nil_nat )
         => ( Y3 != zero_zero_nat ) )
       => ~ ! [X4: nat,Xs3: list_nat] :
              ( ( X3
                = ( cons_nat @ X4 @ Xs3 ) )
             => ( Y3
               != ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs3 ) ) ) ) ) ) ) ) ).

% list_encode.elims
thf(fact_10140_le__prod__encode__1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_1
thf(fact_10141_le__prod__encode__2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_2
thf(fact_10142_list__encode_Osimps_I1_J,axiom,
    ( ( nat_list_encode @ nil_nat )
    = zero_zero_nat ) ).

% list_encode.simps(1)
thf(fact_10143_list__encode_Opelims,axiom,
    ! [X3: list_nat,Y3: nat] :
      ( ( ( nat_list_encode @ X3 )
        = Y3 )
     => ( ( accp_list_nat @ nat_list_encode_rel @ X3 )
       => ( ( ( X3 = nil_nat )
           => ( ( Y3 = zero_zero_nat )
             => ~ ( accp_list_nat @ nat_list_encode_rel @ nil_nat ) ) )
         => ~ ! [X4: nat,Xs3: list_nat] :
                ( ( X3
                  = ( cons_nat @ X4 @ Xs3 ) )
               => ( ( Y3
                    = ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X4 @ ( nat_list_encode @ Xs3 ) ) ) ) )
                 => ~ ( accp_list_nat @ nat_list_encode_rel @ ( cons_nat @ X4 @ Xs3 ) ) ) ) ) ) ) ).

% list_encode.pelims
thf(fact_10144_wf__less,axiom,
    wf_nat @ ( collec3392354462482085612at_nat @ ( produc6081775807080527818_nat_o @ ord_less_nat ) ) ).

% wf_less
thf(fact_10145_wf__pair__less,axiom,
    wf_Pro7803398752247294826at_nat @ fun_pair_less ).

% wf_pair_less
thf(fact_10146_wf__int__ge__less__than2,axiom,
    ! [D3: int] : ( wf_int @ ( int_ge_less_than2 @ D3 ) ) ).

% wf_int_ge_less_than2
thf(fact_10147_wf__int__ge__less__than,axiom,
    ! [D3: int] : ( wf_int @ ( int_ge_less_than @ D3 ) ) ).

% wf_int_ge_less_than
thf(fact_10148_prod__decode__def,axiom,
    ( nat_prod_decode
    = ( nat_prod_decode_aux @ zero_zero_nat ) ) ).

% prod_decode_def
thf(fact_10149_max__nat_Ocomm__monoid__axioms,axiom,
    comm_monoid_nat @ ord_max_nat @ zero_zero_nat ).

% max_nat.comm_monoid_axioms
thf(fact_10150_gcd__nat_Ocomm__monoid__axioms,axiom,
    comm_monoid_nat @ gcd_gcd_nat @ zero_zero_nat ).

% gcd_nat.comm_monoid_axioms
thf(fact_10151_list__decode_Opinduct,axiom,
    ! [A0: nat,P: nat > $o] :
      ( ( accp_nat @ nat_list_decode_rel @ A0 )
     => ( ( ( accp_nat @ nat_list_decode_rel @ zero_zero_nat )
         => ( P @ zero_zero_nat ) )
       => ( ! [N2: nat] :
              ( ( accp_nat @ nat_list_decode_rel @ ( suc @ N2 ) )
             => ( ! [X6: nat,Y6: nat] :
                    ( ( ( product_Pair_nat_nat @ X6 @ Y6 )
                      = ( nat_prod_decode @ N2 ) )
                   => ( P @ Y6 ) )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ A0 ) ) ) ) ).

% list_decode.pinduct
thf(fact_10152_list__decode_Oelims,axiom,
    ! [X3: nat,Y3: list_nat] :
      ( ( ( nat_list_decode @ X3 )
        = Y3 )
     => ( ( ( X3 = zero_zero_nat )
         => ( Y3 != nil_nat ) )
       => ~ ! [N2: nat] :
              ( ( X3
                = ( suc @ N2 ) )
             => ( Y3
               != ( produc2761476792215241774st_nat
                  @ ^ [X: nat,Y: nat] : ( cons_nat @ X @ ( nat_list_decode @ Y ) )
                  @ ( nat_prod_decode @ N2 ) ) ) ) ) ) ).

% list_decode.elims
thf(fact_10153_list__decode_Opsimps_I1_J,axiom,
    ( ( accp_nat @ nat_list_decode_rel @ zero_zero_nat )
   => ( ( nat_list_decode @ zero_zero_nat )
      = nil_nat ) ) ).

% list_decode.psimps(1)
thf(fact_10154_list__decode_Osimps_I1_J,axiom,
    ( ( nat_list_decode @ zero_zero_nat )
    = nil_nat ) ).

% list_decode.simps(1)
thf(fact_10155_list__decode_Opelims,axiom,
    ! [X3: nat,Y3: list_nat] :
      ( ( ( nat_list_decode @ X3 )
        = Y3 )
     => ( ( accp_nat @ nat_list_decode_rel @ X3 )
       => ( ( ( X3 = zero_zero_nat )
           => ( ( Y3 = nil_nat )
             => ~ ( accp_nat @ nat_list_decode_rel @ zero_zero_nat ) ) )
         => ~ ! [N2: nat] :
                ( ( X3
                  = ( suc @ N2 ) )
               => ( ( Y3
                    = ( produc2761476792215241774st_nat
                      @ ^ [X: nat,Y: nat] : ( cons_nat @ X @ ( nat_list_decode @ Y ) )
                      @ ( nat_prod_decode @ N2 ) ) )
                 => ~ ( accp_nat @ nat_list_decode_rel @ ( suc @ N2 ) ) ) ) ) ) ) ).

% list_decode.pelims
thf(fact_10156_times__num__def,axiom,
    ( times_times_num
    = ( ^ [M3: num,N3: num] : ( num_of_nat @ ( times_times_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ) ).

% times_num_def
thf(fact_10157_less__eq__num__def,axiom,
    ( ord_less_eq_num
    = ( ^ [M3: num,N3: num] : ( ord_less_eq_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ).

% less_eq_num_def
thf(fact_10158_nat__of__num_Osimps_I3_J,axiom,
    ! [X3: num] :
      ( ( nat_of_num @ ( bit1 @ X3 ) )
      = ( suc @ ( plus_plus_nat @ ( nat_of_num @ X3 ) @ ( nat_of_num @ X3 ) ) ) ) ).

% nat_of_num.simps(3)
thf(fact_10159_nat__of__num__pos,axiom,
    ! [X3: num] : ( ord_less_nat @ zero_zero_nat @ ( nat_of_num @ X3 ) ) ).

% nat_of_num_pos
thf(fact_10160_nat__of__num__neq__0,axiom,
    ! [X3: num] :
      ( ( nat_of_num @ X3 )
     != zero_zero_nat ) ).

% nat_of_num_neq_0
thf(fact_10161_nat__of__num__add,axiom,
    ! [X3: num,Y3: num] :
      ( ( nat_of_num @ ( plus_plus_num @ X3 @ Y3 ) )
      = ( plus_plus_nat @ ( nat_of_num @ X3 ) @ ( nat_of_num @ Y3 ) ) ) ).

% nat_of_num_add
thf(fact_10162_nat__of__num__numeral,axiom,
    nat_of_num = numeral_numeral_nat ).

% nat_of_num_numeral
thf(fact_10163_nat__of__num__inverse,axiom,
    ! [X3: num] :
      ( ( num_of_nat @ ( nat_of_num @ X3 ) )
      = X3 ) ).

% nat_of_num_inverse
thf(fact_10164_num__eq__iff,axiom,
    ( ( ^ [Y5: num,Z2: num] : ( Y5 = Z2 ) )
    = ( ^ [X: num,Y: num] :
          ( ( nat_of_num @ X )
          = ( nat_of_num @ Y ) ) ) ) ).

% num_eq_iff
thf(fact_10165_nat__of__num__code_I1_J,axiom,
    ( ( nat_of_num @ one )
    = one_one_nat ) ).

% nat_of_num_code(1)
thf(fact_10166_nat__of__num_Osimps_I2_J,axiom,
    ! [X3: num] :
      ( ( nat_of_num @ ( bit0 @ X3 ) )
      = ( plus_plus_nat @ ( nat_of_num @ X3 ) @ ( nat_of_num @ X3 ) ) ) ).

% nat_of_num.simps(2)
thf(fact_10167_nat__of__num__inc,axiom,
    ! [X3: num] :
      ( ( nat_of_num @ ( inc @ X3 ) )
      = ( suc @ ( nat_of_num @ X3 ) ) ) ).

% nat_of_num_inc
thf(fact_10168_less__num__def,axiom,
    ( ord_less_num
    = ( ^ [M3: num,N3: num] : ( ord_less_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ).

% less_num_def
thf(fact_10169_nat__of__num__code_I2_J,axiom,
    ! [N: num] :
      ( ( nat_of_num @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( nat_of_num @ N ) @ ( nat_of_num @ N ) ) ) ).

% nat_of_num_code(2)
thf(fact_10170_nat__of__num__mult,axiom,
    ! [X3: num,Y3: num] :
      ( ( nat_of_num @ ( times_times_num @ X3 @ Y3 ) )
      = ( times_times_nat @ ( nat_of_num @ X3 ) @ ( nat_of_num @ Y3 ) ) ) ).

% nat_of_num_mult
thf(fact_10171_nat__of__num__sqr,axiom,
    ! [X3: num] :
      ( ( nat_of_num @ ( sqr @ X3 ) )
      = ( times_times_nat @ ( nat_of_num @ X3 ) @ ( nat_of_num @ X3 ) ) ) ).

% nat_of_num_sqr
thf(fact_10172_nat__of__num_Osimps_I1_J,axiom,
    ( ( nat_of_num @ one )
    = ( suc @ zero_zero_nat ) ) ).

% nat_of_num.simps(1)
thf(fact_10173_num__of__nat__inverse,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( nat_of_num @ ( num_of_nat @ N ) )
        = N ) ) ).

% num_of_nat_inverse
thf(fact_10174_nat__of__num__code_I3_J,axiom,
    ! [N: num] :
      ( ( nat_of_num @ ( bit1 @ N ) )
      = ( suc @ ( plus_plus_nat @ ( nat_of_num @ N ) @ ( nat_of_num @ N ) ) ) ) ).

% nat_of_num_code(3)
thf(fact_10175_plus__num__def,axiom,
    ( plus_plus_num
    = ( ^ [M3: num,N3: num] : ( num_of_nat @ ( plus_plus_nat @ ( nat_of_num @ M3 ) @ ( nat_of_num @ N3 ) ) ) ) ) ).

% plus_num_def
thf(fact_10176_or__num_Oelims,axiom,
    ! [X3: num,Xa: num,Y3: num] :
      ( ( ( bit_un6697907153464112080or_num @ X3 @ Xa )
        = Y3 )
     => ( ( ( X3 = one )
         => ( ( Xa = one )
           => ( Y3 != one ) ) )
       => ( ( ( X3 = one )
           => ! [N2: num] :
                ( ( Xa
                  = ( bit0 @ N2 ) )
               => ( Y3
                 != ( bit1 @ N2 ) ) ) )
         => ( ( ( X3 = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit1 @ N2 ) )
                 => ( Y3
                   != ( bit1 @ N2 ) ) ) )
           => ( ! [M4: num] :
                  ( ( X3
                    = ( bit0 @ M4 ) )
                 => ( ( Xa = one )
                   => ( Y3
                     != ( bit1 @ M4 ) ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ! [N2: num] :
                        ( ( Xa
                          = ( bit0 @ N2 ) )
                       => ( Y3
                         != ( bit0 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit1 @ N2 ) )
                         => ( Y3
                           != ( bit1 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X3
                          = ( bit1 @ M4 ) )
                       => ( ( Xa = one )
                         => ( Y3
                           != ( bit1 @ M4 ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ! [N2: num] :
                              ( ( Xa
                                = ( bit0 @ N2 ) )
                             => ( Y3
                               != ( bit1 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) ) ) )
                     => ~ ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit1 @ N2 ) )
                               => ( Y3
                                 != ( bit1 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_num.elims
thf(fact_10177_or__num_Osimps_I2_J,axiom,
    ! [N: num] :
      ( ( bit_un6697907153464112080or_num @ one @ ( bit0 @ N ) )
      = ( bit1 @ N ) ) ).

% or_num.simps(2)
thf(fact_10178_or__num_Osimps_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(6)
thf(fact_10179_or__num_Osimps_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit1 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(8)
thf(fact_10180_or__num_Osimps_I3_J,axiom,
    ! [N: num] :
      ( ( bit_un6697907153464112080or_num @ one @ ( bit1 @ N ) )
      = ( bit1 @ N ) ) ).

% or_num.simps(3)
thf(fact_10181_or__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit1 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% or_num.simps(7)
thf(fact_10182_or__num_Osimps_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(9)
thf(fact_10183_or__num_Osimps_I1_J,axiom,
    ( ( bit_un6697907153464112080or_num @ one @ one )
    = one ) ).

% or_num.simps(1)
thf(fact_10184_or__num_Osimps_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit_un6697907153464112080or_num @ M @ N ) ) ) ).

% or_num.simps(5)
thf(fact_10185_or__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_un6697907153464112080or_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% or_num.simps(4)
thf(fact_10186_or__num_Opelims,axiom,
    ! [X3: num,Xa: num,Y3: num] :
      ( ( ( bit_un6697907153464112080or_num @ X3 @ Xa )
        = Y3 )
     => ( ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ X3 @ Xa ) )
       => ( ( ( X3 = one )
           => ( ( Xa = one )
             => ( ( Y3 = one )
               => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X3 = one )
             => ! [N2: num] :
                  ( ( Xa
                    = ( bit0 @ N2 ) )
                 => ( ( Y3
                      = ( bit1 @ N2 ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ one @ ( bit0 @ N2 ) ) ) ) ) )
           => ( ( ( X3 = one )
               => ! [N2: num] :
                    ( ( Xa
                      = ( bit1 @ N2 ) )
                   => ( ( Y3
                        = ( bit1 @ N2 ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ one @ ( bit1 @ N2 ) ) ) ) ) )
             => ( ! [M4: num] :
                    ( ( X3
                      = ( bit0 @ M4 ) )
                   => ( ( Xa = one )
                     => ( ( Y3
                          = ( bit1 @ M4 ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) ) ) ) )
               => ( ! [M4: num] :
                      ( ( X3
                        = ( bit0 @ M4 ) )
                     => ! [N2: num] :
                          ( ( Xa
                            = ( bit0 @ N2 ) )
                         => ( ( Y3
                              = ( bit0 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                 => ( ! [M4: num] :
                        ( ( X3
                          = ( bit0 @ M4 ) )
                       => ! [N2: num] :
                            ( ( Xa
                              = ( bit1 @ N2 ) )
                           => ( ( Y3
                                = ( bit1 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) )
                   => ( ! [M4: num] :
                          ( ( X3
                            = ( bit1 @ M4 ) )
                         => ( ( Xa = one )
                           => ( ( Y3
                                = ( bit1 @ M4 ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) ) ) ) )
                     => ( ! [M4: num] :
                            ( ( X3
                              = ( bit1 @ M4 ) )
                           => ! [N2: num] :
                                ( ( Xa
                                  = ( bit0 @ N2 ) )
                               => ( ( Y3
                                    = ( bit1 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N2 ) ) ) ) ) )
                       => ~ ! [M4: num] :
                              ( ( X3
                                = ( bit1 @ M4 ) )
                             => ! [N2: num] :
                                  ( ( Xa
                                    = ( bit1 @ N2 ) )
                                 => ( ( Y3
                                      = ( bit1 @ ( bit_un6697907153464112080or_num @ M4 @ N2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_un4773296044027857193um_rel @ ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_num.pelims
thf(fact_10187_or__num__dict,axiom,
    bit_un6697907153464112080or_num = bit_un2785000775030745342or_num ).

% or_num_dict
thf(fact_10188_or__num__rel__dict,axiom,
    bit_un4773296044027857193um_rel = bit_un6909899581280750971um_rel ).

% or_num_rel_dict
thf(fact_10189_unit__factor__simps_I1_J,axiom,
    ( ( unit_f2748546683901255202or_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% unit_factor_simps(1)
thf(fact_10190_unit__factor__nat__def,axiom,
    ( unit_f2748546683901255202or_nat
    = ( ^ [N3: nat] : ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat @ one_one_nat ) ) ) ).

% unit_factor_nat_def
thf(fact_10191_VEBT__internal_Ogreater_Osimps,axiom,
    ( vEBT_VEBT_greater
    = ( vEBT_V2881884560877996034ft_nat
      @ ^ [X: nat,Y: nat] : ( ord_less_nat @ Y @ X ) ) ) ).

% VEBT_internal.greater.simps
thf(fact_10192_VEBT__internal_Ogreater_Oelims_I1_J,axiom,
    ! [X3: option_nat,Xa: option_nat,Y3: $o] :
      ( ( ( vEBT_VEBT_greater @ X3 @ Xa )
        = Y3 )
     => ( Y3
        = ( vEBT_V2881884560877996034ft_nat
          @ ^ [X: nat,Y: nat] : ( ord_less_nat @ Y @ X )
          @ X3
          @ Xa ) ) ) ).

% VEBT_internal.greater.elims(1)
thf(fact_10193_VEBT__internal_Ogreater_Oelims_I2_J,axiom,
    ! [X3: option_nat,Xa: option_nat] :
      ( ( vEBT_VEBT_greater @ X3 @ Xa )
     => ( vEBT_V2881884560877996034ft_nat
        @ ^ [X: nat,Y: nat] : ( ord_less_nat @ Y @ X )
        @ X3
        @ Xa ) ) ).

% VEBT_internal.greater.elims(2)
thf(fact_10194_VEBT__internal_Ogreater_Oelims_I3_J,axiom,
    ! [X3: option_nat,Xa: option_nat] :
      ( ~ ( vEBT_VEBT_greater @ X3 @ Xa )
     => ~ ( vEBT_V2881884560877996034ft_nat
          @ ^ [X: nat,Y: nat] : ( ord_less_nat @ Y @ X )
          @ X3
          @ Xa ) ) ).

% VEBT_internal.greater.elims(3)
thf(fact_10195_VEBT__internal_Oless_Osimps,axiom,
    ( vEBT_VEBT_less
    = ( vEBT_V2881884560877996034ft_nat @ ord_less_nat ) ) ).

% VEBT_internal.less.simps
thf(fact_10196_VEBT__internal_Oless_Oelims_I1_J,axiom,
    ! [X3: option_nat,Xa: option_nat,Y3: $o] :
      ( ( ( vEBT_VEBT_less @ X3 @ Xa )
        = Y3 )
     => ( Y3
        = ( vEBT_V2881884560877996034ft_nat @ ord_less_nat @ X3 @ Xa ) ) ) ).

% VEBT_internal.less.elims(1)
thf(fact_10197_VEBT__internal_Oless_Oelims_I2_J,axiom,
    ! [X3: option_nat,Xa: option_nat] :
      ( ( vEBT_VEBT_less @ X3 @ Xa )
     => ( vEBT_V2881884560877996034ft_nat @ ord_less_nat @ X3 @ Xa ) ) ).

% VEBT_internal.less.elims(2)
thf(fact_10198_VEBT__internal_Oless_Oelims_I3_J,axiom,
    ! [X3: option_nat,Xa: option_nat] :
      ( ~ ( vEBT_VEBT_less @ X3 @ Xa )
     => ~ ( vEBT_V2881884560877996034ft_nat @ ord_less_nat @ X3 @ Xa ) ) ).

% VEBT_internal.less.elims(3)
thf(fact_10199_VEBT__internal_Olesseq_Oelims_I3_J,axiom,
    ! [X3: option_nat,Xa: option_nat] :
      ( ~ ( vEBT_VEBT_lesseq @ X3 @ Xa )
     => ~ ( vEBT_V2881884560877996034ft_nat @ ord_less_eq_nat @ X3 @ Xa ) ) ).

% VEBT_internal.lesseq.elims(3)
thf(fact_10200_VEBT__internal_Olesseq_Oelims_I2_J,axiom,
    ! [X3: option_nat,Xa: option_nat] :
      ( ( vEBT_VEBT_lesseq @ X3 @ Xa )
     => ( vEBT_V2881884560877996034ft_nat @ ord_less_eq_nat @ X3 @ Xa ) ) ).

% VEBT_internal.lesseq.elims(2)
thf(fact_10201_VEBT__internal_Olesseq_Oelims_I1_J,axiom,
    ! [X3: option_nat,Xa: option_nat,Y3: $o] :
      ( ( ( vEBT_VEBT_lesseq @ X3 @ Xa )
        = Y3 )
     => ( Y3
        = ( vEBT_V2881884560877996034ft_nat @ ord_less_eq_nat @ X3 @ Xa ) ) ) ).

% VEBT_internal.lesseq.elims(1)
thf(fact_10202_VEBT__internal_Olesseq_Osimps,axiom,
    ( vEBT_VEBT_lesseq
    = ( vEBT_V2881884560877996034ft_nat @ ord_less_eq_nat ) ) ).

% VEBT_internal.lesseq.simps
thf(fact_10203_lcm__0__iff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ( gcd_lcm_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% lcm_0_iff_nat
thf(fact_10204_lcm__0__iff__int,axiom,
    ! [M: int,N: int] :
      ( ( ( gcd_lcm_int @ M @ N )
        = zero_zero_int )
      = ( ( M = zero_zero_int )
        | ( N = zero_zero_int ) ) ) ).

% lcm_0_iff_int
thf(fact_10205_lcm__int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( gcd_lcm_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( semiri1314217659103216013at_int @ ( gcd_lcm_nat @ M @ N ) ) ) ).

% lcm_int_int_eq
thf(fact_10206_lcm__1__iff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ( gcd_lcm_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% lcm_1_iff_nat
thf(fact_10207_lcm__nat__abs__left__eq,axiom,
    ! [K: int,N: nat] :
      ( ( gcd_lcm_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ N )
      = ( nat2 @ ( gcd_lcm_int @ K @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% lcm_nat_abs_left_eq

% Helper facts (44)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X3: int,Y3: int] :
      ( ( if_int @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X3: int,Y3: int] :
      ( ( if_int @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( if_nat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( if_nat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
    ! [X3: num,Y3: num] :
      ( ( if_num @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
    ! [X3: num,Y3: num] :
      ( ( if_num @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( if_rat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
    ! [X3: rat,Y3: rat] :
      ( ( if_rat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X3: real,Y3: real] :
      ( ( if_real @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X3: real,Y3: real] :
      ( ( if_real @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
    ! [P: real > $o] :
      ( ( P @ ( fChoice_real @ P ) )
      = ( ? [X8: real] : ( P @ X8 ) ) ) ).

thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( if_complex @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X3: complex,Y3: complex] :
      ( ( if_complex @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X3: extended_enat,Y3: extended_enat] :
      ( ( if_Extended_enat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X3: extended_enat,Y3: extended_enat] :
      ( ( if_Extended_enat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X3: code_integer,Y3: code_integer] :
      ( ( if_Code_integer @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X3: code_integer,Y3: code_integer] :
      ( ( if_Code_integer @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X3: set_int,Y3: set_int] :
      ( ( if_set_int @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X3: set_int,Y3: set_int] :
      ( ( if_set_int @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Nat__Onat_J_T,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( if_set_nat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Nat__Onat_J_T,axiom,
    ! [X3: set_nat,Y3: set_nat] :
      ( ( if_set_nat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X3: vEBT_VEBT,Y3: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X3: vEBT_VEBT,Y3: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X3: list_int,Y3: list_int] :
      ( ( if_list_int @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X3: list_int,Y3: list_int] :
      ( ( if_list_int @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X3: list_nat,Y3: list_nat] :
      ( ( if_list_nat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Nat__Onat_J_T,axiom,
    ! [X3: list_nat,Y3: list_nat] :
      ( ( if_list_nat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X3: int > int,Y3: int > int] :
      ( ( if_int_int @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X3: int > int,Y3: int > int] :
      ( ( if_int_int @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J_T,axiom,
    ! [X3: nat > rat,Y3: nat > rat] :
      ( ( if_nat_rat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001_062_It__Nat__Onat_Mt__Rat__Orat_J_T,axiom,
    ! [X3: nat > rat,Y3: nat > rat] :
      ( ( if_nat_rat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X3: option_nat,Y3: option_nat] :
      ( ( if_option_nat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X3: option_nat,Y3: option_nat] :
      ( ( if_option_nat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X3: option_num,Y3: option_num] :
      ( ( if_option_num @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X3: option_num,Y3: option_num] :
      ( ( if_option_num @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X3: product_prod_int_int,Y3: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X3: product_prod_int_int,Y3: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X3: product_prod_nat_nat,Y3: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X3: product_prod_nat_nat,Y3: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X3: produc6271795597528267376eger_o,Y3: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X3: produc6271795597528267376eger_o,Y3: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $true @ X3 @ Y3 )
      = X3 ) ).

thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X3: produc8923325533196201883nteger,Y3: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $false @ X3 @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X3: produc8923325533196201883nteger,Y3: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $true @ X3 @ Y3 )
      = X3 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_nat @ x @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).

%------------------------------------------------------------------------------